Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG ›...

72
Quantum Chaos and Multiple Scattering in Microwave Cavities Fabrice Mortessagne Mesoscopic Physics of Waves for Imaging in Complex Media, IHP, 29-30 october 2009, GDR MésoIm@ge & WPCM group, U. Kuhl, T. Seligman S. Barkhofen, T. Hossain

Transcript of Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG ›...

Page 1: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Quantum Chaos and Multiple Scattering in Microwave Cavities

Fabrice Mortessagne

Mesoscopic Physics of Waves for Imaging in Complex Media, IHP, 29-30 october 2009, GDR MésoIm@ge

&WPCM group, U. Kuhl, T. Seligman

S. Barkhofen, T. Hossain

Page 2: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Wave Propagation in Complex Media... in Nice

Page 3: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Wave Propagation in Complex Media... in Nice

✴Wave chaos in open systems

✴Multiple diffusion and localization

✴Random laser

✴Scar modes in chaotic optical amplifier

✴Transport in µ-graphene

Page 4: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Microwave cavities are privileged systems for studying waves in

complex media !

Main claim:

✓ Quantum Chaos (in open systems)✓ Random media & Strong localization✓ Solid States Physics

Page 5: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

S =!

S11 S12

S21 S22

"

Network Analyzer

coaxial lines

Metallic plates

Typical experimental set-up

DirichletNeuman boundary condition

2D cavity, TM or TE modes

emission and lock-in detectionfrom a few MHz to 10~100 GHz

provides the scattering matrix

Page 6: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Nice

College ParcSteven Anlage

New YorkAzriel Genack

ParisMathias Fink

MarburgHans-Jürgen Stöckmann

DarmstadtAchim Richter

WarsawLeszek SirkoSan Antonio

Andrey Chabanov

BostonSrinivas Sridhar

Page 7: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

microwave cavity

Emulating quantum physics

free particle

! = Ez, Bz

!!!("r) = E!("r) !!!("r) = k2!("r)

Page 8: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

microwave cavity

Emulating quantum physics

free particle

!!!("r) = E!("r) !!!("r) = k2!("r)

Page 9: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

microwave cavity

Emulating quantum physics

free particle

!!!("r) = E!("r) !!!("r) = k2!("r)

+ infinite potential well + Dirichlet on boundaries

Quantum Chaos with EM waves

Page 10: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

microwave cavity

Emulating quantum physics

free particle

!!!("r) = E!("r) !!!("r) = k2!("r)

+ varying potential + varying permittivity!!! +

"1! !("r)

#k2

$#("r) = k2#("r)

!!! + V (!r)

""(!r) = E"(!r)

Page 11: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

microwave cavity

Emulating quantum physics

free particle

!!!("r) = E!("r) !!!("r) = k2!("r)

+ varying potential + varying permittivity!!! +

"1! !("r)

#k2

$#("r) = k2#("r)

!!! + V (!r)

""(!r) = E"(!r)

V (!r) ! 0

Page 12: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Dielectric scatterers

! = 37Permittivity:8 mm

5 mm

TM modes: energy everywhere

Depending on the excitation:

!("r) = Ez("r)

TE modes: energy essentially inside the scatterers

!("r) = Bz("r)

Page 13: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Dielectric scatterers

! = 37Permittivity:8 mm

5 mm

TM modes: energy everywhere

Depending on the excitation:

!("r) = Ez("r)

TE modes: energy essentially inside the scatterers

!("r) = Bz("r)

Andersonlocalization

Page 14: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Dielectric scatterers

! = 37Permittivity:8 mm

5 mm

TM modes: energy everywhere

Depending on the excitation:

!("r) = Ez("r)

TE modes: energy essentially inside the scatterers

!("r) = Bz("r)

Andersonlocalization

tight-bindingmodel

Page 15: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Anderson localization

Page 16: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Anderson localization

Page 17: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Anderson localization

Page 18: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Strong localization

Page 19: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Imaging localized modes

Network analyzer: performs emission and lock-in detection from 50 Mhz to 20 GHz

OFHC copper plates, weakly coupled coaxial antennas

5 mm height: Transverse Magnetic 2D modes.

Page 20: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Imaging localized modesFrom 121 to 196 dielectric scatterers randomly positioned in a 25×25 cm region

Dielectric constant ϵ=37 8 mm diameter

Two different layers of microwave absorbers ensure the openness

Page 21: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Intensity spatial distribution by means of a standard scanning perturbation technique

Imaging localized modes

∆ν ∝ |E("rb)|2

!!

Page 22: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

ISA approximation

In the vicinity of the Mie resonances: ! ! 1" 10 cm

! = " exp!#

2Re(keff )"

"

For independent scatterers 2D localization length is given by:

!tot = ! 1k0

Im"k0|t|k0#

k2eff = k2

0 ! ns"k0|t|k0#

! = [2Im(keff )]−1

where

Derode et al., PRE 64, 036605 (2001)

Page 23: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

ISA approximation

In the vicinity of the Mie resonances: ! ! 1" 10 cm

! = " exp!#

2Re(keff )"

"

For independent scatterers 2D localization length is given by:

!tot = ! 1k0

Im"k0|t|k0#

k2eff = k2

0 ! ns"k0|t|k0#

! = [2Im(keff )]−1

where

! = 5GHz! "vide " 6 cm "scat " 1 cm "e! " 4 cm

Derode et al., PRE 64, 036605 (2001)

Page 24: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

fd

+a

+b+c

+e

+

+

9

!40

!140

!120

!100

!80

!60

Tra

nsm

issi

on

(in

ten

sity

in

dB

)

Frequency in GHz

81 3 4 5 62 7

Typical transmission spectrum

Page 25: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

fd

+a

+b+c

+e

+

+

9

!40

!140

!120

!100

!80

!60

Tra

nsm

issi

on

(in

ten

sity

in

dB

)

Frequency in GHz

81 3 4 5 62 7

80

0

20

Mie cro

ss section (m

m)

40

60

Typical transmission spectrum

Page 26: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

fd

+a

+b+c

+e

+

+

9

!40

!140

!120

!100

!80

!60

Tra

nsm

issi

on

(in

ten

sity

in

dB

)

Frequency in GHz

81 3 4 5 62 7

10

localization length (mm

)

1

100

Typical transmission spectrum

Page 27: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

fd

+a

+b+c

+e

+

+

Page 28: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Sae Sad

Sab

Saf

Sac

fd

+a

+b+c

+e

+

+

Page 29: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Localized modes

Page 30: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Localized modes

Page 31: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in
Page 32: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in
Page 33: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in
Page 34: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in
Page 35: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in
Page 36: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in
Page 37: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

How to measure localization length ?

Scattering region is reducedfrom 25×25 cm to 9×9 cmby steps of 2 cm

Through leakage at the boundary:

Page 38: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

How to measure localization length ?

Scattering region is reducedfrom 25×25 cm to 9×9 cmby steps of 2 cm

Through leakage at the boundary:

|Sab(!)|2

|Sab(!0)|2

0

1

! ! !0 (in MHz)

!

Page 39: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

How to measure localization length ?

Scattering region is reducedfrom 25×25 cm to 9×9 cmby steps of 2 cm

Through leakage at the boundary:

Pinheiro et al. :

!leak ! exp!"2R

!

"

|Sab(!)|2

|Sab(!0)|2

0

1

! ! !0 (in MHz)

!

Page 40: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

How to measure localization length ?

Scattering region is reducedfrom 25×25 cm to 9×9 cmby steps of 2 cm

Through leakage at the boundary:

Pinheiro et al. :

!leak ! exp!"2R

!

"

226 8 10 12 14 16 18 202R in cm

10

1

0.1

0.01

100

(!− !!)/!!

Ohmic losses =⇒ !!

Page 41: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Freak modes !

Page 42: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Freak modes !

Page 43: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Freak modes !

Page 44: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Freak modes !

Page 45: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Necklace-like modes !

Page 46: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in
Page 47: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in
Page 48: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Summary

induce correlations in the spatial disorder.

emulate 2D random dimer model by means of 2 different sizes of scatterers.

study permittivity disorder

In the near future, we plan to

Localized modes exist... and can be imaged in an open microwave cavityA localized mode is not characterized by an unique localization length, the largest control its lifetime.Necklace-like modes can be observed at low frequencies

Page 49: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Emulating solid-state physics

free particle! = Ez, Bz

!!!("r) = E!("r) !!!("r) = k2!("r)

microwave cavity

+ varying potential + varying permittivity!!! +

"1! !("r)

#k2

$#("r) = k2#("r)

!!! + V (!r)

""(!r) = E"(!r)

+ spatial periodicity

(photonic) crystal

Page 50: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Emulating solid-state physics

free particle

!!!("r) = E!("r) !!!("r) = k2!("r)

microwave cavity

+ varying potential!!! + V (!r)

""(!r) = E"(!r)

Review Article

Figure 13. Crystal structure model of an artificial opal. The differentfacets shown are exemplified with actual SEM images from realsamples.

resulting opals. The resulting crystal structures are fcc close-packed arrangements, as shown in figure 13.

These optical systems are ideal references for studyingthe intrinsic properties of a PC, such as the density of statesinside the crystal [38] and gap formation [39], or to confirmtheoretical predictions. An additional advantage is that theiroptical properties can be modified continuously in a controlledway, allowing the preparation of more sophisticated systems.One of the most usual methods is void infiltration with differentmaterials. If a high RI material is used in the infiltration, thePC obtained may exhibit full photonic band gaps (PBGs) in thenear infrared and visible range [40].

Semiconductors of such technological impact as siliconand germanium can be synthesized by chemical vapourdeposition (CVD) [41, 42]. Here the sample is placed ina cell where the precursor gas is condensed with liquidnitrogen. Disilane (Si2H6) and germane (GeH4) can be used asprecursors for Si and Ge, respectively. Once the precursor gasis condensed, the cell is isolated and placed in a furnace at theselected decomposition temperature. Under these conditionsboth semiconductors grow amorphously and they can becrystallized by a later annealing. Two parameters govern thegrowth of the semiconductor: the precursor gas pressure andthe reaction temperature. Decomposition temperature plays avery important role in two aspects: growth velocity and thepresence of undesired particles. It has also been observed thathigh temperatures induce the growth of undesired particles. Inthe case of Si the precursor gas decomposition temperatureselected was 375 !C while for Ge it was set at 270 !C. Lowertemperatures result in very slow synthesis rates while higherones allowed little degree of control. The growth takes placeconformally (by creating a nanometre thin layer of materialthat covers all the surfaces of the template) and the result isa composite that can be further processed. In particular, theinitial backbone can be removed, leading to what has beendubbed inverse opals, an example of which is depicted infigure 14.

The power of this method is that it allows not only growingthese and other materials on silica but either on the other [43].A further degree of freedom will be provided by the selectivityof different solvents that can be used to remove some of thematerials.

Figure 14. Typical aspect of an inverse opal where cleaved edgesshow (100) facets. Windows connecting the templating spheres canbe clearly seen.

Recent work has shown that ‘band engineering’ can beachieved by multilayer infiltration with different materials orby obtaining new inverse structures through morphologicalchanges of the material filling the voids [44]. Silica andPS spheres containing metallic or magnetic cores can beprepared [45, 46] allowing one to couple the metallic and/ormagnetic properties, respectively, with the photonic ones.Using patterned surfaces as substrates, the fabrication ofprisms [47] and microfibres [48] made of PC has been possible.Another possibility is the introduction of controlled defects incolloidal crystals by the use of two-photon polymerization [22]or laser micro-annealing [49]. By combining spheres oftwo different sizes, ordered superlattices [50] or structurescontaining planar defects [51] have recently been obtained.

5. Optical properties and applications

The optical properties of PCs are entirely determined and canbe fully accounted for by their photonic band structure. Inpractical terms the bands can be used to interpret and predictthe optical properties by using a few simple rules. Lightcoming from outside a PC will in principle travel throughthe PC if there are states belonging to the PC that preservethe energy and (parallel) momentum. The difference fromordinary dielectrics is that now not all energies are allowedto propagate through the crystal but only those that belongto a photonic band, meaning that light whose energy liesin photonic gaps will be reflected by the PC. This was inthe core of the initial proposal of the concept of PC byYablonvitch [52]. The refraction in the boundaries of the PCis also entirely determined by the band structure, but nowmoment conservation takes on a new form to include theperiodicity of the crystal. Thus the (parallel) wavevector ofthe incoming and refracted beams must differ by a reciprocallattice vector that may or may not happen to be zero. When it isnot we usually talk of diffraction rather than refraction, but wemust bear in mind that the process involved is fundamentallythe same. This gives us a hint that all processes in a PC and,in particular, the build up of a band structure, can be viewed as(coherent) multiple scattering.

R8

+ spatial periodicity

(photonic) crystal

Page 51: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Experimental set-up

Network analyzer (complex S-matrix)

High-precision XY translation stages

200 cylindrical obstacles with high electrical permittivity

Page 52: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

µ-atom properties

Second Mie resonance:

TE mode, Bessel zero-order shape

! = 37Permittivity:8 mm

5 mm

!0 ! 6.68 GHz

Page 53: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Atoms are strictly identical...

Dielectric cyinders are reasonably identical !

! ! 45 MHz

Page 54: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

!x !x

ν1 ! ν0

(1" 1

2

(F +

√F2 + 8J 2

))

ν2 ! ν0 (1 + F)

ν3 ! ν0

(1" 1

2

(F "

√F2 + 8J 2

))

nearest neighbors

second neighbors

Coupling between 3 µ-atoms

!1, !2, !33 eigenfrequencies, ,solutions of: H|!! = !|!!withH = !0

!

"1 J !FJ 1 J!F J 1

#

$

Page 55: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

3 µ-atoms: results

F(!x) = J (2!x)

step = 0.2 mm!x

Page 56: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Tight-binding domain!1 ! !0(1"

#2J )

!2 ! !0

!3 ! !0(1 +#

2J )

F ! 0

Page 57: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Hexagonal cell

!1 ! !0 (1" 2J )!2 ! !0 (1" J )!3 ! !0 (1 + J )!4 ! !0 (1 + 2J )

2!2!

Group theory (D₆)

Page 58: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Hexagonal cell

!1 ! !0 (1" 2J )!2 ! !0 (1" J )!3 ! !0 (1 + J )!4 ! !0 (1 + 2J )

2!2!

Group theory (D₆)

Page 59: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Hexagonal cell

!1 ! !0 (1" 2J )!2 ! !0 (1" J )!3 ! !0 (1 + J )!4 ! !0 (1 + 2J )

2!2!

Group theory (D₆)

Page 60: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Graphene

! !

!"#$%&'()"*'"+,-#$./)00001-'/2%".2.(3,4/'("#,4#.,3'.&5.,%"2'332."-64)3"7.($-/'(-28&3,)(3),-2"-/*"4#3'(-2"#,4#.,3'.&"94"7-+/.3'(":'.2*";(:0"1-,<"=4.,6'+>&"2.(3),.?

@.-/A94B2"C)($&"DEF"G,&-%

G)32'/.D.(3),."HIJ"K/3,4*)(3'4/"34".2.(3,4/&"'/"+,-#$./.LM.,('(."&.&&'4/J"N2.'/"3)//.2".::.(3"'/"+,-#$./.D.(3),."HOJ"L2.(3,'("3,-/&#4,3"'/"+,-#$./.

P-,+Q&.R"G(346.,"OSST

P$'(<./U',.";V)6,-(R"C,-/(.?

a 2D honeycomb carbon crystal

Page 61: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Graphenea 2D honeycomb carbon crystal

Page 62: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Graphene

3 coplanar σ-bonds (sp² orbitals) with 120° angle ⇒ honeycomb lattice, mechnical properties

1 conduction electron per C atom (2pz orbital) giving π-bound ⇒ electronic properties

triangular Bravais lattice + 2 atom basis ⇒ triangular reciprocal lattice with 2 inequivalent corners

a 2D honeycomb carbon crystal

Page 63: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Graphene

3 coplanar σ-bonds (sp² orbitals) with 120° angle ⇒ honeycomb lattice, mechnical properties

1 conduction electron per C atom (2pz orbital) giving π-bound ⇒ electronic properties

triangular Bravais lattice + 2 atom basis ⇒ triangular reciprocal lattice with 2 inequivalent corners

! !

!"#$%&'()*$+&,-*&-,.

/.*)0,'*12$+01*.3/.*)0,'*12$21&&)*.$'4$&5.$&,)167-21,$21&&)*.$8$&,)167-21,$21&&)*.$9:51&.;.,$&5.$1&'()*$<1+)+#

7=!"

!#$

$%

$

$

$%

$%

&

#'()*+,--./,0)1.02)3#*14

56

57

a 2D honeycomb carbon crystal

Page 64: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Amazing graphene !the valence and conduction bands meet in 2 points in reciprocal space: the Dirac points K and K’

VB is full and CB is empty ⇒ gapless semiconductor ≡ metal with a vanishing density of states at the Fermi level

the dispersion relation is linear near the Dirac points and isotropic due to the tight-binding interactions

electrons are massless and chiral ⇒ described by Dirac equation

Page 65: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

µ-graphene

Page 66: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

µ-graphene

611

5

8

Page 67: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Local density of states

Page 68: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Transmission

Page 69: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Effect of disorder

Page 70: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Effect of disorder

Page 71: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Effect of disorder

Page 72: Quantum Chaos and Multiple Scattering in Microwave Cavitiesmesoimage.grenoble.cnrs.fr › IMG › pdf › mortessagne.pdf · 2009-11-03 · Quantum Chaos and Multiple Scattering in

Conclusion

measure the slope of the LDOS near the Dirac point

introduce a gap and control its width through a shift between the two triangular sublattices

emulate Dirac oscillator through lattice deformations

In the near future, we plan to

We clearly established the domain of validity of the tight-binding approximation in a microwave-analog of graphene

The main features of the transport properties of graphene were obtained