“Quantitative Structure Activity Relationship (QSAR)...
Embed Size (px)
Transcript of “Quantitative Structure Activity Relationship (QSAR)...
-
A pan-European Infrastructure for Quality in Nanomaterials Safety Testing
NUID UCD | NHM | IOM | JRC | BFR | KIT | FUNDP | IST | UNIVLEEDS | NILU | HMGU | LMU | CIC | UU | ICN DLO/RIKILT | WU | DGUV | TAU | VITO | SMU | TCD | FIOH | UOE | HW | CNRS | INERIS | UBRM | RIVM
QuantitativeStructureActivityRelationship(QSAR)models
27.03.2013
Xue Z. WangCeydaOkselUniversity ofLeeds
-
Theory ofQSAR NewDataMining Methods NanomaterialCharacterization Nanotoxicity Application ofQSARmodelinnanotoxicitymodeling
2QualityNanoTrainingSchool
Purpose ofToday
-
Part ITheory ofQSAR
3QualityNanoTrainingSchool
-
QSARHistory
CorwinHermanHansch(1918 2011)
Thefatheroftheconceptofquantitativestructureactivity relationship (QSAR),thequantitativecorrelationofthephysicochemical
propertiesofmoleculeswiththeirbiologicalactivities[5]
4
1865
Crum BrownandFraser[1]
expressed theideathat there
was a relationshipbetweenactivityandchemicalstructure.
1900
Meyer[3] andOverton[4]found
linearrelationshipsbetweenthe
toxicityoforganiccompoundsandtheir lipophilicity.
1969
Hansch[5] publishedafreeenergyrelatedmodelto correlatebiologicalactivities
withphysicochemical
Properties.
1893
Richet[2]correlatedtoxicities of
simple organicmoleculeswiththeirsolubilityin
water.
[1]A.CrumBrown,T.R.Fraser,Trans.R.Soc.Edinb.25(19681969) 257. [2] M.C.Richet,Compt.Rend.Soc.Biol.45(1893)775.[3]H.Meyer,Arch.Exp.Pathol.Pharmakol.42(1899)109. [4] E.Overton,Studien uber dirNarkose,GustavFischer,Jena,1901[5] Hansch,C.(1969)AquantitativeapproachtobiochemicalstructureactivityrelationshipsAccountsofChemicalResearch, 2, 232239.
QualityNanoTrainingSchool
-
MolecularStructure
Physicochemicalor Biological Property
TheVarianceIn
MathematicalDependencies
Toxicity/Ecotoxicity Prediction
BulkFormNanoparticles(widely used)(notadopted)
A QSAR is a statistical modelthat relates a set of structuraldescriptors of a chemicalcompound to its biologicalactivity.
5
QSAR(QuantitativeStructureActivityRelationship)
What isQSAR?
[1]T.Puzyn etal.(eds.),RecentAdvancesinQSARStudies,103125. DOI10.1007/9781402097836_4,CSpringerScience+Business MediaB.V.2010QualityNanoTrainingSchool
The presenceofparticular characteristics increasethe propability that the compund istoxic
-
QSAR(QuantitativeStructureActivityRelationship)nanoQSAR
QSARmodels are very useful incase ofthe classic chemicals buttheconcept ofnanoQSARisstill under development.
QSAR has been widely used to predict the toxicity of substances in bulkform (especially druglike compunds) but, up to date, QSAR studies for theprediction of nanoparticle toxicity have been rarely reported.
Successful QSAR studies What about Nanosize particles?
6QualityNanoTrainingSchool
The European system for new chemical management (REACH) promotesQSAR methods as an alternative way of toxicity testing.
-
INSILICO IN VITROINVIVO(computational) (incontainer) (onlivingorganism)
predict predict
All chemical substances need to betested interms oftheir toxicologicaland environmental properties before their useThere are several reasons to use QSARModels :very fast,often free,reducethenumberofanimalsusedinexperiments
validate
Themostimportantsourcesofinformation
Alternative,fastdevelopingapplications
Reduction inthe time,cost and animal testing
themostpromising
QSARquantitativestructureactivity
relationship[1]
7[1]A..Gajewicz,etal.,Advancingriskassessmentofengineerednanomaterials:Applicationofcomputationalapproaches,Adv.DrugDeliv.Rev.(2012),doi:10.1016/j.addr.2012.05.014[1]
Sourcesofinformation[1]Why dowe need QSARmodels?
QualityNanoTrainingSchool
-
8
Purpose ofQSARTo predict biologicalactivityand physicochemicalpropertiesbyrationalmeans
To comprehendandrationalizethemechanismsofactionwithinaseriesof chemicals
Savingsinthecostofproductdevelopment
Predictionscouldreducetherequirementforlengthyandexpensiveanimaltests.
Reductionofanimaltests,thusreducing animaluseandobviouslypainanddiscomforttoanimals
Otherareasofpromotinggreenandgreenerchemistrytoincreaseefficiencyand eliminatewaste
QualityNanoTrainingSchool
-
9
Requirements for QSAR
How manycompounds arerequiredtodevelopaQSAR?
There isnodirectandsimple answer
asmany aspossible
Toprovidesomeguide,itis widelyacceptedthatbetweenfiveandtencompoundsarerequiredforeverydescriptor inaQSAR[1]
[1]Aptula AO,RobertsDW(2006)Mechanisticapplicabilitydomainsfornonanimalbasedprediction oftoxicologicalendpoints:Generalprinciplesandapplicationtoreactivetoxicity.Chem ResTox.19:10971105
1.Setof 2. Setofmolecular 3.Measured biological 4.Statisticalmolecules descriptors activity or property methods
Toxicity EndpointsMolecular Modelling
e.g. Neural NetworksPLS, Expert Systems
DESCRIPTORSPhyscochemical, biological, structural
QSARs
Daphnia magna EC50
CancinogenicityMutagenicity
Rat oral LD50Mouse inhalation
LC50Skin sensitisation
Eye irritancy
QualityNanoTrainingSchool
-
Applications ofQSAR
10
There are a large number of applications of these models withinindustry, academia and governmental (regulatory) agencies.
The estimation ofphysicochemical properties,biologicalactivities and understanding the physicochemical featuresbehind abiological response indrug desing.
Therationaldesignofnumerousotherproductssuchassurfaceactiveagents, perfumes,dyes,andfinechemicals.
Theidentificationofhazardouscompoundsatearlystagesofproductdevelopment,thepredictionoftoxicitytohumans and environment.
The prediction offate ofmolecules which are releasedinto the environment.
Thepredictionofavarietyofphysicochemicalpropertiesofmolecules.
QualityNanoTrainingSchool
-
11
What isrequired for agood QSARModel?
The QSARmodelshould meet therequirements ofthe OECDprinciples [1]:
[1]OECD,GuidanceDocumentonthe Validationof(Quantitative)Structure ActivityRelationshipsModels, Organisation forEconomicCooperation andDevelopment(2007).
1 adefinedendpoint;
2 anunambiguousalgorithm;
3 adefineddomainofapplicability;
4 appropriatemeasuresofgoodnessoffit,robustnessandpredictivity;
5 amechanisticinterpretationifpossible.
UninformativedescriptorsPoordescriptorselectionandchancecorrelationsModelling complex,nonlinearstructurepropertyrelationshipswithlinearmodelsIncorrectlyvalidatingQSPRmodelsNotunderstandingthedomainofapplicabilityofmodels
Common QSARModellingErrors
QualityNanoTrainingSchool
-
12
Methods
Molecular Structure
Representation
Molecular Descriptors
Predictive Model
ModelValidation
Applicability DomainofQSAR
Types ofMolecular Descriptors(topological,geometric,electronic and hybrid)
1DDescriptors 2DDescriptors 3DDescriptors
Main Steps
QSARModelling process consists of5main steps.
QualityNanoTrainingSchool
Begins with the selection ofmolecules to beusedSelection ofdescriptors;numericalrepresenter ofmolecular features (e.g.numberofcarbon)Original descriptor pool must bereduced insizeModelbuildingThe reliability ofthe modelshould betested
-
13
Molecular Descriptors[1]are numerical values that characterize properties ofmolecules.
cacalculated by
Mathematicalformulas
Computationalalgortihms
TheoreticalIndexes
Experimentalmeasurements
MolecularDescriptors
MolecularDescriptors
Different Theories(e.g.Quantumchemistry,
information theory,organic chemistry)
derivedfrom Scientific Fields (e.g.QSAR,
medicinalchemistry,drugdesign, toxicology,analytical
chemistry,Environmetrics, virtual
screening)
appliedin
statisticschemometrics
chemoinformatics
processedby
[1]T.Puzyn etal.(eds.),RecentAdvancesinQSARStudies,103125. DOI10.1007/9781402097836_4,CSpringerScience+Business MediaB.V.2010[2] Todeschini R,Consonni V(2000)Handbookofmoleculardescriptors.WileyVCH,Weinheim
More than 5000[2]
QualityNanoTrainingSchool
-
RegressionProblems Multiplelinearregression Partialleastsquares Feedforwardbackpropagationneuralnetwork GeneralregressionneuralnetworkClassificationProblems LinearDiscriminant analysis Logisticregression Decisiontree Knearestneighbor ProbabilisticNeuralNetwork SupportvectormachineRecentlydevelopedMethods Kernelpartialleastsquare Robustcontinuumregression Locallazyregression Fuzzyintervalnumberknearestneighbor Fastprojectionplaneclassifier
14
DataAnalysis
ModelValidation
DataCollection
MolecularDescriptor
[1] Ekins, S. (2007). Computational Toxicology: Risk Assessment for Pharmaceutical and Environmental Chemicals. New Jersey: Wiley-Interscience.
DataAnalysis Methods[1]
QualityNanoTrainingSchool
Different Statistical Methods have been used inQSARfor the extraction ofuseful informationfrom the data.
-
DataMiningMethodsarelativelynewfieldwhichsharesometechniqueswithtraditionaldataanalysisbutalsobringsalotofnewvisionsandtechniques.
Data:recordsofnumericaldata,symbols,images,documents
Knowledge:Rules:IF..THEN..CauseeffectrelationshipsDecisiontreesPatterns:abnormal,normaloperationPredictiveequations
Data Data Data Data
Information
Knowledge
Decision
Volume
Value
DM is the discovery of useful Informationand Knowledge from a large collection ofData, in order to help the Decisionmaking
15QualityNanoTrainingSchool
-
16
Clustering
Classification
Conceptual Clustering
Inductive learning
Data mining shares many techniques and tools with traditional dataanalysis (such as the ones listed below). But it emphasises the analysisof very large databases, and can deal with complicated cases whichcannot be handled by traditional methods.
Data mining research has also generated some new techniques thatwere not seen in traditional data analysis, such as Link Analysis
QualityNanoTrainingSchool
Summarisation
Regression
Case-based Learning
DataMiningMethods
-
17
x1 x2 x31 0 01 1 10 0 11 1 10 0 00 1 11 1 10 0 01 1 10 0 0
x1 x2 x3
x1x2
x3
Example :Tendatacases,threevariables,x1,x2,andx3 How canweautomaticallyuncoverthedependencyrelationshipbetweenthem?
Thisrelationshipmeans,x2 isdependent onx1,andx3isdependent onx2,butx1isindependentofx2andx3
Thisrelationshipmeans,x2isdependent onx1,x3isalso dependent onx1,butx2andx3areindependentofeachother
DATASET WHICHRELATIONSHIP?
QualityNanoTrainingSchool
NewDMTechniqueExample1:LinkAnalysis
-
18
x1 x2 x3 x4 y x1 x2 x3 x4 y55.33 1.72 54 1.66219 92.19 71.31 3.44 55 1.60325 90.5159.13 1.2 53 1.58399 92.74 72.3 4.02 55 1.66783 90.2457.39 1.42 55 1.61731 91.88 68.81 6.88 55 1.69836 91.0156.43 1.78 55 1.66228 92.8 66.61 2.31 52 1.77967 91.955.98 1.58 54 1.63195 92.56 63.66 2.99 52 1.81271 91.9256.16 2.12 56 1.68034 92.61 63.85 0.24 50 1.81485 92.1654.85 1.17 54 1.58206 92.33 67.25 0 53 1.72526 91.3652.83 1.5 58 1.54998 92.22 67.19 0 52 1.86782 92.16
x1,x2,x3aredifferentmeasuresoffeedcompositionx4isthelogofacombinationofoperatingconditionsy productqualitymeasurey=good if>92,=low ifbetween9192,=verylow if
-
19
Ifx1=[44.6,55.4],thenconditionalprobabilityofy=3is0.9
Ifx4=[1.8,2.3],thentheconditionalprobabilityofy =3is1.0
x1
y>92 x4
x1 Y>92
91
-
20
(1)Generationofapopulationofsolutions
(2) Repeatsteps(i) and(ii) untilthestopcriteriaaresatisfied:(i)calculatethefitnessfunctionvaluesforeachsolutioncandidate
(ii)performcrossoverandmutationtogeneratethenextgeneration
(3) thebestsolutioninallgenerations:thefinalsolution
s
.. .... ..
s
.. .... ..
s
.... ..
s
.. .... ..
s
.. .... ..
s
.. .... ....
s
.... ..
s
.. .... ..
Automaticgenerationof
decisiontreefromdata
This isanewapprooach
based onageneticprogramming
method
QualityNanoTrainingSchool
-
21
Data Set 1:Concentration lethal to 50% of the population, LC50, 1/Log(LC50), of vibrio fischeri, a biolumininescent bactorium
75 compounds 1069 molecular descriptors calculated by molecular modelling software DRAGON
Data Set 2:Concentration effecting 50% of the population, EC50 of algae chlorella vulgaris, by causing fluoresceindiacetate to disappear
80 compounds 1150 descriptors
Two Data Sets
QualityNanoTrainingSchool
New DM Technique Example
-
22
SampletreefromYAdapt
Class1(21/21)
Class1(8/8)
No
NoYes
Yes
Gearyautocorrelationlag4weightedbyatomicmass
0.007
Polarsurfacearea40.368
Class2(9/9)
NoYes
Hautocorrelationlag0weightedbySandersonelectronegativities2.111
Gearyautocorrelationlag4weightedbypolarizability
1.181
Class3(9/10)
Yes No
BrotoMoreauautocorrelationlag2weightedbypolarizability
4.085
Class2(5/6)
Yes No
Class3(6/6)
Atreeforthebacteriadatausingthree
classes.
Forbacteriadata:of 1069 descriptors,only5descriptorsareimportant! Usingthe5descriptors,thetree
modelcanpredict withthe accuracy>96.7%
QualityNanoTrainingSchool
YAdaptforQSARToxicityPrediction:DataSet1Amethod to classify toxicity endpoints into classes
-
23
A decision tree from generation 46 for the bacteria data, finding fourclasses from the continuous endpoint itself during induction.
Training accuracy: 93.3%Test accuracy: 80.0%
NoYes
Yes
NoYes
Yes No
No NoYes
Class1(13/13)
3DMoRSEsignal15weighted18weightedbySandersonelectronegativites0.644
Gearyautocorrelationlag4weightedbyatomicmass0.007
Polarsurfacearea40.368
Hautocorrelationlag0weightedbySandersonelectronegativities2.111
Class2(5/7)
Class3(7/9)
Class4(6/6)
Class1(16/16)
Class2(9/9)
Hautocorrelationlag0weightedbySandersonelectronegativities2.394
Class1: Log(1/EC50)4.0829casesClass2: 4.08
-
24
NoYes
Class2(14/15)
Class1(16/16)
No Yes
Class3(6/8)
NoYes
Yes No
Selfreturningwalkcountorder83.798
Hautocorrelationoflag2weightedbySandersonelectronegativities
0.401
Molecularmultiplepathcountorder392.813
Solvationconnectivityindex 2.949
Class4(6/7)
NoYes
2ndcomponentsymmetrydirectionalWHIMindex
weightedbyvanderWaalsvolume0.367
Class3(9/10)
Class4(8/8)
2nd dataset algaedata
Ofthe1150descriptors,only5descriptorsareimportant!
Training:92.2%Test:81.3%
QualityNanoTrainingSchool
YAdaptforQSARToxicityPrediction :DataSet2
-
25
ResultsPresentationGraphsTablesASCIIfiles
DiscoveryValidationStatisticalsignificanceResultsfortrainingandtestsets
DataMiningToolboxRegression PCAandICAART2networksKohonennetworksKnearestneighbourFuzzycmeansDecisiontreesandrulesFeedforwardneuralnetworks(FFNN)SummarystatisticsVisualisationMixtureQSARmodels
DataimportExcelASCIIFilesDatabaseXML
DataPreprocessingScalingMissingvaluesOutlieridentificationFeatureextraction
Descriptorcalculation
QualityNanoTrainingSchool
Different dataminingtechniques canbe
combined intoasinglesystem
IntegratedProcessDataMiningEnvironment
-
The statistical fitofmodelR2
StandartError ofPredicton (S)
Crossvalidation (Q2) Kfold Cros Validation Leaveoneout
Cross Validation
26
ModelValidation
QSARModelValidation
ModelApplicability Modelvalidationisrequiredtoensure
modelreliability (quality ofthe model)Ensures thatthemodelisnotdueto
chancefactors!Model
Interpretation
Cross validation:dividing adatasample into subsets,performing the analysis onasingle subset,using other subsets to confirm and validate the initial analysis
QualityNanoTrainingSchool
There isnoagreed method for the validation ofQSARModels
The statistical fitofmodelisusually performed
-
27
QSARWorkflow[1]
[1] Tropsha,A.,Gramatica,P.,Gombar,V. (2003) Theimportanceofbeingearnest:ValidationistheAbsoluteEssentialforSuccessfulApplicationandInterpretationofQSPRModels.Quant.Struct.Act.Relat.Comb.Sci.22,6977. QualityNanoTrainingSchool
-
28
QSARModelApplicability Domain
... .
.........
Descriptor 1
...
..
.. ..
..TRAININGSETDescriptor 2
Inside ApplicabilityDomain
will bepredicted
Outside ApplicabilityDomain
will notbepredicted
Notevenasignificant andvalidatedQSARmodelcanbeused for the entireuniverse of
chemicals[1]!
[1] Gramatica P. (2007)PrinciplesofQSARmodelsvalidation:internalandexternal.QSARandCombinatorialScience; 26:694701.
Modelapplicabilityallowsustodecidewhetherthemodelwill beusefulfornewdata (correct use of
the model).
Finding the boundaries ofthemodelto see how well itwill work
for other compounds.
QualityNanoTrainingSchool
-
29
QSARTools for Toxicity Prediction1. TOPKAT(byKomputer AssistedTechnology):
ItusesQSARstogivenumericpredictions,basedonseveral descriptors
2. HazardExpert (by CompuDrug ):HazardExpert,producedbyCompuDrug,isarulebasedsystem.Therulesusetoxicophores,orstructuralalertsderivedfromQSARs
3. CASE: It canderive QSARmodelfrom usersdata.
4. ECOSAR:It usesQSARstopredicttheaquatictoxicityofchemicalsforavarietyoforganisms
5. OASIS: ItuseshierarchicalrulesbasedonQSARs,whichcanbeuserderived.
6.DEREK:DeductiveEstimationofRiskfromExistingKnowledge(DEREK)ismarketedbyLHASALtd.It isanexpertknowledgebasesystemthatpredictswhetherachemicalistoxic
QualityNanoTrainingSchool
Each ofthese QSARtools have their own advantages and weaknesses for toxicitypredictions
There are also several available softwarepackages for descriptor calculations (e.g.DRAGON)
-
30
Challenges for QSAR[1]
[1]Puzyn,T.,Leszczynski,J.(2012) TowardsEfficientDesigningofSafeNanomaterials:InnovativeMergeofComputational ApproachesandExperimentalTechniques,TheRoyalSocietyofChemistry.
1
If there isameasurement error inthe experimental data,itisvery likelythat false correlations may arise
2
Ifthetrainingdatasetisnotlargeenough,thedatacollectedmaynotreflectthecompletepropertyspace.Consequently,manyQSARresultscannotbeusedtoconfidentlypredictthemostlikelycompoundsofthebestactivity.
3
Therearemanysuccessfulapplicationsofthismethodbut onecannotexpecttheQSARapproachtoworkwellallthetime. QSAR Modelsareeasytobuildbutalsoveryeasytogetwrong.
QualityNanoTrainingSchool
-
Part IINanotoxicity and
NanomaterialCharacterization31QualityNanoTrainingSchool
-
Nostandardizedorvalidatedmethodsfornanotoxicity
testing
Available toxicitydatafor NPs areinconsistent and
confusing
Blocks thedevelopmentof
ENPsriskreductionstrategies[2]
NewTechnology
NewConcerns[1]
NewBenefits
Safetytohumanhealthand environment Suitability ofriskmanagementstrategies
Macroconcernswithnanoworld !
32
[1] Chaudhry, Q. et al. (2010). Knowns, Unknowns, and Unknown Unknowns . RSC Nanoscience & Nanotechnology (p. 201-218).Royal Society of Chemistry.[2]Tran, L., & Chaudhry, Q. (2010). Engineered Nanoparticles and Food: An Assessment of Exposure and Hazard. RSC Nanoscience & Nanotechnology (p 120-134). Royal Society of Chemistry.
Macroconcernswithnanoworld !
QualityNanoTrainingSchool
Uncertainities atthe early stages ofanew technology bring new concerns!
More than 800nanoproducts
-
33
Riskassesment for NMS[1]
1.HazardIdentification
2.Doseresponse
relationship
3.Exposureassessment
4.Riskassessment
Whatdangerstohuman healthmaybasicallyarisefromtheharmful agent ?
Whatisthenatureandmagnitude ofthe
riskandhowaccuratelycanitbe
estimated?
Towhatextentistherelevant
populationgroupexposed totheharmful agent?
Whatquantitativeconnectionsexistbetweenthedose
andtheextentoftheexpected effect?
OECD (2003): Environment Directorate. Description of Selected Key Generic Terms Used in Chemical / Hazard Assessment. OECD Series on Testing and Assessment Number 44. ENV/JM/MONO(2003)15. Paris, 30-Oct-2003.
Riskassesment for NMS[1]
Potential safety issues ofNMs should beaddressed atthe same timeasthetech.isdeveloping
QualityNanoTrainingSchool
ENMs are already used inanumber ofcommercial applications.
-
34
Hazard Identification
Doseresponse evaluationEvaluation oftoxicity
involves determiningtheconditionsorlevelsatwhichthepresenceofacontaminant maytriggerabiologicalresponsefromthebody
Different amount ofCNTdust
At level of0.1mg/m3
Athigher level of0.5mg/m3
Noeffects wereobserved
Sideeffects weredetected in the
lungNaidu, B. David (2009). Biotechnology and Nanotechnology - Regulation under Environmental, Health, and Safety Laws.. Oxford University Press.
Doseresponse relationship
QualityNanoTrainingSchool
Theevaluationoftoxicityincludes twosteps:
-
35
Theonlyreasonable waytoobtain toxicity information for thelargenumberofnanoparticleswithout testing everysingleone istorelate
thephysicochemicalcharacteristicsofNPs withtheirtoxicityinaSAR
(StructureActivityRelationship)orQSARmodel.
Nanomaterialcharacterization isone ofthe first steps intoxicity test.However,itisavery challenging issue!!!
QualityNanoTrainingSchool
Particle Characterization
NanoparticleStructureProperties
ParticleSizeSurfaceAreaMorphology
StateofDispersion,
Toxicity
-
Sizeandshape Sizedistribution Agglomeration state Porosity Structuredependentelect. Electronicproperties Characterisation:
Inwhatmedium?
POSSIBLE factors[1]inducingtoxicityof
chemicals
Surfacearea Surfacechemistry Surfacecharge Crystalstructure Composition Configuration Coating Aggregationstate Metalcontent
When amaterial isinananosized form,its properties become different from thesame material inabulk form
Fullerenes Carbonbased Different and CarbonNTs Nanomaterials Exceptional Graphene Properties
36[1] Puzyn, T., Leszczynska, D. & Leszczynski, J. Toward the development of Nano-QSARs: advances and challenges. Small 5, 24942509 (2009).
Possible toxicityrelated Physicochemical Properties
QualityNanoTrainingSchool
Nocertain information!!!Recent studies showed that toxicity ofNPs canberelated to:
moreresearchisrequiredtoreachaclearunderstanding
more research is required to reach a clear understanding of the
-
Shapeandaggregationstate
Composition,purityandsurfacechemistry
Surfacecharge
Crystalstructure
Particlenumberandsizedistribution
SurfaceArea
HighResolutionMicroscopy
SpectroscopyandChromatographyMethods
ZetaPotentialAnalysis
XRayDiffraction
SeveralTechniques(e.g.SEM,TEM,DLS)
BrunauerEmmettTellerAdsorption
Several different methods and instruments are used to determine the properties onNMs
37
NanomaterialCharacterization
QualityNanoTrainingSchoolThere isnosingle instrument that isright tool for every test.There are infact more than 400
different techniques for particle counting and characterization
-
38
SomeNPs
Have atendency toformclusters (e.g.aluminium oxide)
inanagglomeration state,someNPsbehavelikelargerparticlesinthemedia
Toxicitymayalsodependsonthesizeofagglomerate
NOTonoriginalparticlesizeitself!!!
Hussain, S. e. (2008). Can silver nanoparticles be useful as potential biological labels? Nanotechnology 19 .
If the NPs aggregateitisimportant toidentifyhowthesechangesaffecttoxicity
Howtocharacterizeaggregation?Textureanalysis?
Whathaven'tweconsideredyet ?
-
39
ChallengesforQSAR
NPtype
Size(nm)
Doses(mg/ml) Cell Method Result
Ag 720 0.850Humanfibrosorcoma andskincarcinoma
XTTassay Nontoxic Araro etal.(2008)[1]
Ag
-
40
Challenges for nanoQSAR[1]
[1]T.Puzyn etal.(eds.),RecentAdvancesinQSARStudies,103125. DOI10.1007/9781402097836_4,CSpringerScience+Business MediaB.V.2010
1 Lackofhighqualityexperimentaldata
2 Lackofconceptualframeworksforgrouping NPs accordingtomodeofphysicochemicalpropertiesandtoxicaction
3 Lack ofsufficient moleculardescriptors abletoexpressspecificityofnanostructure
4 Lackofrationalmodelingprocedurestoscreenlargenumbersofstructurallydiversifiednanoparticles.
5 Limited knowledgeontheinteractionsbetweenNPs andbiologicalsystems
QualityNanoTrainingSchool
NMs are problematic for QSARmodellers because ofthe several reasons:
-
Part IIICase Study
despite all limitations41QualityNanoTrainingSchool
-
Nanotxicology 2012,47September,Beijing
The aim of this study was to test the hypothesis that nanoparticle
toxicity is a function of some measurable physical characteristics and
that Structure Activity Relationship (SAR) might ultimately be a useful
tool for nanotoxicology. A panel of 18 nanoparticles was chosen to
include carbonbased materials and metal oxides. Comparative toxicity
of the nanoparticles in the panel was assessed, using a number of
different measures of apoptosis and necrosis; haemolytic effects and
the impact, on cell morphology were also assessed. Structural and
composition properties were measured including size distribution,
surface area, morphological parameters, metal concentration,
reactivity, free radical generation and zeta potential. Toxicity end
points were processed using principal component analysis and
clustering algorithms.
QSARToxicity(invitro)AnalysisforaPanelofEighteen NPs
42QualityNanoTrainingSchool
-
Nanooxicology 2012,47September,Beijing
Particles Qualifier Number Supplier Form
Carbonblack Printex 90 N1 Degussa DryDieselexhaustparticles EPA N2 EPA Dry
Nanotubes Japanese N3 VickiStone DryFullerene N4 Sigma Dry
PolystyrenelatexUnmodified N5 Polysciences Sus.
Amine N6 Sigma Sus.Carboxylated N7 Polysciences Sus.
Aluminiumoxide7nm N8 KrahnChemie Dry50nm N9 AHT* Dry300nm N10 AHT* Dry
Ceriumoxide N11 NAM** DryNickeloxide N12 NAM** DrySiliconoxide N13 NAM** DryZincoxide N14 NAM** Dry
TitaniumdioxideRutile N15 NAM** DryAnatase N16 NAM** Dry
SilverN17N18
NAM**NAM**
DrySus.*AHT:AlliedHighTech,**NAM:NanostructureandAmorphousMaterialInc
The Set ofEighteen NPs
43QualityNanoTrainingSchool
-
Nanotoxiclogy 2012,47September,Beijing
Particle shape was analysed using LEO 1530 Scanning Electron Microscope (SEM) or PhilipsCM20 Transmission Electron Microscope (TEM) aspect ratio and mean sizeSurface area and porosity were measured using TriStar 3000 BET. Thirteen measurements,including five surface areas based on different definitions, three pore volumes, three poresizes as well as the mean size and particle density.Particle size and size distribution were analysed using a Malvern MasterSizer 2000. Sizedistribution, and seven other size properties (mass diameter, uniformity, specific surfacearea, surface area mean diameter and three mass diameters)ThefreeradicalactivitiesweremeasuredbyEPR(Electronparamagneticresonance)using the spin traps, DMPO and Tempone H separately. Tempone H has partial selectivity fortrapping superoxide anions, whilst DMPO traps mainly hydroxyl radicalsParticle reactivity in solution, the dithiothreitol (DTT) consumption test as a reducing specieswas carried out. Since the DTT consumption test can only be conducted on dry powders, onlyfourteen of the panel of nanoparticles were assessed using this assay.
Metal Concentration water soluble concentration of ten heavy metals (Ti, V, Cr, Mn, Fe, Co,Ni, Cu, Zn and Cd) was measuredCharge:zpotentialwasmeasuredusingMalvernInstrumentsZetasizer Nano instrument
CharacterisationofPhysicochemicalProperties
44QualityNanoTrainingSchool
-
45
1313 BETmeasurements(for14drysamples)
22 SEM/TEMmeasurements (forallsamples)
77 laserdiffractionsizestatisticalmeasurements(MasterSizer 2000)forallsamples
8484 laserdiffractionsizedistribution measurements
22 EPRmeasurements(forallsamples)
11 reactivitymeasurement (fordrysamples)
1010 metalcontentmeasurements
TotalNumber ofMeasurements
Total:119Measurements
Particlename
BET Measurements M2000 Measurements
SEM Measurements Zeta measurements Other Measurements
N1 A(1,1),A(1,2),,A(1,12) B(1,1),B(1,2) C(1,1),C(1,2) D(1,1),D(1,2) E(1,1),E(1,2)
N2 A(2,1),A(2,2),,A(2,12 B(2,1),B(2,2) C(2,1),C(2,2) D(2,1),D(2,2) E(2,1),E(2,2)
N18 A(18,1),A(17,2), B(18,1),B(18,2) C(18,1),C(18,2) D(18,1),D(18,2) E(18,1),E(18,2)
QualityNanoTrainingSchool
-
Nanotoxicolgy 2012,47September,BeijingSEMandTEMimagesofthe18nanoparticlesamples
46QualityNanoTrainingSchool
-
Table2.Thewatersolubleconcentrationsofvariousmetalsforthe18nanoparticlesamplesNanotoxicology 2012,47September,Beijing
Particlenames MetalConcentration(g/g)Ti V Cr Mn Fe Co Ni Cu Zn Cd
CarbonBlackN1 0.000 0.057 0.000 0.305 0.000 0.002 0.263 1.161 9.687 0.008
DieselExhaustN2 2.320 0.312 16.47 20.81 208.4 0.508 4.940 2.235 3181 0.387
JapaneseNanotubesN3 0.000 0.100 0.000 0.161 13.10 0.000 0.299 0.123 0.460 0.001
FullereneN4 0.000 0.084 0.000 0.000 0.000 0.000 0.534 0.142 4.837 0.000
PolystyreneLatexBeadsN5 0.000 1.172 0.000 0.000 0.000 0.000 0.000 0.625 19.56 0.000
PolystyreneLatexBeadsN6 4.368 0.779 0.343 0.199 0.000 0.006 0.440 18.23 58.71 0.010
PolystyreneLatexBeadsN7 0.000 1.018 0.000 0.000 0.000 0.000 0.000 2.588 22.323 0.000
Aluminuim OxideN8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.714 0.000 0.000
AluminuimOxideN9 0.000 0.031 0.000 0.000 0.000 0.000 0.056 0.099 4.987 0.000
AluminuimOxideN10 0.000 0.062 0.000 0.000 0.000 0.000 0.023 0.088 0.000 0.000
CeriumOxideN11 0.000 0.004 1.058 0.128 0.000 0.000 0.616 0.191 112.9 0.007
NickelOxideN12 0.000 0.056 0.000 0.000 0.000 0.042 16963 0.286 0.000 0.038
SiliconOxideN13 0.000 0.088 0.000 0.000 0.000 0.000 14.163 0.106 0.000 0.000
ZincOxideN14 0.000 0.096 0.000 0.000 0.000 0.000 1.336 0.047 8185 9.711
TitaniumDioxideRutile N15 0.000 0.083 0.000 0.000 0.000 0.000 0.286 0.276 39.623 0.000
TitaniumDioxideAnatase N16 0.000 0.104 0.000 0.160 0.000 0.006 0.692 0.303 402.3 0.000
SilverN17 0.000 0.111 0.000 0.503 0.000 0.000 0.475 0.597 17.867 0.019
SilverN18 0.000 0.096 0.000 0.256 0.000 0.059 0.561 162.8 194.8 0.037
Theheavy metalconcentration ofeach NP
47QualityNanoTrainingSchool
-
LEO1530GeminiFEGSEMScanningElectronMicroscopy
TheinformationaboutSize,Shape canbeobtainedfromSEMimages
CarbonBlackN1
Nanotoxicology 2012,47September,Beijing
MeansizeobtainedbymeasuringtheparticlesontheSEM/TEMimage:Mean_Size_SEMAspectratioobtainedfromSEM/TEMimages:Aspect_Ratio
CharacterisationofParticleSizeand Shape
48QualityNanoTrainingSchool
-
Nanotoxicology 2012,47September,Beijing
Micromeritics TriStar3000SurfaceAreaTechnique:GasAdsorptionMinimumSurfaceArea:0.01m2/g
SupportGases:NitrogenandHeliumMeasurementParameters:BETMeasurement
AdsorptionIsothermsDesorptionIsotherms
tplotsPoreVolumeAnalysisPoreSizeAnalysis
Surface Area (m2/g) Pore Volume (cm3/g) Pore Sizes ()
Single point surface area at P/Po =0.197 (m/g) SPSA
BET Surface Area: BET_SA Langmuir Surface Area: LM_SA BJH Adsorption cumulative surface
area of pores between 17.000 and3000.000 diameter :BJH_AC_SAOP
BJH Desorption cumulative surfacearea of pores between 17.000 and3000.000 diameter:BJH_DC_SAOP
Single point adsorption total pore volume of pores at P/Po = 0.98: SP_TP_VOP
BJH Adsorption cumulative volume of pores between 17.000 and 3000.000 diameter: BJH_AC_VOP
BJH Desorption cumulative volume of pores between 17.000 and 3000.000 diameter : BJH_DC_VOP
Adsorption average pore width: BET_PW
BJH Adsorption average pore diameter : BJH_A_PD
BJH Desorption average pore diameter: BJH_D_PD
Mean size calculated from BET surface area: Mean_Size_BET
Particle density: Density
**14drypowdersamples,noavailableforthreesuspensions(N5,N6,andN7)andthenewSilversample.
BETMeasurements for 14dry powder samples
49QualityNanoTrainingSchool
-
MalvernMastersizer 2000TypeofAnalyser:LaserDiffraction
SampleVolume:1000ml,150ml(HydroGandS)MeasurementRange:20nm 2000m
0123456789
10
0.01 0.1 1 10 100 1000 10000
Size (micron)
Prob
abili
ty (%
)
TheinformationaboutmeanSizeandSizedistribution,canbeobtainedfromthissizer.
Nanotoxicology 2012,47September,BeijingCharacterisationofNPsMastersizer
50QualityNanoTrainingSchool
-
D[4,3] theVolumeWeightedMeanorMassMomentMeanDiameter,representbyD[4,3]
Uniformity:ameasureoftheabsolutedeviationfromthemedian,representedbyUniformity
Specificsurfacearea:thetotalareaoftheparticlesdividedbythetotalweight,SSA_2000
D[3,2] theSurfaceWeightedMeanorSurfaceAreaMomentMeanDiameter,representedbyD[3,2]
D(v,0.5) thesizeinmicronsatwhich50%ofthesampleissmallerand50%islarger.ThisvalueisalsoknownastheMassMedianDiameterorthemedianofthevolumedistribution,representedbyD(0.5)
D(v,0.1) thesizeofparticlebelowwhich10%ofthesamplelies,representedbyD(0.1)
D(v,0.9) thesizeofparticlebelowwhich90%ofthesamplelies,representedbyD(0.9)
Sizedistribution:thereare100values.Amongthemthereare16valuesequaltozeroforallparticles.So84 sizedistributionattributesareusedforfurtheranalysis
Mastersizer 2000Measurements:91**
** Note:availableforallsamples
Nanotoxicology 2012,47September,BeijingCharacterisationofNPsMastersizer
51QualityNanoTrainingSchool
-
MalvernZetaSizerNanoinstrument Sizeranges:0.6nm 6m
ZetaPotentialSuitable:suspensions
Nanotoxicology 2012,47September,BeijingCharacterisationofNPsZeta Potential
52QualityNanoTrainingSchool
-
Cytotoxicity byLDHRelease
N6
N12
0.00
20.00
40.00
60.00
80.00
100.00
31.25 62.50 125 250
LDHRelease
Dose(g/ml)
N6
N14
0.00
5.00
10.00
15.00
20.00
25.00
31.25 62.50 125 250
Apop
tosis
Dose(g/ml)
Apoptosis
N6
N14
0.00
20.00
40.00
60.00
80.00
100.00
120.00
31.25 62.50 125 250
Viab
le
Dose(g/ml)
Viability
N3
N6
N14
0
10
20
30
40
50
60
70
80
31.25 62.50 125 250
Necrosis
Dose (g/ml)
Necrosis
0
10
20
30
40
50
60
70
80
90
100
Haemolysosatd
ose50
0g/ml
Proinflammation effects Haemolysis
53QualityNano Training School
Toxicity Results
-
54
LDH Apoptosis Viability
NecrosisHaemolysis
TotalToxicityMTT
QualityNanoTrainingSchool
Principal Component Analysis ofCytotoxicity Data
-
55
Figure: Plotofthefirstandsecond PCs basedonPCAanalysisoftoxicitydata
Japanesenanotubes
Zincoxide
Nickeloxide
Polystrene larex (Amine)
Themajorclustercontainslowtoxicityparticle
samples
Aminated beads(N6),zincoxide(N14),Japanese
Nanotubes (N3)andnickeloxide(N12)areseparate
fromthemajorcluster. Aminated beads(N6)hasthehighesttoxicityvaluesinnearlyallassayresults(LDH,apoptosis,necrosis,haemolytic,MTTandcellmorphologyassays).
Zincoxide(N14)hashightoxicityvalueinLDH,
apoptosis,necrosisandinflammationassays.
Japanesenanotubes (N3)havehightoxicityvalues
inviabilityandMTTassays.
Nickeloxide(N12)hasshownhighlytoxicinLDH
andhaemolyticassaysresults..
QualityNanoTrainingSchool
Principal Component Analysis ofCytotoxicity Data
Thedistinctionofthefourparticles,N6,N14,N3andN12,fromotherparticlesisclear.
-
56
NP6Average Toxicity Comparison NP14Average Toxicity Comparison
N14 has high toxicity value in LDH, apoptosis,necrosis and inflammation assays.
N12 hasshownhighlytoxicinLDHand haemolyticassaysresults
NP12Average Toxicity Comparison NP3Average Toxicity Comparison
N3 havehightoxicityvaluesinviabilityandMTTassays.
N6 hasthehighesttoxicityvaluesinnearlyallassayresults (LDH,apoptosis,necrosis, haemolytic,MTTandcellmorphologyassays).
QualityNanoTrainingSchoolThe toxicity results ofN6,N3,N12and N14which are likely to betoxic
-
57
The focus of the (Q)SAR Analysis is to identify the possible structural andcompositional properties which may contribute to the toxicity of zincoxide (N14), polystrene latex amine (N6), Japanese nanotubes (N3) andnickel oxide (N12).
Next Step:Principal Component Analysis ofDescriptors
PCA and clustering were then applied to the physicochemicaldescriptors with the hypothesis that the toxic nanoparticles might alsobe discriminated from the nontoxic particles based on the analysis ofthe measured physicochemical descriptors.
The theory is that there should be structural or/and compositionaldistinctions for these nanoparticles from the rest of the nontoxicparticles.
If this can be proved, further analysis can be conducted to identify thekey physicochemical descriptors that lead to the observed toxicity.
QualityNanoTrainingSchool
-
58
N2
N3
N12
N14
N6
N5
N7
Figure : PCA analysis of the physicochemicaldescriptors for the panel of 18 nanoparticles(excluding BET and DTT measured descriptorssince they are not available for the four wetsamples).
QualityNanoTrainingSchool
Principalcomponentanalysisofthestructuralandcompositionaldescriptorsforthe panelof18nanoparticles(excludingBETandDTTmeasureddescriptorssincetheyare notavailableforthefourwetsamples).
Principal Component Analysis ofDescriptors
The scaling operation was performed,3PCs
were then applied.
PC1PC2PC3threedimensionalplotshows
thatthe18nanoparticleswereclearlygrouped
intoclusters.
Thelargestclustercontainsparticlesthat
showedlowtoxicityvalues.
JapaneseNanotubes (N3),nickeloxide(N12)
andzincoxide(N14)anddieselexhaust
particles(N2)areoutsidethislowtoxicity
samplecluster.
There mustbeanotherreasonthatleadsto
hightoxicityvalueforN6
-
59
Toexaminetheclusteringresultsmoreclearly,PC1PC2, PC1PC3andPC2PC3twodimensionalplotsarealsoexamined .ItisPC2thatseparates N3(Japanesenanotubes),N12(nickeloxide)andN14(zincoxide) fromtherestsamples,ascanbeseenfromPC1PC2andPC2PC3plots.
QualityNanoTrainingSchool
Results
-
60
Figure: PC1,PC2andPC3ContributionplotsbasedonPCAanalysisofthestructuralandcompositionaldescriptorsforthepanelof18nanoparticles
QualityNanoTrainingSchool
Results
The contribution plot for, PC1, PC2 andPC3 is shown in the Figure, we are mainly
interested in the contribution to PC2 (solid
red colour), since it is PC2 that
discriminated Japanese nanotubes (N3)
nickel oxide (N12) and zinc oxide (N14)
from the rest particle samples.
The largest contributions to PC2 are: aspectratio measured by SEM imaging, and volume
weighted mean, uniformity, and D(0.9), all
measured by Mastersizer, as well as Ni and
Zn metal contents
Further analysis is required.
-
61
N2
N 3
N 12
N14
Inordertodetermineexactlywhichphysicochemicaldescriptors leadtohightoxicityvaluesofN3,N12,N14and N6,several PCanalysis wereperformed.
Forthe14dryparticles,PCanalysiswithBETandDTTmeasurements gavesimilarresultwith the first PCanalysisinwhich BETand DTTdatawasexcluded.
QualityNanoTrainingSchool
Figure: Principalcomponentanalysisofthestructuralandcompositionaldescriptors(allsuchdescriptorsincludingBETandDTTmeasurements)forthe14drynanoparticles.
Results
-
62
Figure: PC1andPC2contributionplotsforPCAanalysisof thecompositionaldescriptors
NicontentmadethemostimportantcontributiontoPC1,suggestingthatnickelcontentmaybethemainreasonforthehightoxicityof N12(nickeloxide). While Zncontentmadethemostobvious contributiontoPC2, suggesting thatzinccontentmaybethereasonfor the high toxicity of N2(dieselexhaustparticles)andN14(zincoxide).
QualityNanoTrainingSchool
Results
To identify the relativecontribution of each metalconcentration to PC1 andPC2, the contribution plot toPC1 and PC2 is shown in theFigure.
-
Table2.Thewatersolubleconcentrationsofvariousmetalsforthe18nanoparticlesamplesNanotoxicology 2012,47September,Beijing
Particlenames MetalConcentration(g/g)Ti V Cr Mn Fe Co Ni Cu Zn Cd
CarbonBlackN1 0.000 0.057 0.000 0.305 0.000 0.002 0.263 1.161 9.687 0.008
DieselExhaustN2 2.320 0.312 16.47 20.81 208.4 0.508 4.940 2.235 3181 0.387
JapaneseNanotubesN3 0.000 0.100 0.000 0.161 13.10 0.000 0.299 0.123 0.460 0.001
FullereneN4 0.000 0.084 0.000 0.000 0.000 0.000 0.534 0.142 4.837 0.000
PolystyreneLatexBeadsN5 0.000 1.172 0.000 0.000 0.000 0.000 0.000 0.625 19.56 0.000
PolystyreneLatexBeadsN6 4.368 0.779 0.343 0.199 0.000 0.006 0.440 18.23 58.71 0.010
PolystyreneLatexBeadsN7 0.000 1.018 0.000 0.000 0.000 0.000 0.000 2.588 22.323 0.000
Aluminuim OxideN8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.714 0.000 0.000
AluminuimOxideN9 0.000 0.031 0.000 0.000 0.000 0.000 0.056 0.099 4.987 0.000
AluminuimOxideN10 0.000 0.062 0.000 0.000 0.000 0.000 0.023 0.088 0.000 0.000
CeriumOxideN11 0.000 0.004 1.058 0.128 0.000 0.000 0.616 0.191 112.9 0.007
NickelOxideN12 0.000 0.056 0.000 0.000 0.000 0.042 16963 0.286 0.000 0.038
SiliconOxideN13 0.000 0.088 0.000 0.000 0.000 0.000 14.163 0.106 0.000 0.000
ZincOxideN14 0.000 0.096 0.000 0.000 0.000 0.000 1.336 0.047 8185 9.711
TitaniumDioxideRutile N15 0.000 0.083 0.000 0.000 0.000 0.000 0.286 0.276 39.623 0.000
TitaniumDioxideAnatase N16 0.000 0.104 0.000 0.160 0.000 0.006 0.692 0.303 402.3 0.000
SilverN17 0.000 0.111 0.000 0.503 0.000 0.000 0.475 0.597 17.867 0.019
SilverN18 0.000 0.096 0.000 0.256 0.000 0.059 0.561 162.8 194.8 0.037
Theheavy metalconcentration ofeach NP
63QualityNanoTrainingSchool
-
64
IdentifyingthefactorthatdiscriminatesN6(polystrene latexamine)fromN5(unmodified)andN7(carboxylated)
PCAanalysis:PCAanalysisofmetalcontentsonly,orPCAanalysisofstructuraldescriptorsonly,orPCAanalysisofbothstructuralandcompositionaldescriptorstogether,couldnotdiscriminateN5,N6andN7fromthelargestclustersofnontoxicparticlesamples.
PCAConclusion:neitherstructuraldescriptorsnormetalcontentsmadeN6differentfroN5andN7intoxicity
ItwasatthisstageofanalysisthatwesuspectedthatthereareotherpossiblereasonsfortoxicityspecifictoN6:eitheritwasduetothechargedifference,orduetoN6beingamine,orboth.
zetapotentialforallthreepolystyrenelatexsamples.N6(amine) 37.8,37.5,and40.3(mV), positiveN5(unmodified) 36.2,38.8and36.8, negativeN7(carboxylated) 54.9,55.3,and58.6., negative
AccordingtoVerma etal.anyparticlewithpositivechargeislikelytointeractelectrostatically sincemostcellsurfacesandotherbiologicalmembranesarenegativelychargedunderphysiologicalconditions(Verma etal.2008).Therefore,itismostlikelythatthelargepositivechargeofN6contributeditsobservedhightoxicity,despiteitstructurallysimilartoN5andN7.
Conclusions
QualityNanoTrainingSchool
-
65
TheSARanalysisgeneratesthefollowingconclusions:1. Themostlikelyreason ofhightoxicityforJapanesenanotube(N3)isitsshape(high
aspectratio).2. Themostlikelycauseofhightoxicityforzincoxide(N14)andnickeloxide(N12)is
their highcontentsofzincandnickel.3. Although,Aminated beads(N6)hasthehighesttoxicityvaluesinnearlyallassay
results,itwas always groupedcloselywiththeothertwopolystyrenelatexbeads,unmodifiedbeads(N5)andcarboxylated beads(N7),whichshowednotoxicity.Therefore,thezetapotentialofthethreepolystrene latexwas measured.TheresultsuggeststhatthelargepositivechargeofN6contributed to itsobservedhightoxicity.
TheworkhasshownthatSARbasedonmolecular descriptors isausefultoolfordescribingfactorsinfluencingthetoxicityofnanoparticles.
Apanelofeighteennanoparticlesisstillconsideredtobetoosmall,therefore,aQSARmodelthatcanbeappliedtopredictthetoxicityofnewnanoparticles cannot bedeveloped with this small setofdata.
QualityNanoTrainingSchool
Conclusions