Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.

41
Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology
  • date post

    19-Dec-2015
  • Category

    Documents

  • view

    214
  • download

    0

Transcript of Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.

Page 1: Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.

Quantum effects in Magnetic Salts Part II

G. Aeppli

London Centre for Nanotechnology

Page 2: Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.

London Centre for NanotechnologyLondon Centre for Nanotechnology

Talk 1

• TF Ising model in 3d shows interesting QM effects in real experiments

• ‘slaved’ degrees of freedom which are classically irrelevant can have qualitative quantum impact

Page 3: Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.

outline

Introduction – saltsquantum mechanicsclassical magnetism

RE fluoride magnet LiHoF4 – model quantum phase transition

1d model magnets

2d model magnets – Heisenberg & Hubbard models

Page 4: Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.

collaborators

• G-Y Xu (BNL)• C.Broholm (Hopkins)• J.F.diTusa(LSU)• H. Takagi (Tokyo)• Y. Itoh(Tsukuba)• Y-A Soh (Dartmouth)• M. Treacy (Arizona)• D. Reich (Hopkins)• D. Dender (NIST)

Page 5: Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.

Example #2 - Heisenberg antiferromagnet

• H=JSiSj with J>0

• classical ground state

Page 6: Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.

Consider commutator again

Mfm=Szl (ferromagnet)

Maf=(-1)l Szl (antiferromagnet)

[M,H]=... (-1)l([Szl,Sl](Sl-1+Sl+1)

-([Szl-1,S l-1]+[Sz

l-1,S l-1])Sl)

for FM, [M,H]=0 while not so for AFM

Page 7: Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.

Antiferromagnets can self-destruct

Page 8: Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.

does the classical picture ever go wrong- look at spin wave

amplitudes |<Q|S+|0>|2

• Diverge as 1/Q when Qmagnetic zone center for AFM

• ~ constant for FM

Page 9: Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.

Break-down of S-W theory

• <M2>=S(S+1)=static piece + fluctuating piece

• <M2>= Mo2+ (E-Eo(Q))|<Q|S+|0>|2 dEddQ

=Mo2+ (1/Q)ddQ(AFM) (Mo=ordered moment)

• clearly a problem for AFM in d=1

Page 10: Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.

>,

<> - >

> + >J

Page 11: Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.

Consequence- antiferromagnetism can be

unstable, especially for low d

What do experiments say?

Page 12: Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.

S=1/2 chain AFM (CuGeO3)

Page 13: Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.

S=1/2 for zero field

No magnetic orderpairs of fermionic excitations rather than harmonic spin wavesbut at first sight, difficult to distinguish from multimagnon series

expansion...

Want something qualitatively different…

Page 14: Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.

For a conventional antiferromagnet in a field, only

rounding effects, both types of modes have peak intensity at

-1 -0.5 0 0.5 1

1||B

B

Page 15: Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.

Dender et al., Phys. Rev. Lett. 79(9), pp. 1750-1753, (1997)

Page 16: Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.

E=0.21meV

Dender et al., Phys. Rev. Lett. 79(9), pp. 1750-1753, (1997)

Page 17: Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.

Zeeman-split spinon Fermi surface

Dender et al., Phys. Rev. Lett. 79(9), pp. 1750-1753, (1997)

Page 18: Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.

Consider S=1 AFM chain compound YBaNiO5

Page 19: Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.

S(Q)=S<SlSm>expi|l-m|Q

equal-time correlationfunction = liquid structure factor

no AFM order, only fluctuations

width =1/xo where xo~7a

Page 20: Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.

An unstable antiferromagnet

Page 21: Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.

0

20

40

60

0 0.5 1 1.5 2

q

h (

meV

)

Xu et al, unpublished

Page 22: Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.

a gapped ‘spin liquid’(Haldane)

Why?

rationalization #1 Sz=-1,0,+1 -+-+-+0-+-+-+0-0+-+-+ (‘floating zeroes)

rationalization #2(‘valence bond solid’)- consider JHund<JNi-Ni

Ni +2

Page 23: Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.
Page 24: Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.

Just a simple liquid?

secret order(quantum coherence) in explanations, but apparently not visible in the equal-time two-spin

correlation function <0|S-

-q S+q|0>= S(q,

can we measure coherence length for this new state?

Page 25: Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.

0

20

40

60

0 0.5 1 1.5 2

q

h (

meV

)

Page 26: Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.

S(q

,

S(q

,

m

eV)

Xu et al, unpublished

Page 27: Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.

Theory by Sachdev et alXu et al, unpublished

Page 28: Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.

Mesoscopic phase(>15nm) phase coherence in quantum spin fluid

as T0, |<triplet|S+q|collective singlet ground state>|2q

even while the 2-spin correlations in ground state are short-ranged:

<0|SiSj|0>=exp-|i-j|/ where ~7

T=0 quantum coherence limited only by inter-impurity spacing

dephasing at finite T observed

Page 29: Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.

What happens when we insert incorrect bonds?

via Ca substitution for Y which adds holes mainly to oxygens

on chains(DiTusa et al ‘94)

…Ni2+-O2--Ni2+- O 2--Ni2+-O--Ni2+-O2--Ni2+ ...

Page 30: Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.

Subgap bound statesin Ca-doped YBaNiO5

Xu et al, unpublished

Page 31: Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.

G. Xu et al., Science, 289(5478), pp. 419-422, (2000)

Page 32: Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.

Ca-doping induces subgap resonance

incommensurability which does not seem to depend on x

sharper at low x

net spectral weight well in excess(~4 times larger) of spectral

Weight for S=1/2 one might associate with added hole

Page 33: Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.

S=1/2 X S=1/2 X S=1/2

O-

Strong coupling JO-Ni between oxygen & nickel spins

net ferromagnetic(no matter what is sign of JO-Ni )

bond of strength JO-Ni 2

Page 34: Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.

S(Q)=cos2(Q) peaks at 2n, nodes at (2n+1)

-4 -3 -2 -1 0 1 2 3 40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Page 35: Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.

but really JHund>>JNi-Ni

Jhund<<JNi-Ni

dispersionless VB state real S=1 chain

Page 36: Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.

•antiferromagnetism survives on a length scale >lattice spacing•edge states are more extended than single lattice spacing

Therefore-

2

coscosh

2/cos)1()()(

Q

QeQFQS

1/

Page 37: Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.

1 2 3 4 50

5

10

15

202

…interference between left and right hand side of bound state wavefunction produces two incommensurate peaks centered around

Page 38: Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.

for finite(rather than infinitesimal) impurity density, interference effect no longer perfect, and node at

partially relieved

Page 39: Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.

Test: No interference effect when chain is cut rather than FM bond inserted -

Direct observation of effective S=1/2 edge state for chain cut by substitution of

nonmagnetic Mg for magnetic Ni

M. Kenzelmann et al. Physical Review Letters , 90, 087202/1-4, (2003)

Page 40: Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.

Immobile holes in 1-d quantum spin liquid nucleate subgap edge states

Incommensurate structure factor

- not from charge ordering Fermi surface etc.

- but from delocalized quantum spin degree of freedom which extendsover several Ni-Ni spacings into QSF and accounts for large spectral weight

Page 41: Quantum effects in Magnetic Salts Part II G. Aeppli London Centre for Nanotechnology.

summary

Antiferromagnets in 1d avoid classical order & display mesoscopic quantum effects

1d magnets a good experimental laboratory for edge states in quantum systems