“Quantitative Structure Activity Relationship (QSAR)...

of 65 /65
A pan-European Infrastructure for Quality in Nanomaterials Safety Testing NUID UCD | NHM | IOM | JRC | BFR | KIT | FUNDP | IST | UNIVLEEDS | NILU | HMGU | LMU | CIC | UU | ICN DLO/RIKILT | WU | DGUV | TAU | VITO | SMU | TCD | FIOH | UOE | HW | CNRS | INERIS | UBRM | RIVM “Quantitative StructureActivity Relationship (QSAR) models” 27.03.2013 Xue Z. Wang Ceyda Oksel University of Leeds

Embed Size (px)

Transcript of “Quantitative Structure Activity Relationship (QSAR)...

  • A pan-European Infrastructure for Quality in Nanomaterials Safety Testing

    NUID UCD | NHM | IOM | JRC | BFR | KIT | FUNDP | IST | UNIVLEEDS | NILU | HMGU | LMU | CIC | UU | ICN DLO/RIKILT | WU | DGUV | TAU | VITO | SMU | TCD | FIOH | UOE | HW | CNRS | INERIS | UBRM | RIVM

    QuantitativeStructureActivityRelationship(QSAR)models

    27.03.2013

    Xue Z. WangCeydaOkselUniversity ofLeeds

  • Theory ofQSAR NewDataMining Methods NanomaterialCharacterization Nanotoxicity Application ofQSARmodelinnanotoxicitymodeling

    2QualityNanoTrainingSchool

    Purpose ofToday

  • Part ITheory ofQSAR

    3QualityNanoTrainingSchool

  • QSARHistory

    CorwinHermanHansch(1918 2011)

    Thefatheroftheconceptofquantitativestructureactivity relationship (QSAR),thequantitativecorrelationofthephysicochemical

    propertiesofmoleculeswiththeirbiologicalactivities[5]

    4

    1865

    Crum BrownandFraser[1]

    expressed theideathat there

    was a relationshipbetweenactivityandchemicalstructure.

    1900

    Meyer[3] andOverton[4]found

    linearrelationshipsbetweenthe

    toxicityoforganiccompoundsandtheir lipophilicity.

    1969

    Hansch[5] publishedafreeenergyrelatedmodelto correlatebiologicalactivities

    withphysicochemical

    Properties.

    1893

    Richet[2]correlatedtoxicities of

    simple organicmoleculeswiththeirsolubilityin

    water.

    [1]A.CrumBrown,T.R.Fraser,Trans.R.Soc.Edinb.25(19681969) 257. [2] M.C.Richet,Compt.Rend.Soc.Biol.45(1893)775.[3]H.Meyer,Arch.Exp.Pathol.Pharmakol.42(1899)109. [4] E.Overton,Studien uber dirNarkose,GustavFischer,Jena,1901[5] Hansch,C.(1969)AquantitativeapproachtobiochemicalstructureactivityrelationshipsAccountsofChemicalResearch, 2, 232239.

    QualityNanoTrainingSchool

  • MolecularStructure

    Physicochemicalor Biological Property

    TheVarianceIn

    MathematicalDependencies

    Toxicity/Ecotoxicity Prediction

    BulkFormNanoparticles(widely used)(notadopted)

    A QSAR is a statistical modelthat relates a set of structuraldescriptors of a chemicalcompound to its biologicalactivity.

    5

    QSAR(QuantitativeStructureActivityRelationship)

    What isQSAR?

    [1]T.Puzyn etal.(eds.),RecentAdvancesinQSARStudies,103125. DOI10.1007/9781402097836_4,CSpringerScience+Business MediaB.V.2010QualityNanoTrainingSchool

    The presenceofparticular characteristics increasethe propability that the compund istoxic

  • QSAR(QuantitativeStructureActivityRelationship)nanoQSAR

    QSARmodels are very useful incase ofthe classic chemicals buttheconcept ofnanoQSARisstill under development.

    QSAR has been widely used to predict the toxicity of substances in bulkform (especially druglike compunds) but, up to date, QSAR studies for theprediction of nanoparticle toxicity have been rarely reported.

    Successful QSAR studies What about Nanosize particles?

    6QualityNanoTrainingSchool

    The European system for new chemical management (REACH) promotesQSAR methods as an alternative way of toxicity testing.

  • INSILICO IN VITROINVIVO(computational) (incontainer) (onlivingorganism)

    predict predict

    All chemical substances need to betested interms oftheir toxicologicaland environmental properties before their useThere are several reasons to use QSARModels :very fast,often free,reducethenumberofanimalsusedinexperiments

    validate

    Themostimportantsourcesofinformation

    Alternative,fastdevelopingapplications

    Reduction inthe time,cost and animal testing

    themostpromising

    QSARquantitativestructureactivity

    relationship[1]

    7[1]A..Gajewicz,etal.,Advancingriskassessmentofengineerednanomaterials:Applicationofcomputationalapproaches,Adv.DrugDeliv.Rev.(2012),doi:10.1016/j.addr.2012.05.014[1]

    Sourcesofinformation[1]Why dowe need QSARmodels?

    QualityNanoTrainingSchool

  • 8

    Purpose ofQSARTo predict biologicalactivityand physicochemicalpropertiesbyrationalmeans

    To comprehendandrationalizethemechanismsofactionwithinaseriesof chemicals

    Savingsinthecostofproductdevelopment

    Predictionscouldreducetherequirementforlengthyandexpensiveanimaltests.

    Reductionofanimaltests,thusreducing animaluseandobviouslypainanddiscomforttoanimals

    Otherareasofpromotinggreenandgreenerchemistrytoincreaseefficiencyand eliminatewaste

    QualityNanoTrainingSchool

  • 9

    Requirements for QSAR

    How manycompounds arerequiredtodevelopaQSAR?

    There isnodirectandsimple answer

    asmany aspossible

    Toprovidesomeguide,itis widelyacceptedthatbetweenfiveandtencompoundsarerequiredforeverydescriptor inaQSAR[1]

    [1]Aptula AO,RobertsDW(2006)Mechanisticapplicabilitydomainsfornonanimalbasedprediction oftoxicologicalendpoints:Generalprinciplesandapplicationtoreactivetoxicity.Chem ResTox.19:10971105

    1.Setof 2. Setofmolecular 3.Measured biological 4.Statisticalmolecules descriptors activity or property methods

    Toxicity EndpointsMolecular Modelling

    e.g. Neural NetworksPLS, Expert Systems

    DESCRIPTORSPhyscochemical, biological, structural

    QSARs

    Daphnia magna EC50

    CancinogenicityMutagenicity

    Rat oral LD50Mouse inhalation

    LC50Skin sensitisation

    Eye irritancy

    QualityNanoTrainingSchool

  • Applications ofQSAR

    10

    There are a large number of applications of these models withinindustry, academia and governmental (regulatory) agencies.

    The estimation ofphysicochemical properties,biologicalactivities and understanding the physicochemical featuresbehind abiological response indrug desing.

    Therationaldesignofnumerousotherproductssuchassurfaceactiveagents, perfumes,dyes,andfinechemicals.

    Theidentificationofhazardouscompoundsatearlystagesofproductdevelopment,thepredictionoftoxicitytohumans and environment.

    The prediction offate ofmolecules which are releasedinto the environment.

    Thepredictionofavarietyofphysicochemicalpropertiesofmolecules.

    QualityNanoTrainingSchool

  • 11

    What isrequired for agood QSARModel?

    The QSARmodelshould meet therequirements ofthe OECDprinciples [1]:

    [1]OECD,GuidanceDocumentonthe Validationof(Quantitative)Structure ActivityRelationshipsModels, Organisation forEconomicCooperation andDevelopment(2007).

    1 adefinedendpoint;

    2 anunambiguousalgorithm;

    3 adefineddomainofapplicability;

    4 appropriatemeasuresofgoodnessoffit,robustnessandpredictivity;

    5 amechanisticinterpretationifpossible.

    UninformativedescriptorsPoordescriptorselectionandchancecorrelationsModelling complex,nonlinearstructurepropertyrelationshipswithlinearmodelsIncorrectlyvalidatingQSPRmodelsNotunderstandingthedomainofapplicabilityofmodels

    Common QSARModellingErrors

    QualityNanoTrainingSchool

  • 12

    Methods

    Molecular Structure

    Representation

    Molecular Descriptors

    Predictive Model

    ModelValidation

    Applicability DomainofQSAR

    Types ofMolecular Descriptors(topological,geometric,electronic and hybrid)

    1DDescriptors 2DDescriptors 3DDescriptors

    Main Steps

    QSARModelling process consists of5main steps.

    QualityNanoTrainingSchool

    Begins with the selection ofmolecules to beusedSelection ofdescriptors;numericalrepresenter ofmolecular features (e.g.numberofcarbon)Original descriptor pool must bereduced insizeModelbuildingThe reliability ofthe modelshould betested

  • 13

    Molecular Descriptors[1]are numerical values that characterize properties ofmolecules.

    cacalculated by

    Mathematicalformulas

    Computationalalgortihms

    TheoreticalIndexes

    Experimentalmeasurements

    MolecularDescriptors

    MolecularDescriptors

    Different Theories(e.g.Quantumchemistry,

    information theory,organic chemistry)

    derivedfrom Scientific Fields (e.g.QSAR,

    medicinalchemistry,drugdesign, toxicology,analytical

    chemistry,Environmetrics, virtual

    screening)

    appliedin

    statisticschemometrics

    chemoinformatics

    processedby

    [1]T.Puzyn etal.(eds.),RecentAdvancesinQSARStudies,103125. DOI10.1007/9781402097836_4,CSpringerScience+Business MediaB.V.2010[2] Todeschini R,Consonni V(2000)Handbookofmoleculardescriptors.WileyVCH,Weinheim

    More than 5000[2]

    QualityNanoTrainingSchool

  • RegressionProblems Multiplelinearregression Partialleastsquares Feedforwardbackpropagationneuralnetwork GeneralregressionneuralnetworkClassificationProblems LinearDiscriminant analysis Logisticregression Decisiontree Knearestneighbor ProbabilisticNeuralNetwork SupportvectormachineRecentlydevelopedMethods Kernelpartialleastsquare Robustcontinuumregression Locallazyregression Fuzzyintervalnumberknearestneighbor Fastprojectionplaneclassifier

    14

    DataAnalysis

    ModelValidation

    DataCollection

    MolecularDescriptor

    [1] Ekins, S. (2007). Computational Toxicology: Risk Assessment for Pharmaceutical and Environmental Chemicals. New Jersey: Wiley-Interscience.

    DataAnalysis Methods[1]

    QualityNanoTrainingSchool

    Different Statistical Methods have been used inQSARfor the extraction ofuseful informationfrom the data.

  • DataMiningMethodsarelativelynewfieldwhichsharesometechniqueswithtraditionaldataanalysisbutalsobringsalotofnewvisionsandtechniques.

    Data:recordsofnumericaldata,symbols,images,documents

    Knowledge:Rules:IF..THEN..CauseeffectrelationshipsDecisiontreesPatterns:abnormal,normaloperationPredictiveequations

    Data Data Data Data

    Information

    Knowledge

    Decision

    Volume

    Value

    DM is the discovery of useful Informationand Knowledge from a large collection ofData, in order to help the Decisionmaking

    15QualityNanoTrainingSchool

  • 16

    Clustering

    Classification

    Conceptual Clustering

    Inductive learning

    Data mining shares many techniques and tools with traditional dataanalysis (such as the ones listed below). But it emphasises the analysisof very large databases, and can deal with complicated cases whichcannot be handled by traditional methods.

    Data mining research has also generated some new techniques thatwere not seen in traditional data analysis, such as Link Analysis

    QualityNanoTrainingSchool

    Summarisation

    Regression

    Case-based Learning

    DataMiningMethods

  • 17

    x1 x2 x31 0 01 1 10 0 11 1 10 0 00 1 11 1 10 0 01 1 10 0 0

    x1 x2 x3

    x1x2

    x3

    Example :Tendatacases,threevariables,x1,x2,andx3 How canweautomaticallyuncoverthedependencyrelationshipbetweenthem?

    Thisrelationshipmeans,x2 isdependent onx1,andx3isdependent onx2,butx1isindependentofx2andx3

    Thisrelationshipmeans,x2isdependent onx1,x3isalso dependent onx1,butx2andx3areindependentofeachother

    DATASET WHICHRELATIONSHIP?

    QualityNanoTrainingSchool

    NewDMTechniqueExample1:LinkAnalysis

  • 18

    x1 x2 x3 x4 y x1 x2 x3 x4 y55.33 1.72 54 1.66219 92.19 71.31 3.44 55 1.60325 90.5159.13 1.2 53 1.58399 92.74 72.3 4.02 55 1.66783 90.2457.39 1.42 55 1.61731 91.88 68.81 6.88 55 1.69836 91.0156.43 1.78 55 1.66228 92.8 66.61 2.31 52 1.77967 91.955.98 1.58 54 1.63195 92.56 63.66 2.99 52 1.81271 91.9256.16 2.12 56 1.68034 92.61 63.85 0.24 50 1.81485 92.1654.85 1.17 54 1.58206 92.33 67.25 0 53 1.72526 91.3652.83 1.5 58 1.54998 92.22 67.19 0 52 1.86782 92.16

    x1,x2,x3aredifferentmeasuresoffeedcompositionx4isthelogofacombinationofoperatingconditionsy productqualitymeasurey=good if>92,=low ifbetween9192,=verylow if

  • 19

    Ifx1=[44.6,55.4],thenconditionalprobabilityofy=3is0.9

    Ifx4=[1.8,2.3],thentheconditionalprobabilityofy =3is1.0

    x1

    y>92 x4

    x1 Y>92

    91

  • 20

    (1)Generationofapopulationofsolutions

    (2) Repeatsteps(i) and(ii) untilthestopcriteriaaresatisfied:(i)calculatethefitnessfunctionvaluesforeachsolutioncandidate

    (ii)performcrossoverandmutationtogeneratethenextgeneration

    (3) thebestsolutioninallgenerations:thefinalsolution

    s

    .. .... ..

    s

    .. .... ..

    s

    .... ..

    s

    .. .... ..

    s

    .. .... ..

    s

    .. .... ....

    s

    .... ..

    s

    .. .... ..

    Automaticgenerationof

    decisiontreefromdata

    This isanewapprooach

    based onageneticprogramming

    method

    QualityNanoTrainingSchool

  • 21

    Data Set 1:Concentration lethal to 50% of the population, LC50, 1/Log(LC50), of vibrio fischeri, a biolumininescent bactorium

    75 compounds 1069 molecular descriptors calculated by molecular modelling software DRAGON

    Data Set 2:Concentration effecting 50% of the population, EC50 of algae chlorella vulgaris, by causing fluoresceindiacetate to disappear

    80 compounds 1150 descriptors

    Two Data Sets

    QualityNanoTrainingSchool

    New DM Technique Example

  • 22

    SampletreefromYAdapt

    Class1(21/21)

    Class1(8/8)

    No

    NoYes

    Yes

    Gearyautocorrelationlag4weightedbyatomicmass

    0.007

    Polarsurfacearea40.368

    Class2(9/9)

    NoYes

    Hautocorrelationlag0weightedbySandersonelectronegativities2.111

    Gearyautocorrelationlag4weightedbypolarizability

    1.181

    Class3(9/10)

    Yes No

    BrotoMoreauautocorrelationlag2weightedbypolarizability

    4.085

    Class2(5/6)

    Yes No

    Class3(6/6)

    Atreeforthebacteriadatausingthree

    classes.

    Forbacteriadata:of 1069 descriptors,only5descriptorsareimportant! Usingthe5descriptors,thetree

    modelcanpredict withthe accuracy>96.7%

    QualityNanoTrainingSchool

    YAdaptforQSARToxicityPrediction:DataSet1Amethod to classify toxicity endpoints into classes

  • 23

    A decision tree from generation 46 for the bacteria data, finding fourclasses from the continuous endpoint itself during induction.

    Training accuracy: 93.3%Test accuracy: 80.0%

    NoYes

    Yes

    NoYes

    Yes No

    No NoYes

    Class1(13/13)

    3DMoRSEsignal15weighted18weightedbySandersonelectronegativites0.644

    Gearyautocorrelationlag4weightedbyatomicmass0.007

    Polarsurfacearea40.368

    Hautocorrelationlag0weightedbySandersonelectronegativities2.111

    Class2(5/7)

    Class3(7/9)

    Class4(6/6)

    Class1(16/16)

    Class2(9/9)

    Hautocorrelationlag0weightedbySandersonelectronegativities2.394

    Class1: Log(1/EC50)4.0829casesClass2: 4.08

  • 24

    NoYes

    Class2(14/15)

    Class1(16/16)

    No Yes

    Class3(6/8)

    NoYes

    Yes No

    Selfreturningwalkcountorder83.798

    Hautocorrelationoflag2weightedbySandersonelectronegativities

    0.401

    Molecularmultiplepathcountorder392.813

    Solvationconnectivityindex 2.949

    Class4(6/7)

    NoYes

    2ndcomponentsymmetrydirectionalWHIMindex

    weightedbyvanderWaalsvolume0.367

    Class3(9/10)

    Class4(8/8)

    2nd dataset algaedata

    Ofthe1150descriptors,only5descriptorsareimportant!

    Training:92.2%Test:81.3%

    QualityNanoTrainingSchool

    YAdaptforQSARToxicityPrediction :DataSet2

  • 25

    ResultsPresentationGraphsTablesASCIIfiles

    DiscoveryValidationStatisticalsignificanceResultsfortrainingandtestsets

    DataMiningToolboxRegression PCAandICAART2networksKohonennetworksKnearestneighbourFuzzycmeansDecisiontreesandrulesFeedforwardneuralnetworks(FFNN)SummarystatisticsVisualisationMixtureQSARmodels

    DataimportExcelASCIIFilesDatabaseXML

    DataPreprocessingScalingMissingvaluesOutlieridentificationFeatureextraction

    Descriptorcalculation

    QualityNanoTrainingSchool

    Different dataminingtechniques canbe

    combined intoasinglesystem

    IntegratedProcessDataMiningEnvironment

  • The statistical fitofmodelR2

    StandartError ofPredicton (S)

    Crossvalidation (Q2) Kfold Cros Validation Leaveoneout

    Cross Validation

    26

    ModelValidation

    QSARModelValidation

    ModelApplicability Modelvalidationisrequiredtoensure

    modelreliability (quality ofthe model)Ensures thatthemodelisnotdueto

    chancefactors!Model

    Interpretation

    Cross validation:dividing adatasample into subsets,performing the analysis onasingle subset,using other subsets to confirm and validate the initial analysis

    QualityNanoTrainingSchool

    There isnoagreed method for the validation ofQSARModels

    The statistical fitofmodelisusually performed

  • 27

    QSARWorkflow[1]

    [1] Tropsha,A.,Gramatica,P.,Gombar,V. (2003) Theimportanceofbeingearnest:ValidationistheAbsoluteEssentialforSuccessfulApplicationandInterpretationofQSPRModels.Quant.Struct.Act.Relat.Comb.Sci.22,6977. QualityNanoTrainingSchool

  • 28

    QSARModelApplicability Domain

    ... .

    .........

    Descriptor 1

    ...

    ..

    .. ..

    ..TRAININGSETDescriptor 2

    Inside ApplicabilityDomain

    will bepredicted

    Outside ApplicabilityDomain

    will notbepredicted

    Notevenasignificant andvalidatedQSARmodelcanbeused for the entireuniverse of

    chemicals[1]!

    [1] Gramatica P. (2007)PrinciplesofQSARmodelsvalidation:internalandexternal.QSARandCombinatorialScience; 26:694701.

    Modelapplicabilityallowsustodecidewhetherthemodelwill beusefulfornewdata (correct use of

    the model).

    Finding the boundaries ofthemodelto see how well itwill work

    for other compounds.

    QualityNanoTrainingSchool

  • 29

    QSARTools for Toxicity Prediction1. TOPKAT(byKomputer AssistedTechnology):

    ItusesQSARstogivenumericpredictions,basedonseveral descriptors

    2. HazardExpert (by CompuDrug ):HazardExpert,producedbyCompuDrug,isarulebasedsystem.Therulesusetoxicophores,orstructuralalertsderivedfromQSARs

    3. CASE: It canderive QSARmodelfrom usersdata.

    4. ECOSAR:It usesQSARstopredicttheaquatictoxicityofchemicalsforavarietyoforganisms

    5. OASIS: ItuseshierarchicalrulesbasedonQSARs,whichcanbeuserderived.

    6.DEREK:DeductiveEstimationofRiskfromExistingKnowledge(DEREK)ismarketedbyLHASALtd.It isanexpertknowledgebasesystemthatpredictswhetherachemicalistoxic

    QualityNanoTrainingSchool

    Each ofthese QSARtools have their own advantages and weaknesses for toxicitypredictions

    There are also several available softwarepackages for descriptor calculations (e.g.DRAGON)

  • 30

    Challenges for QSAR[1]

    [1]Puzyn,T.,Leszczynski,J.(2012) TowardsEfficientDesigningofSafeNanomaterials:InnovativeMergeofComputational ApproachesandExperimentalTechniques,TheRoyalSocietyofChemistry.

    1

    If there isameasurement error inthe experimental data,itisvery likelythat false correlations may arise

    2

    Ifthetrainingdatasetisnotlargeenough,thedatacollectedmaynotreflectthecompletepropertyspace.Consequently,manyQSARresultscannotbeusedtoconfidentlypredictthemostlikelycompoundsofthebestactivity.

    3

    Therearemanysuccessfulapplicationsofthismethodbut onecannotexpecttheQSARapproachtoworkwellallthetime. QSAR Modelsareeasytobuildbutalsoveryeasytogetwrong.

    QualityNanoTrainingSchool

  • Part IINanotoxicity and

    NanomaterialCharacterization31QualityNanoTrainingSchool

  • Nostandardizedorvalidatedmethodsfornanotoxicity

    testing

    Available toxicitydatafor NPs areinconsistent and

    confusing

    Blocks thedevelopmentof

    ENPsriskreductionstrategies[2]

    NewTechnology

    NewConcerns[1]

    NewBenefits

    Safetytohumanhealthand environment Suitability ofriskmanagementstrategies

    Macroconcernswithnanoworld !

    32

    [1] Chaudhry, Q. et al. (2010). Knowns, Unknowns, and Unknown Unknowns . RSC Nanoscience & Nanotechnology (p. 201-218).Royal Society of Chemistry.[2]Tran, L., & Chaudhry, Q. (2010). Engineered Nanoparticles and Food: An Assessment of Exposure and Hazard. RSC Nanoscience & Nanotechnology (p 120-134). Royal Society of Chemistry.

    Macroconcernswithnanoworld !

    QualityNanoTrainingSchool

    Uncertainities atthe early stages ofanew technology bring new concerns!

    More than 800nanoproducts

  • 33

    Riskassesment for NMS[1]

    1.HazardIdentification

    2.Doseresponse

    relationship

    3.Exposureassessment

    4.Riskassessment

    Whatdangerstohuman healthmaybasicallyarisefromtheharmful agent ?

    Whatisthenatureandmagnitude ofthe

    riskandhowaccuratelycanitbe

    estimated?

    Towhatextentistherelevant

    populationgroupexposed totheharmful agent?

    Whatquantitativeconnectionsexistbetweenthedose

    andtheextentoftheexpected effect?

    OECD (2003): Environment Directorate. Description of Selected Key Generic Terms Used in Chemical / Hazard Assessment. OECD Series on Testing and Assessment Number 44. ENV/JM/MONO(2003)15. Paris, 30-Oct-2003.

    Riskassesment for NMS[1]

    Potential safety issues ofNMs should beaddressed atthe same timeasthetech.isdeveloping

    QualityNanoTrainingSchool

    ENMs are already used inanumber ofcommercial applications.

  • 34

    Hazard Identification

    Doseresponse evaluationEvaluation oftoxicity

    involves determiningtheconditionsorlevelsatwhichthepresenceofacontaminant maytriggerabiologicalresponsefromthebody

    Different amount ofCNTdust

    At level of0.1mg/m3

    Athigher level of0.5mg/m3

    Noeffects wereobserved

    Sideeffects weredetected in the

    lungNaidu, B. David (2009). Biotechnology and Nanotechnology - Regulation under Environmental, Health, and Safety Laws.. Oxford University Press.

    Doseresponse relationship

    QualityNanoTrainingSchool

    Theevaluationoftoxicityincludes twosteps:

  • 35

    Theonlyreasonable waytoobtain toxicity information for thelargenumberofnanoparticleswithout testing everysingleone istorelate

    thephysicochemicalcharacteristicsofNPs withtheirtoxicityinaSAR

    (StructureActivityRelationship)orQSARmodel.

    Nanomaterialcharacterization isone ofthe first steps intoxicity test.However,itisavery challenging issue!!!

    QualityNanoTrainingSchool

    Particle Characterization

    NanoparticleStructureProperties

    ParticleSizeSurfaceAreaMorphology

    StateofDispersion,

    Toxicity

  • Sizeandshape Sizedistribution Agglomeration state Porosity Structuredependentelect. Electronicproperties Characterisation:

    Inwhatmedium?

    POSSIBLE factors[1]inducingtoxicityof

    chemicals

    Surfacearea Surfacechemistry Surfacecharge Crystalstructure Composition Configuration Coating Aggregationstate Metalcontent

    When amaterial isinananosized form,its properties become different from thesame material inabulk form

    Fullerenes Carbonbased Different and CarbonNTs Nanomaterials Exceptional Graphene Properties

    36[1] Puzyn, T., Leszczynska, D. & Leszczynski, J. Toward the development of Nano-QSARs: advances and challenges. Small 5, 24942509 (2009).

    Possible toxicityrelated Physicochemical Properties

    QualityNanoTrainingSchool

    Nocertain information!!!Recent studies showed that toxicity ofNPs canberelated to:

    moreresearchisrequiredtoreachaclearunderstanding

    more research is required to reach a clear understanding of the

  • Shapeandaggregationstate

    Composition,purityandsurfacechemistry

    Surfacecharge

    Crystalstructure

    Particlenumberandsizedistribution

    SurfaceArea

    HighResolutionMicroscopy

    SpectroscopyandChromatographyMethods

    ZetaPotentialAnalysis

    XRayDiffraction

    SeveralTechniques(e.g.SEM,TEM,DLS)

    BrunauerEmmettTellerAdsorption

    Several different methods and instruments are used to determine the properties onNMs

    37

    NanomaterialCharacterization

    QualityNanoTrainingSchoolThere isnosingle instrument that isright tool for every test.There are infact more than 400

    different techniques for particle counting and characterization

  • 38

    SomeNPs

    Have atendency toformclusters (e.g.aluminium oxide)

    inanagglomeration state,someNPsbehavelikelargerparticlesinthemedia

    Toxicitymayalsodependsonthesizeofagglomerate

    NOTonoriginalparticlesizeitself!!!

    Hussain, S. e. (2008). Can silver nanoparticles be useful as potential biological labels? Nanotechnology 19 .

    If the NPs aggregateitisimportant toidentifyhowthesechangesaffecttoxicity

    Howtocharacterizeaggregation?Textureanalysis?

    Whathaven'tweconsideredyet ?

  • 39

    ChallengesforQSAR

    NPtype

    Size(nm)

    Doses(mg/ml) Cell Method Result

    Ag 720 0.850Humanfibrosorcoma andskincarcinoma

    XTTassay Nontoxic Araro etal.(2008)[1]

    Ag

  • 40

    Challenges for nanoQSAR[1]

    [1]T.Puzyn etal.(eds.),RecentAdvancesinQSARStudies,103125. DOI10.1007/9781402097836_4,CSpringerScience+Business MediaB.V.2010

    1 Lackofhighqualityexperimentaldata

    2 Lackofconceptualframeworksforgrouping NPs accordingtomodeofphysicochemicalpropertiesandtoxicaction

    3 Lack ofsufficient moleculardescriptors abletoexpressspecificityofnanostructure

    4 Lackofrationalmodelingprocedurestoscreenlargenumbersofstructurallydiversifiednanoparticles.

    5 Limited knowledgeontheinteractionsbetweenNPs andbiologicalsystems

    QualityNanoTrainingSchool

    NMs are problematic for QSARmodellers because ofthe several reasons:

  • Part IIICase Study

    despite all limitations41QualityNanoTrainingSchool

  • Nanotxicology 2012,47September,Beijing

    The aim of this study was to test the hypothesis that nanoparticle

    toxicity is a function of some measurable physical characteristics and

    that Structure Activity Relationship (SAR) might ultimately be a useful

    tool for nanotoxicology. A panel of 18 nanoparticles was chosen to

    include carbonbased materials and metal oxides. Comparative toxicity

    of the nanoparticles in the panel was assessed, using a number of

    different measures of apoptosis and necrosis; haemolytic effects and

    the impact, on cell morphology were also assessed. Structural and

    composition properties were measured including size distribution,

    surface area, morphological parameters, metal concentration,

    reactivity, free radical generation and zeta potential. Toxicity end

    points were processed using principal component analysis and

    clustering algorithms.

    QSARToxicity(invitro)AnalysisforaPanelofEighteen NPs

    42QualityNanoTrainingSchool

  • Nanooxicology 2012,47September,Beijing

    Particles Qualifier Number Supplier Form

    Carbonblack Printex 90 N1 Degussa DryDieselexhaustparticles EPA N2 EPA Dry

    Nanotubes Japanese N3 VickiStone DryFullerene N4 Sigma Dry

    PolystyrenelatexUnmodified N5 Polysciences Sus.

    Amine N6 Sigma Sus.Carboxylated N7 Polysciences Sus.

    Aluminiumoxide7nm N8 KrahnChemie Dry50nm N9 AHT* Dry300nm N10 AHT* Dry

    Ceriumoxide N11 NAM** DryNickeloxide N12 NAM** DrySiliconoxide N13 NAM** DryZincoxide N14 NAM** Dry

    TitaniumdioxideRutile N15 NAM** DryAnatase N16 NAM** Dry

    SilverN17N18

    NAM**NAM**

    DrySus.*AHT:AlliedHighTech,**NAM:NanostructureandAmorphousMaterialInc

    The Set ofEighteen NPs

    43QualityNanoTrainingSchool

  • Nanotoxiclogy 2012,47September,Beijing

    Particle shape was analysed using LEO 1530 Scanning Electron Microscope (SEM) or PhilipsCM20 Transmission Electron Microscope (TEM) aspect ratio and mean sizeSurface area and porosity were measured using TriStar 3000 BET. Thirteen measurements,including five surface areas based on different definitions, three pore volumes, three poresizes as well as the mean size and particle density.Particle size and size distribution were analysed using a Malvern MasterSizer 2000. Sizedistribution, and seven other size properties (mass diameter, uniformity, specific surfacearea, surface area mean diameter and three mass diameters)ThefreeradicalactivitiesweremeasuredbyEPR(Electronparamagneticresonance)using the spin traps, DMPO and Tempone H separately. Tempone H has partial selectivity fortrapping superoxide anions, whilst DMPO traps mainly hydroxyl radicalsParticle reactivity in solution, the dithiothreitol (DTT) consumption test as a reducing specieswas carried out. Since the DTT consumption test can only be conducted on dry powders, onlyfourteen of the panel of nanoparticles were assessed using this assay.

    Metal Concentration water soluble concentration of ten heavy metals (Ti, V, Cr, Mn, Fe, Co,Ni, Cu, Zn and Cd) was measuredCharge:zpotentialwasmeasuredusingMalvernInstrumentsZetasizer Nano instrument

    CharacterisationofPhysicochemicalProperties

    44QualityNanoTrainingSchool

  • 45

    1313 BETmeasurements(for14drysamples)

    22 SEM/TEMmeasurements (forallsamples)

    77 laserdiffractionsizestatisticalmeasurements(MasterSizer 2000)forallsamples

    8484 laserdiffractionsizedistribution measurements

    22 EPRmeasurements(forallsamples)

    11 reactivitymeasurement (fordrysamples)

    1010 metalcontentmeasurements

    TotalNumber ofMeasurements

    Total:119Measurements

    Particlename

    BET Measurements M2000 Measurements

    SEM Measurements Zeta measurements Other Measurements

    N1 A(1,1),A(1,2),,A(1,12) B(1,1),B(1,2) C(1,1),C(1,2) D(1,1),D(1,2) E(1,1),E(1,2)

    N2 A(2,1),A(2,2),,A(2,12 B(2,1),B(2,2) C(2,1),C(2,2) D(2,1),D(2,2) E(2,1),E(2,2)

    N18 A(18,1),A(17,2), B(18,1),B(18,2) C(18,1),C(18,2) D(18,1),D(18,2) E(18,1),E(18,2)

    QualityNanoTrainingSchool

  • Nanotoxicolgy 2012,47September,BeijingSEMandTEMimagesofthe18nanoparticlesamples

    46QualityNanoTrainingSchool

  • Table2.Thewatersolubleconcentrationsofvariousmetalsforthe18nanoparticlesamplesNanotoxicology 2012,47September,Beijing

    Particlenames MetalConcentration(g/g)Ti V Cr Mn Fe Co Ni Cu Zn Cd

    CarbonBlackN1 0.000 0.057 0.000 0.305 0.000 0.002 0.263 1.161 9.687 0.008

    DieselExhaustN2 2.320 0.312 16.47 20.81 208.4 0.508 4.940 2.235 3181 0.387

    JapaneseNanotubesN3 0.000 0.100 0.000 0.161 13.10 0.000 0.299 0.123 0.460 0.001

    FullereneN4 0.000 0.084 0.000 0.000 0.000 0.000 0.534 0.142 4.837 0.000

    PolystyreneLatexBeadsN5 0.000 1.172 0.000 0.000 0.000 0.000 0.000 0.625 19.56 0.000

    PolystyreneLatexBeadsN6 4.368 0.779 0.343 0.199 0.000 0.006 0.440 18.23 58.71 0.010

    PolystyreneLatexBeadsN7 0.000 1.018 0.000 0.000 0.000 0.000 0.000 2.588 22.323 0.000

    Aluminuim OxideN8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.714 0.000 0.000

    AluminuimOxideN9 0.000 0.031 0.000 0.000 0.000 0.000 0.056 0.099 4.987 0.000

    AluminuimOxideN10 0.000 0.062 0.000 0.000 0.000 0.000 0.023 0.088 0.000 0.000

    CeriumOxideN11 0.000 0.004 1.058 0.128 0.000 0.000 0.616 0.191 112.9 0.007

    NickelOxideN12 0.000 0.056 0.000 0.000 0.000 0.042 16963 0.286 0.000 0.038

    SiliconOxideN13 0.000 0.088 0.000 0.000 0.000 0.000 14.163 0.106 0.000 0.000

    ZincOxideN14 0.000 0.096 0.000 0.000 0.000 0.000 1.336 0.047 8185 9.711

    TitaniumDioxideRutile N15 0.000 0.083 0.000 0.000 0.000 0.000 0.286 0.276 39.623 0.000

    TitaniumDioxideAnatase N16 0.000 0.104 0.000 0.160 0.000 0.006 0.692 0.303 402.3 0.000

    SilverN17 0.000 0.111 0.000 0.503 0.000 0.000 0.475 0.597 17.867 0.019

    SilverN18 0.000 0.096 0.000 0.256 0.000 0.059 0.561 162.8 194.8 0.037

    Theheavy metalconcentration ofeach NP

    47QualityNanoTrainingSchool

  • LEO1530GeminiFEGSEMScanningElectronMicroscopy

    TheinformationaboutSize,Shape canbeobtainedfromSEMimages

    CarbonBlackN1

    Nanotoxicology 2012,47September,Beijing

    MeansizeobtainedbymeasuringtheparticlesontheSEM/TEMimage:Mean_Size_SEMAspectratioobtainedfromSEM/TEMimages:Aspect_Ratio

    CharacterisationofParticleSizeand Shape

    48QualityNanoTrainingSchool

  • Nanotoxicology 2012,47September,Beijing

    Micromeritics TriStar3000SurfaceAreaTechnique:GasAdsorptionMinimumSurfaceArea:0.01m2/g

    SupportGases:NitrogenandHeliumMeasurementParameters:BETMeasurement

    AdsorptionIsothermsDesorptionIsotherms

    tplotsPoreVolumeAnalysisPoreSizeAnalysis

    Surface Area (m2/g) Pore Volume (cm3/g) Pore Sizes ()

    Single point surface area at P/Po =0.197 (m/g) SPSA

    BET Surface Area: BET_SA Langmuir Surface Area: LM_SA BJH Adsorption cumulative surface

    area of pores between 17.000 and3000.000 diameter :BJH_AC_SAOP

    BJH Desorption cumulative surfacearea of pores between 17.000 and3000.000 diameter:BJH_DC_SAOP

    Single point adsorption total pore volume of pores at P/Po = 0.98: SP_TP_VOP

    BJH Adsorption cumulative volume of pores between 17.000 and 3000.000 diameter: BJH_AC_VOP

    BJH Desorption cumulative volume of pores between 17.000 and 3000.000 diameter : BJH_DC_VOP

    Adsorption average pore width: BET_PW

    BJH Adsorption average pore diameter : BJH_A_PD

    BJH Desorption average pore diameter: BJH_D_PD

    Mean size calculated from BET surface area: Mean_Size_BET

    Particle density: Density

    **14drypowdersamples,noavailableforthreesuspensions(N5,N6,andN7)andthenewSilversample.

    BETMeasurements for 14dry powder samples

    49QualityNanoTrainingSchool

  • MalvernMastersizer 2000TypeofAnalyser:LaserDiffraction

    SampleVolume:1000ml,150ml(HydroGandS)MeasurementRange:20nm 2000m

    0123456789

    10

    0.01 0.1 1 10 100 1000 10000

    Size (micron)

    Prob

    abili

    ty (%

    )

    TheinformationaboutmeanSizeandSizedistribution,canbeobtainedfromthissizer.

    Nanotoxicology 2012,47September,BeijingCharacterisationofNPsMastersizer

    50QualityNanoTrainingSchool

  • D[4,3] theVolumeWeightedMeanorMassMomentMeanDiameter,representbyD[4,3]

    Uniformity:ameasureoftheabsolutedeviationfromthemedian,representedbyUniformity

    Specificsurfacearea:thetotalareaoftheparticlesdividedbythetotalweight,SSA_2000

    D[3,2] theSurfaceWeightedMeanorSurfaceAreaMomentMeanDiameter,representedbyD[3,2]

    D(v,0.5) thesizeinmicronsatwhich50%ofthesampleissmallerand50%islarger.ThisvalueisalsoknownastheMassMedianDiameterorthemedianofthevolumedistribution,representedbyD(0.5)

    D(v,0.1) thesizeofparticlebelowwhich10%ofthesamplelies,representedbyD(0.1)

    D(v,0.9) thesizeofparticlebelowwhich90%ofthesamplelies,representedbyD(0.9)

    Sizedistribution:thereare100values.Amongthemthereare16valuesequaltozeroforallparticles.So84 sizedistributionattributesareusedforfurtheranalysis

    Mastersizer 2000Measurements:91**

    ** Note:availableforallsamples

    Nanotoxicology 2012,47September,BeijingCharacterisationofNPsMastersizer

    51QualityNanoTrainingSchool

  • MalvernZetaSizerNanoinstrument Sizeranges:0.6nm 6m

    ZetaPotentialSuitable:suspensions

    Nanotoxicology 2012,47September,BeijingCharacterisationofNPsZeta Potential

    52QualityNanoTrainingSchool

  • Cytotoxicity byLDHRelease

    N6

    N12

    0.00

    20.00

    40.00

    60.00

    80.00

    100.00

    31.25 62.50 125 250

    LDHRelease

    Dose(g/ml)

    N6

    N14

    0.00

    5.00

    10.00

    15.00

    20.00

    25.00

    31.25 62.50 125 250

    Apop

    tosis

    Dose(g/ml)

    Apoptosis

    N6

    N14

    0.00

    20.00

    40.00

    60.00

    80.00

    100.00

    120.00

    31.25 62.50 125 250

    Viab

    le

    Dose(g/ml)

    Viability

    N3

    N6

    N14

    0

    10

    20

    30

    40

    50

    60

    70

    80

    31.25 62.50 125 250

    Necrosis

    Dose (g/ml)

    Necrosis

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Haemolysosatd

    ose50

    0g/ml

    Proinflammation effects Haemolysis

    53QualityNano Training School

    Toxicity Results

  • 54

    LDH Apoptosis Viability

    NecrosisHaemolysis

    TotalToxicityMTT

    QualityNanoTrainingSchool

    Principal Component Analysis ofCytotoxicity Data

  • 55

    Figure: Plotofthefirstandsecond PCs basedonPCAanalysisoftoxicitydata

    Japanesenanotubes

    Zincoxide

    Nickeloxide

    Polystrene larex (Amine)

    Themajorclustercontainslowtoxicityparticle

    samples

    Aminated beads(N6),zincoxide(N14),Japanese

    Nanotubes (N3)andnickeloxide(N12)areseparate

    fromthemajorcluster. Aminated beads(N6)hasthehighesttoxicityvaluesinnearlyallassayresults(LDH,apoptosis,necrosis,haemolytic,MTTandcellmorphologyassays).

    Zincoxide(N14)hashightoxicityvalueinLDH,

    apoptosis,necrosisandinflammationassays.

    Japanesenanotubes (N3)havehightoxicityvalues

    inviabilityandMTTassays.

    Nickeloxide(N12)hasshownhighlytoxicinLDH

    andhaemolyticassaysresults..

    QualityNanoTrainingSchool

    Principal Component Analysis ofCytotoxicity Data

    Thedistinctionofthefourparticles,N6,N14,N3andN12,fromotherparticlesisclear.

  • 56

    NP6Average Toxicity Comparison NP14Average Toxicity Comparison

    N14 has high toxicity value in LDH, apoptosis,necrosis and inflammation assays.

    N12 hasshownhighlytoxicinLDHand haemolyticassaysresults

    NP12Average Toxicity Comparison NP3Average Toxicity Comparison

    N3 havehightoxicityvaluesinviabilityandMTTassays.

    N6 hasthehighesttoxicityvaluesinnearlyallassayresults (LDH,apoptosis,necrosis, haemolytic,MTTandcellmorphologyassays).

    QualityNanoTrainingSchoolThe toxicity results ofN6,N3,N12and N14which are likely to betoxic

  • 57

    The focus of the (Q)SAR Analysis is to identify the possible structural andcompositional properties which may contribute to the toxicity of zincoxide (N14), polystrene latex amine (N6), Japanese nanotubes (N3) andnickel oxide (N12).

    Next Step:Principal Component Analysis ofDescriptors

    PCA and clustering were then applied to the physicochemicaldescriptors with the hypothesis that the toxic nanoparticles might alsobe discriminated from the nontoxic particles based on the analysis ofthe measured physicochemical descriptors.

    The theory is that there should be structural or/and compositionaldistinctions for these nanoparticles from the rest of the nontoxicparticles.

    If this can be proved, further analysis can be conducted to identify thekey physicochemical descriptors that lead to the observed toxicity.

    QualityNanoTrainingSchool

  • 58

    N2

    N3

    N12

    N14

    N6

    N5

    N7

    Figure : PCA analysis of the physicochemicaldescriptors for the panel of 18 nanoparticles(excluding BET and DTT measured descriptorssince they are not available for the four wetsamples).

    QualityNanoTrainingSchool

    Principalcomponentanalysisofthestructuralandcompositionaldescriptorsforthe panelof18nanoparticles(excludingBETandDTTmeasureddescriptorssincetheyare notavailableforthefourwetsamples).

    Principal Component Analysis ofDescriptors

    The scaling operation was performed,3PCs

    were then applied.

    PC1PC2PC3threedimensionalplotshows

    thatthe18nanoparticleswereclearlygrouped

    intoclusters.

    Thelargestclustercontainsparticlesthat

    showedlowtoxicityvalues.

    JapaneseNanotubes (N3),nickeloxide(N12)

    andzincoxide(N14)anddieselexhaust

    particles(N2)areoutsidethislowtoxicity

    samplecluster.

    There mustbeanotherreasonthatleadsto

    hightoxicityvalueforN6

  • 59

    Toexaminetheclusteringresultsmoreclearly,PC1PC2, PC1PC3andPC2PC3twodimensionalplotsarealsoexamined .ItisPC2thatseparates N3(Japanesenanotubes),N12(nickeloxide)andN14(zincoxide) fromtherestsamples,ascanbeseenfromPC1PC2andPC2PC3plots.

    QualityNanoTrainingSchool

    Results

  • 60

    Figure: PC1,PC2andPC3ContributionplotsbasedonPCAanalysisofthestructuralandcompositionaldescriptorsforthepanelof18nanoparticles

    QualityNanoTrainingSchool

    Results

    The contribution plot for, PC1, PC2 andPC3 is shown in the Figure, we are mainly

    interested in the contribution to PC2 (solid

    red colour), since it is PC2 that

    discriminated Japanese nanotubes (N3)

    nickel oxide (N12) and zinc oxide (N14)

    from the rest particle samples.

    The largest contributions to PC2 are: aspectratio measured by SEM imaging, and volume

    weighted mean, uniformity, and D(0.9), all

    measured by Mastersizer, as well as Ni and

    Zn metal contents

    Further analysis is required.

  • 61

    N2

    N 3

    N 12

    N14

    Inordertodetermineexactlywhichphysicochemicaldescriptors leadtohightoxicityvaluesofN3,N12,N14and N6,several PCanalysis wereperformed.

    Forthe14dryparticles,PCanalysiswithBETandDTTmeasurements gavesimilarresultwith the first PCanalysisinwhich BETand DTTdatawasexcluded.

    QualityNanoTrainingSchool

    Figure: Principalcomponentanalysisofthestructuralandcompositionaldescriptors(allsuchdescriptorsincludingBETandDTTmeasurements)forthe14drynanoparticles.

    Results

  • 62

    Figure: PC1andPC2contributionplotsforPCAanalysisof thecompositionaldescriptors

    NicontentmadethemostimportantcontributiontoPC1,suggestingthatnickelcontentmaybethemainreasonforthehightoxicityof N12(nickeloxide). While Zncontentmadethemostobvious contributiontoPC2, suggesting thatzinccontentmaybethereasonfor the high toxicity of N2(dieselexhaustparticles)andN14(zincoxide).

    QualityNanoTrainingSchool

    Results

    To identify the relativecontribution of each metalconcentration to PC1 andPC2, the contribution plot toPC1 and PC2 is shown in theFigure.

  • Table2.Thewatersolubleconcentrationsofvariousmetalsforthe18nanoparticlesamplesNanotoxicology 2012,47September,Beijing

    Particlenames MetalConcentration(g/g)Ti V Cr Mn Fe Co Ni Cu Zn Cd

    CarbonBlackN1 0.000 0.057 0.000 0.305 0.000 0.002 0.263 1.161 9.687 0.008

    DieselExhaustN2 2.320 0.312 16.47 20.81 208.4 0.508 4.940 2.235 3181 0.387

    JapaneseNanotubesN3 0.000 0.100 0.000 0.161 13.10 0.000 0.299 0.123 0.460 0.001

    FullereneN4 0.000 0.084 0.000 0.000 0.000 0.000 0.534 0.142 4.837 0.000

    PolystyreneLatexBeadsN5 0.000 1.172 0.000 0.000 0.000 0.000 0.000 0.625 19.56 0.000

    PolystyreneLatexBeadsN6 4.368 0.779 0.343 0.199 0.000 0.006 0.440 18.23 58.71 0.010

    PolystyreneLatexBeadsN7 0.000 1.018 0.000 0.000 0.000 0.000 0.000 2.588 22.323 0.000

    Aluminuim OxideN8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.714 0.000 0.000

    AluminuimOxideN9 0.000 0.031 0.000 0.000 0.000 0.000 0.056 0.099 4.987 0.000

    AluminuimOxideN10 0.000 0.062 0.000 0.000 0.000 0.000 0.023 0.088 0.000 0.000

    CeriumOxideN11 0.000 0.004 1.058 0.128 0.000 0.000 0.616 0.191 112.9 0.007

    NickelOxideN12 0.000 0.056 0.000 0.000 0.000 0.042 16963 0.286 0.000 0.038

    SiliconOxideN13 0.000 0.088 0.000 0.000 0.000 0.000 14.163 0.106 0.000 0.000

    ZincOxideN14 0.000 0.096 0.000 0.000 0.000 0.000 1.336 0.047 8185 9.711

    TitaniumDioxideRutile N15 0.000 0.083 0.000 0.000 0.000 0.000 0.286 0.276 39.623 0.000

    TitaniumDioxideAnatase N16 0.000 0.104 0.000 0.160 0.000 0.006 0.692 0.303 402.3 0.000

    SilverN17 0.000 0.111 0.000 0.503 0.000 0.000 0.475 0.597 17.867 0.019

    SilverN18 0.000 0.096 0.000 0.256 0.000 0.059 0.561 162.8 194.8 0.037

    Theheavy metalconcentration ofeach NP

    63QualityNanoTrainingSchool

  • 64

    IdentifyingthefactorthatdiscriminatesN6(polystrene latexamine)fromN5(unmodified)andN7(carboxylated)

    PCAanalysis:PCAanalysisofmetalcontentsonly,orPCAanalysisofstructuraldescriptorsonly,orPCAanalysisofbothstructuralandcompositionaldescriptorstogether,couldnotdiscriminateN5,N6andN7fromthelargestclustersofnontoxicparticlesamples.

    PCAConclusion:neitherstructuraldescriptorsnormetalcontentsmadeN6differentfroN5andN7intoxicity

    ItwasatthisstageofanalysisthatwesuspectedthatthereareotherpossiblereasonsfortoxicityspecifictoN6:eitheritwasduetothechargedifference,orduetoN6beingamine,orboth.

    zetapotentialforallthreepolystyrenelatexsamples.N6(amine) 37.8,37.5,and40.3(mV), positiveN5(unmodified) 36.2,38.8and36.8, negativeN7(carboxylated) 54.9,55.3,and58.6., negative

    AccordingtoVerma etal.anyparticlewithpositivechargeislikelytointeractelectrostatically sincemostcellsurfacesandotherbiologicalmembranesarenegativelychargedunderphysiologicalconditions(Verma etal.2008).Therefore,itismostlikelythatthelargepositivechargeofN6contributeditsobservedhightoxicity,despiteitstructurallysimilartoN5andN7.

    Conclusions

    QualityNanoTrainingSchool

  • 65

    TheSARanalysisgeneratesthefollowingconclusions:1. Themostlikelyreason ofhightoxicityforJapanesenanotube(N3)isitsshape(high

    aspectratio).2. Themostlikelycauseofhightoxicityforzincoxide(N14)andnickeloxide(N12)is

    their highcontentsofzincandnickel.3. Although,Aminated beads(N6)hasthehighesttoxicityvaluesinnearlyallassay

    results,itwas always groupedcloselywiththeothertwopolystyrenelatexbeads,unmodifiedbeads(N5)andcarboxylated beads(N7),whichshowednotoxicity.Therefore,thezetapotentialofthethreepolystrene latexwas measured.TheresultsuggeststhatthelargepositivechargeofN6contributed to itsobservedhightoxicity.

    TheworkhasshownthatSARbasedonmolecular descriptors isausefultoolfordescribingfactorsinfluencingthetoxicityofnanoparticles.

    Apanelofeighteennanoparticlesisstillconsideredtobetoosmall,therefore,aQSARmodelthatcanbeappliedtopredictthetoxicityofnewnanoparticles cannot bedeveloped with this small setofdata.

    QualityNanoTrainingSchool

    Conclusions