Quantum Magnetism with 7Li - BEC 5 2014.pdf · Quantum Magnetism with 7Li Ivana Dimitrova, Jesse...

1
Quantum Magnetism with 7 Li Ivana Dimitrova, Jesse Amato-Grill, Niklas Jepsen, William Lunden, Yichao Yu, Michael Messer, Graciana Puentes, David Weld, Wolfgang Ketterle MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics Department of Physics, Massachusetts Institute of Technology, Cambridge The Need For Speed Two-component Bose-Hubbard Hamiltonian H = - X hij i=, t σ a i σ a j σ + h .c . + 1 2 X i =,U σ n i σ (n i σ - 1)+ U ↑↓ X i n i n i Super-exchange dominated spin-interactions J = t 2 /U (a) Neighboring atoms U T (b) Virtual Excitation of energy U T (c) Particle tunnels back Advantages of our experimental setup: (1) Light mass of Li-7 (2) Green optical lattice (3) Feshbach resonance E R = 2 k 2 2m U a · 8 π k (V 0 /E R ) 3/4 E R t E R · 4 π (V 0 /E R ) 3/4 e V 0 /E R Higher critical temperature for magnetic ordering (k B T c t 2 /U ) Faster spin dynamics within experimentally relevant timescales Implementation Design Realization Cooling 7 Li to Degeneracy I MOT 2mK 1 × 10 10 atoms I CMOT I Gray Molasses 60μK I Dark State Pumping 90μK I Evaporation in a Quadrupole Magnetic trap for 2.5sec 4μK 7 × 10 7 atoms I Transfer to Optical Dipole trap 100μm 15W /arm I Spin Flip (F , m F )= (2, 2) (1, 1) I Feshbach Resonance in (1, 1) I Evaporation in Optical Dipole Trap I BEC 5 × 10 5 atoms Quantum Simulation I Anisotropic Heisenberg Model (XXZ model) H = X <i ,j > [J z s z i s z j - J xy (s x i s x j + s y i s y j )] - h z X i s z i J z = t 2 + t 2 2U ↑↓ - t 2 U ↑↑ - t 2 U ↓↓ J xy = t t 2U ↑↓ I Magnetic phase diagram 0 1 2 3 -1 -2 0 1 2 3 h z /ZJ xy Longitudinal magnetic field Longitudinal interaction J z /J xy Z-Antiferromagnet XY-Ferromagnet Z-Ferromagnet Spin Dynamics I Spin transport by super-exchange interactions (n) Prepare a 50-50 spin mixture (o) Separate spins by magnetic field gradient (p) Apply optical lattice (q) Allow spins to mix (by decreasing magnetic field gradient) Funding Acknowledgements

Transcript of Quantum Magnetism with 7Li - BEC 5 2014.pdf · Quantum Magnetism with 7Li Ivana Dimitrova, Jesse...

Page 1: Quantum Magnetism with 7Li - BEC 5 2014.pdf · Quantum Magnetism with 7Li Ivana Dimitrova, Jesse Amato-Grill, Niklas Jepsen, William Lunden, Yichao Yu, Michael Messer, Graciana Puentes,

Quantum Magnetism with 7LiIvana Dimitrova, Jesse Amato-Grill, Niklas Jepsen, William Lunden, Yichao Yu, Michael Messer, Graciana Puentes, David Weld,

Wolfgang KetterleMIT-Harvard Center for Ultracold Atoms, Research Laboratory of ElectronicsDepartment of Physics, Massachusetts Institute of Technology, Cambridge

The Need For Speed

Two-component Bose-Hubbard Hamiltonian

H = −∑

〈ij〉,σ=↑,↓

(tσa†iσajσ + h.c.

)+

12

i ,σ=↑,↓Uσniσ(niσ−1)+U↑↓

i

ni↑ni↓

Super-exchange dominated spin-interactions J = t2/U

(a) Neighboring atoms

U

T

(b) Virtual Excitation of energy U

T

(c) Particle tunnels back

Advantages of our experimental setup:

(1) Light mass of Li-7

(2) Green optical lattice

(3) Feshbach resonance

ER =�2k2

2m

U ≈ a ·�

8

πk(V0/ER)3/4ER

t ≈ ER · 4√π

(V0/ER)3/4e−√

V0/ER

⇒ Higher critical temperature for magnetic ordering (kBTc ∼ t2/U)⇒ Faster spin dynamics within experimentally relevant timescales

Implementation

Design Realization

Cooling 7Li to Degeneracy

IMOT ∼ 2mK∼ 1× 1010

atomsICMOT

IGray Molasses∼ 60µK

IDark StatePumping∼ 90µK

IEvaporation ina QuadrupoleMagnetic trapfor 2.5sec∼ 4µK∼ 7×107atoms

ITransfer toOptical Dipoletrap ∼ 100µm∼ 15W /arm

ISpin Flip(F ,mF) =(2,2)→ (1,1)

IFeshbachResonance in(1,1)

IEvaporation inOptical DipoleTrap

IBEC∼ 5× 105

atoms

Quantum Simulation

IAnisotropic Heisenberg Model (XXZ model)H =

<i ,j>

[Jzszi sz

j − Jxy(sxi sx

j + syi sy

j )]− hz

i

szi

Jz =t2↑ + t2

↓2U↑↓

−t2↑

U↑↑−

t2↓

U↓↓Jxy =

t↑t↓2U↑↓

IMagnetic phase diagram

0

1

2

3

-1

-20 1 2 3

hz/ZJxyLongitudinal magnetic field

Long

itudi

nal i

nter

actio

nJ

z/J

xy Z-Antiferromagnet

XY-Ferromagnet

Z-Ferromagnet

Spin Dynamics

ISpin transport by super-exchange interactions

(n) Prepare a 50-50spin mixture

(o) Separate spins bymagnetic field gradient

(p)Apply optical lattice (q)Allow spins to mix (bydecreasing magneticfield gradient)

Funding Acknowledgements