Quantum entanglement and macroscopic quantum superpositions

27
Quantum entanglement and macroscopic quantum superpositions Quantum Information Symposium Institute of Science and Technology (IST) Austria 7 March 2013 Johannes Kofler Max Planck Institute of Quantum Optics (MPQ) Garching / Munich, Germany

description

Quantum entanglement and macroscopic quantum superpositions. Max Planck Institute of Quantum Optics (MPQ) Garching / Munich, Germany. Johannes Kofler. Quantum Information Symposium Institute of Science and Technology (IST) Austria 7 March 2013. Outlook. - PowerPoint PPT Presentation

Transcript of Quantum entanglement and macroscopic quantum superpositions

Page 1: Quantum entanglement and macroscopic quantum superpositions

Quantum entanglement andmacroscopic quantum superpositions

Quantum Information SymposiumInstitute of Science and Technology (IST) Austria

7 March 2013

Johannes Kofler

Max Planck Institute of Quantum Optics (MPQ)Garching / Munich, Germany

Page 2: Quantum entanglement and macroscopic quantum superpositions

Outlook

• Quantum entanglement vs. local realism

- Bell’s inequality

- Loopholes

- Entanglement swapping & teleportation

• Macroscopic quantum superpositions vs. macrorealism

- Leggett-Garg inequality

- Quantum-to-classical transition

- Witnessing non-classical evolutions in complex systems

• Conclusion and outlook

Page 4: Quantum entanglement and macroscopic quantum superpositions

Bell’s inequality

Realism

*J. S. Bell, Phys. 1, 195 (1964); J. F. Clauser et al., PRL 23, 880 (1969)

a1,a2

B = ±1A = ±1

b1,b2

A1 (B1+B2) + A2 (B1–B2) = ±2

Local realism: A = A(a,,b,B)B = B(b,,a,A)

outcomes

settings

variables

S := A1B1 + A1B2 + A2B1 – A2B2 2 Bell’s inequality*

Quantum mechanics:

SQM = 22 2.83

First experimental violation: 1972Since then: tests with photons, atoms, superconducting qubits, …

using entangled quantum states, e.g.

Locality

|AB = (|HVAB + |VHAB) / 2

Alice Bob

Page 5: Quantum entanglement and macroscopic quantum superpositions

Quantum entanglement

Entangled state:

|AB = (|HVAB + |VHAB) / 2

Picture: http://en.wikipedia.org/wiki/File:SPDC_figure.png

Page 6: Quantum entanglement and macroscopic quantum superpositions

Loopholes

Why important?- Quantum foundations- Security of entanglement-based quantum cryptography

Three main loopholes:

• Locality loopholehidden communication between the partiesclosing: hard for atoms, achieved for photons (19821,19982)

• Freedom of choicesettings are correlated with hidden variables closing: hard for atoms, achieved for photons (20103)

• Fair samplingmeasured ensemble is not representativeclosing: achieved for atoms (20014) and photons (20135)

1 A. Aspect et al., PRL 49, 1804 (1982)2 G. Weihs et al., PRL 81, 5039 (1998)3 T. Scheidl et al., PNAS 107, 10908 (2010)

4 M. A. Rowe et al., Nature 409, 791 (2001)5 M. Giustina et al., Nature in print (2013)

Loopholes: maintain local realism despite Sexp > 2

E()

Page 7: Quantum entanglement and macroscopic quantum superpositions

Locality: Alice’s measurement event A is space-like separated from Bob‘s measurement event B and his setting choice b (and vice versa)

T. Scheidl, R. Ursin, J. K., T. Herbst, L. Ratschbacher, X. Ma, S. Ramelow, T. Jennewein, A. Zeilinger, PNAS 107, 10908 (2010)

Ensuring locality & freedom of choice

B,b

E,A

a

Tenerife

La Palma

Freedom of choice: Setting choices (a and b) are random and space-like separated from the entangled pair emission event E(): p(a,b|) = p(a,b)

E()

Page 8: Quantum entanglement and macroscopic quantum superpositions

Ensuring fair sampling

Two main ingredients:

• Superconducting transition edge sensors

• Eberhard inequality*- undetected (“u”) events in derivation- required detection efficiency 66.7%

0)()(),(),(),(),( 1122122111 --- Bo

Aooooooooo SSCCCCJ

From Topics in Applied Physics 99, 63-150 (2005)

*P. H. Eberhard, PRA 47, 747 (1993)

+1–1 Source

+1–1

Local realism

Page 9: Quantum entanglement and macroscopic quantum superpositions

First fair sampling of photons

M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. K., Jörn Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, A. Zeilinger, Nature in print (2013)

0)()(),(),(),(),( 1122122111 --- Bo

Aooooooooo SSCCCCJ

Detection efficiency 75%Violation by 70 standard deviations

Local realism

Quantum violation of local realism with fair sampling

Photon: only system for which all loop-holes are closed; not yet simultaneously

Page 10: Quantum entanglement and macroscopic quantum superpositions

Large distances

* M. Žukowski et al., PRL 71, 4287 (1993)

Bell-state measurement (BSM): Entanglement swapping

How to distribute entanglement over large distances?- qu. cryptography between Vienna and Paris- distributed quantum computation

Two answers:

- glass fibers & quantum repeaters- no fibers: free space

Quantum repeaters use entanglement swapping*

Page 11: Quantum entanglement and macroscopic quantum superpositions

Delayed-choice entanglement swapping

Later measurement on photons 2 & 3 decides whether 1 & 4 were separable or entangled

Naïve class. interpretation would require influences into the past

X. Ma, S. Zotter, J. K., R. Ursin, T. Jennewein, Č. Brukner, A. Zeilinger, Nature Phys. 8, 479 (2012)

Temporal order does not matter in qu. mechanics

Page 12: Quantum entanglement and macroscopic quantum superpositions

Quantum teleportation

Towards a world-wide “quantum internet”

X. Ma, T. Herbst, T. Scheidl, D. Wang, S. Kropatschek, W. Naylor, A. Mech, B. Wittmann, J. K., E. Anisimova, V. Makarov, T. Jennewein, R. Ursin, A. Zeilinger, Nature 489, 269 (2012)

Page 13: Quantum entanglement and macroscopic quantum superpositions

Contents

• Quantum entanglement vs. local realism

- Bell’s inequality

- Loopholes

- Entanglement swapping & teleportation

• Macroscopic quantum superpositions vs. macrorealism

- Leggett-Garg inequality

- Quantum-to-classical transition

- Witnessing non-classical evolutions in complex systems

• Conclusion

Page 14: Quantum entanglement and macroscopic quantum superpositions

The double slit experiment

Picture: http://www.blacklightpower.com/theory/DoubleSlit.shtml

Particles Waves Quanta

Superposition:| = |left + |right

Page 15: Quantum entanglement and macroscopic quantum superpositions

With photons, electrons, neutrons, molecules etc.

With cats?

|cat left + |cat right ?

When and how do physical systems stop to behave quantum mechanically and begin to behave classically (“measurement problem”)?

Macroscopic superpositions

6910 AMU

Page 16: Quantum entanglement and macroscopic quantum superpositions

Quantum mechanics says:“yes”(if you manage to defy decoherence)

Are macroscopic superpositions possible?

Local realism vs. macrorealism

Quantum mechanics says:“yes”(use entanglement)

Are “non-local” correlations possible?

Local realism (e.g. classical physics) says“no”(only classical correlations)

Bell testhas given experimental answer in favor of quantum mechanics

Macrorealism (e.g. classical physics, objective collapse models) says“no”(only classical temporal correlations)

Leggett-Garg testcan/will give experimental answercommunity still split

Practical relevancequ. computation, qu. cryptography

Practical relevancewitnessing temporal qu. coherence

Page 17: Quantum entanglement and macroscopic quantum superpositions

Macrorealism

• Macrorealism per se: given a set of macroscopically distinct states, a macroscopic object is at any given time in a

definite one of these states

• Non-invasive measurability: measurements reveal the state without any effect on the state itself or on the subsequent dynamics

• Leggett-Garg inequality (LGI)

A. J. Leggett and A. Garg, PRL 54, 857 (1985)

• Quantum mechanics:

t1 t2 t3 t4t0

Q Q Q Q ±1

S := A1B1 + A1B2 + A2B1 – A2B2 2

K := Q1Q2 + Q2Q3 + Q3Q4 – Q1Q4 2

Bell:

KQM = 22 2.83

locality

non-invasiveness=

=

time

Page 18: Quantum entanglement and macroscopic quantum superpositions

½

Rotating spin ½ particle (eg. electron)

Rotating classical spin vector (eg. gyroscope)

K > 2: violation of Leggett-Garg inequality

K 2: no violation, classical time evolution

classical limit

Precession around an axis(via magnetic field or external force)

Measurments along different axis

Quantum vs. classical

22

Page 19: Quantum entanglement and macroscopic quantum superpositions

classical limit

Sharp measurement of spin z-component

Violation of Leggett-Garg inequality for arbitrarily large spins j

Classical physics of a rotating classical spin vector

J. K. and Č. Brukner, PRL 99, 180403 (2007)

Spin j

1 3 5 7 ...

2 4 6 8 ...Q = +1

Q = –1–j +j –j +j

Coarse-grained measurement or decoherence

Sharp vs. coarse-grained measurements

macroscopically distinct states

Page 20: Quantum entanglement and macroscopic quantum superpositions

Sharp measurements

Coarse-grained measurements or decoherence

Superposition vs. mixture

To see quantumness: need to resolve j1/2 levels & protect system from environment

J. K. and Č. Brukner, PRL 101, 090403 (2008)

Page 21: Quantum entanglement and macroscopic quantum superpositions

Oscillating Schrödinger cat“non-classical” rotation in Hilbert space

Rotation in real space“classical”

N sequential steps per t1 single computation step per tall N rotations can be done simultaneously

Non-classical evolutions are complex

J. K. and Č. Brukner, PRL 101, 090403 (2008)

N elemen-tary spins ½

time time

“+” “+”

t t t t

Page 22: Quantum entanglement and macroscopic quantum superpositions

Relation quantum-classical

Page 23: Quantum entanglement and macroscopic quantum superpositions

Macroscopic candidates

Heavy molecules1

(position)

Nanomechanics4

(position, momentum)

Superconducting devices2

(current)

Atomic gases3

(spin)

1 S. Gerlich et al., Nature Comm. 2, 263 (2011) 3 B. Julsgaard et al., Nature 413, 400 (2001)2 M. W. Johnson et al., Nature 473, 194 (2011) 4 G. Cole et al., Nature Comm. 2, 231 (2011)

Page 24: Quantum entanglement and macroscopic quantum superpositions

Alternative to Leggett-Garg inequality

• No-signaling in time (NSIT): “A measurement does not change the outcome statistics of a later measurement.”*

• MR NSITViolation of NSIT witnesses non-classical time evolution

• Advantages of NSIT compared to LGI:- Only two measurement times (simpler witness)- Violated for broader parameter regime (better witness)

• LGI and NSIT are tools for witnessing temporal quantum coherence in complex systems (not necessarily having macroscopic superpositions)

• Does quantum coherence give biological systems an evolutionary advantage?

tA tBt0

A B

* J. K. and Č. Brukner, arXiv:1207.3666, to be published (2013)

Page 25: Quantum entanglement and macroscopic quantum superpositions

Candidates for quantum biology

Photosynthesis:Light harvesting in the FMO complex

M. Sarovar et al., Nature Phys. 6, 462 (2010)

Avian compass

electronic excitation (by sunlight) in antenna is transferred to reaction centerevidence for efficiency increase due to quantum coherent transport

radical pair mechanism proposedreaction products depend on earth magnetic field

N. Lambert et al., Nature Phys. 9, 10 (2013)

Page 26: Quantum entanglement and macroscopic quantum superpositions

Conclusion and outlook

• Local realism- world view radically different from quantum mechanics- violated experimentally (Bell tests) by qu. entanglement- all loopholes are closed, but not yet simultaneously- loopholes relevant for qu. cryptography- long distance distribution of entanglement

• Macrorealism- related to the measurement problem (Schrödinger’s cat)- quantum mechanics predicts violation- quantum-to-classical transition- Leggett-Garg inequality (LGI) not yet violated for macroscopic objects; several candidates- no-signaling in time (NSIT) as an alternative- LGI and NSIT: tools for witnessing quantum time evolution in mesoscopic systems including biological organisms

Page 27: Quantum entanglement and macroscopic quantum superpositions

Acknowledgments

Anton Zeilinger

Maximilan EbnerMarissa GiustinaThomas Herbst

Thomas JenneweinMichael Keller

Mateusz KotyrbaXiao-song Ma

Caslav Brukner

Alexandra MechSven RamelowThomas ScheidlMandip SinghRupert Ursin

Bernhard WittmannStefan Zotter

Ignacio Cirac