Quantum-Information Thermodynamics - KIAS

28
Quantum-Information Thermodynamics KIAS Workshop on Quantum Information and Thermodynamics 25-27 November 2015, Busan, Korea Takahiro Sagawa Department of Applied Physics, University of Tokyo

Transcript of Quantum-Information Thermodynamics - KIAS

Page 1: Quantum-Information Thermodynamics - KIAS

Quantum-Information Thermodynamics

KIAS Workshop on Quantum Information and Thermodynamics

25-27 November 2015, Busan, Korea

Takahiro SagawaDepartment of Applied Physics, University of Tokyo

Page 2: Quantum-Information Thermodynamics - KIAS

Working on…

• Nonequilibrium statistical physics

• Quantum information theory

In particular, thermodynamics of information

Review: J. M. R. Parrondo, J. M. Horowitz, & T. Sagawa,Nature Physics 11, 131-139 (2015).

Page 3: Quantum-Information Thermodynamics - KIAS

Collaborators on Information Thermodynamics

• Masahito Ueda (Univ. Tokyo)

• Shoichi Toyabe (Tohoku Univ.)

• Eiro Muneyuki (Chuo Univ.)

• Masaki Sano (Univ. Tokyo)

• Sosuke Ito (Univ. Tokyo)

• Naoto Shiraishi (Univ. Tokyo)

• Sang Wook Kim (Pusan National Univ.)

• Jung Jun Park (National Univ. Singapore)

• Kang-Hwan Kim (KAIST)

• Simone De Liberato (Univ. Paris VII)

• Juan M. R. Parrondo (Univ. Madrid)

• Jordan M. Horowitz (Univ. Massachusetts)

• Jukka Pekola (Aalto Univ.)

• Jonne Koski (Aalto Univ.)

• Ville Maisi (Aalto Univ.)

Page 4: Quantum-Information Thermodynamics - KIAS

Plan of Lecture

• Part 0:General introduction

• Part 1: Fluctuation theorems

• Part 2:Classical/quantum measurement and information

• Part 3:Information thermodynamics

Page 5: Quantum-Information Thermodynamics - KIAS

Plan of Lecture

• Part 0:General introduction

• Part 1: Fluctuation theorems

• Part 2:Classical/quantum measurement and information

• Part 3:Information thermodynamics

Page 6: Quantum-Information Thermodynamics - KIAS

Nonequilibrium Statistical Mechanics

Linear response theory

NonequilibriumEquilibrium

Universal thermodynamic law far from equilibrium?

Ryogo KuboLars Onsager

Page 7: Quantum-Information Thermodynamics - KIAS

A New Field:Thermodynamics in the Fluctuating World

Thermodynamics of small systems with large heat bath(s)

Second law W F

Nonlinear & nonequilibrium relations

Thermodynamic quantities are fluctuating!

Page 8: Quantum-Information Thermodynamics - KIAS

Information Thermodynamics

Information processing at the level of thermal fluctuations

Foundation of the second law of thermodynamics

Application to nanomachines and nanodevices

System Demon

Information

Feedback

Page 9: Quantum-Information Thermodynamics - KIAS

Plan of Lecture

• Part 0:General introduction

• Part 1: Fluctuation theorems

• Part 2:Classical/quantum measurement and information

• Part 3:Information thermodynamics

Page 10: Quantum-Information Thermodynamics - KIAS

Conventional Second Law of Thermodynamics

FW

With a cycle, 0F holds, and therefore

0W (impossibility of any perpetual motion of the second kind)

Heat bath (temperature T )

Work W

(the equality is achieved in the quasi-static process)

Free-energy change ΔF

Page 11: Quantum-Information Thermodynamics - KIAS

Second Law in Small Systems

W becomes stochastic due to thermal fluctuations

FW can occur with a small probability(stochastic violation of the second law)

with a large heat bath

Drive the system from equilibrium

Work W

Free-energy change ΔF

FW on average

W

P(W)

WΔF

Page 12: Quantum-Information Thermodynamics - KIAS

Fluctuation-Dissipation Theorem (FDT)

22

2WWFW

In the linear response (or Gaussian) regime

Dissipative work Work fluctuation

Right-hand side is obviously nonnegative Second law

Beyond the linear response theory?

Page 13: Quantum-Information Thermodynamics - KIAS

Jarzynski Equality (1997)

( ) 1W Fe

Second law can be expressed by an equalityby including the higher-order fluctuations!

C. Jarzynski, PRL 78, 2690 (1997)

Reproduce Second Law and FDT

Page 14: Quantum-Information Thermodynamics - KIAS

Second Law from Jarzynski Equality

Concavity of exponential function (Jensen’s inequality)

XX ee

)()( FWFW ee

1 (Jarzynski equality)

0 FWSecond law

for arbitrary X

X

XeXe

Xe

Page 15: Quantum-Information Thermodynamics - KIAS

FDT from Jarzynski Equality

)(2

)(ln22

2)( WWFWe FW

Cumulant expansion:

(Exact if the work distribution is Gaussian)

0(Jarzynski equality)

)(2

22 WWFW

Page 16: Quantum-Information Thermodynamics - KIAS

Free-energy Estimation by the Jarzynski Equality

Quasi-static process:revWF

FW ee Finite time process:

WeF ln1

Jarzynski equality

Three estimators of the free-energy difference

WeW ln: 1

JE: expected to be exact

22

FD2

: WWWW : up to the second cumulant

(exact for the Gaussian distribution)

WW :A: not good in general

Page 17: Quantum-Information Thermodynamics - KIAS

Experiment

Science 296, 1832-1835 (2002)

Page 18: Quantum-Information Thermodynamics - KIAS

Crooks’ Fluctuation Theorem (FT) (1)

Characterize the work distribution more quantitatively

Consider “forward experiment” VS “backward experiment”

Forward: push (folding)

Backward: stretch (unfolding)

For example…

Page 19: Quantum-Information Thermodynamics - KIAS

)(

][

][ FW

F

B eWP

WP

Work distribution in backward experiment

Work distribution in forward experiment

Dissipative work in forward experiment

The probability of the second-law violation is exponentially small

But observable in small systems

Crooks’ Fluctuation Theorem (FT) (2)

Collin et al, Nature 437, 231–234 (2005)

G. E. Crooks, Phys. Rev. E 60, 2721 (1999)

Page 20: Quantum-Information Thermodynamics - KIAS

Jarzynski equality from Crooks’ FT

1

][

][

][][

][ )()(

WdWP

WP

WPWdWP

eWdWPe

B

F

BF

FW

F

FW

Crooks’ FT

Page 21: Quantum-Information Thermodynamics - KIAS

Summary: Hierarchy of Nonequilibrium Relations

)(

][

][ FW

F

B eWP

WP

1)( FWe

0 FW

Crooks’ fluctuation theorem

Jarzynski equality

Second law

Page 22: Quantum-Information Thermodynamics - KIAS

Torward Quantum

• Fundamental structure of nonequilibrium relations is very similar to the classical case; But some difficulties to introduce the concept of work

Classical: Work can be measured by continuously monitoring the system

Quantum: Such continuous monitoring will make the wave function collapse, and the dynamics of the system will be drastically changed.

How to observe the work in the quantum regime without changing the dynamics of the system?

Page 23: Quantum-Information Thermodynamics - KIAS

Several Approaches• Unitary formalism: “Tasaki-Crooks” fluctuation theorem

• Hal Tasaki, arXiv:cond-mat/0009244

• J. Kurchan, arXiv:cond-mat/0007360

• M. Esposito, U. Harbola & S. Mukamel, Rev. Mod. Phys. 81, 1665 (2009)

– Two projection method• Experiment: S. An et al., arXiv:1409.4485

– Interferometer method• Theory: R. Dorner et al., Phys. Rev. Lett. 110, 230601 (2013)

• Experiment: T. B. Batalhao et al., Phys. Rev. Lett. 113, 140601 (2014)

• Quantum trajectory formalism• J. M. Horowitz & J. M. R. Parrondo, New J. Phys. 15, 085028 (2013)

• F. W. J. Hekking & J. P. Pekola, Phys. Rev. Lett. 111, 093602 (2013)

Page 24: Quantum-Information Thermodynamics - KIAS

Two Projection Method

Main idea:

Consider a unitary system (without any heat bath)

Projection measurements of the energy in the initial and final steps

Work is just the energy difference if EEW inifin

Stochastic due to thermal and quantum fluctuations

Page 25: Quantum-Information Thermodynamics - KIAS

Simplest Setup (1)

Initial state: Canonical distribution )(

iniiniini HF

e

Projection measurement of the initial Hamiltonian

(without destroying the initial state)

ρini: initial density operator Hini: initial Hamiltonian

i

ii

iEH iniiniSpectrum decomposition:

Outcome: (one of the eigenvalues of Hini )iEini

Page 26: Quantum-Information Thermodynamics - KIAS

Simplest Setup (2)

Unitary evolution with external driving

0)(

i-expT dttHU

Projection measurement of the final Hamiltonian

f

ff

fEH finfinSpectrum decomposition:

)0(ini HH )(fin HH

(Hamiltonian is time-dependent)

†UU inifin

Outcome: fEfin (one of the eigenvalues of Hfin )

Page 27: Quantum-Information Thermodynamics - KIAS

Quantum Jarzynski Equality

Work: if EEW inifin Just the energy conservation: no heat bath outside

1)( FWe

]tr[ln ini1

ini

HeF

]tr[ln fin1

fin

HeF

inifin FFF

Free energy:

Page 28: Quantum-Information Thermodynamics - KIAS

Quantum Jarzynski Equality: Proof

1

)(

2)(

)(2

)(

)(2

)()(

finfin

finfin

iniiniinifininifin

iniini

f

FE

if

if

FE

if

EF

if

FFEE

if

EF

if

FWFW

f

f

iif

i

e

Ue

eUe

eUee

Sum of a probability distribution

12

i

if U