Quantum Information Processing - TU/e

177
Quantum Information Processing Harry Buhrman CWI & University of Amsterdam

Transcript of Quantum Information Processing - TU/e

Page 1: Quantum Information Processing - TU/e

Quantum Information Processing

Harry Buhrman

CWI

&

University of Amsterdam

Page 2: Quantum Information Processing - TU/e

Physics and Computing

Computing is physicalMiniaturization quantum effects

Quantum Computers

1) Enables continuing miniaturization

2) Fundamentally faster algorithms3) New computing paradigm

Page 3: Quantum Information Processing - TU/e

Quantum mechanics

―What I am going to tell you about is what we teach our physics students in the third or fourth year of graduate school... It is my task to convince you not to turn away because you don't understand it. You see my physics students don't understand it. ... That is because I don't understand it. Nobody does. ―

Richard Feynman, Nobel Lecture, 1966

Page 4: Quantum Information Processing - TU/e

Quantum Mechanics

Page 5: Quantum Information Processing - TU/e

polarized light

Page 6: Quantum Information Processing - TU/e

calcite crystal

polarized light

Page 7: Quantum Information Processing - TU/e

calcite crystal

polarized light

Page 8: Quantum Information Processing - TU/e

calcite crystal

polarized light

Page 9: Quantum Information Processing - TU/e

calcite crystal

polarized light

Page 10: Quantum Information Processing - TU/e

calcite crystals

polarized light

Page 11: Quantum Information Processing - TU/e

calcite crystals

polarized light

Page 12: Quantum Information Processing - TU/e

calcite crystals

polarized light

Page 13: Quantum Information Processing - TU/e

calcite crystals

polarized light

Page 14: Quantum Information Processing - TU/e

calcite crystals

polarized light

Page 15: Quantum Information Processing - TU/e

calcite crystal

photon gun

polarized photon

Page 16: Quantum Information Processing - TU/e

calcite crystal

photon gun

polarized photon

Page 17: Quantum Information Processing - TU/e

calcite crystal

photon gun

polarized photon

Page 18: Quantum Information Processing - TU/e

calcite crystal

photon gun

polarized photon

Page 19: Quantum Information Processing - TU/e

calcite crystal

photon gun

polarized photon

Page 20: Quantum Information Processing - TU/e

calcite crystal

photon gun

polarized photon

Page 21: Quantum Information Processing - TU/e

calcite crystal

photon gun

polarized photon

50%

50%

Page 22: Quantum Information Processing - TU/e

calcite crystal

photon gun

polarized photon

Page 23: Quantum Information Processing - TU/e

calcite crystals

photon gun

polarized photon

Page 24: Quantum Information Processing - TU/e

calcite crystals

photon gun

polarized photon

Page 25: Quantum Information Processing - TU/e

calcite crystals

photon gun

polarized photon

Page 26: Quantum Information Processing - TU/e

calcite crystals

photon gun

polarized photon

Page 27: Quantum Information Processing - TU/e

photon gun

photon took eitherpath A or B

A

B

Page 28: Quantum Information Processing - TU/e

photon gun

A

B

photon took eitherpath A or B

Page 29: Quantum Information Processing - TU/e

photon gun

A

B

photon took eitherpath A or B

50%

50%

Page 30: Quantum Information Processing - TU/e

photon gun

A

B

photon took eitherpath A or B

50%

50%

Page 31: Quantum Information Processing - TU/e

photon gun

A

B

photon took eitherpath A or B

50%

50%

Page 32: Quantum Information Processing - TU/e

photon gun

photon took path B

A

B

Page 33: Quantum Information Processing - TU/e

photon gun

A

B

photon took path B

Page 34: Quantum Information Processing - TU/e

photon gun

photon took eitherpath A or B

A

B

Page 35: Quantum Information Processing - TU/e

photon gun

photon took eitherpath A or B

A

B

Page 36: Quantum Information Processing - TU/e

photon gun

A

B

Quantum Mechanics

photon was in a superpositionof path A and B

Page 37: Quantum Information Processing - TU/e

Superposition

• object in more states at same time

• Schrödinger's cat: dead and alive

• Experimentally verified:– small systems, e.g. photons

– larger systems, molecules

• Proposed experiment:– virus in superposition

– motion & stillness

Page 38: Quantum Information Processing - TU/e

Science’s breakthrough of the year 2010:The first quantum machine

―Physicists […] designed the machine—a tiny metal paddle of semiconductor, visible to the naked eye—and coaxed it into dancing with a quantum groove.‖

Springboard. Scientists achieved the simplest quantum states of motion with this vibrating device, which is as long as a hair is wide

Page 39: Quantum Information Processing - TU/e

Quotes• Quantum mechanics is magic. [Daniel Greenberger]

• Everything we call real is made of things that cannot be regarded as real. [Niels Bohr]

• Those who are not shocked when they first come across quantum theory cannot possibly have understood it. [Niels Bohr]

• If you are not completely confused by quantum mechanics, you do not understand it. [John Wheeler]

• It is safe to say that nobody understands quantum mechanics. [Richard Feynman]

• If [quantum theory] is correct, it signifies the end of physics as a science. [Albert Einstein]

• I do not like [quantum mechanics], and I am sorry I ever had anything to do with it. [Erwin Schrödinger]

• Quantum mechanics makes absolutely no sense. [Roger Penrose]

Page 40: Quantum Information Processing - TU/e

Quantum Mechanics

• Most complete description of Nature to date

• Superposition principle:– ―particle can be at two positions at the

same time‖

• Interference:– ―particle in superposition can interfere

with itself‖

Page 41: Quantum Information Processing - TU/e

Superposition

Classical Bit: 0 or 1

Quantum Bit: Superposition of 0 and 1

1

0

Bit

Page 42: Quantum Information Processing - TU/e

Superposition

Classical Bit: 0 or 1

Quantum Bit: Superposition of 0 and 1

1

0

Bit Qubit

1

0

0 1+a b

Page 43: Quantum Information Processing - TU/e

Qubit

0 1+0 1+a b

amplitudes

Rule: |a|2+ |b|2 =1,a, b are complex numbers.

a b

Page 44: Quantum Information Processing - TU/e

Measurement

0 1+a b

0

1

Rule:observe 0 with probability |a|2

observe 1 with probability |b|2

―Projection‖ on the 0 axis or 1 axis.

after measurement qubit is 0 or 1

Page 45: Quantum Information Processing - TU/e

Qubits

• NMR (10 qubits)

• SQUIDS (1 qubit)

• Trapped Ions (7 qubits)

• Solid state

• Bose-Einstein condensate in optical lattices (30 qubits)

• Cavity QED

(3 qubits)

Page 46: Quantum Information Processing - TU/e

Example

12

10

2

1

Page 47: Quantum Information Processing - TU/e

Example

Measuring : Prob [1] = 1/2Prob [0] = 1/2

12

10

2

1

Page 48: Quantum Information Processing - TU/e

Example

Measuring : Prob [1] = 1/2Prob [0] = 1/2

After measurement:

12

10

2

1

0

1

with prob 1/2

with prob 1/2

Page 49: Quantum Information Processing - TU/e

Quantis – QUANTUM RANDOM NUMBER GENERATOR

Although random numbers are required in many applications, their

generation is often overlooked. Being deterministic, computers are not

capable of producing random numbers. A physical source of randomness is

necessary. Quantum physics being intrinsically random, it is natural to

exploit a quantum process for such a source. Quantum random number

generators have the advantage over conventional randomness sources of

being invulnerable to environmental perturbations and of allowing live status

verification.

Quantis is a physical random number generator exploiting an elementary

quantum optics process. Photons - light particles - are sent one by one onto

a semi-transparent mirror and detected. The exclusive events (reflection -

transmission) are associated to "0" - "1" bit values.

Page 50: Quantum Information Processing - TU/e
Page 51: Quantum Information Processing - TU/e

Qubit

Measurement:

observe 0 with probability

observe 1 with probability

Page 52: Quantum Information Processing - TU/e

Tensor Products

Page 53: Quantum Information Processing - TU/e

basis states

Page 54: Quantum Information Processing - TU/e

Two Qubits

111001004321

aaaa

|a1|2 + |a2|

2 + |a3|2 + |a4|

2 = 1

Prob[00] = |a1|2, Prob[01] = |a2|

2,

Prob[10] = |a3|2, Prob[11] = |a4|

2,

Page 55: Quantum Information Processing - TU/e

n Qubits

Prob[observing y] =|ay|2

Page 56: Quantum Information Processing - TU/e

Dirac Notation

norm 1 vector

complex conjugatetranspose

Page 57: Quantum Information Processing - TU/e

inner product

inner productbetween |ai and |bi

Page 58: Quantum Information Processing - TU/e

inner product(2)

Page 59: Quantum Information Processing - TU/e

Evolution

Page 60: Quantum Information Processing - TU/e

Evolution

1. Postulate: the evolution is a linearoperation

2. quantum states maped to quantum states– 1 & 2 implies that operation is Unitary

• length preserving

• rotations.

• U U* = I. (U* : complex conjugate, transpose)

Page 61: Quantum Information Processing - TU/e

Hadamard Transform

2

1

2

12

1

2

1

H

2

1

2

12

1

2

1

*H

IHH

10

01*

Page 62: Quantum Information Processing - TU/e

Hadamard on 0

0

1

2

1

2

12

1

2

1

2

12

1

2

1

2

12

1

2

1

H

12

10

2

1 0

H

interference

Page 63: Quantum Information Processing - TU/e

Hadamard on 0

0

1

2

1

2

12

1

2

1

2

12

1

2

1

2

12

1

2

1

H

12

10

2

1 0

H

interference

Page 64: Quantum Information Processing - TU/e

Hadamard on 1

1

0

2

1

2

12

1

2

1

2

12

1

2

1

2

12

1

2

1

H

12

10

2

1 1

H

Page 65: Quantum Information Processing - TU/e

Hadamard on 1

1

0

2

1

2

12

1

2

1

2

12

1

2

1

2

12

1

2

1

H

12

10

2

1 1

H

Page 66: Quantum Information Processing - TU/e

Hadamard on n qubits

inner product modulo 2

Page 67: Quantum Information Processing - TU/e

C-not Gate

defined on basis states)

defined on superpositions

Page 68: Quantum Information Processing - TU/e

No Cloning

Page 69: Quantum Information Processing - TU/e

no cloning

it is not possible to copy an unknown qubit [Wooters & Zurek‘82, Dieks‘82]

Page 70: Quantum Information Processing - TU/e

equal only if: a = 0 & b =1 ora = 1 & b =0

Page 71: Quantum Information Processing - TU/e

Quantum Algorithms

Page 72: Quantum Information Processing - TU/e

Deutsch ‗85Feynman

Page 73: Quantum Information Processing - TU/e

Quantum Algorithms

• Quantum Program:– unitary operation

– measurement

FeynmanDeutsch ‘85

Page 74: Quantum Information Processing - TU/e

Universal set of Gates

H

rotationover /4

Control-not

can implement any Unitary operation

Page 75: Quantum Information Processing - TU/e

Quantum Algorithms

• Quantum Program:– unitary operation

– measurement

• Fast:– unitary implemented by polynomially

many ―H‖, ―/4‖, and ‖C-not‖

– Efficient Quantum Computation: BQP

Page 76: Quantum Information Processing - TU/e

Early Quantum Algorithms

Page 77: Quantum Information Processing - TU/e

Deutsch‘s Problemcompute

?

Prob ½:

Prob ½:

Page 78: Quantum Information Processing - TU/e

Deutsch‘s Algorithm

Additional quantumoperation

Prob ½:

Prob ½: once

computation time of f

Page 79: Quantum Information Processing - TU/e

More detail

Page 80: Quantum Information Processing - TU/e

Parity Problem

X0 and X1

• compute X0 © X1

• Classically 2 queries

• Quantum 1 query!

Page 81: Quantum Information Processing - TU/e

Quantum query

• Querying X0

• Querying X1

• General query:

Page 82: Quantum Information Processing - TU/e

Deutsch‘s Algorithm for Parity

Page 83: Quantum Information Processing - TU/e

cont.

Page 84: Quantum Information Processing - TU/e

cont.

Page 85: Quantum Information Processing - TU/e

cont.

Page 86: Quantum Information Processing - TU/e

cont.

X0 © X1 = 0X0 = 0 & X1 = 0 orX0 = 1 & X1 = 1

See only X0 © X1 = 0X0 = 0 & X1 = 0 orX0 = 1 & X1 = 1

Page 87: Quantum Information Processing - TU/e

cont.

X0 © X1 = 1X0 = 0 & X1 = 1 orX0 = 1 & X1 = 0

See only X0 © X1 = 1X0 = 0 & X1 = 1 orX0 = 1 & X1 = 0

Page 88: Quantum Information Processing - TU/e

cont.

X0 © X1 = 0

X0 © X1 = 1 See only

See only

Page 89: Quantum Information Processing - TU/e

Extension:Constant or Balanced

Page 90: Quantum Information Processing - TU/e

Deutsch-Jozsa Problem

• Promise on X:(1) For all i: Xi = 1 (0) or (constant)

(2) |{i | Xi = 1}| = |{j | Xj = 0}| (balanced)

• Goal: determine case (1) or (2)

• Classical: N/2 + 1 probes.

• Quantum: 1 probe.

Page 91: Quantum Information Processing - TU/e

Quantum query

• Querying Xi

• General query:

Page 92: Quantum Information Processing - TU/e

Deutsch-Jozsa Algorithm

(1)

(2)

(3)

Page 93: Quantum Information Processing - TU/e

Deutsch-Jozsa cont.

measure state

Constant: see with prob. 1

Balanced:see with prob. 0

Page 94: Quantum Information Processing - TU/e

Quantum Algorithms

• Deutsch-Jozsa

• Simon‘s algorithm

• Shor‘s factoring algorithm

• Grover‘s search algorithm

• Quantum Random Walk

Page 95: Quantum Information Processing - TU/e

factorization

• Factor number in prime factors87 = 3 * 29

• Classical Computer : Exponential time• Quantum Computer : Poly-time: n2

• For a 300 digit number:– Classical: >100 years– Quantum: 1 minute

[Shor‘94]

Page 96: Quantum Information Processing - TU/e

impact

• Safety of modern cryptography based on

exponential slowness of factorization

• RSA, electronic commerce, internet…

Quantum computer destroys this!

Page 97: Quantum Information Processing - TU/e

Shor‘s Algorithm

• factoring a number N reduces to period finding problem: x find smallest r such that xr mod N = 1

• fast quantum algorithm for period finding

• classical post processing to obtain factor of N

Page 98: Quantum Information Processing - TU/e

Fourier transform

• Fourier transform F over Z2m

• Fourier transform over Z2m can be efficiently implemented

Page 99: Quantum Information Processing - TU/e

period finding for x

(1)

(2)

(3)

querynot black box!

Page 100: Quantum Information Processing - TU/e

Grover‘s SearchAlgorithm

Page 101: Quantum Information Processing - TU/e

search problem

• Input N (=2n) bits (variables):

X = X1 X2 X3 … XN

• exists/find i such that Xi = 1

• Classically (N) queries (bounded error)

• Quantum O( N) queries

Page 102: Quantum Information Processing - TU/e

Quantum Random Walk

• Speedup for different search problems:– Element Distinctness

– AND-OR trees

– pruning of game trees

– local search algorithms

Page 103: Quantum Information Processing - TU/e

Alice and Bob

Page 104: Quantum Information Processing - TU/e
Page 105: Quantum Information Processing - TU/e

Communication?

qubits

Page 106: Quantum Information Processing - TU/e

Communication?

qubits

Theorem [Holevo‘73]Can not compress k classical bits into k-1 qubits

Page 107: Quantum Information Processing - TU/e

Communication Complexity

Classical bits

X = x1 x2 … xN Y = y1 y2 … yN

Goal: Compute some function F(X,Y) {0,1}minimizing communication bits.

Page 108: Quantum Information Processing - TU/e

Communication Complexity

Classical bits

X = x1 x2 … xN Y = y1 y2 … yN

Goal: Compute some function F(X,Y) {0,1}minimizing communication bits.

F(X,Y)

Page 109: Quantum Information Processing - TU/e

Equality

Classical bits

X = x1 x2 … xN Y = y1 y2 … yN

F(X,Y) = 1 iff X=Y

Page 110: Quantum Information Processing - TU/e

Equality

Classical bits

X = x1 x2 … xN Y = y1 y2 … yN

F(X,Y) = 1 iff X=Y

N bits necessary and sufficient:

C(EQ) = N

Page 111: Quantum Information Processing - TU/e

Quantum Communication Complexity

qubits

X = x1 x2 … xN Y = y1 y2 … yN

F(X,Y) = 1 iff X=Y

Question: Can qubits reduce communication for certain F‘s?

F(X,Y) {0,1}

Page 112: Quantum Information Processing - TU/e

Qubits Can Reduce Cost

Theorem [B-Cleve-Wigderson‘98]

EQ‘(X,Y) = 1 iff X=Y

Promise D(X,Y) = N/2 or 0

• Need (N) classical bits.

• Can be done with O(log(N)) qubits.

Hamming Distance

Page 113: Quantum Information Processing - TU/e

Reduction to D-J

X1 X2 …. …. XN

Y1 Y2 …. …. YN

Z1 Z2 …. …. ZN

D(X,Y) = N/2Z

is balanced

D(X,Y) = 0Z

is constant

Page 114: Quantum Information Processing - TU/e

The quantum protocol

Finishes Deutsch-Josza Algorithm

Page 115: Quantum Information Processing - TU/e

Cost

• Alice sends n= log(N) qubits to Bob

• Bob sends n= log(N) qubits to Alice

• Total cost is 2*log(N)

Page 116: Quantum Information Processing - TU/e

Classical Lower Bound

Page 117: Quantum Information Processing - TU/e

Lower Bound

Theorem [Frankl-Rödl‘87]

S,T families of N/2 size sets {1,…,N}for all s,t in S,T : |st| N/4 then:

|S|*|T| 40.96N

*$250 problem of Erdös

*

Page 118: Quantum Information Processing - TU/e

Lower Bound

Theorem [Frankl-Rödl‘87]

S,T families of N/2 size sets {1,…,N}for all s,t in S,T : |st| N/4 then:

|S|*|T| 40.96N

protocol solving EQ‘ in N/100 bits

induces S and T satisfying:|S|*|T| 40.99N

Page 119: Quantum Information Processing - TU/e

other quantumalgorithms…

Page 120: Quantum Information Processing - TU/e

Quantum Algorithm

T Black Box queries

k

i

2

1

ai|i Prob [output = 1] = |ai|

2

all i thatend in 1

3/2

3/1

Prob [output = 0] = 1 - Prob [output = 1]

U0 U1

O1

UT

OT

...

0

0

0

0

0

Page 121: Quantum Information Processing - TU/e

Generalization

U0 U1

O1

UT

OT

...

0

0

0

0

0

Page 122: Quantum Information Processing - TU/e

Grover‘s Algorithm

• Find i such that Xi = 1

OR(X1,…,XN)

• Classical Probabilistic: N/2 queries

• Quantum: O(N) queries

• No promise!

Page 123: Quantum Information Processing - TU/e

Non-Disjointness

Goal: exists i such that Xi=1 and Yi=1?

X1 X2 …. …. XN

Y1 Y2 …. …. YN

Z1 Z2 …. …. ZN

Grover

Page 124: Quantum Information Processing - TU/e

Disjointness

• Bounded Error probabilistic (N) bits[Kalyanasundaram-Schnitger‘87]

• Grover‘s algorithm + reduction O(log(N)*N) qubits [BCW‘98]

O(N) qubits [AA‘04]

(N) lower bound [Razborov‘03]

Page 125: Quantum Information Processing - TU/e

Apointment Scheduling

qubits

Quantum: n qubits communicationClassical: n bits communication

Page 126: Quantum Information Processing - TU/e

Other Functions

• Exponential gap [Raz‘99]

– O(log(N)) with qubits, (N1/4) bits classically.

– partial Domain, bounded error

• Exponential gap for other models of communication complexity:– limited rounds, SMP etc.

• Quantum Fingerprinting• Streaming, Learning Theory…

Page 127: Quantum Information Processing - TU/e

back to physics

Page 128: Quantum Information Processing - TU/e

Einstein Podolsky Rosenparadox

Page 129: Quantum Information Processing - TU/e

simple quantum circuit

H

Page 130: Quantum Information Processing - TU/e

simple quantum circuit

H

Page 131: Quantum Information Processing - TU/e

simple quantum circuit

H

Page 132: Quantum Information Processing - TU/e

EPR Pair

Alice

Bob

H

Entangled:

Alice

Bob

Page 133: Quantum Information Processing - TU/e

EPR Pair

Alice

Bob

if Alice measures: 0/1 with prob. ½

if Bob measures: 0/1 with prob. ½

Page 134: Quantum Information Processing - TU/e

EPR Pair

Alice

Bob

Alice measures: 0state will collapse!

Page 135: Quantum Information Processing - TU/e

EPR Pair

Alice

Bob

Alice measures: 0state will collapse!

Bob‘s state has changed!

he will also measure 0

Page 136: Quantum Information Processing - TU/e

EPR Pair

Alice

Bob

Alice measures: 1state will collapse!

Page 137: Quantum Information Processing - TU/e

EPR Pair

Alice

Bob

Alice measures: 1state will collapse!

Bob‘s state has changed!

he will also measure 1

Page 138: Quantum Information Processing - TU/e

1) At time of measurement a random outcome is produced• instantaneous information transfer

2) Outcome was already present at time of creation of EPR-pair• quantum mechanics is incomplete

Page 139: Quantum Information Processing - TU/e

Einstein: nothing, including information, can go faster than the speed of light, hence

quantum mechanics is incomplete

1935

Page 140: Quantum Information Processing - TU/e

Communication

Page 141: Quantum Information Processing - TU/e

Communication?

bits

Can not compress k bits into k-1 bits

|0

|1

0

+

1with EPR pairs

Page 142: Quantum Information Processing - TU/e

Teleportation

Page 143: Quantum Information Processing - TU/e
Page 144: Quantum Information Processing - TU/e

Teleportation

|0

|1

0

+

1

10 ba

Page 145: Quantum Information Processing - TU/e

Teleportation

12

Classical bits:b1 b2

Page 146: Quantum Information Processing - TU/e

Teleportation

12

b1 b2

Classical bits:b1 b2

Page 147: Quantum Information Processing - TU/e

Teleportation

12

b1 b2

Classical bits:b1 b2

Page 148: Quantum Information Processing - TU/e

Teleportation

12

b1 b2

Classical bits:b1 b2

U

b1 b2

Page 149: Quantum Information Processing - TU/e

Teleportation

1

Classical bits:b1 b2 b1 b2

10 ba

Page 150: Quantum Information Processing - TU/e

Alice‘s protocol

H

Page 151: Quantum Information Processing - TU/e

Alice‘s protocol

H

Page 152: Quantum Information Processing - TU/e

Alice‘s protocol

H

Page 153: Quantum Information Processing - TU/e

Alice‘s protocol

H

Page 154: Quantum Information Processing - TU/e

Alice‘s protocol

H

Page 155: Quantum Information Processing - TU/e

Bob‘s protocolAlice with prob. ¼ in one of:

Bob

do nothing

bit flip

phase flip

bit flip and phase flip

Page 156: Quantum Information Processing - TU/e
Page 157: Quantum Information Processing - TU/e

Quantum Communication Complexity

Classical bits

X = x1 x2 … xn Y = y1 y2 … yn

Question: Can EPR pairs reduce communication

for certain F’s?

F(X,Y) {0,1}

|0

|1

0

+

1With EPR pairs

F(X,Y)

Page 158: Quantum Information Processing - TU/e

Teleportation

• Qubit Model can be simulated by EPRmodel.

• Teleport qubit at cost of 2 classical bits and 1 EPR pair.

• EPR-pairs can reduce communication cost: – use qubit protocol +

– teleportation

Page 159: Quantum Information Processing - TU/e

Apoinment Scheduling

bits

Quantum: n bits communicatieClassical: n bits communicatie

EPR-pairs

Page 160: Quantum Information Processing - TU/e

EPR en information

Alice can not send information to Bob,

EPR-pairs

but she can save information for certaincommunication problems

Page 161: Quantum Information Processing - TU/e

Other Links

• Quantum Communication Complexity

• Better Non-locality experiments– Resistant to noise

– Resistant to detection loophole

– Optimality of parameters

Page 162: Quantum Information Processing - TU/e

Entanglement

• Communincation Complexity

• Cryptography

• Essential for quantum speed up– Unentangled quantum alg. can be

simulated efficiently

• Quantum interactive games

• Link with Functional Analysis & Grothednieck‘s constant

Page 163: Quantum Information Processing - TU/e

The real world&

Complexity Theory

Page 164: Quantum Information Processing - TU/e

real world

P

NP Co-NP

Factorization

Traveling Salesman Problem

Automated

Theorem

Proving

Page 165: Quantum Information Processing - TU/e

real world ?

NP Co-NP

Factorization

Traveling Salesman Problem

Automated

Theorem

Proving

BQP

???

P

Page 166: Quantum Information Processing - TU/e

real world ?

NP Co-NP

Factorization

Traveling Salesman Problem

Automated

Theorem

Proving

BQP

P

Page 167: Quantum Information Processing - TU/e

Quantum Cryptography

Page 168: Quantum Information Processing - TU/e

Quantum key generation

• Quantum mechanical protocol to securely generate secret ―random‖ key between Alice and Bob.

• Unbreakable in combination with Vernam cipher

Bennett

Brassard

1984

Page 169: Quantum Information Processing - TU/e

Quantum Cryptography secret key generation

qubits

secret key:r1…rn

secret key:r1…rn

Page 170: Quantum Information Processing - TU/e

Quantum Cryptography secret key generation

qubits

secret key:r1…rn

secret key:r1…rn

Page 171: Quantum Information Processing - TU/e

Quantum Cryptography secret key generation

qubits

secret key:r1…rn

secret key:r1…rn

Eavesdropper has to disturb qubit!

Can be detected by Alice & Bob

Page 172: Quantum Information Processing - TU/e

Clavis - PLUG & PLAY QUANTUM CRYPTOGRAPHY

Quantum Key Distribution is a technology that exploits a fundamental principle of

quantum physics - observation causes perturbation - to exchange cryptographic keys

over optical fiber networks with absolute security.

Page 173: Quantum Information Processing - TU/e

Quantum Crypto

• Impossibility of bit commitment

• Quantum key distribution scheme

• Quantum Coin-flipping

• Quantum string commitment (CWI)

• Quantum Information theory (CWI)– much richer field than classical

information theory

• Quantum secure positioning (CWI)

Page 174: Quantum Information Processing - TU/e

Recent Developments

• New Algorithms– Pell‘s equations

– searching/sorting etc.

– Matrix problems

• Limitations to quantum computing

• Applications of quantum computing:– Physics, foundations of physics

– classical comp. science & mathematics

Page 175: Quantum Information Processing - TU/e

Very Recent

• Surprising intrerplay between– Nonlocality

– Communication complexity

– Approximation algorithms (SDP)

– Functional analysis

• Studying questions about nonlocality solve 35 year old problem in Banach space theory [Briet,B,Lee,Vidick 09]

Page 176: Quantum Information Processing - TU/e

Current Challenges

• Implementing more qubits

• New Algorithms

• Better Understanding of power of Quantum Computation

• Other Applications

• Quantum Cryptography

• Nonlocality, SDP, Functional Analysis

Page 177: Quantum Information Processing - TU/e

Quantum Computing FAQ

Q: What can Quantum Information Science do now?

A: Allow the building of prototype quantum communications systems whose

security against

undetected eavesdropping is guaranteed by fundamental laws of physics.

Q: When will we have full-scale quantum computer?

A: Too early to tell. Maybe 20 years.

Q: What could a quantum computer do?

A1: Enormously speed up some computations, notably factoring, thereby

making many currently

used codes insecure.

A2: Significantly speed up a much broader class of computations,

including the traveling salesman problem, allowing them to be done in

the square root of the number of steps a classical computer

would require.

A3: Allow the efficient simulation of quantum systems, to aid physics

and chemistry research.

Q: Does a quantum computer speed up all computations equally?

A: No. Some are sped up exponentially, some quadratically, and some

not at all.

Q: What else can Quantum Information Science do?

A1: Facilitate other tasks involving distributed computing and secrecy.

A2: Contribute to better precision measurements and time standards.