Quantum Finance-Schrodinger's Eq Applied to Stock … Word - Quantum Finance-Schrodinger's Eq...

15
Schrodinger’s Equation and the Financial Markets By: Alex Marshall 1 Introduction: The new interdisciplinary research field that the methodological approaches and analogizes physical theories to the economic world, Econophysics, incepted from an overall lack in effective analytical models in Economics. This is because of Economist historical route of encountering problem has instilled itself to this day; sadly, the social science has not always had the available empirical data it has today, which in result, led to a discipline founded and perpetuated by theorist. As for hard sciences, theorists are dependent upon experimentalist, and conversely, by definition, an experiment is a procedure done in order to test a hypothesis. Today, Economics is sitting on a plethora of data, but lacks the necessary interdependence of those who theorize and those who rigorously investigate the hypothesis. Econophysics has come to see success with focusing on a scientific approach to explaining Economic phenomena, but their greatest achievement to date is with Quantum Finance. The BlackScholes Model: One of the most important concepts in modern financial theory was stumbled upon by Fisher Black, and aided by Myron Scholes, when they derived a differential equation, the Black Scholes model, to solve the fairprice of options, which resembled the heat equation (Rubash, n.d.). An option is basically just a contract that legally gives the owner of the contract, the ability to buy or sell a stock, if it reaches a predetermined price (strike price) before the specified date on the contract, known as a “call” and “put,” respectively. Due to the nature of the option being risky, the purchaser of the contract pays at a premium price, which is why there is a need for models that can value the option. Up until 1973, when the BlackScholes model was created, there was not an effective way of call option pricing. Their model is as shown (Stock 500, 2005): EQ 1 = ln S K + + ! 2 !!" ln S K + + ! 2 Where, w = Theoretical Call Premium S = Current Stock Price

Transcript of Quantum Finance-Schrodinger's Eq Applied to Stock … Word - Quantum Finance-Schrodinger's Eq...

Schrodinger’s  Equation  and  the  Financial  Markets  By:  Alex  Marshall  

 

1    

Introduction:  

The  new  interdisciplinary  research  field  that  the  methodological  approaches  and  analogizes  physical  theories  to  the  economic  world,  Econophysics,  incepted  from  an  overall  lack  in  effective  analytical  models  in  Economics.    This  is  because  of  Economist  historical  route  of  encountering  problem  has  instilled  itself  to  this  day;  sadly,  the  social  science  has  not  always  had  the  available  empirical  data  it  has  today,  which  in  result,  led  to  a  discipline  founded  and  perpetuated  by  theorist.    As  for  hard  sciences,  theorists  are  dependent  upon  experimentalist,  and  conversely,  by  definition,  an  experiment  is  a  procedure  done  in  order  to  test  a  hypothesis.    Today,  Economics  is  sitting  on  a  plethora  of  data,  but  lacks  the  necessary  interdependence  of  those  who  theorize  and  those  who  rigorously  investigate  the  hypothesis.    Econophysics  has  come  to  see  success  with  focusing  on  a  scientific  approach  to  explaining  Economic  phenomena,  but  their  greatest  achievement  to  date  is  with  Quantum  Finance.  

The  Black-­‐Scholes  Model:  

  One  of  the  most  important  concepts  in  modern  financial  theory  was  stumbled  upon  by  Fisher  Black,  and  aided  by  Myron  Scholes,  when  they  derived  a  differential  equation,  the  Black-­‐Scholes  model,  to  solve  the  fair-­‐price  of  options,  which  resembled  the  heat  equation  (Rubash,  n.d.).    An  option  is  basically  just  a  contract  that  legally  gives  the  owner  of  the  contract,  the  ability  to  buy  or  sell  a  stock,  if  it  reaches  a  predetermined  price  (strike  price)  before  the  specified  date  on  the  contract,  known  as  a  “call”  and  “put,”  respectively.    Due  to  the  nature  of  the  option  being  risky,  the  purchaser  of  the  contract  pays  at  a  premium  price,  which  is  why  there  is  a  need  for  models  that  can  value  the  option.      

Up  until  1973,  when  the  Black-­‐Scholes  model  was  created,  there  was  not  an  effective  way  of  call  option  pricing.  Their  model  is  as  shown  (Stock  500,  2005):  

EQ  1  

𝑤 = 𝑆 ∗ 𝑁ln S

K + 𝑟 + 𝑠!

2 𝑡

𝑠 𝑡− 𝐾𝑒!!"𝑁

ln SK + 𝑟 + 𝑠

!

2 𝑡

𝑠 𝑡− 𝑠 𝑡  

Where,  

w  =  Theoretical  Call  Premium  

S  =  Current  Stock  Price  

Schrodinger’s  Equation  and  the  Financial  Markets  By:  Alex  Marshall  

 

2    

t  =  time  until  expiration  

K  =  striking  price  

r  =  risk-­‐free  interest  rate  

N  =  Cumulative  standard  normal  distribution  

Even  though  the  initial  model  was  one  that  carved  the  way  of  option  valuation  in  Financial  Theory,  it  was  still  weak  because  of  a  lack  of  dynamism:  there  are  assumptions  of  continuous  trading,  constant  volatility,  constant  interest  rate,  and  that  the  market  is  efficient.  

Today,  many  of  the  assumptions  of  the  model  have  been  removed  or  made  more  dynamic  through  extensions.    Many  stocks  are  observed  to  move  between  bounds,  which  can  be  used  to  maximize  profits.    The  lower  price  barrier  of  a  stock  is  the  “support”  and  can  be  defined  as  a  price  level  that  historically,  the  stock  has  trouble  falling  under;  as  for  the  upper  limit,  it  is  called  a  “resistance”  and  this  is  a  price  level  that  in  the  past  doesn’t  rise  above.    The  resistance  can  be  observed  in  Figure  1  of  Kohl’s  Stock:  

Figure  1  (Rubash,  n.d.):  

 

 

There  are  two  scenarios  that  occur  when  the  stock  reaches  either  of  the  bounds:  they  will  reach  either  level  and  change  direction  or  they  will  penetrate  the  barrier  and  find  “find  another  level  of  support”  (Rubash,  n.d.).      This  phenomenon  can  be  seen  in  Boeing’s  Stock  in  Figure  1:  

Schrodinger’s  Equation  and  the  Financial  Markets  By:  Alex  Marshall  

 

3    

Figure  2  (Rubash,  n.d.):  

 

The  next  graphic  has  a  superb  depiction  of  the  barrier:  when  the  support  barrier  is  broken,  it  becomes  the  new  resistance  barrier,  vis  versa.    Figure  3  represents  the  stocks  for  Burlington  Northern  Santa  Fe  Corp:  

Figure  3  (Rubash,  n.d.):  

 

Schrodinger’s  Equation  and  the  Financial  Markets  By:  Alex  Marshall  

 

4    

   

 

The  Schrodinger  Equation:  

These  barriers  are  intuitively  able  to  be  analogous  to  potential  energy  barriers;  therefore,  we  can  find  the  probability  that  the  stock  will  penetrate  the  barriers  the  with  the  Black-­‐Scholes  model  with  the  method  of  separation  of  variables,  which  is  allowed  because  the  stationary  price  is  bound  by  the  support  and  resistance  price  levels.    Solving  the  model  will  result  in  two  solutions:  a  time-­‐independent  and  a  time  dependent  formula.    We  will  investigate  the  time-­‐independent  equation  because  it  is  representative  of  a  one-­‐dimensional  Schrodinger  equation  used  for  a  particle  in  a  box.    From  there,  the  penetration  of  the  barriers  will  result  in  a  tunneling  of  the  stock.    From  here  on  out,  the  method  for  solving  the  Black-­‐Scholes  model  is  based  off  of  Racorean’s.  

To  begin,  the  general  partial  differential  Black-­‐Scholes  equation  can  be  written  as  (Racorean,  n.d.):  

 

EQ  2  

𝜕𝑤𝜕𝑡 =  −

12𝜎

!𝑆!𝜕!𝑤𝜕𝑆! − 𝑟𝑆

𝜕𝑤𝜕𝑡 + 𝑟𝑤  

Schrodinger’s  Equation  and  the  Financial  Markets  By:  Alex  Marshall  

 

5    

Where,    

w  =  Theoretical  Call  Premium  

S  =  Current  Stock  Price  

t  =  time  until  expiration  

K  =  striking  price  

r  =  risk-­‐free  interest  rate  

𝜎 =  Volatility  of  the  stock  

 

Equation  2  can  be  solved  with  the  method  of  separation  of  variables  and  results  in  a  product  of  two  functions:  

EQ  3  

𝑤 𝑆, 𝑡 =  ∅(𝑆)𝜑(𝑡)  

Now,  combine  equation  2  and  equation  3,  while  changing  the  partial  derivatives  to  ordinary  derivatives:  

EQ  4    

𝑑𝜑 𝑡𝑑𝑡  

1𝜑 𝑡  =  −

12𝜎

!𝑆!𝑑!∅ 𝑆𝑑𝑆!

1∅ 𝑆 − 𝑟𝑆

𝑑∅ 𝑆𝑑𝑆  

1∅(𝑆)+ 𝑟  

Therefore,  each  side  of  the  equation  must  equal  a  constant  λ:  

EQ  5  

𝑑𝜑 𝑡𝑑𝑡  

1𝜑 𝑡  = λ  

EQ  6  

λ   =  −12𝜎

!𝑆!𝑑!∅ 𝑆𝑑𝑆!

1∅ 𝑆 − 𝑟𝑆

𝑑∅ 𝑆𝑑𝑆

1∅(𝑆)+ 𝑟  

In  order  to  find  Α,  the  time-­‐dependency  is  used:  

Schrodinger’s  Equation  and  the  Financial  Markets  By:  Alex  Marshall  

 

6    

EQ  7  

𝑑𝜑 𝑡𝑑𝑡    =  λ𝜑 𝑡  

Therefore:  

EQ  8  𝜑 𝑡    = 𝑒!!  

From  here,  economic  reasoning  is  the  determinant  of  the  constant,  which  is  circumstantial.    The  previous  equation  shoes  the  time  dependency  of  option  price,  but  since  the  option  value  decreases  over  time,  λ  has  to  be  negative.    Also,  because  option  price  decays  quickly  with  low  volatility  and  at  a  slow  pace  with  high  volatility,  the  constant  must  include  𝜎.    Finally,  the  interest  rate  is  another  influential  factor,  which  in  high  interest  leads  to  small  movements  in  the  stock  market,  whereas,  low  interest  rate  leads  to  major  movements  in  the  stock  market.    Therefore,  the  rate  of  decay  in  the  option  price  over  time  is:  

EQ  9  

𝜑 𝑡    = 𝑒!!!!  

Now,  the  range  bounds  can  be  derived  with  equation  6,  the  time-­‐independence  in  the  form:  

 EQ  10  

 ∅ 𝑆 λ =  −12𝜎

!𝑆!𝑑!∅ 𝑆𝑑𝑆! − 𝑟𝑆

𝑑∅ 𝑆𝑑𝑆 + 𝑟  

 

 

 

The  homogeneous  part  can  be  written  as:  

EQ  11  

0 =  𝑑!∅ 𝑆𝑑𝑆! −  

2𝑟𝜎!𝑆

𝑑∅ 𝑆𝑑𝑆 −

2𝑟𝜎!𝑆! ∅ 𝑆  

Using  the  notation,  ln∅ 𝑆 = ln 𝜓 𝑆 − !!

!!!!!

𝑑𝑆,  equation  11  can  be  written  as:  

Schrodinger’s  Equation  and  the  Financial  Markets  By:  Alex  Marshall  

 

7    

EQ  12  

0 =  𝑑!𝜓 𝑆𝑑𝑆! −  

𝑟𝜎!𝑆! (1+

𝑟𝜎!)  𝜓 𝑆  

Therefore,  

EQ  13  

−𝜎!

𝑟 𝜎! + 𝑟  𝑑!𝜓 𝑆𝑑𝑆! +  

1𝑆! 𝜓 𝑆 = 0  

This  is  the  zero  energy  particle  time-­‐independent  Schrodinger  equation  with  the  potential:  

EQ  14  

𝑉(𝑆) =1𝑆!  

 

 

Therefore,  the  shape  of  the  potential  is  shown  in  the  figure  below.    As  the  stock  price,  S,  increases,  the  potential  V(s)  reduces,  but  will  never  reach  zero  and  the  wall  becomes  thicker.    Also,  since  there  is  no  constant  λ,  the  stock  cannot  leave  the  well:  

Figure  5  (Rubash,  n.d.):  

Schrodinger’s  Equation  and  the  Financial  Markets  By:  Alex  Marshall  

 

8    

 

Where,  

𝑆𝑡𝑜𝑐𝑘  𝑝𝑟𝑖𝑐𝑒, 𝑆, 𝑖𝑠  𝑡ℎ𝑒  𝑧𝑒𝑟𝑜𝑡ℎ  

𝑆𝑡𝑟𝑖𝑘𝑒  𝑝𝑟𝑖𝑐𝑒,𝐾, 𝑖𝑠  𝑜𝑛  𝑡ℎ𝑒  𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒  𝑙𝑒𝑣𝑒𝑙  𝑎𝑛𝑑  𝑖𝑠  𝑡ℎ𝑒  𝑤𝑖𝑑𝑡ℎ  𝑜𝑓  𝑡ℎ𝑒  𝑏𝑜𝑥  

𝑇ℎ𝑒  𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙  𝑟𝑒𝑠𝑡𝑖𝑠𝑡𝑎𝑛𝑐𝑒  𝑙𝑒𝑣𝑒𝑙  𝑝𝑟𝑖𝑐𝑒  𝑙𝑒𝑣𝑒𝑙  𝑖𝑠  𝑉!,  

EQ  15  

𝑉! =1𝐾!  

 

 

Since  λ  must  be  a  part  of  our  equation  to  observe  penetration.    Therefore,  using  equation  10,  equation  12,  and  equation  15:  

EQ  16  

−𝜎!

𝑟 𝜎! + 𝑟  𝑑!𝜓 𝑆𝑑𝑆! +  𝑉(𝑆)𝜓 𝑆 = λ𝜓 𝑆  

 

Schrodinger’s  Equation  and  the  Financial  Markets  By:  Alex  Marshall  

 

9    

We  already  know  what  the  constant  is:  

EQ  17  

−𝜎!

𝑟 𝜎! + 𝑟  𝑑!𝜓 𝑆𝑑𝑆! +  𝑉 𝑆 𝜓 𝑆 = 𝜓 𝑆

r𝜎    

Thus:  

EQ  18  

𝜓 𝑆 =  2𝐾 sin 𝑛𝜋

𝑆𝐾  

This  is  another  limited  case,  which  can  be  used  for  short  time  frames.    It  is  noticeable  though  that  there  are  when  λ  is  greater  than  𝑉!,  the  market  is  trending.    One  can  see  how  they  affect  price  movements  shown  in  the  next  figure:  

Figure  5(Racorean,  n.d.):  

 

 

Schrodinger’s  Equation  and  the  Financial  Markets  By:  Alex  Marshall  

 

10    

Now,  with  constant  time  decay,  λ,  for  the  option  valuation,  it  does  two  affects:  it  reduces  the  option  price  over  time  and  shifts  the  option  value  impact  the  stock  market  itself.    Now  for  when  the  time  decay  is  conditioned  as  being  less  than  the  potential.  

Apparent  from  figure  5,  when  interest  rate  is  high  or  the  volatility  is  low,  the  thinner  the  wall  width;  therefore,  with  these  conditions,  even  marginal  shifts  in  stock  price  would  penetrate  the  wall  and  tunnel.    Thus,  higher  the  interest  rate,  lower  the  expectancy  of  big  movements.    

Additionally,  when  interest  rate  is  low  or  the  volatility  is  high,  the  greater  the  wall  width;  therefore,  large  shifts  in  stock  price,  will  penetrate  the  wall.    Thus,  lower  the  interest  rate,  higher  the  expectancy  of  big  movements.  

Finally,  when  the  decay  is  constant,  we  know    𝜆 < 𝑉!  and  equation  15:  

EQ  19  

 

𝐾 <1𝜆  

Therefore,  if  we  know  the  time  constant,  we  can  forecast  the  magnitude  of  the  shift.    Observing  figure  5  again,  denoting  the  potential  Vr  as  the  potential  at  the  boundary  of  the  wall,  we  know  that  𝜆  must  be  equal  to  it;  therefore,  the  stock  at  the  boundary  is:  

EQ  20  

 

𝑆! =1𝜆  

Thus,  the  penetration  distance,  d,  is  the  distance  between  the  strike  price  and  the  tunneling  stock  is:  

EQ  21  

𝑑 = 𝑆! − 𝐾 =1𝜆 − 𝐾 =

𝜎𝑟 − 𝐾  

 

Schrodinger’s  Equation  and  the  Financial  Markets  By:  Alex  Marshall  

 

11    

 

 

The  following  figure  shows  the  stock  price  tunneling  the  wall  that  is  dependent  upon  the  resistance  level:  

Figure  6  (Racorean,  n.d.):

 

 

The  shifts  in  the  price  is  fragmented  therefore  we  must  interpret  them  at  each  barrier  in  order  to  make  it  a  continuous  formula.    

 Region  1  has  a  solution  of:  

EQ  22  

Schrodinger’s  Equation  and  the  Financial  Markets  By:  Alex  Marshall  

 

12    

𝜓! = 𝐴𝑒!"# + 𝐵𝑒!!"#  

 

Where,  

𝑘 =  𝑟𝜎! (𝜎

! + 𝑟)𝜆  

Region  2  has  a  solution  of:  

EQ  23  

 

𝜓! = 𝐶𝑒!" + 𝐷𝑒!!"  

Where,  

𝑞 =  𝑟𝜎! (𝜎

! + 𝑟)(𝑉 𝑠 −  𝜆)  

Region  3  has  a  solution  of:  

EQ  24  

 

𝜓! = 𝐹𝑒!"#  

Therefore,  the  probability  for  the  stock  price  tunneling  through  the  entire  barrier  is,  T:  

EQ  25  

 

𝑇 =𝐹 !

𝐴 !  

Thus:  

EQ  26  

 

Schrodinger’s  Equation  and  the  Financial  Markets  By:  Alex  Marshall  

 

13    

𝐴 ! = 𝐹 !(((𝑘! + 𝑞!)^24𝑘!𝑞! sinh!(𝑞𝑑)+ 1)    

Then,  in  terms  of  V  and  𝜆:  

EQ  27  

𝑇 =𝑉!

4𝜆 𝑉 − 𝜆 sinh! 𝑞𝑑 + 1!!

 

For  qd>>1,  the  sinh  term  overwhelms  the  rest,  therefore,  this  can  be  approx.  be:  

EQ28  

𝑇 = 𝑒!!!"  

All  possible  barrier  potential  solutions:  

EQ29  

𝑇 = 𝑒!! !"#"  

The  sum  replaced  with  an  integral  is:  

EQ  30  

𝑇 = 𝑒!! !

!! !!!! !

!!!!"#!!!  

EQ31  

𝑇 = 𝑒!! !

!! !!!! !

! !"!!!!!!!!!!!!!!

!   !!!!!  

Since  we  know𝜆 = !!,  

EQ32  

𝑇 = 𝑒!! !

!! !!!! !

! !"!!!!!

!!!

!!!!!!!!

!   !!!!!!

 

This  is  the  final  probability  of  the  stock  penetrating  through  the  walls!    I  will  not  be  doing  any  empirical  research,  but  Racorean  does  a  strong  job  doing  so  (Racorean,  n.d.)    

Schrodinger’s  Equation  and  the  Financial  Markets  By:  Alex  Marshall  

 

14    

Conclusion:  

With  the  derived  solutions,  the  tunneling  is  actualized,  when  interest  rate  is  constant,  the  wall  must  be  thin,  which  in  turn  leads  to  a  relatively  small  volatility.    Basically,  in  order  for  the  tunneling  to  even  occur,  there  needs  to  be  a  rapid  fall  in  the  stock  volatility.    This  phenomena  in  the  financial  market  is  nearly  identical  to  a  quantum  physics,  resistance  and  support  are  two  common  occurrences  in  the  stock  market  and  the  way  in  they  affect  the  stock’s  movement  can  be  explained  through  a  Quantum  Physics  tunneling  effect.    Financial  Analyst  and  investors  are  capable  of  using  these  tools  in  order  to  gain  information  in  almost  a  predictive  manner.    Overall,  the  Schrodinger  equation  is  much  more  versatile  than  just  being  a  Quantum  model  and  henceforth,  there  are  many  different  applications  of  Physical  solutions  than  just  to  the  physical  world;  by  this  I  mean,  if  a  route  of  how  we  understand  the  Quantum  world  is  applicable  to  the  Financial  Industry,  then  where  are  the  limits  of  applying  rigorous  Physics  solutions,  in  an  analogous  manner,  to  other  disciplines  problems,  to  further  humankind  on  all  fronts.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Schrodinger’s  Equation  and  the  Financial  Markets  By:  Alex  Marshall  

 

15    

Further  Reading/References:  

 

Learn  Stock  Options  Trading.    N.d.    Using  Support  and  Resistance.    Learn  Stop  Options  Trading.    Retreived  from:  http://www.learn-­‐stock-­‐options-­‐trading.com/support-­‐and-­‐resistance.html  

 

Racorean,  Ovidiu.  N.d.    Time-­‐independent  pricing  of  options  in  range  bound  markets.    Arxiv.    Retrieved  from:  http://arxiv.org/ftp/arxiv/papers/1304/1304.6846.pdf  

 

Rubash,  Kevin.  N.d.    A  Study  of  Option  Pricing  Models.    Bradley  University.  Retrieved  from:  http://bradley.bradley.edu/~arr/bsm/pg04.html  

 

Stock  500.    2005.    What  is  an  Option  Contract?    Morningstar.    Retrieved  from:  http://news.morningstar.com/classroom2/course.asp?docId=145386&page=3&CN=