Quantum coherencein semiconductornanostructures Jacqueline ... · Quantum confinement :...

27
Quantum coherence in semiconductor nanostructures Jacqueline Bloch Laboratoire of Photonic and Nanostructures LPN/CNRS Marcoussis [email protected]

Transcript of Quantum coherencein semiconductornanostructures Jacqueline ... · Quantum confinement :...

  • Quantum coherence in semiconductor nanostructures

    Jacqueline Bloch

    Laboratoire of Photonic and Nanostructures

    LPN/CNRS

    Marcoussis

    [email protected]

  • Laboratoire de Photonique et de Nanostructures

    Marcoussis

    A CNRS Laboratory 30 km south of Paris

    Growth facilities

    Processing facilities

    Physical studies

    50 permanent researchers

    www.lpn.cnrs.fr

  • What are semiconductor nanostructures ?

    e-

    Confine electrons in a volume with dimensions comparable to the De Broglie wavelength (typically 1 nm)

    Quantum confinement : quantization of the energy levels

    Lx

    k = pΠ/L

    Quantum Wells

    1

    Growth direction

    2 2

    2D Continuum

    Emission

    Inter-band transition

    Intra-band transition

  • What are semiconductor nanostructures ?

    e-

    Confine electrons in a volume with dimensions comparable to the De Broglie wavelength (typically 1 nm)

    Lx

    Quantum Dots : 3D confinement

    Discrete quantum states

    « artificial atom » in a solid state system

    ~

    Energie (meV)

    1340 1345 1350 1355

    xγ 1-10 µeV

    Em

    issi

    on

    in

    ten

    sity

    Quantum confinement : quantization of the energy levels k = pΠ/L

    TEM G. Patriarche

  • Optics in microcavities

    Confine light in small volumes (of the order of λ3)

    Modify the light matter coupling

    Miroir interférentiel

    Miroir interférentiel

    micropillars

    AlAs

    GaAs/AlGaAs

    n=1

    microdisks Photonic crystal microcavities

    Interferential mirrors

    Interferential mirrors

  • Quantum coherence in semiconductor nanostructures

    Control of these quantum emitters, enhance light matter interaction,

    manipulate single spins

    - Bose condensates; new optical functionalities

    - Non-linear optics at the single photon level

    - Cavity quantum electrodynamics

    - Quantum information processing

    - Source of quantum light : quantum cryptography, teleportation

  • Upper polariton

    Lower polariton

    ~ 5meV

    -2 0 2

    -20 -10 0 10 20

    Top DBR

    Bottom DBR

    Quantum Wells

    θGaAs/AlGaAs based structures

    Exciton

    Photon

    Angle θ (º)

    kin-plane (µm-1)

    Em

    issi

    on e

    nerg

    y (e

    V)

    Microcavity polaritons : mixed exciton-photon states

    5 K

    Semiconductor cavities : a model system to investigate

    the physics of Bose condensates

    Bosonic quasi-particule (J = +-1)

    Low effective mass => Large De Broglie wave length

    => Condensation at high temperature

    12 22

    TBmk T

    πλ

    =

    h

  • Bose-Einstein condensation

    Cornell’s and Wieman’s groups:

    condensation of Rb atoms (1995)T

    http://jilawww.colorado.edu/bec/

    12 22

    TBmk T

    πλ

    =

    h

    Macroscopic wavefunctionBEC with atoms

    Nature 443, 409 (2006)

    Kasprzak et al. Nature, 443, 409 (2006)kx

    ky

    Polariton density

    T = 5 K CdTe

    Low critical temperatures: < 1 µK

  • Typical experimental scheme

    (d)Far field

    Flo

    w

    30 µm

    Interference with a reference beam

    Coherence mapg(1)

    0

    1

    Density

    Phase dislocations- vortices- solitons

    -0.5 0.0 0.5

    kx (µm-1)k y

    (µm

    -1)

    kx (µm-1)

    Ene

    rgy

    Far field imaging: k space Near field imaging: real space

    Resonant injection ofpolaritons

  • THEORY GROUP at Laboratoire MPQ, Université Paris Diderot

    Responsable: Prof. Cristiano CIUTI

    Web page: http://www.mpq.univ-paris7.fr/

    Google search: Laboratoire MPQ THEORIE

    Main theoretical activity (semiconductors):

    - Polariton quantum fluids (photons)

    - Ultra- strong coupling in cavity quantum

    electrodynamics cavité (circuit)

    Recent review:

    I. Carusotto & C. Ciuti, Reviews

    of Modern Physics in press;

    http://arxiv.org/abs/1205.6500

  • Alberto Bramati

    Cavity polaritons:

    coherence and spin dynamics

    Quantum fluid : superfluidity, solitons,..

    Nature Physics 2009

    Science 2011

    Science 2012

    Spin switch, spin Hall effect

    Nature Physics 2009

    Vortex lattices

  • Laboratoire of Photonique and Nanostructures

    http://www.lpn.cnrs.fr/fr/GOSS/CFMC.phpAlberto Amo

    Jacqueline Bloch

    Manipulating Bose condensate in photonic circuits

    Macroscopic propagation and coherence

    Trapping

    Ferrier et al.

    PRL 106, 126401 (2011)

    Wertz et al., Nature Physics 6, 860 (2010)

    Tanese et al. PRL 108, 36405 (2012)

    Wertz et al., PRL to appear

    Galbiati et al.

    PRL 108, 126403 (2012)

    λ/2 cavity

    30 pairs

    3x4 GaAsquantum wells

    Substrate

    26 pairs

    λ/2 cavity

    30 pairs

    3x4 GaAsquantum wells

    Substrate

    26 pairs

    GaAs/GaAlAs

    microcavities

  • I. Shelykh et al., PRL 102, 046407 (2009)

    Bloch oscillations: H. Flayac et al., Phys. Rev. B 84, 125314 (2011)

    Phys. Rev. B 83, 045412 (2011)

    Propagation, interaction of gap solitons

    Polariton interferometerCondensation in a periodic potential:

    Arrays of coupled condensates

    Bose Hubbard quantum phases

    What is next?

    Carusotto et al., PRL 103 033601 (2009)

    Fisher et al., PRB 40, 546-570 (1989)

    http://www.lpn.cnrs.fr/fr/GOSS/CFMC.php

    Laboratoire of Photonique and Nanostructures

    Manipulating Bose condensate in photonic circuits

  • MPQ – Université Paris DiderotQuantum Physics and Devices (QUAD)

    A. Vasanelli, M. Amanti, S. Barbieri, Y. Todorov, C. Sirtori

    Building blocks:

    Electron confinement:

    Semiconductor QWs,

    band structure engineering

    Photon confinement:

    plasmonic microcavities,

    highly subwavelength

    confinement

    Fields of action

    We develop novel concepts of quantum engineering

    in materials that are currently at the basis of ICT.

    THz quantum cascade laser Electroluminescence from

    intersubband polaritons

    L. Sapienza et al., PRL 2008

    Y. Todorov et al., PRL 2009

    Y. Todorov et al., PRL. 2010

    S. Barbieri et al. Nature Phot. 2011

    S. Barbieri et al. Nature Phot. 2010

    Integrated quantum

    cascade laser modulator

    J. Teissier et al. Opex 2012

  • Group: Optical properties of hybrid nanostructures

    Emmanuelle Deleporte (Pr) Jean-Sébastien Lauret (MdC)

    LPQM

    ENS Cachan

    Strong coupling regime at

    room temperature

    Self-organized hybrid quantum wells:

    Perovskites

    (R-NH3)2MX4

    M: Pb; X: I, Br, Cl

    R: Phényl, Cyclohexane.…

    3.2 3.3 3.4 3.5 3.6 3.7 3.8

    50°

    45°

    40°

    35°

    30°25°

    20°15°10°5°

    Pho

    tolu

    min

    esce

    nce

    Energie (eV) 2,0 2,2 2,4 2,6 2,8 3,0 3,2 3,4 3,6 3,8 4,0

    m = 3

    m = 2

    m = 1m = 3

    m = 2

    m = 1

    2,40 eV 3,07 eV

    PhE-PbBr4

    3,65 eV

    Den

    sité

    opt

    ique

    Energie (eV)

    PhE-PbCl4

    PhE-PbI4

    Tunability

    Publications:

    Superlattices and Microstructures 47, 10 (2010)

    Appl. Phys. Lett. 93, 081101 (2008);

    New Journal of Physics 10, 065007 (2008)

    New Journal of Physics 10, 065017 (2008)

    Appl. Phys. Lett. 90, 091107 (2007)

    Phys. Rev. B 74, 235212 (2006)

    Appl. Phys. Lett. 89, 171110 (2006)

    a)

    Objectives : Study of this new material (electronic properties)

    Polariton condensation

    Electrical injection

  • Quantum physics with single quantum dots

    - Single spin in a quantum dot : a quantum bit

    - Source of quantum light

    - Cavity quantum electrodynamics using single quantum dot in a cavity

  • A spin in a Quantum dots : a quantum bit ?

    electron

    TEM G. Patriarche

    A single spin : a well « isolated » quantum bit ?

    �Spin optical pumping :

    Science 312, 551 (2006), Phys. Rev. Lett. 99, 097401 (2007);Nature 451 441 (2008)…

    � Quantum non demolition spin measurement: Science 314. 1916 (2006) , Nature Physics 3, 101 (2007)…

    � Spin coherence: interaction with nuclei Phys. Rev. Lett. 94, 116601 (2005), Phys. Rev. Lett. 102, 146601 (2009)

    Nature Physics, 5(8) 2009, Arxiv arXiv:1202.4637, …

  • T=4 K

    TEM G. Patriarche

    Quantum dots : a solids tate source of quantum light

    1345 1350 1355Lum

    ines

    cenc

    e in

    tens

    ity (

    a. u

    .)

    Energy (meV)

    X

    XX

    Single photon emission Science 290, 2282 (2000)

  • Semiconductor quantum dots

    for the generation of non classical states of light

    • Resonant Rabi oscillations: qubit initialization

    0 12 24 36 48 600

    2000

    4000

    6000

    P1/2 (µW1/2)

    Lum

    ines

    cenc

    e (a

    rb. u

    nits

    )

    0000 5π5π5π5π4π4π4π4π3π3π3π3π2π2π2π2π

    ππππ

    cos=ψ 0 1+

    2

    θsin

    2

    θ

    • Coherent control of the qubit:

    0

    1

    δ, φ

    903 904 905 906 907

    φ = 0 φ = π

    µP

    L In

    tens

    ity (

    arb.

    uni

    ts)

    Wavelength (nm)

    θ =π/2

    « on »

    « off »

    θ: Rabi frequency Pulse area∝ P

    •Purpose: Efficient indistinguishable

    single photon source

    • Entanglement of qubits

    Applications in quantum information

    • Indistinguishable single photon sources ?

    increase of T2/T1

    -24,4 -12,2 0,0 12,2 24,4 36,60

    10

    20

    30

    Coi

    ncid

    ence

    s

    Retard (ns)

    HBT on-resonance

    g (2) (0) = 0.06

    (Collaboration: LPA, LPN)

    HBT on resonance

    Valia Voliotis,

    Richard Hostein

    300 < T2 < 600 ps (< 2 T1 )600 < T1 < 900 ps

    http://www.insp.jussieu.fr/

  • Quantum optics in single quantum dots

    -6 -4 -2 0 2 4 60.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    g(2)(τ

    )

    τ (ns)

    Optically-gated resonant emission in single quantum dotsH. S. Nguyen et al., Phys. Rev. Lett. 108, 057401 (2012)

    Ultra-coherent single photon sourceH. S. Nguyen et al., App. Phys. Lett. 99, 261904 (2011)

    -10 -5 0 5 100

    10

    20

    30

    40

    50

    60

    70Gate ONGate OFF

    Inte

    nsity

    (10

    3 co

    unts

    /s)

    δ (µeV)

    Resonant laser

    Optical

    gate

    Optically-gated

    resonant emission

    0.0

    0.1

    0.2

    0.3

    0.4

    0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

    -10 0 100.0

    0.5

    1.0

    1.5

    -10 0 10 -10 0 10

    g(1)(τ

    )

    τ (ns)

    τ (ns)

    τ (ns)

    E - EL (µeV) E - E

    L (µeV)E - E

    L (µeV)

    Nor

    m. i

    nten

    sity

    Carole Diederichs

    Laboratoire Pierre Aigrain

  • A quantum dot in a cavity :

    A solid state system for quantum information processing

    Contact : Pascale Senellart and Loic Lanco

    Laboratoire de Photonique et de NanostructuresMarcoussis, France

    QD

    cavity mode

    Optical loss

    g

    τc

    e-

    Artificial atom

    Single photons source

    Single spin memoryMicrocavities

    Controlling spontaneous emission

    Mixed light-matter states

    http://www.lpn.cnrs.fr/fr/GOSS/BQM.php

  • Full control of a single dot spontaneous emission

    See Dousse et al, Phys. Rev. Lett 2008, APL 2009

    Suffczynskii et al, PRL 2009

    Dousse et al, PRL 2008

    Dousse et al, APL 2009

    In-situ lithography

    0.0 0.2 0.4 0.6 0.8 1.0 1.2

    100

    1000

    10000

    PL

    inte

    nsity

    (a.

    u.)

    time (ns)

    ON resonance (5 K)

    OFF resonance (50K)

    = 1.15 nsτXX

    = 130 psτ

    XX

    0.0 0.2 0.4 0.6 0.8 1.0 1.2

    100

    1000

    10000

    PL

    inte

    nsity

    (a.

    u.)

    time (ns)0.0 0.2 0.4 0.6 0.8 1.0 1.2

    100

    1000

    10000

    PL

    inte

    nsity

    (a.

    u.)

    time (ns)

    ON resonance (5 K)

    OFF resonance (50K)

    = 1.15 nsτXX = 1.15 nsτXXτXX

    = 130 psτ

    XX = 130 psτ

    XXτ

    XX

    On demand Purcell effect

    Light matter entangled

    states

  • Ultrabright sources for quantum information processing

    Single photons, Indistinguishable photons

    Entangled photon pairs

    Pulsed excitation

    Few photon optical non-linearity

    Dousse et al, Nature 2010, Gazzano et al, 2012

    Loo et al, PRL 2012

    104

    Incident photons per pulse

    Re

    fle

    ctiv

    ity

    0.88

    0.86

    0.84

    0.82

    0.80

    0.7810-1 101100 102 103

    0.90

    8 photons

  • Toward a solid state quantum network ?Teleportation, Spin photon entanglement, entanglement

    distillation, remote spin entanglement, delayed photon

    entangler

    V

    �Single photon source�Entangled photon pair source

    �Delayed photon entangler

    �Spin based quantum memory�Single photon

    optical switch

  • Optional course: second semestre

    Laboratoire Photonique et Nanostructures

    LPN/CNRS

    Marcoussis (http://www.lpn.cnrs.fr)

    Laboratoire Matériaux et Phénomènes Quantiques

    MPQ/ Université Paris 7

    http://www.mpq.univ-paris7.fr/

    Pascale Senellart Jacqueline Bloch Cristiano Ciuti Carlo Sirtori