Quantum Dots for optical applications - nanoparticles.orgnanoparticles.org/pdf/Fiore-ECIO.pdf ·...

33
QD Andrea Fiore Ecole Polytechnique Fédérale de Lausanne Quantum Dots for optical applications Tutorial developed with the support of

Transcript of Quantum Dots for optical applications - nanoparticles.orgnanoparticles.org/pdf/Fiore-ECIO.pdf ·...

Page 1: Quantum Dots for optical applications - nanoparticles.orgnanoparticles.org/pdf/Fiore-ECIO.pdf · Andrea Fiore QD Ecole Polytechnique Fédérale de Lausanne Quantum Dots for optical

QDAndrea Fiore

Ecole Polytechnique Fédérale de Lausanne

Quantum Dotsfor optical applications

Tutorial developed with the support of

Page 2: Quantum Dots for optical applications - nanoparticles.orgnanoparticles.org/pdf/Fiore-ECIO.pdf · Andrea Fiore QD Ecole Polytechnique Fédérale de Lausanne Quantum Dots for optical

QD

Andrea Fiorewww.epixnet.org

Integration of research on:•Technologies for photonic VLSI

•Photonic Signal Processing

•Integrated Light Sources

•Advanced M aterials

•Nanophotonics

Access to facilities:42 Research groups12 Affiliate Partners

Through:

European Network of Excellenceon

Photonic Integrated Com ponents and Circuits

•Joint Research Activities

•Joint Education Program s

•Exchange of Researchers

•Dissem ination of Knowledge

Page 3: Quantum Dots for optical applications - nanoparticles.orgnanoparticles.org/pdf/Fiore-ECIO.pdf · Andrea Fiore QD Ecole Polytechnique Fédérale de Lausanne Quantum Dots for optical

QD

Andrea Fiore

Quantum Dots

L

λElectrons in GaAs, T=300K:

*30 nm

2λ⇔ < ≈∆ >

hLm kT

E kT

100 nm

QD devices:Outline:

• QDs: Dreams & reality

• The physics of single QDs

• Laser applications

E

Page 4: Quantum Dots for optical applications - nanoparticles.orgnanoparticles.org/pdf/Fiore-ECIO.pdf · Andrea Fiore QD Ecole Polytechnique Fédérale de Lausanne Quantum Dots for optical

Why care about QDs?

Or: The QD "dream"

Page 5: Quantum Dots for optical applications - nanoparticles.orgnanoparticles.org/pdf/Fiore-ECIO.pdf · Andrea Fiore QD Ecole Polytechnique Fédérale de Lausanne Quantum Dots for optical

QD

Andrea Fiore

Gain calculation:Arakawa, Sakaki 1982Asada et al., 1986

NB:Idealizedpicture !!!

• Lower threshold current• Lower temperature sensitivity• Larger modulation bandwidth

Narrower gain makesbetter lasers

E

Page 6: Quantum Dots for optical applications - nanoparticles.orgnanoparticles.org/pdf/Fiore-ECIO.pdf · Andrea Fiore QD Ecole Polytechnique Fédérale de Lausanne Quantum Dots for optical

Real QDs

Or: The shattered dream?

Page 7: Quantum Dots for optical applications - nanoparticles.orgnanoparticles.org/pdf/Fiore-ECIO.pdf · Andrea Fiore QD Ecole Polytechnique Fédérale de Lausanne Quantum Dots for optical

QD

Andrea Fiore

Nanostructure fabrication:Quantum Dots

• Top-down fabrication Need high-resolution lithography Etching ⇒ Nonradiative defects

Example: InAs on GaAs (but also InAs on InP, Ge on Si, ...)

15 nm

200 nm

High local In content

1300 nm on GaAs

• Bottom-up: Strain-driven self-assembly☺ High crystal quality ⇒ radiative properties

Uncontrolled nucleation ⇒ Size dispersion substrate

QDsWL

Page 8: Quantum Dots for optical applications - nanoparticles.orgnanoparticles.org/pdf/Fiore-ECIO.pdf · Andrea Fiore QD Ecole Polytechnique Fédérale de Lausanne Quantum Dots for optical

QD

Andrea FioreDot density: 300 dots/µm2

0

200

400

600

800

1000

1170 1190 1210 1230 1250

PL

coun

tsWavelength (nm)

50K, 4 µW 300 nm

300 nm diameter:

0

2200

4400

6600

8800

11000

1170 1190 1210 1230 1250

PL

coun

ts

Wavelength (nm)

1 µm40K, 4 µW

1 µm diameter:

300 nm

MacroPL at 5K:

05

101520253035

0.95 1 1.05 1.1PL

inte

nsity

(arb

. un.

)

Energy (eV)

FWHM=31 meV

idealmeas.

E

E Inh. broad.

Gain FWHM:∆EQDs≈∆EQWs

Inhomogeneous broadening

Page 9: Quantum Dots for optical applications - nanoparticles.orgnanoparticles.org/pdf/Fiore-ECIO.pdf · Andrea Fiore QD Ecole Polytechnique Fédérale de Lausanne Quantum Dots for optical

QD

Andrea Fiore

Can we do better?Controlling self-assembly

4 µm

Baier et al., APL 2004

Courtesy: E. Pelucchi, E. Kapon, EPFL

☺ Site control☺ Improved unif.

• SK growth on prepatterned substrates

In adatoms

Kohmoto et al., J. Vac. Sci. Tech. B 2002

• Growth-rate anisotropy driven growth:

GaAs QD

Page 10: Quantum Dots for optical applications - nanoparticles.orgnanoparticles.org/pdf/Fiore-ECIO.pdf · Andrea Fiore QD Ecole Polytechnique Fédérale de Lausanne Quantum Dots for optical

QD

Andrea Fiore

Radiative properties ofself-assembled QDs

QD characteristics:• 1300 nm emission on GaAs• Radiative efficiency ≈20% at RT• Long carrier lifetime ≈ 1ns• Density: ≈3x1010 cm-2

ES1

GS

ES2

WL

A. Zunger, MRS Bulletin 1998

110 A/cm 2

0

5 10-8

1 10-7

1.5 10-7

2 10-7

0.9 1 1.1 1.2 1.3 1.4 1.5

Inte

nsity

(arb

. un.

)

Energy (eV)

W LES1

ES2

GaAs900 A/cm 2

7.2 kA/cm 2

GS

Excited states:

00.20.40.60.8

11.2

0.85 0.95 1.05 1.15

1.11.21.31.4

Inte

nsity

(arb

. un.

)

Energy (eV)

293 K21 A/cm2

Wavelength (µm)

Page 11: Quantum Dots for optical applications - nanoparticles.orgnanoparticles.org/pdf/Fiore-ECIO.pdf · Andrea Fiore QD Ecole Polytechnique Fédérale de Lausanne Quantum Dots for optical

Single QD physics (andapplications):

Like an atom?

?

Page 12: Quantum Dots for optical applications - nanoparticles.orgnanoparticles.org/pdf/Fiore-ECIO.pdf · Andrea Fiore QD Ecole Polytechnique Fédérale de Lausanne Quantum Dots for optical

QD

Andrea Fiore

QDs behave as atoms...

956 960

x2

x2

300nW

760nW

2.5µW

5.3µW

8.3µW

21µW

50µW

PL In

tens

ity (c

ps)

Energy (meV)

x10

x3

X- X+XXX

XXX• Discrete electronic transitions

• Coulomb and exchange effects...

A solid-state toolbox for opticalspectroscopy

• Single QDs generate single photonsN

. pho

tons

1

2

time

Application toQ-cryptography

See invited talk by JM Gérard this afternoon

Page 13: Quantum Dots for optical applications - nanoparticles.orgnanoparticles.org/pdf/Fiore-ECIO.pdf · Andrea Fiore QD Ecole Polytechnique Fédérale de Lausanne Quantum Dots for optical

QD

Andrea Fiore

QDs do not behave asatoms...

( ) ( )2

22 ΓΓ = = + + Γphonolife

n AugerT nT τ

Homogeneous linewidth:

At RT: Γ≈5-15 meV

Interaction with crystal and carriers mustbe considered

Borri et al., PRL 2001Birkedal et al., PRL 2001Bayer et al., PRB 2002

(Bayer et al., PRB 2002)

Page 14: Quantum Dots for optical applications - nanoparticles.orgnanoparticles.org/pdf/Fiore-ECIO.pdf · Andrea Fiore QD Ecole Polytechnique Fédérale de Lausanne Quantum Dots for optical

QD lasers (1):The physics of a different laser

Page 15: Quantum Dots for optical applications - nanoparticles.orgnanoparticles.org/pdf/Fiore-ECIO.pdf · Andrea Fiore QD Ecole Polytechnique Fédérale de Lausanne Quantum Dots for optical

QD

Andrea Fiore

A summary of laserperformance

TTBOMK (To The Best Of My Knowledge)On GaAs, at ≈1300 nm:• Jth<30 A/cm2 at RT (Huang et al. EL 2000, Park et al. PTL 2000)• Linewidth enhancement factor <1 (several groups)• 10 Gb/s modulation (Hatori et al. ECOC 2004, Kuntz et al., EL 2005)• T0>200 K and Jth<200 A/cm2 (Shchekin EL 2002)

On GaAs (metamorphic), at ≈1500 nm:• Jth≈1.5 kA/cm2 at RT (Ledentsov et al., EL 2003)

On InP at ≈1550 nm:• Jth<400 A/cm2 at RT (Saito APL 2001, Wang PTL 2001)• Linewidth enhancement factor <3 (Ukhanov et al., APL 2002)• 10 Gb/s: -• T0=84 K (Schwertberger PTL 2002)

see also A. Kovsh's talk Fr A1-1

Page 16: Quantum Dots for optical applications - nanoparticles.orgnanoparticles.org/pdf/Fiore-ECIO.pdf · Andrea Fiore QD Ecole Polytechnique Fédérale de Lausanne Quantum Dots for optical

QD

Andrea Fiore

The quantum side of QDlasers

Quantum Dots: Are they really different (better?) than QWs?

Confinement-related aspects:• Discrete n. states

• Low Jtr• Low max gain

• Excited states

• Intraband dynam.• Localization

• Thermal equil.?

... But still it is a different laser!

Inhomog. + homog. broadening makes gain linewidth " QWsFact:

Page 17: Quantum Dots for optical applications - nanoparticles.orgnanoparticles.org/pdf/Fiore-ECIO.pdf · Andrea Fiore QD Ecole Polytechnique Fédérale de Lausanne Quantum Dots for optical

QD

Andrea Fiore

The role of the density ofstates

ρQD E( ) ≈ 2 gS

∆Einh

GaAsGaAs

InAsQDs

QDs:

S

inh

g : areal dot densityE : inhomog. broad.∆

QWs:

ρQW E( ) = m*

π 2

kt

E

InGaAsGaAs

GaAs

QWs:

( )trI

E∝ρτ

Transparency current:

( )2 2

cvmax

0Ee xg

e ncπ ω

ρ=Maximum gain per pass:

2QD S

*QW inh

2g 0.1Em

ρ π≈ ≈

ρ ∆1300 nm QDs on GaAs:

( )10 2S inhg 3x10 cm , E 20meV−= ∆ =

QDs have ≈10 times lowerdensity of states

• Low transparency current• Low max gain

Page 18: Quantum Dots for optical applications - nanoparticles.orgnanoparticles.org/pdf/Fiore-ECIO.pdf · Andrea Fiore QD Ecole Polytechnique Fédérale de Lausanne Quantum Dots for optical

QD

Andrea Fiore

Theoretical estimate for Jtr:(NQD=2, gS=3x1010 cm-2, τ=800 ps)

2A/cm12==τS

QDtregNJ

Huang et al., Electron. Lett. 2000

JRoom-temperature:

Jth=33 A/cm2

Jtr = 9 A/cm2

8.4 µm x 4 mm2 QD layers

Current (mA)

Sing

le fa

cet p

ower

(mW

)

Volta

ge (V

)

Record threshold currentdensity

N quantum dots ⇒ 2N states

The lowes

t J tr of a

ny

semico

nductor la

ser

BUT: Modal gain per QD layer ≈ 3-4 cm-1 • Low-loss cavities• Stack many layers

Page 19: Quantum Dots for optical applications - nanoparticles.orgnanoparticles.org/pdf/Fiore-ECIO.pdf · Andrea Fiore QD Ecole Polytechnique Fédérale de Lausanne Quantum Dots for optical

QD

Andrea Fiore

Gain limitations

Ground state lasing only for low loss:

QD th1 1N g lnL R

= α +

0 1001 10-42 10-43 10-44 10-45 10-46 10-47 10-4

1100 1200 1300In

tens

ity (a

.u.)

Wavelength (nm)

3 QD layers 2 mm

600 µmES1GS

ES2

• Strain compensation (Zhang, APL2003, Lever, JAP 2004)• High-T capping (Ledentsov 2003,Liu APL 2004)

Stacking of >10 layers

Strain issues in QD stacking

50nm

Page 20: Quantum Dots for optical applications - nanoparticles.orgnanoparticles.org/pdf/Fiore-ECIO.pdf · Andrea Fiore QD Ecole Polytechnique Fédérale de Lausanne Quantum Dots for optical

QD

Andrea Fiore

Dual-state lasing

Markus et al., APL 2003

Violates populationclamping theory ???

bias

populationlight

Page 21: Quantum Dots for optical applications - nanoparticles.orgnanoparticles.org/pdf/Fiore-ECIO.pdf · Andrea Fiore QD Ecole Polytechnique Fédérale de Lausanne Quantum Dots for optical

QD

Andrea Fiore

0

1 1GS

stim

fτ τ−

⇒ ESpopulation

τ0

τstim

The role of intrabandrelaxation

Predicted by Grundmann et al., APL 2000

00.05

0.10.15

0.20.25

0.30.35

0 8 16 24 32 40

Pho

ton

num

ber

Carrier injection rate (e/τr)

2 mm

GS

ES

totalModelτ0 ≈ 8 ps

00.02

0.040.06

0.080.1

0.120.14

0 200 400 600 800 1000Inte

gr. i

nt. (

arb.

un.

)Current (mA)

293 K2 mm

GS

ES

total

Exper.

ES

GS

Rate equation model:

0

0.5

1

1.5

2

0 8 16 24 32 40

Popu

latio

n

Carrier injection rate (e/τr)

2 mm

GS

ES

ES thresholdGS threshold

Page 22: Quantum Dots for optical applications - nanoparticles.orgnanoparticles.org/pdf/Fiore-ECIO.pdf · Andrea Fiore QD Ecole Polytechnique Fédérale de Lausanne Quantum Dots for optical

QD

Andrea Fiore

A more general viewCarrier accumulation in non-lasing states:

• Low differential gain • Large gain compression

WL

∆n capture time from WL to QD ⇒ ∆nWL

capture into nonlasing QDs ⇒ ∆nnonlas QDs

relaxation time fromES to GS ⇒ ∆nES

GSGS tot

tot

dgn n g' smalldn

∆ ∆<< ⇒ = • Small frel in lasers• High Psat in SOAs

GS

tot

dgg'dn

=

Page 23: Quantum Dots for optical applications - nanoparticles.orgnanoparticles.org/pdf/Fiore-ECIO.pdf · Andrea Fiore QD Ecole Polytechnique Fédérale de Lausanne Quantum Dots for optical

QD

Andrea Fiore

Modulation characteristics

01234567

0 8 16 24 32 40

Car

rier

s / d

ot

Carrier injection rate (e/τr)

GS

ES

WL

tot 3 QD layers

@10 Gb/s:

10 QD layersExp.: Kuntz, EL 2005

3 QD layers

00.5

11.5

22.5

33.5

0 8 16 24 32 40

Car

rier

s / d

ot

Carrier injection rate (e/τr)

GS

ESWL

tot10 QD layers

Page 24: Quantum Dots for optical applications - nanoparticles.orgnanoparticles.org/pdf/Fiore-ECIO.pdf · Andrea Fiore QD Ecole Polytechnique Fédérale de Lausanne Quantum Dots for optical

QD

Andrea Fiore

Thermal equilibrium?

Inhomogeneous broadening +absence of thermal equilibrium⇒ Broad laser line = many ≈independent lasers!

10-9

10-8

10-7

10-6

10-5

0.0001

0.001

0.01

1150 1250 1350

3 QD layers, 2 mm, pulsed

400 m A200 m A100 m A40 m A

Inte

nsity

(arb

. un.

)

Wavelength (nm)

293 K

increasing current

- -- -

hν3hν2 hν3hν2 hν1hν1

--

Page 25: Quantum Dots for optical applications - nanoparticles.orgnanoparticles.org/pdf/Fiore-ECIO.pdf · Andrea Fiore QD Ecole Polytechnique Fédérale de Lausanne Quantum Dots for optical

QD

Andrea Fiore

Thermal equilibrium

0

0.2

0.4

0.6

0.8

1

0.85 0.9 0.95 1 1.05 1.1

Occ

upat

ion

fact

or

Energy (eV)

Holesk

E

τact

τSHB

real space

QDs: QWs:

τact>100 ps τSHB<1 ps

0

0.2

0.4

0.6

0.8

1

0.85 0.9 0.95 1 1.05 1.1

Occ

upat

ion

fact

or

Energy (eV)

Electrons QDs more prone to non-equilibrium distribution

lasing line

Page 26: Quantum Dots for optical applications - nanoparticles.orgnanoparticles.org/pdf/Fiore-ECIO.pdf · Andrea Fiore QD Ecole Polytechnique Fédérale de Lausanne Quantum Dots for optical

QD lasers (2):Prospects for application?

• Low threshold current• Small linewidth enhancement factor• Temperature performance

Lasers

SOAs, SLEDs• Broad gain, large saturation power

Page 27: Quantum Dots for optical applications - nanoparticles.orgnanoparticles.org/pdf/Fiore-ECIO.pdf · Andrea Fiore QD Ecole Polytechnique Fédérale de Lausanne Quantum Dots for optical

QD

Andrea Fiore

/4 0/

effdn dNdg dN

πα

λ= =

Ideally:

Gai

n

Ref

ract

ive

inde

x

Energy

Linewidth enhancementfactor in QD lasers

Newell et al., PTL 1999Current (mA)

α0

2

4

6

8

10

12

0 10 20 30 40 50

α-f

acto

r

Current (mA)

25 C Experiment

Markus et al., JSTQE 2003

At high bias: Excited states!

0

2

4

6

8

10

12

0 5 10 15

α-f

acto

r

G (el./dot/τrad

)

Model

ESGS

ESGS

Page 28: Quantum Dots for optical applications - nanoparticles.orgnanoparticles.org/pdf/Fiore-ECIO.pdf · Andrea Fiore QD Ecole Polytechnique Fédérale de Lausanne Quantum Dots for optical

QD

Andrea Fiore

Insensitivity to feedback

22

crit 41f + α

∝ Γα

Coherence collapse threshold:

α: linewidth enh. factorΓ: damping rate

f

QDs:• α small• Γ large (gain compression) Reduced feedback sensitivity

Potential for isolator-free modules

feed

back

leve

l (dB

)

I/Ith-1

O'Brien et al, Electron. Lett. 2003

Page 29: Quantum Dots for optical applications - nanoparticles.orgnanoparticles.org/pdf/Fiore-ECIO.pdf · Andrea Fiore QD Ecole Polytechnique Fédérale de Lausanne Quantum Dots for optical

QD

Andrea Fiore

Temperature characteristics

E

No thermal activation if ∆E>>kT

∆E

0.40.50.60.70.80.9

1

0 50 100 150 200 250 300

Occ

upat

ion

fact

or

Temperature (K)

GS electrons

GS holes

-1.5

-1

-0.5

0

0.5

1

0 50 100 150 200 250 300

Gai

n / G

max

Temperature (K)

GS

ES

T0>200 K (Shchekin EL 2002)

Holes spread amongclosely-spaced levels

Shcheckin et al., APL 2002Matthews et al., APL 2002

∆Ec>kT

∆Ev<kT

Use p-dopingT-dependence fixed by

electron distribution

Page 30: Quantum Dots for optical applications - nanoparticles.orgnanoparticles.org/pdf/Fiore-ECIO.pdf · Andrea Fiore QD Ecole Polytechnique Fédérale de Lausanne Quantum Dots for optical

QD

Andrea Fiore

QDs as amplifiersSize dispersion

Broad gainspectrum

Polarisation sensitivity ? Preliminary evidence ofpolarisation control by shape engineering (Jayavel, APL 2004)

Akiyama et al, OFC 2004Carrier reservoir

ES1

GS

ES2

WL

Large saturationpower & fastrecovery time

Psat>19 dBmover 120 nm

Page 31: Quantum Dots for optical applications - nanoparticles.orgnanoparticles.org/pdf/Fiore-ECIO.pdf · Andrea Fiore QD Ecole Polytechnique Fédérale de Lausanne Quantum Dots for optical

QD

Andrea Fiore

GS: 55 nm FWHMES: 45 nm FWHMGS + ES: > 100 nm 120 nm

10-8

10-7

10-6

10-5

10-4

1000 1100 1200 1300 1400

8 µm x 4mm ridge80050030020010050

Inte

nsity

(a.u

.)

Wavelength (nm)

Current (mAmp.)

EPFL & EXALOS AG (Li et al, Electron. Lett. 2005)

GaAsInGaAs

9% In10.5% In12% In13.5% In15% In

Chirped QD multilayers

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1 O

utpu

t pow

er (m

W)

Current (A)

20 C pulsed

QD superluminescentdiodes

Page 32: Quantum Dots for optical applications - nanoparticles.orgnanoparticles.org/pdf/Fiore-ECIO.pdf · Andrea Fiore QD Ecole Polytechnique Fédérale de Lausanne Quantum Dots for optical

QD

Andrea Fiore

QD lasers are different, in some cases better

QD lasers: Realapplications coming up?

Low chirp

Feedback insensitivity

Large T0

Low-cost 10 Gb/s transmitters

Broad gain SOAs, tunable lasers, SLDs

Page 33: Quantum Dots for optical applications - nanoparticles.orgnanoparticles.org/pdf/Fiore-ECIO.pdf · Andrea Fiore QD Ecole Polytechnique Fédérale de Lausanne Quantum Dots for optical

QD

Andrea Fiore

Acknowledgements

• QD lasers: M. Rossetti, L.H. Li• Single QDs: B. Alloing, C. Monat, C. Zinoni• Collaborations with Alcatel CIT and EXALOS AG

Funding:• For this tutorial: ePIXnet NoE• For QD research at EPFL:

Alexander Markus• Simulations: