QUANTITATIVE DATA FILE FOR ORE MINERALS - …978-94-011-1486-8/1.pdf · Quantitative and...

62
QUANTITATIVE DATA FILE FOR ORE MINERALS

Transcript of QUANTITATIVE DATA FILE FOR ORE MINERALS - …978-94-011-1486-8/1.pdf · Quantitative and...

QUANTITATIVE DATA FILE FOR ORE MINERALS

QUANTITATIVE DATA FILE FOR ORE MINERALS

THIRD EDITION

Edited by

A.J . Criddle and C.J. Stanley Department of Mineralogy Natural History Museum

London, UK

SPRINGER-SCIENCE+BUSINESS MEDIA, B.V.

First edition 1978, second edition 1986 published by The British Museum (Natural History)

Third edition 1993 © 1978,1986,1993 Springer Science+Business Media Dordrecht Originally published by Chapman & Hall in 1993 Softcover reprint of the hardcover 3rd edition 1993 — Commission on Ore Mineralogy Typeset by Dave Williams, Sawbridgeworth

ISBN 978-94-010-4652-7 ISBN 978-94-011-1486-8 (eBook) DOI 10.1007/978-94-011-1486-8 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the UK Copyright Designs and Patents Act, 1988, this publication may not be repro­duced, stored, or transmitted, in any form or by any means, without the prior permission in writing of the publishers, or in the case of reprographic reproduction only in accordance with the terms of the licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of licences issued by the appropriate Reproduction Rights Organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to the publishers at the London address printed on this page.

The publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that may be made.

A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication data available

Contents

Preface to third edition vii Acknowledgments vii

Background and introductory notes to QDF3 ix Format of QDF3 ix

Name and formula ix Symmetry x Provenance x Chemical composition x X-ray data x Reflectance standards x Monochromator and photomultiplier x Effective Numerical Aperture x Micro-indentation hardness (Vickers) xi Reflectance data xi

Symbols for reflectance used in QDF3 xii Symbol or symbols xiii Reflectance data in two-media xvi Reflectance spectra and chemical composition xvii Colour and quantitative colour xvii Scaling of graphs xxii Polishing method xxii Reference and further information xxii Keys for identification Species representation

Selected Bibliography 1. General mineralogical nomenclature

xxii xxii

xxiii xxiii

2. Quantitative and qualitative ore mineralogy xxiii xxiv xxv

3. Reflectance-based identification schemes COM wavelength key 1 Colour value key 2 Air and oil data 440-700nm key 3 Data file

xxxviii li 1

PREFACE TO THE THIRD EDITION

This third edition (or issue) of the Quantitative Data File for ore minerals (QDF) of the Commission on are Mineralogy of the International Mineralogical Association (COM-IMA) is published, with the support of the Natural History Museum, London, by Chapman & Hall. It has been greatly revised and enlarged and now includes graphs of the reflectance spectra for all of its entries. These have been included in response to requests from users of the earlier editions. Also included, for those users unfamiliar with the application of such spectra to mineral identification, are introductory notes, illustrated with examples of R spectra.

The 635 data sets, which are arranged alphabetically by mineral name, one set to a page, retain the tabular format (if slightly modified) of QDF2. The graphs are drawn, depending on the dispersion of the reflectance curves, to the most appropriate of one of four scales of reflectance (25%, 50%,75% and 100%). Colour values computed relative to the Commission Internationale de I'Eclairage (OE) illuminants A and C are provided for most of the entries (97 .5 %).

A feature unique to the QDF is that most of its optical and compositional data were collected from the same area of a mineral. This follows a policy decision of the COM which recognises the interdependence of the two properties: composition and optics. While every effort was made, when collecting data for the File, to ensure that reliable compositional data were included for all data sets, we were unable to replace some of the incomplete sets from QDF2. In all, some 90 % (572) of the data sets contain related optical and compositional data.

Another unusual feature of the QDF, in all of its editions, is that a substantial proportion of its entries were previously unpublished, and obtained specifically for the File. In QDF3, these number 172, many of which are for minerals where previously no optical data existed in the published literature. In this sense, the QDF is the only source of characteristic quantitative data for many ore minerals, further, it is the only compiled-source of spectral reflectance data under oil immersion. In the current edition, a concerted effort was made to supply data for all of the known tellurides, for as many of the oxides as was practicable (60 species more than QDF2), and to fill such' gaps' in species coverage as were noted by

reviewers, and reported by users of the earlier editions. The result is that 510 species and 125 compositional or structural variants, or varieties, of species, are represented in QDF3. A large number of the entries include data collected from the type specimen of a mineral: these include data extracted from the published literature. In this respect, QDF3 differs from earlier editions.

We have also revised and simplified the notes concerning X-ray data: no longer are the strongest lines in the powder diffraction pattern quoted, nor are cell dimensions generally given. Instead, it was decided to refer to data from the original description, or to data in the PDF of the JCPDS. Where our data differed from those in the PDF, such differences are noted. In all, confirmatory X-ray data (or references to the original data) were obtained for 89.6% of the entries in QDF3.

Micro-indentation hardness (VHN) values are quoted for 492 of the data sets \17 %), however, as in QDF2, a smaller proportion (46.7% of the total) were at the preferred force of 100pond. The three 'keys' to assist in the optical identification of a mineral, introduced in QDF2, are retained, though, of course, they are completely revised to incorporate the new optical data, and now include simplified chemical formulae (for those users who do not automatically relate a minerals name to its composition).

The production of a laboratory reference work, such as the QDF, is very demanding of time: QDF3 was produced using Borland's* relational database management system, Paradox®, combined with the graphing facilities of Quattro Pro®. In setting-up the database, errors and inconsistencies will, undoubtedly, have crept into the work. The Editors take responsibility for all such errors and, on behalf of the COM, would be grateful if any that are found are brought to their attention.

ACKNOWLEDGMENTS

In a work of this kind, which relies so heavily on international cooperation, it is impossible to thank everybody who ha~ contributed to its successful appearance. We thank all of the contributors of data sets, reference to whom is made individually, with their data, in the pages of the File. Especial thanks

* Paradox and Quattro Pro are registered trade marks of Borland International, Inc.

vii

go, in this context, to Yves Moelo (BRGM) for compiling the contributions from France.

We are particularly grateful to our many friends, around the world, who spent their time so selflessly in locating mineral samples in their collections, and who either lent, or donated them for investigation: from Austria, Werner Paar (Salzburg); from Belgium, Jacques Jedwab (Brussels); from Canada, Gary Ansell, Louis Cabri, Don Harris, DeAlton Owens, Andy Roberts (Ottawa); Steve Kissin (Thunder Bay); Bob Gait and Joe Mandarino (Toronto); from Germany, Gunter Grlintmann (Munich); from Switzerland, Stefan Graeser (Basel); from the UK, David Vaughan (Manchester); and from the USA, Pete Dunn (Washington) and Ben Leonard (Denver).

The COM owes a particular debt of gratitude to John Francis and Steve Somogyi of the NHM, whose unstinting efforts to obtain satisfactory X-ray data, from the often puny samples we were able to extract,

viii

enabled us to confirm the identity of many rare minerals.

We thank Myra Givans of NHM Publications and Ruth Cripwell of Chapman & Hall for their gentle encouragement during the gestation of this volume. And, for his patience, professionalism and scrupulous attention to detail, we are indebted to Dave Williams, who was involved, from the outset, in constructing the QDF database and who was responsible for turning our computer output into 'camera-ready' form.

Finally, we thank Fifi and Hari for their piscine therapy.

Alan Criddle and Chris Stanley Department of Mineralogy The Natural History Museum London, U.K.

BACKGROUND AND INTRODUCTORY NOTES TO QDF3

Since the publication, in 1986, of QDF2, several very useful works have been produced in the field of ore mineralogy and ore microscopy: Gerlitz et al. (1989) made available a computer-based identification system for ore minerals (using QDF2 as its source)i more traditionally, Tarkian & LieBmann (1991) published their guide to the identification of ore minerals, and Ixer (1990), his atlas of ore textures. The importance of colour (and its causes) were dealt with brilliantly and didactically by Andrew Peckett (1992), and the COM, itself, in collaboration with the Mineralogical Association of Canada, produced a volume of 'Short Course Notes' on 'Advanced Microscopic Studies of Ore Minerals', Jambor & Vaughan (1990). In addition, dozens of papers describing the optical properties of new (and known) minerals have appeared in the mineralogical literature (references to which are included in the individual data sets of QDF3). Keeping pace with these, are works of nomenclature, e.g., Fleischer & Mandarino (1991), Nickel & Nichols (1991), and Oark (1993). In descriptive mineralogy, Anthony et al. (1990) made a valiant effort to bring up to date our knowledge of the elements, sulphides and sulphosalts (unfortunately, the optical and compositional data, which they report, are, in most instances, unrelated).

From the citations it received, and from the numerous applications of its data in independently produced identification schemes, the usefulness of QDF2 was proved. However, production costs were high, largely because of the enormous number of 'man-hours' required by traditional editorial procedures. The COM, recognising this, gave total editorial control for the production of QDF3 (executive as well as scientific) to its Editors.

QDF2 was published for the COM by the British Museum (Natural History), recently renamed the Natural History Museum. A change in publication policy at the Museum required that a commercial publisher be sought for the new edition. Chapman and Hall stepped into the breach, but with the requirement that they be supplied with 'camera-ready' copy for their printers. Recognising the importance of continuity in production, the Museum authorities supported the COM by allowing its editors time to compile the third edition, and further assisted in supplying the professional support of Dr David Williams in organising first, the computer database, then the preparation of the camera-ready copy (with the departure of Dr

ix

Williams from the Museum's employ, he continued as consultant to the editors for this task). The volume you are now reading is the product of this collaboration.

Early in the planning of QDF3 (and before all of the production details described above), it was worked out what was required to provide a substantially improved edition of the File. Experience in the production of the 2nd edition had shown that, in the main, authors were reluctant to supply data in the format required by us - even when prompted by their COM National Representatives. For this reason, for the first time, data are incorporated in the File which were culled from the literature for some of the recently described 'new' minerals. Some of these data sets, demonstrably, do not meet the standards of completeness expected of the QDFi they are included for the reason that they are the only data currently available. As important, was the problem of acquiring material for investigation (many of the data sets in QDF2 and 3 are from work done at the NHM). For these reasons, requests were sent to the National Representatives to seek and compile data for inclusion in the third edition, and lists were widely distributed to individuals, and curators of the major collections, asking for help in supplying type material and species not available within the collections of the NHM. Acknowledgement for the support received is made elsewhere.

FORMAT OF QDF3

Name and fonnula In the absence (during the period of preparation of the third edition) of an up-to-date Hey's Index (now available, see Oark, 1993), the reference works used for nomenclature were those of Fleischer & Mandarino (1991) and Nickel & Nichols (1991), both of which provide mineral names in a form approved by the IMA's Commission on New Minerals and Mineral Names (CNMMN). Inevitably, in a number of instances, this meant changing name-endings (from those used in QDF2), e.g., covelline to covellite, and adjustment to some spellings, e.g., zinckenite to zinkenite. It is stressed that these changes have been made purely to be consistent with one or more of the 'standard' reference lists, and do not necessarily correspond to the personal preferences of the editors. In the period 1986-1992, other nomenclatural changes were made by the CNMMN, e.g., "chloanthite" is no longer approved by them even

though it better known, in this form, by ore mineralogists, than by its new name, nickel-skutterudite. Similarly, "bravoite" is no longer acceptable and has been replaced by pyrite (nickeloan). In general, we have accepted such rulings, and have changed the names, adding, e.g., also known as "(a.k.a) 'bravoite"'. However, the QDF is designed as a practical manual for the ore microscopist, and it is our editorial decision to retain such widely used names as 'electrum' where, compositionally and optically, the alloy differs markedly from the end-members, gold and silver. The conflict between the needs of the practising mineralogist for a certain amount of imprecision in nomenclature and those who seek end-member perfection will, no doubt, continue. Bracketed suffixes are used for compositional variants of a species.The formula of a mineral is generally given as the simplest whole-number proportion of its elements (except where non-stoichiometry or vacancies have needed to be high-lighted). Where possible, some information on the valency of the cations is also provided.

Symmetry In the main, the symmetry system follows European (and lUG usage of the trigonal system.

Provenance While every attempt was made to provide sufficient information to adequately locate the original source of a mineral specimen (including latitudes and longitudes), there remain numerous examples of poorly localised minerals. This is unavoidable, when, as in the past, authors of new minerals have been forced, for political reasons, to be deliberately obscure about the provenance of their minerals, or, quite simply, because the authors could not establish where exactly their samples came from.

Chemical composition Full quantitative analyses, generally obtained with an electron microprobe, are given for 90% of the entries in the File. Where available, details of the standards used, and the operating conditions are listed and summarised.

X-ray data The X-ray data entries in QDF3 have been simplified as compared with earlier editions. No purpose was served by reproducing data available in the PDF of the JCPDS, nor was there space to include enough information to unambiguously identify a mineral. Some of the older entries, particularly those retained from QDFl, were identified by reference to the

x

Peacock Atlas (Berry & Thompson, 1962). These have not been changed, as it is impossible for an editor to revise the original data of an author (particularly when, in the intervening years, the author has died). For 'newer' minerals, reference is made to the original description. Where original data were collected specifically for QDF3, the identity, or otherwise, of the powder data, with those in the PDF, are noted. A not uncommon result of these comparisons are discrepancies between the new powder data for the mineral and those of the synthetic material sometimes preferred for reference purposes by the PDF. In numerous cases, data for a mineral, now deleted from the PDF, provide a better match for the QDF mineral than the data in the replacement card.

Reflectance standards All of the data in the QDF are relative to one of the reflectance standards approved by the COM. These are: basal section silicon carbide (R =::: 20%), tungsten carbide (R =::: 46%), tungsten-titanium carbide (R =::: 46%), and, for double-beam microscope spectrophotometers only, silicon (R =::: 37%). These, approximate, reflectances are for a wavelength of 546nm and do not take account of the dispersion of the reflectance of the standard. Black glass, formerly approved by the COM, has been withdrawn as a reflectance standard as it is known to be unstable.

Monochromator and photomultiplier The type of monochromatising device used and its bandwidth are quoted, where known. Contributors are expected to have used a bandwidth smaller than the wavelength interval of 20nm; for interference filters this will be of the order of 12nm, and, anything between 4nm and 12nm, for prism and grating monochromators. The manufacturer of the photomultiplier, its type, and its international code, are also quoted (if known). Information supplied on the instruments used in the as is generally incomplete.

Effective Numerical Aperture As with all optical measurements, the accuracy of a measured reflectance may be adversely influenced by misalignment of the measuring instrument. The operating manuals provided by the manufacturer of the MSP, together with advice included in Galopin & Henry (1W2), Jambor & Vaughan (1990) and Piller (1m), should, if followed, ensure proper alignment of the instrument. However, there remains one potential source of instrumental error which is not widely recognised, that of the numerical aperture of

the objective and the related cone angle of the incident beam of light. Since the QDF is expected to provide data for reference purposes, in this, as in the previous edition, it was hoped that contributors would supply details of the objectives used for measurement; their magnification; their full (potential) numerical apertures; and the effective numerical apertures (the aperture actually used) obtained by reducing the Illuminator Aperture Diaphragm (lAD). It is worth repeating the procedure used for the calculation of the effective numerical aperture. Knowing the potential numerical aperture of the objective (quoted by its manufacturer, and usually inscribed on the objective), a graduated Bertrand Lens or an Imaging Telescope is introduced (replacing the ocular), and the lAD opened fully. The microscope is now a conoscope and the image (an illuminated disc) observed is that of the back focal plane of the objective. The diameter d of the illuminated disc is measured (using the graduations inscribed on the Bertrand lens/Imaging Telescope). Even with very low power objectives e.g. x4, it is unwise to use the full numerical aperture for measurement (because of the possibility of diffraction from the periphery of the lens), with x40 objectives, with numerical apertures of 0.65 or more, a full aperture will provide a total cone angle of more than 50° which is unacceptable given that the reflectance measurement is supposed to be made at near-normal incidence. This cone angle can be reduced, however, simply by closing (reducing the diameter of) the lAD. If the image of the lAD is observed in the back focal plane of the objective as it is closed, and the diameter of the illuminated disc measured d' then the ratio d' / d will give the effective numerical aperture. It is possible, for example, to obtain an effective numerical aperture for measurement of 0.26 from an objective of NA 0.65. We labour this point, because modern microscope spectrophotometers are capable of great measurement precision, and the accuracy of measurements can be determined easily, but only if the most basic of optical procedures are followed. Many, but not all of the data in QDF3 include these details.

Micro-indentation hardness (Vickers) At a meeting of the Officers of the COM (and at which, a number of National Representatives were present), held in Ottawa in 1990, it was agreed that VHN measurements, though useful, were now of secondary importance to the optical and compositional data in the QDF. The reasons for this decision are easy to understand: VHNs, like other

xi

micro-indentation hardness measurements, are load dependent, i.e., load-variable, hence, unless all measurements are made at the same loading (or force) they are not directly comparable. In practise, this cannot be achieved with minerals, which differ enormously in hardness and in grain size. If data were available, they were, of course included in QDF3, but it is admitted that, for many of the more recently characterized new minerals, the possibility of measuring VHN100 values did not exist. We have, therefore, included VHN data at loadings varying from 5g to 200g. Rarely, do these fully reflect the range in hardness that might be expected for a species which varies anisotropically in its hardness. Similarly, many workers fail to provide qualitative details of the nature of the indentation, nor are details of the number of indentations, or the number of grains indented, provided. It is sad, but true, that VHN values have become of little direct value in mineral identification, and this may well be the last edition of the QDF in which they are included. That being said, the short-hand for the quality of the indentation reported in the File remains: p (perfect), f (fractured), sf (slightly fractured), cc (concave), cv (convex) and sg (the somewhat inappropriately termed, sigmoidal).

Reflectance data All of the reflectance data in the QDF were obtained with microscope-spectrophotometers (MSP) at near-normal incidence.

Over twenty years ago, the COM set, as its minimum requirement, for spectral reflectances, the four wavelengths: 470, 546, 589 and 650nm. At the time, this was reasonable, however, as QDF2 showed and QDF3 further proves, in many instances, these d,ata don't go far enough in enabling the microscopist tq confidently distinguish between minerals of s~milar composition on the grounds of the dispersion of their reflectance. Though they are useful in primary sorting and searching routines (Key 1), we have retained the four-wavelength values in the File more as a matter of tradition than for their utility in mineral identification.

With the instrumentation available today, it is a simple matter to measure reflectance curves for a mineral at intervals of 10 or 20nm, thus providing more complete and more reliable diagnostic data. In passing, it is worth noting that the Commission on New Minerals and Mineral Names have accepted a request from the COM that, from 1992, spectral reflectance data, at an interval of 20nm, from 400 to 700nm, will be required in the submission of optical data for new minerals which are opaque, or for

transparent minerals where, because their refractive indices are so high, they have to be calculated from measured reflectances.

In addition to reflectance values measured in air, the QDF presents data obtained under oil immersion for more than 500 of its entries (nearly 80%). To be included in the QDF, these data must have been obtained with an immersion oil conforming with the COM recommended specification which is the same as the German standard DIN 58.884. Oil produced by several manufacturers meet this specification but, in practice, only three, Cargille, Leitz and Zeiss, have been used in data submitted to the QDF. Which oil was used is listed in the individual data pages of the File, together with the ambient temperature at which the measurements were made (if known). The dispersion of the refractive indices, and the thermal coefficients, of these oils vary slightly from manufacturer to manufacturer.

All of the air and oil reflectance data tabulated in the QDF are quoted to three significant figures (greater accuracy is currently impossible for data obtained with an MSP because reflectance standards cannot be macroscopically calibrated to better than three to four significant figures). Practitioners of two-media reflectance measurements will know (Embrey & Criddle, 1W8) that under some circumstances it is possible to derive further optical constants from such measurements, e.g., the refractive indices and absorption coefficients. We do not recommend, however, that the data in the QDF be used to calculate these values without reference to the original author / s of the data. The reasons for this relate, in the main, to rounding errors for the single set of data as published. When the need exists to derive the optical constants from reflectance data, it is important that numerous measurements are made to establish the precision of measurement and to define limits of error. Many of the data sets included in the QDF will, of course, be the product of such repeated measurement, but the fact remains that it is not the purpose of the QDF to be a repository of reflectance-derived optical constants.

Symbols for reflectance used in QDF3 To the student, the symbols recommended by the COM for reflectance data can be quite confusing. Perhaps the best way to understand why there are so many different symbols is to analyse the contents of

QDF3:

xii

Distribution of optical data in QDF3:

AIR % OIL % Isotropic: 204 32.1 164 32.6 Anisotropic:

Data incomplete (i.e., only one

R spectrum measured) 46 7.2 20 4.0 Uniaxial (orientated) 21 3.3 17 3.4 Uniaxial (unorientated) 95 15.0 90 17.9 Biaxial (orientated) 13 2.1 13 2.6 Biaxial (unorientated) 256 40.3 199 39.6

TOTAL: 635 503 Total % of oil data sets with respect to air: 79.2

This analysis reveals that the optical data in the File refer to minerals which vary in their crystallographic and optical symmetry (as well as compositionally). Reference to Galopin & Henry (lW2) and to Peckett (1992), will show that, unless the ore microscopist is in a position to measure specially cut and optically orientated (hence, crystallographically orientated) sections of a mineral, he, or she, will have to use the somewhat restricted facilities of the ore microscope to gain some idea of the optical symmetry of the mineral from grains which are randomly orientated in their polished sections. Further, the symbols employed depend on the optical class of the mineral and whether the data available are sufficient to fully characterize it optically.

At this point it is worth restating the aims of the QDF: the various editions have been compiled primarily as an aid to the ore microscopist in identifying the component minerals of a rock or ore in polished section. In the plane of such sections, the minerals naturally tend to be randomly orientated, and it is from such sections that most of the data presented here were obtained.Many crystal chemists and physicists would have preferred more data from crystallographically orientated sections, particularly of biaxial minerals. We can only say that while, in some instances, it is feasible to obtain such data, MSP practitioners have not done so for very practical reasons: time, the difficulty in obtaining suitable crystals of a given mineral for investigation, and the intrinsic problems associated with measurement at normal incidence. We would add that, while the Commission fully recognises the potential of MSP as an aid to the interpretation of electronic bonding and as a 'valence probe' for semiconducting minerals and materials, until such time as instruments become widely available for spectral measurement in the UV and near-IR, little useful information will be obtained for interpretative studies from the absorption 'tails' which are the dominant features of most of these minerals in the visible spectrum.

As an aid to understanding the reflectance symbols used in the QDF, some graphical examples have been extracted from data entries in the File (Figure 1).

Symbol or symbols R: the symbol used for the single reflectance

spectrum obtained for all orientations from the isotropic section of cubic minerals (Fig. 1.1 for henryite). Also, the general abbreviation and symbol for reflectance. Were the mineral to have been measured in oil, the R symbol would obtain the superscripted prefix im (for immersion), i.e., imR, and this is true for all of the other symbols where measurements were made in oil.

R': the' following the R indicates that the reflectance data were obtained on a mineral known or suspected to be anisotropic but, where for practical reasons (e.g. the grains were too small), it proved impossible to obtain the two curves for the reflectance minimum and maximum. This case has not been illustrated since it will evidently not differ from Fig. 1.1.

Rl and R2: where the mineral is obviously anisotropic and measurably bireflectant (e.g., Fig. 1.2 for weibullite), Rl corresponds to the curve of minimum reflectance. These symbols are used where it proves impossible to establish whether the mineral is uniaxial or biaxial, a situation that can occur where there might be only one measurable grain of the mineral in the polished section. Figure 1.2 also shows that the two reflectance curves are virtually parallel, thus indicating that they do not differ in dispersion only in their overall reflectance. They will be perceived by the eye as varying in intensity but not in colour, hence, bireflectant but not pleochroic. By comparison, Fig. 1.3, clearly illustrates that the mineral wattersite is bothbireflectant and pleochroic (in this case, in subjective terms, Rl will appear bluish and R2 yellowish green).

Ro and Re: these symbols for optically uniaxial minerals are applicable to reflectance data obtained from orientated sections of tetragonal, hexagonal and trigonal minerals, i.e., from sections of a crystal cut and polished so as to provide data for the two principal vibration directions, ordinary (0) and extraordinary (e). Figures 1.4 and 1.5, for tellurium and hematite, respectively, illustrate the differing signs of the bireflectance for these materials (used in this way, bireflectance is directly analogous to the term birefringence for transparent minerals).

Ro and Re': here we return to what may be measured in randomly orientated grains in polished section. Assuming that a number of grains of the

xiii

same mineral are present in the section, we may be lucky and find that some are isotropic. These will provide a reflectance spectrum corresponding to Ro. Alternatively, where all the grains present are anisotropic, unless they crystallised with some preferred crystallographic orientation, it is probable that their bireflectance will vary. Measurement of two or three of the grains, e.g., Figure 1.6 for cameronite, should give near-constant values for the reflectance and its dispersion for one vibration direction for these grains. This vibration direction will give Ro. However, as grain after grain is rotated to its next extinction position, and its reflectance measured, the reflectance and its dispersion will vary. It will be evident from Figure 1.6 that a range of non-principal sections have been measured. All are assigned the symbol Re', the' to indicate uncertainty. As far as the QDF is concerned, where data have been obtained in this way, in general, only the grain which displays for Re' the most extreme difference from Ro is reported, but we still cannot be sure that this corresponds to the principal vibration direction for Re. Nevertheless, it is this procedure which enables the microscopist to distinguish between uniaxial and biaxial minerals, thus providing an additional parameter for use in mineral identification.

R a, Rb and R e, or Rp, Rm and Rg : in the example illustrated in Figure 1.7 (for chalcostibite), the data were obtained on a crystallographically and optically orientated mineral. In this case, an orthorhombic, hence, biaxial mineral. The symbols used are physically significant, i.e., they correspond to reflectance data for the principal vibration directions of the mineral, and are the product of lengthy and careful preparation and orientation of a single crystal. The symbols Rp,m,g are alternative symbols used by some authors. For light-absorbing minerals, those with orthorhombic symmetry alone, amongst the optically biaxial minerals, have a direct relationship between their principal crystallographic and optical axes. In monoclinic and triclinic minerals the dispersion of the principal vibration directions varies with wavelength, thus presenting, at present, an insuperable practical problem for measurement at normal incidence. The best that can be achieved is measurement of the unique axis b for monoclinic minerals. In the File, various symbols are used simply because data have been retained from earlier editions, e.g., jeppeite, a monoclinic mineral, uses the symbol Rb together with the more imprecise Rl&2, whereas data for other monoclinic minerals, such as, arsenopyrite, arsenopyrite (cobaltian) and kermesite,

':J!. o a:

<f­a:

45~--------------------------~

1 ISOTROPIC

40

35 R

30

25

henryite

20~--------~--------~-------~ 400 500 600 700

Lambdanm

35~--------------------------~

3 ANISOTROPIC BIREFLECTANT AND PLEOCHROIC

30

25

20

15 wattersite

10+---------~--------~------~ 400 500 600 700

Lambdanm

60~--------------------------~

55

50

45

40

2 ANISOTROPIC BIREFLECTANT

weibullite

35+---------~--------r-------~ 400 500 600 700

Lambdanm

75~--------------------------~

4 UNIAXIAL POSITIVE

70

65

60

55 tellurium (synthetic)

50+--------.---------r------~ 400 500 600 700

Lambdanm

Figure 1 (part 1)

xiv

40~--------------------------~

5 UNIAXIAL NEGATIVE

35

30

25

20 hematite

15+---------r-------~,-------~ 400 500 600 700

Lambdanm

55r---------------------------~

50

7 BIAXIAL ORIENTATED

401..-_----__

35 chalcostibite

30+---------r---------r-------~ 400 500 600 700

Lambdanm

~ o a:

45~--------------------------~

6 UNIAXIAL POSITIVE R ,FROM RANDOMLY ORIENTATED e

40 SECTIONS

35

-~.-... ---.::::::::::;;:::;

25 cameronite

20+---------.-------~r_------~ 400 500 600 700

Lambdanm

45r-------------------------~

8 BIAXIAL BIREFLECTANT AND PLEOCHROIC

40

lapieite

30+---------r---------.-------~ 400 500 600 700

Lambdanm

Figure 1 (part 2)

xv

retained from QDFl, use Ra&c in addition to Rb.

Finally, other variants, retained in QDF3, include symbols for spectra measured for one or two vibration directions, and those measured parallel, II and perpendicular, -L to a vibration direction.

Rl and R2: again we return to unorientated sections of biaxial minerals, illustrated by Figure 1.B for the orthorhombic mineral, lapieite. With minerals of lower symmetry, it is a not too infrequent occurrence that Rl values, or the R2 values, or both, measured on different grains in the same polished section are differently dispersed. In such instances, where the reflectance curves cross, the mineral will be obviously anisotropic and pleochroic. This pleochroism, together with the bireflectance, will be the more noticeable where grains of the same mineral, adjacent to one another, are differently and randomly orientated in the section.

Reflectance data in two-media As noted above, more than 500 of the data sets in the QDF include reflectance data in two-media, and in this, the QDF is unique: there is no other publication which provides reflectance values measured under oil ifnI!lersion. Although it is re-emphasised that the Rand ImR data should not be used directly from the File f~r the calculation of the optical constants, nand k, the ImR values provide a useful additional parameter for distinguishing between minerals

40~--------------------------~

AIR

yarrowite (Ro) 30

10

O~--------r-------~~------~ 400 500 600 700

Lambdanm

which have similar reflectances in air. The difference in the two reflectances follows from the change from unity, the nominal refractive index of air, to that of the immersion oil, ND = 1.515. Depending on the crystallographic orientation of the mineral, and on its electronic configuration, the reflectance in oil may be reduced, without appreciable chang~ in dispersion from that in air, or the dispersion of ImR may change significantly for one or more of its principal vibration directions. A good example of the latter is provided ~y covellite, CuS, where the dispersions of Ro and ImRo ar~ very similar (Figure 2), but where those of Re and ImRe are quite different. Qualitatively, for both vibration directions in air, covellite appears whitish blue, Ro, and a darker, saturated blue, Re, ~hereas, in oil, it appears blue, imRo and purple, ImRe. For many years, the term coined by Ramdohr, 'blaubleibender' covellite, was widely used to indicate a variety of covellite which, for both vibration directions, remained blue when immersed in oil. Today, following the identification by Goble (1980) of the minerals yarrowite, CU9Ss, and spionkopite, CU3952s, the data in the QDF, and in Figure 2., show that blaubleibender covellite is spionkopite, and that yarrowite is intermediate in its optical behaviour between covellite and spionkopite. This is but one example of the usefulness of oil immersion measurements in mineral identification, the user of the QDF will find dozens more in its

40~----------------------------~

OIL

30

~20

600 700 Lambdanm

Figure 2.

xvi

pages. It is for this reason that Key 3 is included with the other keys for identification.

It is also obvious from the above examples that there is a direct link between the chemical composition of a mineral and its optical properties, another example of which is briefly illustrated below.

Reflectance spectra and chemical composition There are so many examples within the QDF of relationships between reflectance spectra and the composition of groups of isostructural minerals that it is difficult to make a choice as to which ones to demonstrate. Fortunately, Peckett (1992), using many of the data sets from QDF2, has illustrated and discussed the crystal chemical and structural implications of these relationships for twenty nine mineral groups. One such, the pyrite group, has been widely investigated in terms of molecular orbital and band theories, providing, amongst other things, a clear explanation of the variation in colour and reflectance of its constituent members. Eighteen or more individual species are recognised in the group including sulphides, selenides, arsenides, antimonides, etc., but, for the sake of simplicity, the example selected for illustration here is a solid solution between krutaite, CuSez, and penroseite, (Ni,Co,Cu)Sez, Figure 3. The reflectance spectra for four examples (taken from QDF3) of the two minerals, from near-end-member krutaite, through to a cuprian penroseite, are plotted and related to atomic percentage ratios of their Cu to Cu+Ni+Fe contents. An illustration which should suffice to show the sensitivity of the reflectance and its dispersion to a change in chemical composition.

Colour and quantitative colour In the years that have passed since Piller (1966) made the connection (a 'conceptual leap') between the reflectance spectra of ore minerals and the science of colour, as espoused by the Commission Internationale de l'Eclairage (OE), the difficulties and tedium of manual calculation of colour values has been largely replaced by the use of computer programmes for personal computers (PCs) which can compute the values directly from the measured reflectance spectrum. It was not until 1992, however, that a text devoted exclusively to a thorough explanation of the colour of ore minerals (Peckett) appeared. Recognising that the colour of a mineral depends on its dispersion, Peckett not only deals with its appearance in plane-polarized light but also between crossed polars, i.e. its anisotropic rotation tints, or, as he prefers, anisotropy (polarization) colours. Though the QDF restricts itself to

XVll

tf.. a:

45

35

30

Cu Co + NI + Fe

cp

nk 0.6

nk 1.5

k

5.8

krutaite (k), nickeloan krutaite (nk) and cuprian penroseite (cp)

25+----------r--------~--------~ 400 500 600 700

Lambda nm

Figure 3.

quantitative data for minerals in plane-polarized light, the reader is encouraged to investigate the theoretical basis of the relationship between these data and those for the same mineral, between crossed polars, so elegantly expressed by Peckett.

From the afore-mentioned, it is clear that it would be superfluous to attempt to repeat the psychological, physiological and physical reasons for colour perception of the specular reflectance of minerals, let alone the philological! semantic discrepancies that exist in colour nomenclature between natives of various 'national' or ethnic groups. The singular virtue of the OE system of colour is that it 'codifies' in a rational way, from measurement, and in numerical terms, the colour 'values' of a mineral with respect to a 'standard' (statistically average) observer. The OE(1931) system used in the QDF is related to the relative power distributions of two standard illuminants, C, at 6774K, and A, at 2856K, which very roughly translate to light sources equivalent to a quartz-halogen lamp (A, between 3,100 and 3,330K) and the same lamp with a blue filter (C, from 5,800K upwards). Using these values, the measured reflectance spectrum, or spectra, and three 'colour matching' functions, provide three chromaticity co-ordinates, x, y and z, the first two of which are used, together with an 'integrated' reflectance, luminance, or luminous reflectance Y (which, for our purposes, is expressed as a percentage). The first two values are plotted on a

chromaticity diagram (in two dimensions); Y% providing a third dimension. We also include parameters derived from the x and y values: the dominantwavelengthA.d and the excitation purity pe%, which, respectively, and in subjective terms, correspond to the hue (colour) and saturation (the intensity of the colour when compared with 'white' light, or, more properly, the relative power distribution of the illuminantflight source).

These colour values are undoubtedly useful: not only do they provide, from the detail of a reflectance spectrum, a few parameters useful for coding and searching a database, but they also provide a quick means of assessing the colour and saturation of a mineral. By itself, this may seem no great thing, but when, as is often the case, the same mineral can occur in countless mineral associations, where its appearance to the observer is strongly influenced and altered by the appearance of minerals adjacent to it, it is of invaluable assistance, both in identification and in teaching.

The colour values in the QDF are all calculated from computer programmes used at the NHM. Following the release of QDF2, a number of readers kindly wrote to the editors pointing out errors in the quoted values. Some were real, most were not. When compiling the data for QDF2, two programmes were

used: the first used the weighted ordinate method of calculation for the sixteen values (or those interpolated/ extrapolated) for the mineral in question; the second used a programme which read directly from measured reflectances at 31 wavelengths (i.e., for data measured at the NHM). What was overlooked was that, although the weighting differences played no significant part, rounding errors, at different stages in the computer calculation, did - at least for some of the calculations. Following a fairly thorough investigation of these discrepancies it emerged that the reported differences affected only those minerals with very low excitation purities. In effect, the differences had no arithmetical or physical significance. For this reason, and to assist in a wider understanding of the application of colour values, a number of figures have been prepared to illustrate how the dispersion of the reflectance of a mineral influences the calculated colour values, but before turning to them it will be helpful to summarise the distribution of the colour values for the minerals in QDF3 with respect to their saturation (Pe%), hue (A.d) and the pure spectral colours with which they are compared at the boundary of the colour diagram. Here, the names of the colours are those used in the dictionary of colour names (Kelly & Judd, 1W6).

C-colour values (air): distribution by dominant wavelength and excitation purity (together with boundary colour names)

Excitation purity: <1 >1 >3 >5 >10 >20 >40

% total Lambda nm

0.1 <420

0.8 >420 2

38.4 >460 3 86

10.7 >482 5 49

5.1 >487 11 29

0.9 >492 6 3

1.2 >497 10 2

2.1 >530 15 5

3.3 >560 7 16

8.6 >570 4 19

14.4 >575 1 19

5.9 >580 9 6

2.9 >585 6 10

0.7 >600 3 2

0.4 >630 2

Complementary wavelengths (non-spectral colours):

0.2 <c495 1 1

1.8 >c495 9 6

1.1 >c525 2 6

1.3 >c555 4 6

Totals: 100 270

(as percentage): 10.1 27.1

1

149

31

3

1

4

19

23

10

4

1

2

1

249

25.0

1

123

7

8

6

20

57

19

8

1

2

252

25.3

xviii

15

14

16

38

10

2

2

97

9.8

3

8

4

3

1

1

1

21

2.1

3

1

2

6

0.1

Violet

Purplish blue

Blue

Greenish blue

Blue-green

Bluish green

Green

Yellowish green

Yellow-green

Greenish yellow

Yellow

Yellow orange

Orange

Reddish orange

Red

Red-purple

Purplish red

Reddish purple

Purple

Further, a comparison of the these values and the differences, particularly in the enhanced those under oil immersion should serve to illustrate saturation of the colour of a mineral on immersion:

C-colour values (oil): distribution by dominant wavelength and excitation purity (together with boundary colour names)

Excitation purity: <1 >1 >3 >5

% total Lambda nm

<420

1.3 >420 2 4 2

45.4 >460 5 23 55 181

8.6 >482 20 21 26

2.3 >487 3 10 3 3

1.1 >492 5 4

1.7 >497 11 3

1.3 >530 4 6 1

3.0 >560 3 7 7 7

8.1 >570 2 9 10 18

12.9 >575 2 11 13 28

5.1 >580 1 5 5 17

3.3 >585 1 7 3 11

0.2 >600 1 1

0.1 >630 1

Complementary wavelengths (non-spectral colours):

1.0 <c495 4 1 1 2

1.1 >c495 2 3 1 1

1.9 >c525 4 5 1 2

1.7 >c555 2 5 2 3

Totals: 51 124 123 303

(as percentage): 6.1 14.9 14.8 36.5

The quickest way to see how immersion affects the saturation of the hue of minerals, from these tables, is to note differences between the total percentages for the columns of excitation purity: a far higher proportion of the oil data (64.1 %) have Pe% greater than 5 % than the corresponding air data (37.3%). It is also noteworthy how, in both media, there are two concentrations, or peak distributions, around those minerals which appear blue and those which appear yellow. In effect, few minerals are known which appear green, red, violet, or one of the non-spectral hues, in either medium.

To return to individual examples of R spectra, in Figure 4 are plotted dispersion curves for minerals which have no intrinsic colour, i.e., none of their exci~tion purities exceed 0.9%. This means that, if they occupy the full field of the microscope objective, over 99% of their colour attributes will be those of the light source. For this reason, from the lowest reflector, galaxite atlO.8%Y, to the highest, ruthenium at 69.8%, they should appear grey to white. The Figure also demonstrates that, as Y% increases, the upward inflexion of the ruthenium curve, in the middle of the spectrum, is less

xix

>10

2

99

4

1

21

43

6

1

2

179

21.6

75

50

25

a 400

>20 >40 %

Violet

1 Purplish blue

13 1 Blue

Greenish blue

Blue green

Bluish green

Green

Yellowish green

Yellow green

5 2 Greenish yellow

8 2 Yellow

7 1 Yellow orange

4 Orange

Reddish orange

Red

Red purple

2 Purplish red

1 3 Reddish purple

Purple

41 9

4.9 1.1

ruthenium _______

sperrylite -khamrabaevite

daubreellte penroseite

goldfieldite

magnetite (chromiaQi

tomichite (R,)

galaxite (ferroan)

500 600 700 Lambda nm

Figure 4.

75r-------------------------~

50

gersdorffite I

tP. II:

freibergite

25

sphalerite

periclase

Or--------.---------r------~ 400 500 600 700

Lambdanm

FigureS.

significant (atpe% 0.8) than the downward trend of tomichite (atpe% 0.3).

All of these minerals are likely to be subject to errors in the calculation of their colour values simply because their chromaticity co-ordinates are virtually identical with those of the illuminant. Having said that, if the microscope field contained, in addition to galaxite, strongly coloured minerals with higher reflectances, it would appear blue-grey because of the observers visual confusion. Similarly, ruthenium adjacent to a lower reflecting, but yellow reflector, would appear bluish white (there are numerous good scientific/ medical terms to account for these confusions and the interested reader is referred to Kelly & Judd, 1976 for further enlightenment).

Figure 5 is for minerals which, by themselves, would have barely perceptible intrinsic colour characteristics, but all of which, in terms of dominant wavelength, are blue. From rutheniridosmine (pe %, 1.3) to sphalerite (Pe%, 4.4), they display a generally downward trend in their reflectance from 400nm to 700nm, but please note again, the influence of the luminance on the saturation: the curve for petzite compared with that of sphalerite suggests that petzite should be bluer, yet petzite, with its higher reflectance/luminance has a lower excitation purity than sphalerite.

There can be no doubt, however, about the colour of the minerals in Figure 6, all of which have dominant wavelengths between 465nm and 480nm

xx

75.----------------------------.

50

pyrargyrite (Ro) tP. II:

25

Or--------.---------r------~ 400 500 600 700

Lambdanm

Figure 6.

(blue to greenish blue), and which have excitation

purities ranging from 9.6 %(cuprostibite) to 43.1 %

(covellite). Certainly, it is true that both of these

minerals have reflectance curves which trend

upward from the middle of the spectrum into the

75

---50 gerdorffite II

25 --

o 400

platinum

insizwaite

carrollite

hemusite

murdochite

500 600 700 Lambdanm

Figure 7.

100~---------------------------.

75

"if. 50 a:

25

valleriite (R 0)

o+----------.--------~--------~ 400 500 600

Lambdanm

Figure 8.

red, however, the overall emphasis of their dispersions is downwards from 400nm.

700

Compared with the earlier figures, Figure 7 shows the reverse trend, with R gradually increasing from blue to red. The dispersion of these minerals is low to middling, from gersdorffite II at 0.8% pe, to platinum at 4.7% and hemusite at 4.8%, but all have dominant wavelengths in the range 573-582nm. A range similar to that of the minerals in Figure 8, 573-586nm, or greenish yellow, through yellow to yellow-orange. The differences are obvious: these minerals are much more strongly dispersed, a fact reinforced by the levels of their excitation purities­from pyrite at 10.6% to gold at 39.8%.

As demonstrated in the tables of distribution of colour values in the QDF, all of the minerals illustrated in Figures 4-8, fall within the peak colour distributions (blue and yellow). It remains only to illustrate the dispersion and colour values of some of the less common minerals: those whose spectra cannot be directly linked to one of the pure spectral colours, i.e., they are a combination of the two colours, red and blue, a purple mixture which does not appear in the visible spectrum. Figure 9 shows a range of the so-called complementary wavelengths from c506 for kiddcreekite, with an excitation purity of 1.9%, to c562 for fischesserite, with an excitation purity of 4.1 %. The observant will note that the dispersion of germanite appears to be dominated by a high reflectance at the red end of the spectrum.

XXI

50.-------------------------~

"if. 25 a: kiddcreekite

~----'germanite

ulvospinel

O+--------,---------.------~ 400 500 600 700

Lambdanm

Figure 9.

This is indeed the case, and its dominant wavelength provides a rare example of a truly red specularly reflecting mineral, at 695nm.Finally, in Figure 10 the dispersion curves of the most extreme of the purple minerals are illustrated: ranging from a Ac of 563 for

75.---------------------------,

cuprostibite (Ro)

50

~ o a:

25

O+---------.---------.---------~ 400 500 600 700

Lambdanm

Figure 10.

umangite to 565 for cuprostibite, the corresponding excitation purities values of which range from 14 to 40%.

Scaling of graphs As stated in the Preface, all of the graphs in the body of the text are drawn to one of four scales of reflectance - 25%, 50%, 75% and 100%, but, with the exception of those minerals which require the full 100% to display their dispersion, few have a common origin at 0 (zero). In every ease, the scale selected is one which maximises the information available for the dispersion of a mineral and provides some consistency when comparisons are made by the user. It is anticipated that some users will copy the graphs to make direct comparisons with the reflectance spectra they will have obtained for their own minerals, hence, some common scaling is desirable.

It may be stating the obvious, but comparisons with the various Figures in this introduction and the graphs in the File will show that the user must be conscious of the apparent differences in dispersion which follow from the use of landscape and portrait modes. Equally, it is easy to exaggerate or minimise the apparent dispersion of a mineral by scaling too high, or too low. Because few of the minerals in the file possess absorption peaks within the visible spectrum, few of the spectral reflectance curves are sharply inflected, most are smooth. Where the reflectance spectra are 'jagged', it is an indication that they include erroneous data points. In some instances, spectra have been included where doubts exist over their accuracy (in the main, those extracted from the literature for new minerals). The reason for their inclusion is that no other data exist for the species in question and, as always, it has been the QDF policy to seek to improve the quality and completeness of data from edition to edition but it is arguably better to have poor data (and to know it) than to have none.

Polishing method It is taken that all contributors took steps to ensure that their reflectance measurements were made on specularly reflecting, scratch-free, polished surfaces. Where they were made available, brief details of the polishing procedure are supplied.

Reference and further infonnation This section contains references to data previously published, and to the authorship of data submitted, in the first instance, to the QDF. For the latter, the year of measurement is included. Where the data were published in previous editions of the QDF, this

xxii

is indicated with the appropriate code. Other details included are: a brief specification of the oil used for immersion measurements; the code name or registration number of the specimen used; a note if the specimen was the type specimen of the mineral, and any other relevant information.

Keys for identification As in QDF2, three keys or indexes are included to provide a simple means of manually comparing data from an unknown sample with data in the File. But for the inclusion of simplified chemical formulae, they are identical in layout with those in QDF2. All of them are preceded by a brief description of the sequence of ordering of the data. The first key is based on reflectance in air in the wavelength sequence, 546nm, 470nm, 589nm and 650nm. The second, for colour values relative to the OE Illuminant C, is based on a sequential means of identification, starting with Y%, thenld and, finally pe. Those minerals, for which it proved impossible to calculate colour values, are listed at the beginning of the table. The third key includes data in air and, where available, in oil for the wavelengths, 44Onm, 500nm, 600nm and 700nm. All will serve their purpose as aids to identification, which one the user prefers will depend largely on the completeness of their data, and on the mineral in question.

Species representation With every new edition of the QDF, we inch towards what, in effect, is an unrealisable goal: characteristic data for all of the known ore (or opaque) minerals. Depending on whose definition one takes, as to what constitutes an ore mineral, the species represented in the QDF constitute fewer than 70% of those known (or recognised). Year by year, 'new' minerals are described, and it remains a real problem to gain access, either to representative data, or to the mineral itself - hence, the unrealisable goal. Equally, the literature is burdened with inadequately characterized minerals, many of which entered the literature before the Commission on New Minerals and Mineral Names (CNMMN) of the IMA set itself the task of ensuring that a mineral name corresponded to a valid mineral species. Even if none of this were true, and it proved possible to obtain data for all of the species recognised as ore minerals, there remains the problem of satisfying the specialist mineralogist who requires data for countless compositional varieties of a species. As an example, QDF2 was criticised by one reader for not containing 'enough' examples for sphalerite (we trust that this criticism will be withdrawn for QDF3). Whatever,

QDF3 could have included many more data for compositional variants of individual species but editorial decisions sometimes have to be taken with respect to production costs (and time). It is hoped that these decisions have provided a good balance between the possible and the desirable. In any event, it is true to say that QDF3 is the most comprehensive collection of characteristic data for the ore minerals available to date.

Selected Bibliography The following list is divided into three parts: 1. general mineralogical nomenclature, descriptive texts and systematics; 2. texts describing quantitative and qualitative ore mineralogy and related matters and, 3. reflectance-based identification schemes and reflectance databases. It is neither a comprehensive nor an exhaustive list of reference works, rather it is a listing of those works which a small ore mineralogy laboratory might expect to include in its library. It also includes those works referred to in the Introduction to this Edition. Excluded from the bibliography are the 'ZJ9 references included with the individual data sets within the QDF (and, of course, all references to earlier editions of the File).

1. Anthony, J.W., Bideaux,. RA., Bladh, K.W. &

Nichols, M.e. (1990): Handbook of Mineralogy: Volume 1. Elements, Sulfides and Sulfosalts. Mineral Data Publishing, Tucson, Arizona.

Berry, L.J. & Thompson, RM. (1962): X-ray powder data for ore minerals: the Peacock Atlas. Geol. Soc. Amer. Mem., 85.

Cabri, L.J. (ed) (1981): Platinum-Group Elements: Mineralogy, Geology, Recovery. OM Special Volume 23. (The Canadian Institute of Mining and Metallurgy).

Clark, A.M. (1993):M.H. Hey's Index of Mineral Species, Varieties and Synonyms. 3rd Edition. Chapman & Hall, London.

Embrey, P.G. & Fuller, J.P. (1980): A Manual of New Mineral Names 1892-1978, British Museum (Natural History), University Press, Oxford.

Fleischer, M. & Mandarino, J.A. (1991): Glossary of Mineral Species. The Mineralogical Record Inc., Tucson, Arizona.

Goble, RJ. (1980): Copper sulfides from Alberta: yarrowite CU9Ss and spionkopite CUa9~8. Can. Mineral., 18, 511-518.

Kostov, I. & Minceva-Stefanova. J. (1981): Minerals: Crystal Ozemistry, Para geneses and Systematics. Bulgarian Academy of Sciences, Sofia.

xxiii

Nickel, E.H. & Nichols, M.e. (1991): Mineral Reference Manual. Van Norstrand Reinhold, New York.

Palache, e., Berman, H. & Frondel, e. (1946): Dana's System of Mineralogy. Volume I, 7th Edition. John Wiley & Sons, New York.

--- (1951): Dana's System of Mineralogy. Volume II, 7th Edition. John Wiley & Sons, New York.

JCPDS Mineral Powder Diffraction File. (published annually by the International Centre for Diffraction Data) Swarthmore, Pennsylvania.

Stl"UllZ, H. (with e. Tennyson) (1978): Mineralogische Tabellen. Akademische Verlags Geselleschaft Geest & Portig K-G.

2. Cameron, E.N. (1961): are Microscopy. Wiley, New

York. Chen, Z., Chen, D. & Zou, X. (1979): Color Indices of

ore minerals. Beijing: Geological Press. (in Chinese).

Craig, J.R & Vaughan, D.J. (1981): are microscopy and ore petrography. Wiley, New York.

Embrey, P.G. & Criddle, A.J. (1978): Error problems in the two-media method of deriving optical constants nand k from measured reflectances. Am. Mineral., 63, 853-862.

Galopin, R & Henry, N.F.M. (1972): Microscopic Study of Opaque Minerals. Cambridge, W. Heffer. (published since 1975 by McCrone Research Associates, London).

Henry, N.F.M. (1980): IMA/ COM Report on Symbols and Definitions. Can. Mineral., 18, 549-551.

her, RA. (1990): Atlas of Opaque and are Minerals in Their Associations. Open University Press, Milton Keynes.

Jambor,J.L. & Vaughan, D.J. (eds) (1990): Advanced Microscopic Studies of are Minerals. MAC/ COM Short Course 17, Mineralogical Association of Canada.

Kelly, K.L. and Judd, D.B. (1976): Color-Universal Color Language and Dictionary of Color Names. National Bureau of Standards. Special Publication 440.

MacAdam, D.L. (1981): Color Measurement: Theme and Variation. Springer Series in Optical Sciences Zl, Springer Verlag, Berlin.

Peckett, A. (1992): The Colours of Opaque Minerals. John Wiley & Sons, Chichester.

Piller, H. (1966): Colour Measurements in Ore Microscopy. Mineralium Deposita, 1,175-192.

--- (1977): Microscope Photometry. Springer Verlag, Berlin.

Ramdohr, P. (1975): Die Erzmineralien und ihre Verwachsungen. 4th Edition. Akademie Verlag, Berlin.

--- (1980): The ore minerals and their intergrowths. 2nd Edition. Pergamon Press, Oxford.

Ribbe, P.H. (ed) (1974) 'Sulfide Mineralogy'. Reviews in Mineralogy, 1 (originally published as Short Course Notes, Mineralogical Society of America).

Shuey, R.T. (1975): Semiconducting Ore Minerals. Elsevier, Amsterdam.

Simpson, P.R. & Hurdley, J. (1984): Role of ore microscopy in identification of gold-containing minerals. Trans. Inst. Min. Metall., 93, Bl47-15I.

Stanton, R.L. (1972): Ore Petrology. McGraw-Hill, New York.

Strens, R.G.J. (1979): Determining the optical constants of opaque minerals. Bull. Mineral., 103, 308-313.

Vaug~ D.J. &Craig,J.R. (1978): Mineral Chemistry of Metal Sulphides. Cambridge University Press, Cambridge.

Wang, S. (1976): Crystallo-optics of opaque minerals. Geological Press, Beijing (in Chinese).

3. Atkin, B.P. & Harvey, P.K. (1979): Nottingham

Interactive System for Opaque Mineral Identification: NISOMI. Trans. Inst. Min. Metall. 88,1324-1327.

Bernhardt, H-J. (1982): Ein einfaches Verfahren fur die Erzmineral-Diagnose mittels Reflexionsspektren. Neues Jb. Mineral. Mh., 241-247.

--- (1987): A Simple, Fully-Automated System for Ore ~!1ineral Identification. Mineralogy & Petrology, 36,241-245.

Bezsmertnaya,. M.S. & Chvileva,. T.N. (1976): Identification of ore minerals in reflected light. Moscow, Acad. Nauk. SSSR. Inst. Mineralogii, Geokhimii i Kristallokhimii Redkikh Elementov (in Russian).

Bezsmertnya,. M.S., Loginova,. L.A. & Soboleva,. L.N. (1969): Microscopic identification of tellurides. Moscow. Izdat. Nauka. (in Russian).

Bowie, S.H.U. & Simpson, P.R. (1978,1980): The Bowie-Simpson System for the microscopic determination of ore minerals. First Students Issue. McCrone Research Associates, London.

Chinese Academy of Geological Sciences, Institute of Geological and Mineral Resources. (1978): Microscopic Identification of ore minerals. (in

xxiv

Chinese).Uinshu Kuangwu, Xianweijing Jiangding].

Criddle, A.J. & Stanley, c.J. (eds) (1986): The Quantitative Data File for Ore Minerals of the Commission on Ore Microscopy of the International Mineralogical Association. 2nd Issue. British Museum (Natural History), London.

Font-Altaba,. M. (ed) (1970): International tables for the microscopic determination of crystalline substances absorbing in visible light. Provisional Issue. IMAI COM. Departamento Crystalografia y Mineralogia, University of Barcelona.

Gerlitz, C.N., Leonard, B.F. & Criddle, A.J. (1989): QD F Database System. Reflectance of Ore Minerals - a search-and-match identification system for IBM compatible microcompu ters using the IMA/COM Quantitative Data File for ore minerals, second issue. U.S. Geol. Survey. Open File Report 89-0306A.

Henry, N.F.M. (ed) (1977): Commission on Ore Microscopy: IMA/COMQuantitative Data File (first issue). Applied Mineralogy Group, Mineralogical Society of Great Britain and Ireland, London.

lsaenko, M.P., Borishanskaya,. S.S. & Mans'eva,. E.L. (1972): Identification of the more important ore minerals in reflected light. Moscow. Izdat. Nedra. (in Russian).

KUhnel, R.A., Prins, J.J. & Roorda,. H.J. (1980): The 'Delft' system for ore mineral identification, 1: opaque minerals. Delft University Press.

Picot, P. &Jo~ Z. (1977): Atlas des Mineraux Metalliques. Mem. B.R.G.M., 90.

-- (1982): Atlas of ore minerals. B.R.G.MI Elsevier.

Tarkian, M. & Bernhardt, H-J. (1984): A Key Diagram for the Optical Determination of Platinum-Group Minerals. Tschermaks Min. Pet. Mitt., 33,121-129.

Tarkian, M. & Liegmann, W. (1991): A Guidefor Optical and Analytical Identification of Ore Minerals. 2nd revised Edition. Oausthaler Geologischen Abhandlungen 47, Verlag Sven von Loga, Koln.

Uytenbogaardt, W. & Burke, E.A.J. (1971): Tables for microscopic identification of ore minerals. 2nd Edition. Elsevier, Amsterdam.

Vyal'sov, L.N. (1973): Reflectance Spectra of Ore Minerals. Academy of Science, USSR Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Moscow. (in Russian).

COM wavelength key 1

Only reflectance data in air are presented and these are in the sequence 546, 470, 589, 650nm. Organisation: this is based on ascending order of reflectance at 546nm. Isotropic minerals are listed first, followed by anisotropic or bireflectant minerals. Where two or more isotropic minerals have the same reflectance at 546nm the order is stepped to 470nm and the sequence repeated. If the values are identical at this wavelength also, the order steps to 589nm, then to 650nm. Anisotropic minerals are ordered firstly on the ~ value at 546nm then on increasing bireflectance (Le. the difference between ~ and ~). Where two or more anisotropic minerals have the same ~ value at 546nm and the same bireflectance, the order is stepped in the same way as for isotropic minerals

Italicised reflectance data indicate that the mineral is not cubic but that the bireflectance was not measured or not measurable.

R%

546nm 470nm 589nm 650nm Page

6-9 6-10 6-9 6-9 Malachite Cl1:!(C03)(OH)2 346 6-23 12-28 4-21 7-23 Covellite CuS 117 6-26 6-25 6-27 6-28 Graphite C 211 6-31 9-15 11-38 33-39 Bogdanovite Aus(Cu,FeMTe,Pbh 53 7 7 7 7 Spinel MgA~04 527

7 8 7 7 Periclase MgO 428 7-7 7-8 7-7 7-7 Corundum A~03 114 7-24 13-29 4-21 6-23 Covellite CuS 116 7-24 13-30 4-21 6-23 Covellite CuS 118 8 8 8 8 Hercynite FeA~04 235

8 8 8 8 Gahnite ZnA~04 182 8-9 8-9 8-9 8-9 Hogbomite (Mg,FeMAI,Ti)SOlO 240 8-11 8-8 8-9 8-29 Vyalsovite FeS.Ca(OH)2·AI(OHh 614 8-13 9-14 8-13 8-13 Cerussite PbC03 79 9 9 9 9 Chlorargyrite AgCI 92

9 10 9 9 Anglesite PbS04 13 9-9 10-10 8-9 8-9 Azurite Cu3(C03MOH)2 32 9-11 10-12 9-11 9-11 Titanite CaTi03 578 9-18 9-16 9-19 8-20 Tochilinite 6Feo.9S.5(Mg,Fe )(OHh 579 9-20 8-15 9-27 8-37 Erdite NaFeS2·2H2O 156

9-26 10-32 9-25 9-24 Aurorite (Mn,Ag,Ca)Mn307·3~O 29 9-27 10-32 9-25 9-24 Cha1cophanite (Zn,Mn,Fe )Mnp7.3~O 83 10 11 10 10 Spinel (ferroan-chromian) MgA~04 528 10-10 10-11 10-10 10-10 Scheelite CaW04 501 10-10 10-11 10-10 10-to Ingersonite C~MnSb4014 248

10-11 11-12 10-11 10-11 Blatterite (Mn,Mg)2(Mn,Sb,Fe) BOs 52 10-12 11-12 10-12 10-12 Cannonite BiP(OHhS04 73 10-21 11-15 10-23 10-26 Valleriite 4(Fe,Cu)S.3(Mg,AI)(OHh 603 10-25 16-30 7-23 4-23 Yarrowite Cu9Sg 629 11 11 11 10 Galaxite (ferroan) (Mn,Fe,Mg)( AI,Fe)p 4 183

11 12 11 11 Microlite (Ca,Na)2Tap6(O,OH,F) 373 11-11 12-12 11-11 11-11 Zincite (Zn,Mn)O 631 11-12 11-13 11-12 11-12 Cassiterite Sn02 76 11-12 12-12 11-11 11-11 Filipstadite (Mn,Mg)4SbFeOg 171 11-20 19-29 17-18 22-36 Rickardite C~Tes 480

xxv

COM wavelength key continued

R" 546nm 470nm 589nm 650nm

11-26 12 12 12 12

12 12-15 12-15 12-18 13

13 13 13 13 13-13

13-14 13-15 13-16 13-17 13-19

13-20 14 14 14 14

14 14-15 14-17 14-17 14-21

15

15 15 15-15 15-15

15-16 15-16 15-17 15-18 15-18

15-20 15-21 15-69 16 16

16 16 16 16-16 16-17

11-18 12 13 13 13

13 13-14 13-16 13-21 13

13 13 14 15

14-14

14-14 14-17 18-19 14-18 13-20

14-22 14 14 14 15

15

14-15 14-17 14-18 15-21

16 16 16 15-16 15-16

15-16 16-17 16-18 16-17 16-20

15-24 18-23 20-43 17 17

17 17 17 16-17 16-19

10-34 12 12 12 12

12 12-15 12-15 11-17 12

13 13 13 12 13-13

13-14 13-15 13-15 13-16 13-19

13-19 13 14 14 14

14 14-14 15-18 13-16 14-20

15

15 16 14-15 14-15

15-16 15-16 15-17 15-18 15-18

20-21 15-20 12-74 16 16

16 16 17 16-16 15-17

10-46 12 12 12 12

12 11-14 12-15 11-17 12

13 13 12 12 12-13

13-14 13-14 17-21 13-16 13-18

13-18 13 13 14 14

14 13-14 16-19 13-16 13-19

14 15 18 14-15 14-15

15-17 15-16 15-17 15-19 15-17

20-29 14-20 11-78 15

16

16 16 17 15-16 15-16

Erdite Zincochromite Betalite Magnesiochromite (ferroan) Bunsenite

Filipstadite Vonsenite Geikielite

Lepidocrocite Bismutite

Qandilite Thorianite Pyrochlore Kazakhstanite Barstowite

Baddeleyite Kentrolite Umangite

Jeppeite Groutite

Hausmannite Chromite

Manganosite Uraninite Chromite

Koechlinite Manganotantalite Nolanite Valentinite

Manganite

Mimetite Pyrochlore Ulvospinel Ixiolite Lueshite

Kyzylkumite Wolframite Ferrotapiolite Mannardite

Wulfenite

Tugarinovite

Edgarbaileyite Vulcanite Perotlskite (niobian) Loparite-(Ce)

Loparite-(Ce) Sphalerite lotIeringite Ferrotapiolite Pyrobelonite

NaFeS2'~0

ZnCr20, (Ca,Na,UMTi,Nb,Ta)P6(OH)

MgCrp, NiO

(Mn,Mg),SbFe08 Fe2FeB03

MgTi03 r-FeO.OH

B~(C03)02

(Mg,Fe MTi,Fe,Al)O, Th02 (Ca,Nah Nb206(OH,F)

Fes V 3 VI2039(OH)9·9~0

3PbC~.PbC03·~0

zr02

Pb2~S~09 CUaSe2

(K, BaMTi,Fe )6013 MnO.OH

Mn~O,

FeCr20, MnO U02

FeCr20,

B~Mo06

MnTap6 (V,Fe,Fe,Ti)1001,(OHh Sb20 3

MnO.OH

Pbs(AsOJ3C1

(Ca,Nah~06(OH,F)

TiFe20, (Ta,Fe,Sn,Nb,Mn),08

NaNb°3

V2Tia°9 (Fe,Mn)WO,

(Fe,Mn)(Ta,Nb)P6

Ba(Ti6 V 2)016 PbMoO,

Mo02

H86S~07 CuTe

CaTi03 (Ce,Na,Ca)2(Ti,Nbh06

(Ce,Na,Cah(Ti,Nbh06 Zns (Ca,Ce)(Ti,Fe,Cr,Mg)21 038

(Fe,Mn)(Ta,Nbh06 PbMn(VO,)(0H)

Page

157 632

45

338

66

170 6'11 190 319 49

469 574

462 Z19 34

33

281 596 269 215

223

94 351 597

95

292 352

396 602 350

376 463 595 263

333

307

625

169 353 626

586 150 613 431 329

330

525

331

168 461

R" 546nm 470nm 589nm 650nm

16-17 16-18 16-18 16-18 16-19

16-19 16-19 16-19 16-19 16-20

16-20 16-22 16-24 16-34 16-38

16-40 17

17 17 17

17 17-17 17-17 17-17 17-18

17-18 17-18 17-18 17-19 17-19

17-24 18 18 18 18

18 18-18 18-19 18-19 18-19

18-21 18-22 18-22 18-30 19

19 19-20 19-20 19-20 19-20

17-19 17-18 17-20 17-20 17-19

17-20 17-20 17-20 18-21 17-21

18-22 18-23 14-24 17-37 17-41

16-33

18

18 18 18

18 17-18 18-18 18-18 17-18

18-19 18-19 19-19 15-19 18-21

17-25 17 18 18 19

19 19-20 19-21 20-21 20-21

20-22 17-19 19-22 17-30 16

19 20-21 20-21 20-21 21-21

16-16 16-17 15-17 15-17 15-19

16-19 16-19 17-20 16-18 16-20

16-20 16-21 20-24 16-33

15-35

17-43 16 16 16 17

17 17-17 16-17 17-17 17-18

17-18 17-18 17-17 20-20 16-19

16-23 19 17 19 17

17 17-17 17-19 18-18 18-19

17-20 18-24 19-22 19-31 21

18 18-19 18-19 18-19 19-19

15-16 16-17 14-16 14-16 15-19

15-18 16-19 18-20 15-18 15-20

15-19 16-21 25-27 17-34 14-32

17-44 16 16 16 17

17 16-17 16-16 17-17 17-18

17-17 17-17 16-17 23-26 16-19

15-23 19 17 19 17

17 15-16 17-18 17-18 17-18

17-19 19-25 19-22 21-33 24

18 18-19 18-19 18-19 18-19

Damaraite

Hawthomeite

Goethite

Goethite

Schollhomite

Marokite Hetaerolite

Ilmenite

Pyrophanite

Hausmannite

Quenselite

Kamiokite

Nukundamite

Tungstenite-3R

Klockmannite

Mackinawite

Perovskife

Sphalerite Sphalerite

Sphalerite (manganoan-ferroan)

Sphalerite

Ferrocolumbite

Asisite

Lindsleyite

Tomichite

Mathiasite

Hemloite

Armalcolite

Tugarinovite

Thoreaulite

Kamiokite

Murdochite

Chromite (ferrian) Wiistite GaIlife:

Magnesioferrite Plattnerite Montroydite

Pseudobrookite Derbylite

Parkinsonite Chvilevaite

Delafossite

Rasvumite

MUTunskife:

Franklinite

Braunite

Eskolaite

Senaite

Anatase

COM wavelength key continued

3PbO.PbC~

Ba(TiaCr,F~Fe2Mg)019

a-FeO.OH

a-FeO.OH

NlIo.3crS2·~0

C~O,

Zn~o,

FeTi03 MnTi03

. Mn~O,

PbMn°2(OH) Fe2Mo30 S

(Cu,Fe),S, WS2

cuSe

(Fe,Ni);;S CaTi03 (Zn,Fe)S Zns (Zn,Fe)S

ZnS

FeNb20 6

~SiOsC~ (Ba,Sr) (Ti,Cr,Fe,Mg,Zr)21 038

(V,Fe),TiaAs013(OH)

(K,Ca,Sr)(Ti,Cr,Fe,Mg)21 03S

(As,Sbh(Ti,V,Fe,Fe,A1hP230H

(Mg,Fe)Tips Mo02 SnT~06

Fe2Mo30 S

PbCu6°s-x(Cl,Br)2x FeCr20, FeO

CuGaS2

MgFe20, Pb02 HgO

(Fe,Fe )2(Ti,Fe )05

(Fe,Fe, Ti)7Sb013(0H)

(Pb,Mo,[])sOsC~

Na(Cu,Fe,ZnhS2 CuFe02 KFe2S3

~C~FeS,

(Zn,Fe,Mn)(Fe,Mn)p, MnMn6Si012 Cr20 3

Pb(Ti,Fe,Mn)21 03S Ti02

Page

134 . 224 202 203

502

355

238 244 464

222

470 276 397

588 290

335

430 522 523 526

524 165

27 322 580

357

231 20

587

573

275 386 96

627 188

339 442

383

454

138

419 fJ7

137 474 387

176 61

161 507

11

COM wavelength key continued

R%

546nm 470nm 589nm 650nm

19-27 20 20 20 20

20-21 20-22 20-23 20-23 20-26

20-28 20-39 21 21 21

21 21-23 22 22 22

22 22 22 22 22-22

22-22 22-23 22-24 22-25 22-28

22-33 23 23 23 23

23 23 23-23 23-26 23-28

23-30 23-31 24 24 24

24-24

24-25 24-25 24-25 24-26

24-31 20 20 20 21

18-19 22-23 21-25 22-29 22-24

21-27 21-45 20 21 21

24

24-24 18

22 24

24 25 26 27 23-24

26-26 23-23 23-25 22-27 24-31

21-30 19 20 22 23

24 25 23-24 20-23 27-31

23-33

25-34 24 27 29

25-25 18-19 25-26 26-26 27-29

16-25 20 21 22 18

20-21 20-21 19-23 20-22 19-23

20-27 19-39 21 21 21

21 20-22 25 22 22

24 22 21 19 22-22

21-21 22-23 21-23 23-25 21-24

21-32 24 24

23 23

22 25 22-23 25-27 22-27

22-28 22-29 23 23 23

24-24 28-28 23-24 24-26 23-24

12-24 20 21 25 18

21-22 20-21 19-22 19-21 18-21

20-27 19-39 21 21 21

23 19-21 30

22 21

23 22 20 17 22-22

20-20 23-23 21-22 22-24 16-20

20-29 25 25 22 23

22 24 21-22 28-29 21-26

21-27 21-27 21 21 22

24-24 32-32 22-23 25-27 22-23

Spionkopite

Magnetite

Magnetite (chromian)

Germanite

Greenockite

Berdesinskiite

Brookite

Rutile

Terlinguaite

Wattersite

Tenorite

Molybdenite

Jacobsite

Magnetite

Magnetite (nickeloan)

Litharge

Deanesmithite

Bornite

Bixbyite

Dervillite

Kiddcreekite

Alabandite

Realgar

Digenite

Roquesite

Wakabayashilite

Pirquitasite

Magnetoplumbite

Paramelaconite

Poyarkovite

Caswellsilverite

Djerfisherite

Bartonite

Bixbyite

Sakuraiite

Alabandite

Kiddcreekite (selenian)

Cuprospinel

Stannoidite

Orpiment

Trechmannite

Romanechite

Hauerite

Maghemite

Galkhaite

Hocartite

Renierite

Plumboferrite

Enargite

Hematophanite

CU39S2S Fe30 4

Fe30 4

C~6Fe4Ge4S32 CdS

V2TiOS

Ti02 Ti02

Hg2CIO

Hg4HgCr06

Cuo

MoS2 (Mn,Fe,Mg)(Fe,Mn)p 4

Fe30 4

Fe30 4

PbO

Hg2Hg3CrOSS2 CUSFeS4 (Mn,Feh03 Ag2AsS2

Cu6SnWSS MnS

AsS

Cu~s CuInS2

(As,Sb)l1S1S Ag2ZnSnS4 Pb(Fe,MnhP19

C~C~03 Hg3ClO

NaCrS2 K6(Cu,Fe,Ni)25S26CI

~FelOS14 (Mn,Fe)P3

(Cu,Zn,Fe h(In,Sn)S 4

MnS

Cu6SnWSS (Cu,Mg)Fep4

CUs(Fe,ZnhS~S12

As2S3

AgAsS2

(Ba,Hp)(Mn,Mn)SOlO

MnS2

r-Fe203

(Cs,Tl)(Hg,Cu,Zn)6(As,Sb)4S12

Ag2FeSnS4 (Cu,Zn)l1 (Ge,As hFe4S16 PbFe40 7

C~AsS4

Pb4Feps(OH,CI)

Page

529 340

342 193 213

42 64

494 563

620

562 378 265 341 343

324 136 54 50

139

286 5

477

141 484

616 437

344

414 452

77

142 35 51

497

4

287 130 534 400

581

483

221

337

187

239 478 443

155 230

R%

546nm 470nm 589nm 650nm

24-27 24-27 24-27 24-28 24-29

24-37 24-45 25 25 25

25 25 25 25-25 25-25

25-26 25-26 25-27 25-27 25-29

25-30 25-30 25-30 25-32 26

26 26 26 26-27 26-28

26-28 26-30 26-33 26-34 27

27 27 27 27 27

27-28 27-30 27-30 27-30 27-31

27-31 27-32 27-35 27-41 28

20-22 22-25 26-29 29-33 26-30

21-34 23-39 20 24 25

25 26 28 26-27 27-30

23-24 26-26 24-25 29-32 26-30

26-31 27-32 28-34 26-34 25

25 25 28 24-26 19-19

31-31 28-32 28-35 24-32 25

26 26 27 29 31

25-26 20-23 27-31 28-31 28-33

28-38

26-30

30-37 26-44 22

26-28 25-28 23-27 23-26 24-28

26-38 25-47 27 27 24

25 25 25 24-25 24-25

26-27 24-26 26-29 23-25 25-28

24-29 24-28 24-29 24-30 26

26 26 26 26-27 30-32

25-26 25-29 25-31 28-36

27

28 28 27 26 25

28-29 29-35 26-29 26-29 26-30

26-30 28-35

26-35 29-41 32

28-30 28-29 23-26 22-25 23-26

28-38

26-48 30 29 22

25 25 25 25-25 25-28

27-27 24-25 28-30 23-24 25-27

23-27 23-27 23-28 22-28 26

26 27 28 26-27 33-35

23-24 23-26 24-30 30-38 27

28 30 27 25 23

29-29 33-40 27-29 25-28 23-27

26-29 28-37 26-34 29-38 36

Stannoidite

Stannoidite

Rohaite

Proustite

Cinnabar

Stembergite

Mackinawite (nickelian)

Shadlunite

Thalfenisite

Trevorite

Hemusite (antimonian) Metacinnabar

Can/ie/dife

Argyrodite

Permingeatite

Kuramite

Kesterite

Luzonite

Xanthoconite

Chalcothallite

Zenzimite

Cinnabar

Kermesite

Crednerite Mohite

Chameanite

Hemusite

Villamaninite

Stannite

Renierite

Cuprite

Hematite

Hollandite

Argentopyrite

Florensovite

Chameanite

Colusite

Mgriite

Coronadite

Cuprite

Chatkalite

Mawsonite

Bukovite

Gortdrumite

Hematite

Stromeyerite

Raguinite

Rohaite

Selenium (synthetic)

Vinciennite

COM wavelength key continued

Cl1s(Fe,Znh SnA2 CUg(Fe,ZnhS~S12

TlCuSSbS2 AgaAsSa HgS

AgFe2Sa (Fe,Ni)9Sg

(Cu,Fe)g(Pb,Cd)Sg

Tl6(Fe,Ni,Cu)2sS26CI

NiFe20,

Cu,C~SnMoSg

HgS

AggSnS6 AggGeS6 CUa(Sb)Se,

CUaSnS,

C~ZnSnS,

CUaAsS,

AgaAsSa

T~(Cu,Fe)6SbS,

Pba(Fe,Mn),Mna°1S HgS

Sb2S20

CuMn°2 C~SnSa

(Cu,Fe),As(Se,S),

Cu,C~SnMoSg

(Cu,Ni,Co,Fe)S2

C~FeSnS,

(Cu,Zn)l1 (Ge,As)2Fe,S16

C~O

a-Fe20 a Ba(Mn,Mn)g016 AgFe2Sa Cu(Cr1.sSbo.s)S,

(Cu,Fe),As(Se,S),

C~6 V 2(As,Sn,Sb)6Sa2 CuaAsSea Pb(Mn,Mn)g016

C~O

CU6FeS~Sg

Cu6Fe2SnSg

T~(Cu,Fe),Se,

(Cu,Fe)6Hg2Ss a-Fe20 a

AgCuS

TlFeS2 TlCuSSbS2 Se

C~oFe,Sn(As,Sb)~6

Page

533

532 482 453

99

536 336 508 572 582

233 367 71 19

429

306 283

334 628 87

630

98

282 119

377

89 232 606

530 479

125 228 241 17

174

88

109 368

113

124

90

360

65

210 229

539 472 481

504 607

COM wavelength key continued

R% 546nm 470nm 589nm 650nm

28 28 28 28-28 28-29

28-29 28-30

28-30

28-30

28-30

29 29 29

29-30 29-30

29-30 29-31 29-32 29-32 29-34

30 30 30 30 30

30 30 30 30 30

30-31 30-32 30-32 30-33 30-42

31 31 31 31 31

31 31 31-31 31-32 31-33

31-35 31-36 31-38 31-41 31-48

25 30 31 26-27 24-26

30-31 30-31 30-31 30-33 31-33

24 24 27

30-34 32-33

34-35 32-33 32-34 32-36 34-38

27 27 30 30 30

31 31 33 33 33

35-35 33-34 34-36 33-37 31-45

25 27 28 30 31

31 33 32-34 32-33 33-34

32-38 28-33 33-40 33-45 31-53

30 27

25 27-28 28-29

26-27 26-28 28-30

26-28 28-30

31 33 29

26-28 27-28

27-28 29-30 29-31 29-31 27-32

29 31 29 30 30

29 30 29 31 32

28-28 29-31 28-30 29-31 31-41

33 32 33 29 30

31 30

31-31 30-31 30-31

31-34 32-36 30-37 30-39 30-45

29 26 21

27-27 29-30

25-26 24-26 30-33 23-24 28-29

33 36 30 25-26 26-26

25-27 27-29 29-30 28-30 26-31

29 32 27 29 31

27 28 28 33 34

26-26 28-30 27-29 28-30 32-40

35 33 33 26 28

31 28 31-32 29-30 29-29

29-32 34-37 29-35 28-35

29-42

Sulvanite

Canjieldife (fell urian)

Berzelianite

Stannite

Petrukite

Routhierite

Routhierite

Thalcusite

Sabatierite

Stephanite

Manganese-shadlunite

Argentopentlandite

Kolarife

Hutchinsonite

Samsonite

Pyrargyrite

Parapierrotite

Pearceite

lmiterite

Laphamite

Nekrasovite (zincian)

Colusite

Tennantite (plumbian)

Argentotennantite

Goldfieldite

Tennantite

Tennantite (bismuthian)

Tiemannite

Fischesserite

Fischesserite

Pyrostilpnite

Duranusite

Laffittite

Mckinstryite

Berthierite

Geffroyite

Colusite

Radhakrishnaife

Tennantite (zincian)

Tennantite (mercurian)

Goldfieldite

Acanfhife

Lautite

Watanabeite

Polybasite

Chaboumeite

Eskebomite

Cylindrite

Livingstonite

Stibnite

C~VS4 Ag8SnS6

c~Se

C~FeSnS4

(Cu,Fe,ZnMSn,In)S4

CuTlHg2(Sb,Ash S6 CuTIHg2(Sb,As h S6

C~_xT~Fel+xS4 Cu6TlSe,

AgsSbS4

(Mn,Pb,Cd}(Cu,Fe )8S8

Ag(Fe,Ni)8S8

PbTeC~

(Pb,TlhAssS9

Ag,MnSb2S6

Ag3SbS3

Tl(Sb,As )SS8

A~6As2S11

Ag2HgS2

As2(Se,sh

C~6 v 2(Sn,As,Sb)6S32

C~6 V 2(As,Sn,Sb)6S32

(Cu,Feh2As4~3 (Ag,Cu>s(Zn,Feh(As,Sb)4S13

C~2(Te,Sb,As)4~3

(Cu,Fe)12As'~3

(Cu,Feh2As4~3

HgSe

Ag3AuSe2

Ag3AuSe2

Ag3SbS3

As4S

AgHgAsS3

(Ag,CuhS FeSb2S4

(Ag,Cu,FeMSe,S)8

C~6 V 2(As,Sn,Sb)6~2 PbTe3(Cl,Sh

(Cu,Fe)12As4S13

(Cu,Fe)12As,S13

C~2(Te,Sb,As)4~3 Ag2S

CuAsS

Cu4(As,SbhSs

(Ag,Cu)16Sb2~1

(Tl,Pb)23(Sb,As)91~47

CuFeSe2

Pb4FeSn4Sb2~6

HgSb,S8 Sb2S3

Page

546

72 44

531

433

487

486 571

495 535

349 . 16 293 242

498

456 415 420 246

310

390 107 560 18

208

557 558 575 172 173

465

148 308 361

43

189 108 471 561 559

209 1

316 617 447

81 160 132 326 538

546nm 470nm 589nm 650nm

32 32 32 32 32

32 32-33 32-33 32-33 32-34

32-34 32-34 32-35 32-39 33

33 33 33 33 33

33 33 33-33 33-34 33-35

33-35 33-36 33-38

34

34

28

31 31 32 33

34

34-34

34-35

35-36 30-33

34-35

35-36

35-38 34-39

31

32 32 33 34

34

34

37 37-37 34-36

32-36

37-39 32-34 28-33

32 33

34 34 34 35 34-35 23-25

34-35 35-35 34-36 36-37

34-36

34-37

34-37

34-40

34-43

34-43

35 35 35-36 35-37

36-38

34-35

36-39 37-43 35-44

35-45 28 34

35-35 37-38

33 31 31 32 32

30 32-33 31-32 30-31

33-33

32-33 30-33

30-33 31-39 32

32 33 33 32 33

33 31 32-32 32-33 33-35

31-33 34-36 36-41 36 34

31 29

30 32 32

28

32-32 30-30

27-29 33-33

30-32 29-32 28-30

29-36 29

31 31 32 30 33

35 28 30-30 31-32 32-35

29-31 33-35 40-43

38 33

34 34 33 32 37-38 39-40 32-34 - 31-32 33-35 32-34

33-34 34-37

32-36 33-38

33-43

33-41

38

36

35-36 34-36

32-33 35-38

30-33 32-36 33-42

32-39 40 37 35-36 33-35

35-39 35-39 35-39

35-40 35-40

29-34 38-41 37-41 33-37 37-41--34-38 31-36 37-42

41-43 31-34 32-34 40-43

32-35 38-42 34-38

Arsenosulvanite

Tetrahedrite (argentian)

Tetrahedrite (argentian)

Giraudite

Vaesite (cobaltian)

Krutaite

Larosite

Jalpaite

Djurleile

Cameronite

Seligmannite

Benleonardite

Miargyrite

Vaughanite

Tetrahedrite (zincian)

Tetrahedrite

Tetrahedrite (mercurian)

Daubreelite

Freibergite

Hakite

Vaesite (cuprian)

Henryite

Chalcocite

Levydaudite

Crookesite

Weissite

W ittichenite

Troilite

Greigite

Hakite

Vaesite (selenian)

Cuproiridsite

Haycockite

Aguilarite

Boumonite

Boumonite

Lapieite

Sartorite

Pierrotite

Uchucchacuaite

Falkmanite

Isocubanite

Pyrite (nickeloan)

Furutobeite

Potosiite

Cubanite-'

Baumhauerite-2a

Baumhauerite

Pyrrhotite

Liveingite

COM wavelength key continued

C~(As,V)S,

(Cu,Fe)12Sb,5,.3

(Cu,Fe>t~b,5,.3

(Cu,Zn,Ag)dAs,Sb),(Se,s)13

N~

C~ (Cu,Ag)21 (Pb,Bih5,.3

Ag3C~

C~lS16 C~AgT~o

CuPbAsSa

Ags(Sb,As)Te2S3 AgSbS2 TIHgSb,~

(Cu,Fe>t2Sb,5,.3

(Cu,Fe)12Sb,5,.3

(Cu,Fe)12Sb,5,.3

FeCr~,

(Ag,Cu,Fe)12(Sb,As),5,.3

(Cu,Hg,Ag)12Sb,(Se,S)13

N~ Cu,A&Te,

C~S

PbsS'7CUa(Bi,SbhS2S C~(TI,Ag)Se,

CUsTe3 CUaBiS3

FeS

Fe3S,

(Cu,Hg,Ag)12Sb,(Se,S)13

NiS2

Culr~,

Cu,FesSs Ag,SeS

PbCuSbS3

PbCuSbS3 CuNiSbS3 PbAs2S,

T~6As,5,.6 AgMnPb3Sbs5,.2

Pbs.,Sb3.6SU

CuFe2Sa

(Fe,Ni,Co)~

(Cu,Ag)6PbS,

Pb 48S~sFe,.Sb165,.lS

CuF~Sa

PbU Ag(As,Sb)lSSa6

PbaAs,Sg

F~_"S PbgAs13~S

Page

26 567 568

199 599

303

313 266

143 70

505 41

369 604 570

566

569 135 177 218

600 234

82 320 121

622 623

583

214

219

601 127 225

2 57

56 311

499 435 592

163 259

460 181 450

122 37 36

466 325

COM wavelength key continued

R%

546nm 470nm 589nm 650nm

35-41 35-42 36 36 36

36 36-36 36-36 36-37 36-37

36-37 36-38 36-38 36-39 36-40

36-40 36-40 36-41 36-41 36-42

36-42 36-43 36-44 37 37

37 37-38 37-38 37-38 37-39

37-42 37-42 37-42 37-42 37-43

37-44 37-48 37-49 38 38-40

38-41 38-42 38-44 38-44 38-44

38-45 38-48 38-48 39 39

38-44 35-43 24 26 37

37 34-37 37-37 37-39 38-39

38-40 34-36 37-39 34-37 32-36

37-40 37-41 32-37 38-42 37-44

38-43 37-44 38-45 34 35

36 38-39 38-40 38-40

39-40

37-40 38-43 39-43 39-43 38-45

49-54 39-51 38-49 40 38-41

40-42 38-43 38-44 38-44 39-47

39-45 39-46 39-46 25 35

34-40 35-43 39 38 35

39 35-37 37-37 35-37 35-36

34-35 37-37 35-38 37-40 39-42

35-39 35-39 39-43 36-40 35-40

36-41 36-41 36-43 39 37

37 35-37 35-37 35-37 34-36

37-42 36-41 36-41 37-41 37-43

37-42 37-46 37-48 37 37-39

37-40 37-41 37-42 37-42 36-40

38-44 43-52 43-53 41 42

32-37 35-43 41 40

33

37 33-37 35-35 34-36 34-35

32-34 35-35 34-37 37-41 41-44

34-38 34-37 42-45 35-39 32-36

35-41 34-38 34-41 42 38

37 33-36 33-34 33-36 32-34

37-41 34-39 35-39 35-38 35-41

51-53 36-45 36-47 36 36-37

37-38 35-39 36-41 36-41 34-38

36-41 50-58 50-58 42

44

Rathite

Junoite

Talnakhite

Mooihoekite

Krutaite (nickeloan)

Coloradoite

Lapieite

Gratonite

Franckeite

Lengenbachite

Naumannite

Eucairite

Diaphorite

Cuprobismutite

Pyrrhotite

Roschinite

Freieslebenite

Pyrrhotite

Andorite

Fiiloppite

Jaskolskiite

Plagionite

Jamesonite

Cattierite

Malanite

Cuprorhodsite

Criddleite

Dufrenoysite

Aramayoite

Tvalchrelidzeite

Emplectite

Semseyite

Veenite

Boulangerite

Meneghinite

Cuprostibite

Pii.ii.kkonenite

Bismuthinite

Cervelleite

Rayite

Jordanite

Zinkenite

Tintinaite

Zoubekite

Chalcostibite

Owyheeite

Breithauptite

Breithauptite (synthetic)

Putoranite

Pyrite (nickelian)

(Pb,TlhAss~O

Pb3C~Bis(S,Se h6

Cu9(Fe,Ni)sS16

Cu9FegS16 CuSez

HgTe

CuNiSbS3 Pb9As4S1S (Pb,Sn)6FeS~SbzS14

Pb6(Ag,CuhAs4S13

AgzSe AgCuSe

PbzAg3Sb3SS

C~OB~2SZ3 Fe1_xS

Ag19PbloSbS1S96 PbAgSbS3

F~_xS

AgPbSb3S6 Pb3SbsS1S

Pb2+x CUx (Sb, Bih_xSs

PbsSbsS17 Pb4FeSb6S14 CoSz Cu(Pt,Ir)2S4

CuRhzS4

TlAgzA u3SblOS10 PbzAs2SS

Ag(Sb,Bi)S2

Hg3(Sb,As)S3

CuBiSz Pb9SbSS21

Pbz(Sb,AshSs PbsSb4S11

Pb13CuS~S24

C~(Sb,Tl)

SbzAsSz

BizS3

Ag4TeS

Pbs(Ag,TI)zSbsS21

Pb14As6S23

Pb9SbzzS42

Pb2Fu4(Sb,BihaS69 AgPb4Sb4S10 CuSbSz

Ag2P~(Sb,Bi)sS20

NiSb

NiSb

C~6--1s(Fe,Ni)lS_19S3Z FeS2

Page

475 274 548 384

305

106 312 212

175 318

389 162 140 126 467

485

178 468

12 180

268

438 267 78

347

129 120 147 15

589

153 506 605

55 364

131 405 48 80

476

271 633

577

634

86

404 62

63

455 459

R%

546nm 470nm 589nm 650nm

39 39 39-41 39-42 39-42

39-43 39-44 39-46 39-47 40

40 40-41 40-42 40-42 40-45

40-45 40-46 40-47 40-53 41

41-46 42 42 42-43 42-44

42-45 43

43 43 43

43 43 43 43-44 43-44

43-45 43-47 43-48 43-48 43-49

43-50 43-52 44 44-46 44-47

44-48 45 45 45-45 45-45

39 41 40-40 40-43 40-44

41-45 39-44 39-45 40-46 17

40 41-42 41-42 43-46 40-44

43-47 41-46 43-48 38-49 41

44-48 40 44 40-41 42-45

42-45 41

42 44 45

46 46 46 42-44 43-43

43-44 46-50 43-49 45-50 46-51

44-53 43-52 47 41-42 44-47

45-49 43 44 33-34 41-42

38 38 39-42 39-42 38-41

39-43 38-42 39-46 39-47 54

40 39-41 40-42 39-41 40-45

40-44 39-45 38-46 40-53 41

41-45 43 41 44-44

42-43

41-44 45

43 42 43

41 42 42 42-44 43-44

44-46 42-46 42-47 42-47 42-48

41-47 43-52 43 45-47 44-47

43-47 45 47 47-47 45-48

37 38 39-43 37-40 37-40

38-42 37-40 39-45 38-46 59

39 38-41 41-43 38-39 39-44

39-43 38-44 36-44

40-54 42

40-45 44 40 45-46 41-42

41-45 47

45 41 43

39 40 42 42-44 43-44

44-47 41-45 41-47 42-46 41-47

40-45 42-52 43 45-48 44-48

43-46 46 51 47-48 46-50

Krutaite (nickeloan)

Petzite

Hessite

Benavidesite

Geocronite

Kirkiite

Dadsonite

Aikinite

Krupkaite

Bezsmertnovite

Penroseite (cuprian)

Stiitzite

Inaglyite

Nagyagite

Hammarite

Izoklakeite

Cooperite

Cooperite

Empressite

Penroseite

Cosalite

Penroseite

Erlichmanite

Sopcheite

Teallite

Neyite

Sopcheite

Carrollite

Erlichmanite

Lillianite

Laurite

Laurite

Galena

Braggite

Braggite

Konderite

Wittite

Matildite

Cupropavonite

Weibullite

Herzenbergite

Guanajuatite

Galena

Cherepanovite

Soucekite

Benjaminite

Carrollite (nickelian)

Violarite

Chalcopyrite

Sopcheite

COM wavelength key continued

CuSe2 Ag3AuTe2 Ag2Te

Pb.(Mn,F«:>Sb6~' P~.(Sb,As)6S23

~OB~As3S19

~O+xSbl4-xS31_xClx CuPbBiS3 PbCuB~S6

Au.Cu(Te,Pb)

(Ni,Co,Cu)Se2 Ag2_xTe

C~Pb(Ir,Pt)8~6

PbsAu(Te,Sb),SS-8

Pb2C~Bi,S9

(Cu,Fe)2Pb27(Sb,Bi)lgSS7 (Pt,Pd,Ni)S

(Pt,Pd,Ni)S

AgTe

(Ni,Co,Cu)Se2

Pb2B~SS (Ni,Co,Cu)Se2 OsS2

Ag.Pd3Te,

PbSnS2

P~(Cu,AghBi6S17

Ag,Pd3Te,

Cu(Co,NihS•

OsS2

Pb3B~S6

RuS2

RuS2

PbS

(Pt,Pd,Ni)S

(Pt,Pd,Ni)S

C~Pb(Rh,Pt,Ir)8S16

Pb9B~2(S,Seb

AgBiS2

AgPbC~BisSl0 Pb6Bi8(S,Se)18

SnS

B~Se3 PbS

RhAs

CuPbBi(S,Seh

(Ag,CuMBi,Pbh~2

Cu(Co,NihS•

FeN~S.

CuFeS2 Ag,Pd3Te,

Page

304 434

237

39 192

288

133 3

302 46

423

540 247 388

220

264

111 110 154 421

115 422 159 519 549

392 517 74

158 321

315 314 184 59 60

295 624 358 128 621

236

216 185

91 520

40 75

608

84 518

COM wavelength key continued

R% 546nm 470nm 589nm 650nm Pilge

45-45 42-42 46-47 50-50 Keithconnite Pd3_xTe 280

45-45 43-44 45-46 46-46 Vysotskite (Pd,Pt)S 615

45-46 45-45 46-46 46-47 Watkinsonite PbC~Bi4(Se,S,Te)s 618

45-47 39-42 47-50 50-52 Donharrisite NisHg3S9 146

45-47 45-46 45-47 44-46 Gladite PbCuBisS9 200

45-47 47-49 44-46 44-45 Galenobismutite PbBi:!S4 186

45-47 47-50 44-46 43-45 Kobellite Pb2(Bi,SbhSs 291

45-50 42-44 48-54 54-63 Cabriite Pd2SnCu 68

45-52 42-46 48-57 55-64 Cabriite Pd2SnCu 67

46 34 48 49 Chalcopyrite CuFeS2 85

46 44 46 46 Palladseite Pd17Se1S 409

46 45 47 48 Tyrrellite (Cu,Co,Ni)3Se4 590

46 46 46 49 Polydymite NiNi:!S4 448

46 47 45 45 Irarsite (Ir,Ru,Rh,Pt)AsS 252

46 48 45 45 Gersdorffite I NiAsS 195

46-48 40-43 48-50 50-52 Tucekite Ni~b2SS 585

46-48 46-46 46-48 47-47 Kashinite (Ir,Rhh S3 277

46-48 46-47 47-48 47-49 Bowieite (Rh,Ir,Pt)2S3 58

46-49 46-49 46-49 46-49 Ikunolite Bi4(S,Seh 243

46-50 41-44 46-50 45-49 Domeykite (p domeykite) CUaAs 145

46-50 44-45 47-53 49-56 Ferroselite FeSe2 167

46-51 37-44 52-56 59-61 Nickeline NiAs 394

46-52 43-48 48-54 51-57 Luberoite PtSSe4 332

46-63 46-57 45-66 45-67 Niggliite PtSn 395

47 40 49 52 Pentlandite (Fe,Ni)~s 424

47 44 49 50 Pentlandite (rhodian) (Fe,Ni)~s 427

47 44 49 52 Violarite (cobaltian) FeNi:!S4 609

47 44 49 52 Linnaeite (nickelian) CoCo2S, 323

47 45 48 50 Siegenite (cuprian) CoNi:!S4 510

47 45 49 51 Siegenite CoNi:!S4 509

47 46 46 46 Petrovicite PbHgCUaBiSes 432

47 47 48 49 Khamrabaevite (Ti,Fe,V)C 284

47 48 47 47 Ullmllnnite NiSbS 593

47 49 46 47 Ullmllnnite (Ilrsenilln) NiSbS 594

47 49 47 47 Gersdorffite (antimonian) NiAsS 194

47-53 44-48 52-57 59-60 Imgreite NiTe (1) 245

48 46 48 49 Tyrrellite (Cu,Ni,CohSe, 591

48 47 49 49 Platarsite (Pt,Rh,Ru)AsS 439

48 48 47 46 Padmaite PdBiSe 406

48 48 49 49 Gersdorffite II NiAsS 198

48-49 48-48 48-49 48-49 Watkinsonite PbC~Bi4(Se,S,Te)s 619

48-50 46-48 49-51 50-52 Parkerite Nia(Bi,Pbh S2 418

48-50 47-47 51-52 55-56 Maucherite NillAsS 359

48-51 40-46 51-53 53-55 Vozhminite (Ni,CoMAs,Sb)S2 612

48-51 48-49 49-51 49-50 Alloclasite (Co,Fe)AsS 9

48-53 45-49 52-56 59-59 Paolovite Pd2Sn 410

49 40 52 55 Orcelite Nis_xAs2 399

49 42 51 53 Pentlandite (Fe,Ni)9SS 425

49 49 49 48 Platarsite (Pt,Rh,Ru)AsS 440

49-49 48-49 49-49 50-50 Paracostibite CoSbS 411

R%

546nm 470nm 589nm 650nm

49-50 49-53 49-55 49-56 49-58

50 50 50 50-52 50-52

50-54 50-55 50-57 50-58 51

51

51

51

51 51-51

51-55 51-55 51-62 52 52

52-52 52-53 52-56 52-56 52-57

52-57 53 53 53 53-54

53-54 53-54 53-55 53-55 53-55

53-55 53-56 53-56 53-63 54

54 54 54 54 54

47-48 47-52 50-55 45-52 48-57

45 46 46 49-53 50-51

43-44

52-57 45-45 49-58 44

45

48

50 56 51-51

45-49 52-55 47-60 45

46

49-52 43-45

49-54 53-56 50-57

52-56 50 50 52 47-48

47-49 51-55 48-50

50-51 54-56

55-57 46-46 54-58

50-60 46

47 53 54 56 59

49-50 49-53 48-55

50-55 49-57

53 52 53 51-51 50-52

52-58 50-54 52-59 50-58 54

53 52 52 49 51-51

55-58 51-56 52-61 54 54

52-53 54-54

52-57 51-55 53-55

52-57 55 56 54 55-56

55-57 53-54 56-57 54-56 52-55

54-55 54-58

52-56 53-63 57

55 55 54 53 51

49-51 49-53 47-54 48-53

48-56

57

55 57

51-52 50-52

54-60 49-53 54-61 48-57 55

55 54 53 47 51-51

59-62 50-55 53-61 56 54

51-54 56-57 52-57 51-55 54-54

51-56 57 57

54 58-59

57-59 53-53 58-59 56-58 50-55

55-56 56-59 50-55 53-62 59

56 55 52 53 49

Skippenite

Poubaite

Laitakarite

Marcasite

Paraguanajuatite

Orcelite

Telargpalite

Tellurupalladinite

Arsenopyrite (cobaltian)

Aleksite

Millerite

Nevskite

Millerite

Paraguanajuatite

Domeykite

Mertieite II

Cobaltite

Cobaltite

Clausthalite (synthetic)

Jolliffeite

Plumbopalladinite

Joseite

Kostovite

Pentlandite (cobaltian)

Pyrite

Arsenopyrite

Godlevskite

Kawazulite

Arsenic

Gudmundite

Ingodite

Suessite

Majaldte

Aleksite

Potarite

Arsenopalladinite

Arsenopyrite (cobaltian) Stibiopalladinite

Palladoarsenide

Lollingite (cobaltian)

Volynskite

Heazlewoodite

Lollingite

Sylvanite

Isomertieite

Pyrite

Insizwaite

Sperrylite

Skutterudite

Clausthalite

COM wavelength key continued

B~Se2Te

PbB~Se2(Te,Sh

Bi4(S,Seh FeS2 B~(S,Seh

Nis_xAs2

(Pd,AghTe

Pd9Te4

FeAsS

PbB~Te2S2

fJ-NiS Bi(Se,S)

fJ-NiS

B~(Se,S>a

C"JAs

Pdg(Sb,Ash CoAsS

CoAsS

PbSe

NiAsSe

Pd3Pb2

Bi4TeS2 AuCuTe4

(Fe,Ni)~g

FeS2

FeAsS

(Ni,FehS6

B~Te2Se

As

FeSbS

B~TeS

(Fe,NihSi PdNiAs

PbB~Te2S2

PdHg

Pdg(As,Sbh FeAsS

PdsSb2

Pd2As

FeAs2

AgBiTe2

N~S2 FeAs2 (Au,AghTe4

Pdu Sb2As2

Fe~

Pt(Bi,Sb)2 PtAs2 CoAs2-3

PbSe

Page

514 451 309 354 412

398 550 556

24 7

375 391

374 413 144

366

104 105 101 270

444

272

296 426 457

23

201 278

21

217

249 544

345

6

449

22

25

537 408

328

610 226

327

547 262

458 250

521

515 100

COM wavelength key continued

R% 546nm 470nm 589nm 650nm

54-54 54-S5

54-S5

54-S5

54-56

54-57

54-S7

55 55 55

55 55-60 55-61 56 56

56 56

56-57 56-59 56-59

56-59 56-59 56-63 57 57

57 57-58 57-61 57-62 58

58 58 58-58 58-69 59

59 59 59-60 59-61 59-62

59-63 60

60 60 60

60-63

60-63

60-63 60-67 60-67

49-50 56-56 49-52 56-57 54-S7 54-S4

55-58 53-55

54-54 56-57

50-53 56-58 52-55 54-58 48 58

54 55 54 55

57 55 52-57 56-61 52-58 55-60 51 57 55 56

56 56 57 56 54-55 57-58 51-55 58-61 52-54 59-62

54-56 57-60 SS-57 57-60 54-61 56-63 50 60 56 57

57 57 54-55 59-60 56-61 57-61 54-56 61-66 52 60

58 58 59 59 54-55 60-61 58-68 58-68 56 61

57 60 57 60 59-59 59-61 57-59 59-61 54-59 59-63

54-55 61-65 49 67 55 62 58 60 59 61

53-56 62-66

53-56 62-66

59-62 60-63 54-62 62-70

59-66 60-66

59-59 59-60 52-53 51-54 58-60

58-59

S4-58

60 54 55

54 57-61 55-60 60 57

57 57

58-59 60-62

61-64

58-61 56-61 55-63 61 58

57 61-61 57-59 64-69 60

58 59 62-64 55-66 62

61 61 58-61 60-62 59-63

62-66

73

64 60 62

64-69

64-69

59-63 64-72 58-64

Genkinite

Palarstanide

Safflorite

Clinosafflorite

Urvantsevite

Atheneite

Sulphotsumoite

Isomertieite

Nickel-skutterudite

Gersdorffite II

Skutterudite

Krennerite (argentian)

Tetradymite

Chromferide

Maslovite

Michenerite

Michenerite (antimonian)

Moncheite

Montbrayite

Kitkaite

Froodite

Joseite-B

Moncheite

Cobalt pentlandite

Michenerite

Gersdorffite II Polarite

Rammelsbergite

Melonite

Maldonite

Iron

Iron (nickelian)

Melonite (palladian-bismuthian)

Tellurium (synthetic)

Ferchromide

Polarite Ferronickelplafinum

Pararammelsbergite

Moncheite (palladian)

Krennerite

Algodonite

Gold (palladian)

Zvyagintsevite

Insizwaite

Aurostibite

Sudburyite

Stumpflite

Dyscrasite

Bismuth

Tellurium

(Pt,Pd)4Sb3

Pds(Sn,Ash

CoAs2 (Co,Fe,Ni)As2 Pd(Bi,Pbh

(Pd,HghAs

BiaTe2S

Pd,.l Sb2As2

(Ni,Co,Fe )As3

NiAsS

COAS2~

(Au,Ag)Te2

B~Te2S

F;.sCrO.5_x

PtBiTe

(Pd,Pt)BiTe

(Pd,Pt)BiTe

(Pt,Pd)(Te,Bi)2

(Au,SbhTe3

NiTeSe

PdB~

Bi4T~S

(Pt,Pd)(Te,Bih

CogSs (Pd,Pt)BiTe

NiAsS

Pd(Bi,Pb)

NiAs2 NiT~

A~Bi

Fe

Fe

NiTe2 Te

Cr3Fe1_x (x-0.6)

Pd(Pb,Bi)

Pt2FeNi

NiAs2 (Pt,Pd)(Te,Bih

AuT~

Cu6As

Au

(Pd,Pt,Auh(Pb,Sn)

Pt(Bi,Sbh

AuSb2

(Pd,Ni)Sb

Pt(Sb,Bi)

Ag3Sb

Bi

Te

Page

191 407

496 102 598

28 S45

261 393 197

516 301 564

93 356

370 372 379 382 289

179 273

380

103 371

196 446

473 362 348

257 258

363

5S4

164

445

166 416 381

300

8

207

635

251 30

542

541 149

47 552

R% 546nm 470nm 589nm 650nm

60-70 61 61-63 61-68 62-62

62-62 62-63 62-64 62-65 62-66

62-66 63 63 63-66 63-67

63-68 64

64-66 64-66 65

65 65 67 68-74 70

70 70 70-71 71 71

72 72

72-73 72-74 73

73 74 74-78 76-76 77

79-80 81

82 82-88 84

86

89 90 93 99

60-70 62 54-55

55-63 64-65

64-65 55-56 61-63 62-63 61-64

63-64 60 66 62-65 61-65

56-59 62 63-65 66-67 56

62 66 68 59-62 66

70 70 70-71 68 69

65 69 70-71 66-67 71

72 71 74-77 71-76 36

72-74 38 78 78-85

46

80 63 76 88 95

60-69 61 63-66 62-68 60-60

60-61 64-65 62-65 62-66 62-68

63-67 65 61 63-68 64-68

65-71 65 64-67 62-65 92

66 64

66 69-76 71

69 69 69-71 68 72

74 74 72-73 76-77 74

75 74 73-77 74-79 88

81-82 91 84 82-88 90

88 92 92 94 >99

59-67 63 65-69 63-68 57-60

60-60 68-68 63-66 63-67 63-69

64-68 66 59 65-70 63-68

67-73 65

65-68 61-65 99

68 62 64

69-77 72

67 69 68-70 63 74

76 76 70-72 79-79 74

77 75 70-75 70-80 94

83-84 95 84 81-87 93

88 93 93 95 99

Tellurium (synthetic)

Seiniijokife

Sudburyite (nickelian)

Calaverite

Osmium (iridian)

Osmium Kotulskite (bismuthian) Tsumoite

Rucklidgeite Hedleyite

Tellurobismuthite Awaruite CupaIife

Merenskyite

Tellurantimony

Kotulskite

Tefraferroplafinum

Pilsenite

Osmium (iridian) Copper

Isoferroplatinum Rufheniridosmine

Rufheniridosmine

Kotulskite

Platinum

Rufhenium

Lead

Ruthenium (iridian)

Altaite Iridium

Kolymite Belendorfjife

Ruthenium (synthetic) Schachnerite

Iridium

Iridium (ruthenian)

Iridium

Antimony

Khatyrkite Gold

Paraschachnerite Gold (argentian)

Moschellandsbergite Tin

Gold (argentian)

Silver (antimonian)

Electrum

Electrum

Silver

Silver (synthetic)

COM wavelength key continued

Te

(Fe,Ni)(Sb,As h (Pd,Ni)Sb

AuTe2 Os

Os

Pd(Te,Bi) BiTe

(Bi,PbhTe4

B~Te3

B~Te3

NiaFe (Cu,Zn)AI

(Pd,Pt) (Te,Se,Bi)2

Sb2Te3

Pd(Te,Bi) PtFe

Bi4Te3

(Os,Ir)

Cu

(Pt,Pdh(Fe,Cu) (Os,Ir,Ru)

(Os,Ir,Ru)

Pd(Te,Bi) Pt

Ru

Ph Ru

PbTe Ir

C~Hg6

C~Hg6 Ru

A~.lHgo.9 Ir

Ir

Ir

Sb

CuA~

Au

Ag3Hg2 Au.94Ag.06

Ag2Hg3 Sn

Au.80Ag.20

Ag

Au.64Ag.36

Au.47Ag.53 Ag

Ag

Page

553

503

543

69 402

401 299 584 488

227

555 31

123 365

551

297 565 436 403 112

260 490 489 298 441

491 317 492 10

253

294 38

493 500 254

256

255

14 285 204

417 206 385

576 205

512 152 151 511

513

Colour value key 2

Only colour values in air are presented and these are relative to the C illuminant. Organisation: is in ascending order of luminance (Y%). Isotropic minerals are listed first. Where two or more minerals have the same luminance they are ordered from the lowest to highest excitation purity (P e %). Where these are also the same they are ordered from the lowest to highest dominant wavelengths (Ad).

Y% Ad Pe% Formula Page

Aleksite PbBi2Te2S2 6

Chromferide Fe1.5CrO.5-x 93

Cuproiridsite Culr2S4 127

Cuprorhodsite CuRh2S4 129

Duranusite AS4S 148

Falkmanite Pb5.4Sh3.65t 1 163

Hakite (Cu,Hg,Agh2Sb4(Se,sh3 218

Hakite (Cu,Hg,Agh2Sb4(Se,sh3 219

lmiterite Ag2HgS2 246 Kashinite (Ir,Rh)253 277

Malanite Cu(Pt,Ir12S4 347

Poyarkovite ~CIO 452

Putoranite CUl6-18(Fe,Nih8-19532 455

Talnakhite CU9(Fe,Ni)8st6 548

Thalcusite CU3_xTI2Fe1 +xS4 571

Urvantsevite Pd(Bi,Pb)2 598

6-9 463-483 10-4 Malachite CU2(C03)(OH)2 346

6-23 476-474 42-13 Covellite CuS 117

6-27 c497-581 1-5 Graphite C 211

7 475 1 Spinel MgAl204 527

7 468 3 Periclase MgO 428

7-7 463-461 2-2 Corundum Al203 114

7-24 477-476 41-13 Covellite CUS 116

7-24 476-476 43-15 Covellite CUS 118

8 468 2 Hercynite FeAl204 235

8 476 2 Gahnite ZnAI~4 182

8-9 460-463 3-2 Hogbomite (Mg,Fe)2(Al,Ti)5otO 240

8-11 491-629 1-15 Vyalsovite FeS.Ca(OH)2·AI(OH)3 614

8-13 469-475 2-3 Cerussite PbC03 79

9 589 2 Chlorargyrite AgCI 92

9 480 4 Anglesite PbS04 13

9-9 479-475 6-6 Azurite CU3(C03)2(OH)2 32

9-18 480-579 4-10 Tochilinite 6FeO.9S.5(Mg,Fe )(OH)2 579

9-21 579-591 14-21 Erdite NaFeS2·2H20 156

9-26 475-475 5-13 Aurorite (Mn,Ag,Ca)Mn307 .3H20 29

9-27 475-477 5-12 Chalcophanite (Zn,Mn,Fe)Mn407 .3H20 &l

10 477 3 Spinel (ferroan-chromian) MgAl204 528

10-10 469-469 3-3 Ingersonite Ca3MnSb4014 248

10-10 472-472 3-3 Scheelite CaW04 501

10-11 470-473 3-4 Titanite CaTi03 578

xxxviii

Colour value key continued

Y% Ad Pe% Formula Page

10-12 473-477 3-2 Blatterite (Mn,Mgh(Mn,Sb,Fe)B05 52 10-12 475-475 3-3 Cannonite Bi20(OH)2S04 73 10-21 466-578 2-25 Valleriite 4(Fe,Cu)S.3(Mg,Al)(OH)2 603

10-25 480-478 37-12 Yarrowite CU9S8 629 10-28 492-603 3-18 Erdite NaFeS2·2H20 157

10-31 c:497-581 32-41 Bogdanovite AU5(Cu,Fe)3(Te,Pb)2 53 11 497 1 Galaxite (ferroan) (Mn,Fe,Mg)(Al,Fe)204 183 11 474 2 Mic:rolite (Ca,Na)2Ta206(O,OH,F) 373 11-11 475-475 6-6 Zinc:ite (Zn,Mn)O 631 11-12 473-474 2-2 Filipstadite (Mn,Mg)4SbFe08 171

11-12 476-476 2-2 Cassiterite Sn02 76 12 470 3 Zinc:oc:hromite ZnCr204 632 12 475 3 Filipstadite (Mn,Mg)4SbFe08 170 12 480 3 Magnesioc:hromite (ferroan) MgCr204 338 12 474 4 Bunsenite NiO 66

12 479 4 Betafite (Ca,Na,U)2(Ti,Nb,Ta)206(OH) 45

12-15 468-469 4-4 Geikielite MgTi03 190 12-15 481-c:498 6-<1 Vonsenite Fe2FeB03 611 12-18 476-478 9-9 Lepidoc:roc:ite r-FeO.OH 319 13 468 2 Qandilite (Mg,Fe)2(Ti,Fe,Al)04 469

13 474 3 Thorianite Th02 574 13 482 3 Bismutite Bi2(C03)02 49 13 472 5 Pyroc:hlore (Ca,Nah Nb206(OH,F) 462 13 475 11 Kazakhstanite Fe5V3VI2039(OH)9·9H20 279 13-13 477-476 4-4 Barstowite 3PbC12·PbC03·H20 34

13-14 474-472 2-2 Baddeleyite Zr02 33 13-15 473-474 5-7 Kentrolite Pb2Mn2Si209 281 13-17 474-475 5-4 Jeppeite (K,Bah(Ti,Fe)6Ot3 269 13-19 478-474 2-4 Groutite MnO.OH 215 13-20 479-478 3-6 Hausmannite MnMn204 223

14 469 3 Uraninite U02 597 14 478 3 Chromite FeCr204 94 14 469 4 Koec:hlinite Bi2Mo06 292 14 474 4 Manganosite MnO 351 14 477 4 Chromite FeCr204 95

14-15 475-475 3-3 Manganotantalite MnTa206 352 14-16 c:563-466 16-10 Umangite CUJSe2 596 14-17 474-475 4-4 Valentinite Sb203 602 14-20 485-484 3-4 Manganite MnO.OH 350 14-68 477-575 24-34 Vulc:anite CuTe 613

15 475 3 Pyroc:hlore (Ca,Na)2Nb206(OH,F) 463 15 474 4 Mimetite Pb5(As04)JCl 376 15-15 475-475 3-4 Ixiolite (Ta,Fe,Sn,Nb,Mn)408 263 15-15 475-475 4-4 Lueshite NaNb03 333 15-16 598-586 1-1 Kyzylkumite V2Ti309 307

15-16 472-468 4-4 Wolframite (Fe,Mn)W04 625 15-17 475-492 4-1 Ferrotapiolite (Fe,Mn)(Ta,Nb)206 169 15-18 470-591 2-2 Mannardite Ba(Ti6V 2)Ot6 353 15-18 609-c:504 2-2 Nolanite (V,Fe,Fe,TihoOt4(OH)2 396 15-18 476-477 4-5 Wulfenite PbMo04 626

Colour value key continued

Y% Ad Pe% Formula Page

15-21 473-476 11-6 Edgarbaileyite Hg65i2O, 150 16 c504 3 Ulvospinel TiFe204 595

16 474 4 Loparite-(Ce) (Ce,Na,Ca)2(Ti,Nb)206 329

16 474 4 Loparite-(Ce) (Ce,Na,Cah(Ti,Nb)206 330

16 474 4 Perovskite (niobian) CaTi03 431

16 475 4 Sphalerite znS 525

16-16 474-473 3-2 Ferrotapiolite (Fe,Mn)(Ta,Nbh06 168

16-17 480-476 4-6 Pyrobelonite PbMn(V04)(OH) 461

16-17 475-472 5-9 Damaraite 3PbO.PbC12 134

16-18 476-475 3-3 Hawthomeite Ba(Ti3Cr~e2Fe2Mg)ot9 224

16-18 476-476 8-9 Goethite a-FeO.OH 202

16-18 476-476 8-10 Goethite a-FeO.OH 203

16-19 488-565 2-3 SchOllhomite Nao.3CrS2·H20 502

16-19 477-477 4-3 Hetaerolite ZnMn204 238

16-19 469-458 5-5 Marokite CaMn204 355

16-19 474-475 7-6 Pyrophanite MnTi03 464

16-20 478-478 5-2 Hausmannite MnMn204 222

16-20 477-476 6-6 Quenselite PbMn°2(OH) 470

16-21 c530-468 28-21 Rickardite CU7Te5 480

16-22 476-478 5-4 Kamiokite Fe2Mo308 276

16-24 484-485 4-3 Kamiokite Fe2Mo308 275

16-34 c564-474 1-4 Tungstenite-3R WS2 588

16-37 4S7-484 6-6 Klockmannite CuSe 290

16-41 c495-576 1-15 Mackinawite (Fe,Ni)9S8 335

17 458 3 Loveringite (Ca,Ce)(Ti,Fe,Cr,Mg)21 038 331

17 474 4 Perovskite CaTi03 430

17 475 4 Sphalerite (Zn,Fe)S 522

17 475 4 Sphalerite Zns 523

17 475 4 Sphalerite ZnS 524

17 476 4 Sphalerite (manganoan-ferroan) (Zn,Fe)S 526

17-17 475-475 1-2 Ferrocolumbite FeNb206 165

17-17 475-475 4-4 Lindsleyite (Ba,Sr)(Ti,Cr,Fe,Mg,Zr)210 38 322

17-17 476-475 5-6 Asisite Pb7Si08C12 27

17-17 476-476 6-5 Armalcolite (Mg,Fe)Ti205 20

17-18 c504-589 <1-1 Tomichite (V,Fe)4Ti3Asot3(OH) 580

17-18 473-474 3-3 Hemloite (As,Sb)2(Ti,V,Fe,Fe,Alh20230H 231

17-18 475-474 5-4 Mathiasite (K,Ca,Sr)(Ti,Cr,Fe,Mg)21 038 357

17-18 486-481 5-8 Plattnerite Pb02 442

17-19 474-474 4-5 Thoreaulite SnTa206 573

17-20 c537-c553 3-2 Ilmenite FeTi03 244

17-24 592-612 15-1 Nukundamite (Cu,Fe)4S4 397

18 490 1 Chromite (ferrian) FeCr204 96

18 597 1 Wiistite FeO 627

18 485 2 Franklinite (Zn,Fe,Mn)(Fe,Mn)204 176

18 475 4 Gallite CuGaS2 188

18 582 5 Murdochite PbCU608-x(Cl,Br)2x (where x 0.5) 386

18 477 6 Magnesioferrite MgFe204 339

18-19 484-478 4-5 Montroydite HgO 383

18-19 476-475 6-6 Derbylite (Fe,Fe, Ti)7Sbot3(OH) 138

18-19 477-478 7-7 Pseudobrookite (Fe,Fe )2(Ti,Fe )05 454

Colour value key continued

Y% A.d Pe% Formula Page

18-20 476-481 6-5 Parkinsonite (Pb,Mo,[J)808CI2 419 18-20 643-467 10-11 Tugarinovite Mo02 586 18-20 594-c497 11-3 Tugarinovite Mo02 587 18-22 639-581 1-12 Chvilevaite Na(Cu,Fe,Zn)2S2 97 18-27 481-479 20-10 Spionkopite CU39S28 529

19 485 6 Greenockite CdS 213 19-20 477-482 4-4 Eskolaite Cr203 161 19-20 476-476 5-5 Senaite Pb(Ti,Fe,Mn)210 38 507 19-20 477-478 5-5 Braunite MnMn65i012 61 19-20 476-476 6-5 Anatase Ti02 11

19-22 c498-570 1-1 Delafossite CuFe02 137 19-30 585-c498 6-2 Rasvumite KFe2SJ 474 20 c560 1 Magnetite Fe304 340 20 593 1 Magnetite (chromian) Fe304 342 20 580 15 Murunskite K2Cu3FeS4 387

20-21 577-577 6-7 Berdesinskiite V2Ti05 42 20-22 475-476 5-5 Brookite Ti02 64 20-23 475-476 6-5 Rutile Ti02 494 20-23 474-469 7-19 Terlinguaite Hg2CIO 563 20-25 476-534 9-4 Wattersite Hg4HgCr06 620

20-27 473-525 3-1 Tenorite CuO 562 20-39 480-468 4-7 Molybdenite MoS2 378 21 454 1 Magnetite Fe304 341 21 474 1 Magnetite (nickeloan) Fe304 343 21 572 3 Jacobsite (Mn,Fe,Mg)(Fe,Mn)204 265

21 695 3 Germanite CU26Fe4Ge4S32 193 21 480 15 Digenite CU9S5 141 21-23 476-487 9-4 Deanesmithite Hg2Hg3Cr05S2 136 22 487 1 Bixbyite (Mn,Feh03 50 22 471 6 Alabandite MnS 5

22 478 6 Dervillite Ag2AsS2 139 22 403 7 Litharge PbO 324 22 477 11 Realgar AsS 477 22-22 469-469 4-3 Roquesite CulnS2 484 22-22 477-477 10-10 W akabay ashilite (As,Sb)11st8 616

22-23 c557-c567 1-1 Pirquitasite Ag2ZnSnS4 437 22-23 483-484 3-3 Cuprospinel (Cu,Mg)Fe204 130 22-24 481-480 4-4 Magnetoplumbite Pb(Fe,Mnh2ot9 344 22-25 584-477 1-5 Paramelaconite CU2Cu203 414 22-32 496-567 1-8 Caswellsilverite NaCrS2 77

23 559 <1 Sakuraiite (Cu,Zn,Fe )J(In,Sn)S4 497 23 556 1 Bixbyite (Mn,Fe)203 51 23 c506 2 Kiddcreekite Cu65nWS8 286 23 485 4 Hauerite MnS2 221 23 475 5 Alabandite MnS 4

23 577 10 Bartonite K3Fe10st4 35 23 577 13 Djerlisherite K6(Cu,Fe,Ni)25S26CI 142 23 586 16 Bornite CU5FeS4 54 23-28 474-473 10-8 Orpiment AS2SJ 400 23-29 483-476 5-9 Trechmannite AgAsS2 581

Colour value key continued

Y% Ad Pe% Formula Page

23-30 480-479 6-9 Roman~chite (Ba,H20)(Mn,Mn)5otO 483

24 c538 2 Kiddcreekite (selenian) C\J6SnWS8 287 24 486 4 Trevorite NiFe~4 582

24 482 8 Maghemite r-Fe203 337

24 478 10 Galkhaite (Cs,Tl)(Hg,Cu,Zn)6(As,Sb)4st2 187

24-24 466-468 3-2 Hocartite Ag2FeSnS4 239

24-25 482-481 4-5 Plumboferrite PbFe4D7 443

24-25 477-481 9-8 Hematophanite Pb4Fe308(OH,Cl) 230

24-26 474-c508 4-1 Enargite CU3AsS4 155

24-26 580-577 14-10 Stannoidite CU8(Fe,Zn)3Sn25t2 534

24-27 473-474 6-5 Rohaite TICu5SbS2 482

24-27 581-576 10-9 Stannoidite CU8(Fe,Zn)J5n25t2 532

24-27 578-577 15-14 Stannoidite CU8(Fe,Zn)J5n2st2 533

24-28 473-475 12-11 Proustite AgJAsSJ 453

24-31 482-485 5-5 Crednerite CuMn°2 119

24-31 476-483 6-5 Cinnabar HgS 99

24-37 579-576 11-7 Stembergite AgFe2S3 536

24-45 584-577 4-11 Mackinawite (nickelian) (Fe,Ni)9S8 336

25 566 1 Hemusite (antimonian) CU4Cu2SnMoS8 233

25 472 3 Metacinnabar HgS 367

25 579 18 Shadlunite (Cu,Fe)8(Pb,Cd)S8 508

25-25 469-470 4-4 Argyrodite AgsGeS6 19

25-25 583-582 19-21 Renierite (Cu,Znh1(Ge,As)2Fe4st6 478

25-26 488-485 1-1 Kesterite CU2ZnSnS4 283

25-26 478-452 5-8 Permingeatite CI13(Sb)Se4 429

25-26 579-576 7-6 Kuramite CuJ5nS4 306

25-27 476-476 11-11 Xanthoconite AgJAsSJ 628

25-28 471-482 3-4 Chalcothallite Tl2(Cu,Fe)65bS4 87

25-28 598-586 4-6 Luzonite CU3AsS4 334

25-29 481-481 3-4 Zenzenite PbJ(Fe,Mn)4Mn3ot5 630

25-29 476-481 6-6 Cinnabar HgS 98

25-30 476-477 7-7. Kermesite Sb2~O 282

26 585 1 Chameanite (Cu,Fe )4As(Se,S)4 89

26 573 2 Mohite CU2SnSJ 377

26 573 5 Hemusite CU4Cu2SnMoS8 232

26 471 6 C,anfieldite AgsSn% 71 , 26 588 6 Thalfenisite T16(Fe,Ni,Cu)25S26Cl 572

26 480 11 Cuprite CU20 124

26-27 572-571 7-4 Stannite CU2FeSnS4 530

26-27 477-482 12-8 Cuprite Cu~ 125

26-30 481-485 3-3 Gortdrumite (Cu,Fe )6Hg2Ss 210

26-30 483-483 6-5 Hematite a-Fe203 228

26-32 481-482 5-5 Hollandite Ba(Mn,Mn)8ot6 241

27 584 <1 Mgriite CI13AsSe3 368

27 586 2 Chameanite (Cu,Fe)4As(Se,S)4 88

27 462 4 Villamaninite (Cu,Ni,Co,Fe)~ 606

27 480 5 Coronadite Pb(Mn,Mn)8ot6 113

27 573 6 Florensovite Cu(Crt.5Sbo.5)S4 174

27 583 6 Colusite CU26V 2(As,Sn,Sb )6SJ2 109

27 487 10 Berzelianite CU2Se 44

Colour value key continued

Y% Ad Pe% Fonnula Page

27-28 566-565 6-5 Stannite CU2FeSnS4 531

27-28 577-578 6-6 Chatkalite CU6FeSn2S8 90

27-28 482-483 7-6 Routhierite CuTlHg2(Sb,As)2% 487

27-28 583-580 21-24 Renierite (Cu,Zn)l1 (Ge,As )2Fe4S}6 479

27-29 482-483 7-6 Routhierite CuTIHg2(Sb,As )2S6 486

27-30 548-489 1-2 Bukovite T12(Cu,Fe)4Se4 65

27-30 482-483 8-9 Sabatierite CU6TlSe4 495

27-30 580-581 14-30 Mawsonite CU6Fe2SnS8 360

27-31 470-473 4-13 Stromeyerite AgCuS 539

27-31 482-484 6-5 Hematite a-Fe203 229

27-33 580-592 3-5 Raguinite TlFeS2 472

27-35 475-482 6-2 Rohaite TICu5SbS2 481

27-35 579-580 9-7 Argentopyrite AgFe2S3 17

28 479 5 Canfieldite (tellurian) Ag8SnS6 72 28-29 481-481 4-3 Petrukite (Cu,Fe,Zn)3(Sn,In)S4 433

28-29 478-480 8-9 Samsonite A&4MnSb2S6 498

28-30 483-479 7-9 Hutchinsonite (Pb,TI)2As5~ 242

28-30 472-478 11-11 Pyrargyrite A&3SbS3 456

28-31 474-478 6-5 Stephanite Ag5SbS4 535

28-41 599-474 4-5 Selenium (synthetic) Se 504

29 577 4 Kolarite PbTeC12 293

29 568 7 Nekrasovite (zincian) CU26V 2(Sn,As,Sb)6532 390

29 570 8 Sulvanite CU3VS4 546 29 581 20 V inciennite CU10Fe4Sn( As,Sb )S}6 607 29-32 469-481 5-3 Pearceite A&16As2S}1 420

29-34 480-478 9-9 Laphamite AS2(Se,S)3 310 30 502 <1 Argentotennantite (Ag,Cu)8(Zn,Fe)2( As,Sb )4S}3 18 30 547 1 Goldfieldite CU12(Te,Sb,As)4S}3 208 30 485 2 Tennantite (bismuthian) (Cu,Fe)12As4S}3 558 30 487 3 Tennantite (plumbian) (Cu,Fe)12As4S}3 560

30 492 3 Tennantite (zincian) (Cu,Fe)12As4S}3 561 30 485 4 Tennantite (Cu,Fe)12As4S}3 557 30 474 7 Tiemannite HgSe 575 30 579 8 Colusite CU26V2(As,Sn,Sb)6532 107 30 577 16 Manganese-shadlunite (Mn,Pb,Cd)(Cu,Fe)8S8 349

30 580 17 Argentopentlandite Ag(Fe,Ni)gS8 16 30-30 479-480 10-10 Pyrostilpnite A&3Sb53 465 30-31 481-480 5-4 Parapierrotite Tl(Sb,As )5S8 415 30-32 480-479 9-8 Laffittite AgHgAs53 308 30-33 478-478 7-8 Mckinstryite (Ag,Cu)2S 361

31 c495 <1 Goldfieldite CU12(Te,Sb,As )4S}3 209 31 497 1 Tetrahedrite (argent ian) (Cu,Feh2Sb4S}3 568 31 502 1 Tetrahedrite (argentian) (Cu,Fe)12Sb4S}3 567 31 491 2 Tennantite (mercurian) (Cu,Fe )12As4S}3 559 31 c562 4 Fischesserite A&3AuSe2 172

31 483 5 Acanthite Ag2S 1 31 c551 5 Fischesserite A&3AuSe2 173 31 578 9 Colusite CU26V2(As,Sn,Sb)6532 108 31 577 10 Radhakrishnaite PbTe3(CI,S)2 471 31 577 18 Geffroyite (Ag,Cu,Fe)9(Se,S)8 189

Colour value key continued

Y% Ad Pe% Fonnula Page

31-31 c566-470 2-4 Lautite CuAsS 316

31-32 487-486 2-2 Watanabeite CU4(As,SbhS5 617

31-32 479-487 5-3 Polybasite (Ag,CuhG5b2St1 447

31-32 481-480 9-7 Djurleite CU31St6 143

31-34 480-480 8-8 Miargyrite AgSbS2 369

31-35 481-480 4-5 Chabourneite (Tl,Pb )23(Sb,As )91 St 47 81 31-36 577-574 8-8 Eskebornite CuFeSe2 160 31-37 479-481 5-4 Cylindrite Pb4FeSII4Sb2St6 132

31-40 482-483 5-7 Livingstonite HgSb4S8 326

31-42 c548-480 2-4 Berthierite FeSb2S4 43

31-47 494-482 1-7 Stibnite Sb2S3 538

32 c566 <1 Giraudite (Cu,Zn,Ag)12(As,Sb)4(Se,S)13 199

32 457 1 Vaesite (cobaltian) NiS2 599

32 509 1 Tetrahedrite (zincian) (Cu,Fe h2Sb4St3 570

32 541 1 Tetrahedrite (Cu,Feh2Sb4St3 566

32 483 6 Krutaite CuSe2 303

32 479 9 Henryite CU4A~Te4 234

32 573 9 Arsenosulvanite CU3(As,V)S4 26

32-33 467-468 3-3 Larosite (Cu,Agb(Pb,BihSt3 313

32-33 478-482 5-5 Jalpaite A~CuS2 266

32-34 480-483 3-3 Seligmannite CuPbAsS3 505

32-34 479-478 4-4 Levyclaudite Pb8Sn7Cu3(Bi,Sb )3S28 320

32-34 480-483 7-4 Benleonardite Ag8(Sb,As )Te253 41

32-34 574-564 8-3 Cameronite CU7AgTe10 70

32-39 480-485 5-2 Vaughanite TIHgSb457 604

33 492 <1 Daubreelite FeCr2S4 135

33 561 1 Tetrahedrite (mercurian) (Cu,Fe)12Sb4St3 569

33 c551 2 Vaesite (cuprian) NiS2 600

33 485 3 Freibergite (Ag,Cu,Fe )12(Sb,As )4St3 177

33-33 480-480 7-7 Chalcocite CU2S 82

33-34 480-478 9-8 Weissite CU5Te3 622

33-35 520-469 <1-1 Crookesite CU7(Tl,Ag)Se4 121

33-35 573-570 2-2 Wittichenite CU3BiS3 623

33-35 487-492 3-2 Aguilarite Ag4SeS 2

33-37 482-482 6-5 Sartorite PbAs2S4 499

34 c513 <1 Vaesite (selenian) NiS2 601

34-35 480-480 4-5 Bournonite PbCuSbS3 56

34-35 576-575 28-26 Haycockite CU4Fe5S8 225

34-36 480-484 4-2 Bournonite PbCuSbS3 57

34-37 553-572 1-6 Lapieite CuNiSbS3 311

34-38 479-475 5-7 Pierrotite Tl2Sb6As4St6 435

34-38 481-483 6-5 Baumhauerite-2a Pbt1 Ag(As,Sbh8S36 37

34-39 580-578 15-11 Troilite FeS 583

34-43 480-484 3-2 Uchucchacuaite AgMnPb3Sb5St2 592

35 590 2 Pyrite (nickeloan) (Fe,Ni,Co )S2 460

35 486 3 Krutaite (nickeloan) CuSe2 305

35 581 5 Greigite Fe3S4 214

35-36 c517-573 <1-2 Furutobeite (Cu,Ag)6PbS4 181

35-36 486-573 3-5 Lapieite CuNiSb53 312

35-36 481-481 4-3 Potosiite Pb48Sn18Fe7Sbt6St15 450

Colour value key continued

Y% Ad Pe% Formula Page

35-36 485-478 5-6 Naumannite Ag2Se 389

35-39 480-480 3-3 Freieslebenite PbAgSbSJ 178

35-39 481-482 4-4 Baumhauerite PbJAs4~ 36

35-39 481-483 6-5 Liveingite Ph9As13S28 325

35-40 580-577 10-9 Pyrrhotite Fe1_xS 466

35-41 481-483 6-5 Rathite (Pb,Tl}JAs5StO 475

35-42 450-c506 <1-<1 Junoite PbJCu2Bi8(S,Seh6 274

36 576 18 Isocubanite CuFe2SJ 259

36 575 26 Mooihoekite CU9Fe9st6 384

36-36 456-439 2-1 Gratonite Ph9As4St5 212

36-37 481-482 3-3 Franckeite (Pb,Sn)6FeSn2Sb2St4 175

36-37 479-481 3-4 Lengenbachite Ph6(Ag,Cu)2As4st3 318

36-37 574-552 4-3 Eucairite AgCuSe 162

36-38 481-481 3-2 Diaphorite Pb2AgJSb3S8 140

36-38 484-480 4-4 Aramayoite Ag(Sb,Bi)S2 15

36-38 483-482 4-5 Dufrenoysite Pb2As2S5 147 36-38 481-483 5-3 Criddleite TIAg2Au3SbtOStO 120 36-38 481-490 7-4 Tvalchrelidzeite HgJ(Sb,As)SJ 589 36-39 576-578 4-4 Cuprobismutite CU10Bi12~ 126 36-39 577-575 17-12 Cubanite CuFe2SJ 122

36-40 483-486 2-2 Roschinite Agt9PbtOSb51 ~6 485 36-41 479-484 3-2 Andorite AgPbSbJS6 12

36-41 485-483 3-5 Fiiloppite PbJSbsSt5 180 36-42 488-484 2-4 Plagionite Pb5SbsSt7 438 36-42 477-477 3-2 J ask61skiite Pb2+xCUx(Sb,Bih_xS5 268

36-42 483-482 3-3 Semseyite Ph9Sb8S21 506 36-44 483-487 3-2 Jamesonite Pb4FeSb6St4 267 37 598 2 Coloradoite HgTe 106 37-39 486-483 1-2 Rayite Pb8(Ag,Tl)2SbsS21 476 37-41 481-483 4-3 Veenite Pb2(Sb,As)2S5 605

37-41 580-578 10-9 Pyrrhotite Fe1_xS 467 37-42 558-568 1-5 Emplectite CuBiS2 153 37-42 481-484 3-3 Boulangerite Pb5Sb4St1 55 37-42 484-485 3-3 Zinkenite Ph9Sb22S42 633 37-42 580-578 10-9 Pyrrhotite Fe1_xS 468

37-43 484-487 2-2 Zoubekite AgPb4Sb4StO 634 37-43 480-481 2-3 Meneghinite Pbt3CuSh7S24 364 37-43 485-485 4-7 Chalcostibite CuSbS2 86 37-47 472-478 4-5 paJikkonenite Sb2AsS2 405 37-49 488-507 1-1 Bismuthinite Bi2SJ 48

38 482 4 Cervelleite Ag4TeS 80 38 585 6 Cattierite COS2 78 38-40 478-479 3-3 Jordanite Pbt4As6S23 271 38-43 485-488 2-2 Tintinaite Pb22CU4(Sb,Bi)30%9 577 38-44 480-487 3-2 Owyheeite Ag2Ph7(Sb, Bi)sS20 404

39 491 1 Krutaite (nickeloan) CuSe2 304 39 473 4 Petzite AgJAuTe2 434 39-41 464-587 2-3 Hessite Ag2Te 237 39-42 487-492 2-1 Benavidesite Pb4(Mn,Fe )Sb6St 4 39 39-42 482-481 2-3 Geocronite Pbt 4(Sb,As )6523 192

Colour value key continued

Y% Ad Pe% Formula Page

39-43 481-485 3-3 Dadsonite PbtO+xSbt4-x531-xC1x 133 39-43 482-480 3-3 Kirkiite PbtOBiJAs3st9 288

39-46 489-566 1-2 Aikinite CuPbBi53 3 39-47 483-565 2-1 Krupkaite PbCuBi3S6 302 39-47 481-486 6-2 Cooperite (Pt,Pd,Ni)S 110

40 499 <1 Penroseite (cuprian) (Ni,Co,Cu)Se2 423

40 581 8 Pyrite (nickelian) FeS2 459

40-41 482-479 3-1 Stiitzite Ag2_xTe 540

40-42 c561-c504 1-1 Inaglyite CU3Pb(Ir,Pt)85t6 247

40-42 478-479 5-6 Nagyagite Pb5Au(Te,Sb)~5_8 388

40-45 503-565 <1-1 Hammarite Pb2Cu2B459 220

40-45 485-488 3-1 Cooperite (Pt,Pd,Ni)S 111

40-45 477-478 4-3 Izoklakeite (Cu,Fe)2Pb27(Sb,Bih9S57 264

40-45 c565-465 11-10 Cuprostibite CU2(Sb,Tl) 131

40-50 c496-598 5-5 Breithauptite NiSb 62

40-52 573-572 3-6 Empressite AgTe 154

41 596 1 Penroseite (Ni,Co,Cu)Se2 421 41-46 474-473 5-3 Cosalite Pb2Bi2S5 115

41-50 c496-599 5-5 Breithauptite (synthetic) NiSb 63

42 482 3 Erlichmanite OsS2 159

42 582 3 Penroseite (Ni,Co,CU)Se2 422

42 477 7 Laurite RuS2 315

42 581 51 Bezsmertnovite AU4Cu(Te,Pb) 46

42-44 548-488 1-1 Teallite PbSnS2 549

42-45 490-483 1-1 Neyite Pb7(Cu,Ag)2Bi65t7 392

42-48 492-490 1-1 Matildite AgBiS2 358

42-49 483-482 4-5 Herzenbergite SnS 236

43 484 2 Erlichmanite OsS2 158

43 580 2 Carrollite Cu(Co,Ni)2S4 74

43 469 3 Lillianite Ph3Bi2S6 321

43 472 5 Galena PbS 184

43 480 5 Laurite RuS2 314

43-43 584-573 4-7 Sopcheite A84Pd3Te4 519

43-44 528-567 <1-1 Braggite (Pt,Pd,Ni)S 59

43-44 567-571 1-2 Braggite (Pt,Pd,Ni)S 60

43-45 600-589 1-1 Konderite CU3Pb(Rh,Pt,Ir)85t6 295

43-47 480-480 4-3 Wittite PbgBi12(S,Se)27 624

43-48 478-484 3-3 Cupropavonite AgPbCu2Bi5stO 128

43-49 480-481 4-3 Weibullite Pb6Bi8(S,Seh8 621

43-52 506-570 <1-<1 Guanajuatite Bi2Se3 216

44 472 5 Galena PbS 185

44 579 5 Sopcheite A84Pd3Te4 517

44-45 574-574 25-24 Chalcopyrite CuFeS2 84

44-46 577-577 5-6 Cherepanovite RhAs 91

44-47 478-c554 1-<1 Soucekite CuPbBi(S,Se)3 520

44-48 482-489 2-2 Benjaminite (Ag,Cu)3(Bi,Pb)75t2 40

45 578 3 Carrollite (nickelian) Cu(Co,Ni)2S4 75

45 573 24 Chalcopyrite CuFeS2 85

45-46 573-573 2-2 Watkinsonite PbCu2B4(Se,S, Te)8 618

45-46 578-576 3-2 Vysotskite (Pd,Pt)S 615

Colour value key continued

Y% Ad Pe% Formula Page

45-46 584-582 5-6 Keithconnite Pd3_xTe 280

45-46 572-581 6-8 Sopcheite A84Pd3Te4 518

45-47 491-554 <1-1 Gladite PbCuBi5Sg 200

45-47 482-483 2-3 Galenobismutite PbBi2S4 186 45-47 479-479 3-4 Kobellite Pb2(Bi,Sb )2S5 291

45-48 578-578 11-10 Donharrisite Ni8H~Sg 146 45-49 569-571 7-8 Domeykite (fl domeykite) CU3As 145 45-64 504-576 <1-9 Niggliite PtSn 395 46 563 1 Petrovicite PbHgCu3BiSe5 432 46 584 1 Polydymite NiNi2S4 448

46 482 2 Irarsite (Ir,Ru,Rh,Pt)AsS 252 46 472 3 Gersdorffite I NiAsS 195 46 571 3 Palladseite Pd17Se15 409 46 576 3 Tyrrellite (Cu,Co,NibSe4 590 46 585 4 Violarite FeNi2S4 608

46-48 574-575 2-2 Bowieite (Rh,Ir,Pt)253 58 46-48 578-576 10-8 Tucekite Ni9Sb2S8 585 46-49 480-582 1-<1 Ikunolite B4(S,Se)3 243 46-51 582-582 4-8 Ferroselite FeSe2 167 46-51 587-582 6-12 Cabriite Pd2SnCu 68

46-54 588-582 6-11 Cabriite Pd2SnCu 67 47 475 1 Ullmannite NiShS 593 47 c497 1 Khamrabaevite (Ti,Fe,V)C 284 47 474 2 Ullmannite (arsenian) NiShS 594 47 476 2 Gersdorffite (antimonian) NiAsS 194

47 580 4 Siegenite (cuprian) CoNi2S4 510 47 583 5 Siegenite CoNi2S4 509 47 579 6 Pentlandite (rhodian) (Fe,Ni)9S8 427 47 582 6 Violarite (cobaltian) FeNi2S4 609 47 578 12 Pentlandite (Fe,Ni)9S8 424

47-53 578-577 7-8 Luberoite Pt5Se4 332 48 528 1 Padmaite PdBiSe 406 48 579 1 Gersdorffite II NiAsS 198 48 589 1 Platarsite (Pt,Rh,Ru)AsS 439 48 574 3 Tyrrellite (Cu,Ni,Co)3Se4 591

48 580 7 Linnaeite (nickelian) CoCo2S4 323 48-49 567-572 1-2 Watkinsonite PbCu2Bi4(Se,S,Te)8 619 48-50 620-573 <1-2 Alloclasite (Co,Fe)AsS 9 48-50 578-577 4-4 Parkerite Ni3(Bi,Pb)2S2 418 48-52 577-576 13-9 Vozhminite (Ni,Co)4(As,Sb)S2 612

48-52 583-582 16-12 Nickeline NiAs 394 49 536 <1 Platarsite (Pt,Rh,Ru)AsS 440 49 576 13 Pentlandite (Fe,Ni)9S8 425 49 576 17 Orcelite Ni5_xAs2 399 49-49 582-569 1-<1 Paracostibite CoSbS 411

49-50 571-571 4-4 Skippenite Bi2Se2Te 514 49-51 586-583 5-6 Maucherite Ni11As8 359 49-53 574-569 2-2 Poubaite PbBi2Se2(T e,S)2 451 49-54 594-581 7-9 Imgreite NiTe (7) 245 49-55 483-541 2-<1 Laitakarite B4(S,Se)3 309

Colour value key continued

Y% Ad Pe% Formula Page

49-55 573-566 6-6 Marcasite FeS2 354

49-57 554-488 1-1 Paraguanajuatite Bi2(S,Se)3 412

50 582 8 Orcelite Ni5_xAs2 398

50-52 571-574 1-1 Aleksite PbBi2Te2S2 7

SO-52 578-475 2-2 Arsenopyrite (cobaltian) FeAsS 24

50-54 588-581 7-8 Paolovite Pd2Sn 410

50-55 478-480 2-3 Nevskite Bi(Se,S) 391

50-55 575-575 13-19 Millerite P-NiS 375

50-56 575-574 11-18 Millerite P-NiS 374

50-58 560-554 2-1 Paraguanajuatite Bi2(Se,S)3 413

51 583 2 Cobaltite CoAsS 105

51 581 4 Cobaltite CoAsS 104

51 477 7 Clausthalite (synthetic) PbSe 101

51 579 7 Telargpalite (Pd,Ag)3Te 550

51 582 7 Telluropalladinite Pd9Te4 556

51 580 8 Mertieite II Pd8(Sb,Ash 366

51-51 576-575 1-1 Jolliffeite NiAsSe 270

51-55 489-570 1-1 Joseite B4TeS2 272

51-61 575-567 7-3 Kostovite AuCuTe4 296

52 576 10 Pyrite FeS2 457

52 576 11 Pentlandite (cobaltian) (Fe,Ni)9S8 426

52 577 11 Domeykite CU3As 144

52-52 574-574 17-14 Godlevskite (Ni,Fe)7% 201

52-53 576-579 5-2 Arsenopyrite FeAsS 23

52-55 580-579 10-9 Plumbopalladinite Pd3Pb2 444

52-56 476-483 2-1 Arsenic As 21

52-56 583-495 3-1 Gudmundite FeSbS 217

52-56 574-572 4-4 Kawazulite Bi2Te2Se 278

52-57 505-564 <1-1 Ingodite Bi2TeS 249

52-63 571-570 4-4 Sylvanite (Au,Ag)2Te4 547

53 478 7 Clausthalite PbSe 100

53-54 577-484 2-1 Arsenopyrite (cobalt ian) FeAsS 25

53-54 577-578 10-9 Potarite PdHg 449

53-55 478-574 2-4 Lollingite (cobaltian) FeAs2 328

53-55 578-576 5-6 Palladoarsenide Pd2As 408

53-55 579-578 8-9 Arsenopalladinite Pd8(As,Sbh 22

53-56 478-573 6-3 Lollingite FeAs2 327

53-56 573-573 14-16 Heazlewoodite Ni3S2 226

54 493 <1 Sperrylite PtAs2 521

54 478 2 Skutterudite CoAs2-3 515

54 574 3 Insizwaite Pt(Bi,5b)2 250

54 578 6 Suessite (Fe,NihSi 544

54 578 7 Majakite PdNiAs 345

54 573 11 Pyrite Fe~ 458

54 578 11 Isomertieite Pd11Sb2As2 262

54-54 514-480 <1-3 Safflorite CoAs2 496

54-55 c553-420 2-2 Volynskite AgBiTe2 610

54-55 479-494 4-1 Clinosafflorite (Co,Fe,Ni)As2 102

54-55 579-579 7-7 Genkinite (Pt,Pd)4SbJ 191

54-55 579-581 8-6 Palarstanide Pd5(Sn,As)2 407

Colour value key continued

Y% Ad Pe% Formula Page

54-55 578-576 9-8 Stibiopalladinite Pd5Sb2 537

54-57 573-575 2-3 Sulphotsumoite Bi3Te2S S45

55 559 1 Nickel-skutterudite (Ni,Co,Fe )As3 393

55 575 1 Gersdorffite II NiAsS 197

55 483 2 Skutterudite CoAS2-3 516

55-57 578-575 6-6 Atheneite (Pd,Hg)3As 28

55-60 575-571 3-3 Tetradymite Bi2Te2S 564

55-60 574-573 6-4 Krennerite (argentian) (Au,Ag)Te2 301

56 488 <1 Michenerite (Pd,Pt)BiTe 370

56 c541 <1 Michenerite (antimonian) (Pd,Pt)BiTe 372

56 583 1 Maslovite PtBiTe 356

56 578 11 Isomertieite Pd11Sb2As2 261

56-57 576-576 4-3 Moncheite (Pt,Pd) (Te,Bi)2 379

56-59 576-578 4-4 Froodite PdBi2 179

56-60 576-577 2-3 Joseite-B B4Te2S 273

56-60 584-578 6-8 Kitkaite NiTeSe 289

56-63 569-572 2-2 Moncheite (Pt,Pd)(Te,Bi)2 380

57 575 <1 Gersdorffite II NiAsS 196

57 576 2 Michenerite (Pd,Pt)BiTe 371

57-59 577-576 8-6 Montbrayite (Au,Sb)2Te3 382

57-61 583-492 <1-<1 Rammelsbergite NiAs2 473

58 571 <1 Iron Fe 257

58 575 8 Maldonite AU2Bi 348

58 575 11 Cobalt pentlandite C09S8 103

58-59 581-585 5-5 Melonite (palladian-bismuthian) NiTe2 363

58-59 577-577 6-5 Polarite Pd(Bi,Pb) 446

58-62 573-573 6-5 Krennerite AuTe2 300

58-63 591-580 4-9 Melonite NiTe2 362

58-68 506-498 <1-1 Tellurium (synthetic) Te 554

59 614 <1 Iron (nickelian) Fe 258

59 577 3 Polarite Pd(Pb,Bi) 44S 59 578 3 Ferronickelplatinum Pt2FeNi 166

59 579 4 Ferchromide Cl3Fe1_x (x-0.6) 164

59-60 530-580 <1-2 Pararammelsbergite NiAs2 416

59-61 575-575 2-2 Moncheite (palladian) (Pt,Pd) (Te,Bi)2 381

59-63 577-576 7-9 Algodonite CU6As 8

60 575 2 Insizwaite Pt(Bi,5b)2 251

60 577 7 Zvyagintsevite (Pd,Pt,A U)3(Pb,Sn) 635

60-63 561-572 1-2 Dyscrasite A83Sb 149

60-64 576-577 10-10 Stumpflite Pt(Sb,Bi) 541

60-64 576-578 10-10 Sudburyite (Pd,Ni)Sb 542 60-66 546-538 1-1 Tellurium Te 552

60-67 577-578 8-7 Bismuth Bi 47

60-69 560-495 1-1 Tellurium (synthetic) Te 553 61 c559 2 Seinajokite (Fe,Ni)(Sb,As )2 503

61 577 2 Aurostibite AuSb2 30 61-62 483-479 4-3 Osmium (iridian) Os 402 61-63 576-578 10-11 Sudburyite (nickelian) (Pd,Ni)Sb 543 61-67 574-573 8-6 Calaverite AuTe2 69 62 481 4 Cupalite (Cu,Zn)AI 123

Colour value key continued

Y% Ad Pe% Fonnula Page

62 581 16 Gold (palladian) Au 207 62-62 483-483 2-3 Osmium Os 401

62-63 579-576 8-10 Kotulskite (bismuthian) Pd(Te,Bi) 299

62-65 582-577 <1-2 Rucklidgeite (Bi,Pb)3Te4 488

62-65 584-580 1-2 Tsumoite BiTe 584

62-67 577-578 2-3 Hedleyite Bi7Te3 227

63-66 602-579 <1-2 Tellurobismuthite Bi2Te3 555

63-67 647-589 1-2 Merenskyite (Pd,Pt )(Te,Se, Bi)2 365 63-67 573-575 2-3 Tellurantimony Sb2Te3 551 63-69 575-574 11-13 Kotulskite Pd(Te,Bi) 297

64 574 3 Tetraferroplatinum PtFe 565 64 576 5 Awaruite Ni3Fe 31

64-66 484-484 3-1 Osmium (iridian) (Os,Ir) 403

64-67 576-578 1-2 Pilsenite Bi4Te3 436

65 486 2 Rutheniridosmine (Os,Ir,Ru) 490

65 580 4 Isoferroplatinum (Pt,Pd)3(Fe,Cu) 260

66 490 1 Rutheniridosmine (Os,Ir,Ru) 489 67-74 573-573 11-15 Kotulskite Pd(Te,Bi) 298 69 499 <1 Lead Pb 317 69 528 2 Altaite PbTe 10

70 497 1 Ruthenium Ru 491

70 576 5 Platinum Pt 441 70-71 503-565 <1-1 Ruthenium (iridian) Ru 492 71 582 2 Iridium Ir 253

72 574 8 Kolymite CU7Hg6 294

72-73 517-572 <1-3 Ruthenium (synthetic) Ru 493

73 575 3 Iridium Ir 254 73 579 4 Belendorffite CU7Hg6 38

73-74 578-578 8-7 Schachnerite Agl.lHgO.9 500

74 583 2 Iridium (ruthenian) Ir 256

74 575 3 Iridium Ir 255

74 588 22 Copper Cu 112

74-77 500-535 1-1 Antimony Sb 14

75-77 491-578 2-5 Khatyrkite CuAl2 285

76 578 40 Gold Au 204

79-SO 578-577 7-7 Paraschachnerite A83Hg2 417

SO 577 41 Gold (argent ian) Au.94Ag.06 206

81-88 569-568 3-3 Tin Sn 576

82 576 4 Moschellandsbergite Ag2H83 385

83 574 37 Gold (argentian) Au.SOAg.20 205

86 574 6 Silver (antimonian) Ag 512

88 573 27 Electrum AU.64Ag.36 152

90 572 16 Electrum AU.47Ag.53 151

93 574 4 Silver Ag 511

99 571 4 Silver (synthetic) Ag 513

Air and Oil data 440-700nm key 3

Organisation: is in ascending order starting at 440nm, isotropic first then anisotropic.

For isotropic minerals where the reflectance at 440nm is the same for two or more minerals, the sequence is transferred to the ascending order at 500nm and so on.

For anisotropic minerals the sequence starts at 440nm with the minimum reflectance* and is in order of increasing bireflectance at that wavelength. Where two or more minerals have identical values for Rl and R2 at 440nm the sequence progresses to 500nm and so on.

Where all the values is air for an isotropic or anisotropic mineral are the same as for another, the oil values are used; they follow the sequence described above.

*Note: This key, unlike Key 1, takes into account changes in the sign of bireflectance, i.e. crossing of the Rl and

R2 spectra. As noted above, R440 always starts with the lower of the two reflectances whether this be Rl or R2•

Whichever one it happens to be is continued as the first value for the other three wavelengths (e.g. Millerite, pages 374-375 where R440 = R2)

R% imR %

440nm 500nm 600nm 700nm 440nm 500nm 600nm 700nm Page

Mgriite 26 26 CU3AsSe3 368

Talnakhite 30 40 42 CU9(Fe,Ni)8~6 548

Putoranite 30 41 41 CU16_18(Fe,Nih8-1~2 455

Cuproiridsite 34 33 32 CuIr2S4 127

Cuprorhodsite 36 37 37 CuRh2S4 129

Malanite 36 37 38 Cu(Pt,Irh S4 347 Aleksite 53 54 55 PbBi2Te2~ 6 Malachite 6-10 6-10 6-9 6-9 CU2(C03)(OHh 346 Graphite 6-25 6-25 6-28 6-30 <1-14 <1-14 1-16 1-17 C 211 Spinel 7 7 7 7 <1 <1 <1 <1 MgAl204 527

Erdite 7-15 7-12 9-27 10-27 NaFe~.2H20 156 Periclase 8 8 7 7 1 1 1 1 MgO 428 Gahnite 8 8 8 8 1 1 1 1 ZnAl20 4 182 Hercynite 8 8 8 8 1 1 1 1 FeAl204 235 Corundum 8-8 7-7 7-7 7-7 1-1 1-1 1-1 1-1 Al20 3 114

Vyalsovite 8-12 8-8 8-11 8-25 FeS.Ca(OHbAI(OHh 614 Chiorargyrite 9 9 9 10 AgCI 92 Hogbomite 9-9 8-9 8-9 8-9 1-1 1-1 1-1 1-1 (Mg,Fe h( AI, Tils010 240 Cerussite 9-14 8-14 8-13 8-13 PbC03 79 Tochilinite 9-15 9-17 8-19 8-21 6Feo.9S.5(Mg,Fe )(OHh 579

Anglesite 10 9 9 9 PbS04 13 Azurite 10-11 10-10 8-9 9-9 CU3(C03h(OHh 32 Scheelite 10-11 10-10 10-10 10-10 2-2 1-2 1-1 1-1 CaW04 501 Titanite 10-12 10-12 9-11 9-11 1-2 1-2 1-2 1-2 CaTi03 578 Erdite 10-27 11-17 10-37 11-35 2-15 2-9 1-24 2-20 NaFe~.2H20 157

Aurorite 10-34 9-29 9-25 9-23 1-18 1-14 1-11 1-10 (Mn,Ag,Ca)Mn30 7·3H2O 29 Chalcophanite 10-34 9-30 9-25 9-23 1-19 1-15 1-11 1-9 (Zn,Mn,Fe )Mn407.3H20 83 Spinel (ferroan-chromian) 11 10 10 10 2 2 1 1 MgAl204 528 Galaxite (ferroan) 11 11 11 10 2 2 2 2 (Mn,Fe,Mg)( AI,Fe h O 4 183 Ingersonite 11-11 10-10 10-10 10-10 2-2 1-2 1-1 1-2 Ca3MnSb4014 248

li

Air and Oil data 44O-700nm key continued

Blatterite

Cannonite

Cassiterite

Valleriite

Bogdanovite

Microlite

Filipstadite

Zincochromite

Betafite

Bunsenite

Bismutite Filipstadite

R%

440nm 500nm 600nm 700nm

11-12 10-12 10-11 10-11

11-13 11-12 10-12 10-11

11-13 11-12 11-12 10-12

11-13 11-17 10-23 10-27

11-15 7-17 14-39 45-36

12 12 11 11

12-12 12-12 11-11 11-11

13

13

13

13

13

12

12

12

13

13

12

12

12

12 12

12

12

12

12 12

Magnesiochromite (ferroan) 13 13 12 12

Zincite 13-13 12-12 11-11 11-11

Vonsenite

Geikielite

Groutite

Pyrochlore

Qandilite

Thorianite

Chromite

Barstowite

Baddeleyite

Nolanite

Lepidocrocite

Hausmannite

Nukundamite

Covellite

Manganosite

Uraninite

Murunskite: Be:zsme:rtnovite:

Manganotantalite

Kyzylkumite

Kentrolite

Valentinite

Jeppeite Manganite

Covellite

Covellite

Kazakhstanite:

Chromite

Koe:chlinite: Mime:tite:

Pyrochlore

Ulvospinel

Lueshite

biolite

Mannardite

Schollhomite

13-15 13-14 11-15 10-14

13-17 12-16 12-15 12-15

13-21 13-19 13-19 12-18

14 13 13 12

14 13 13 13

14 13 13 13

14 14 13 13

14-14 13-14 13-13 12-13

14-14 14-14 13-14 13-14

14-18 14-17 15-18 17-20

14-22 12-20 11-17 10-16

14-22 14-21 13-19 12-18 14-24 14-24 20-24 29-30

14-30 10-26 3-21 25-22

15

15

15

14

14

17

13

14

22

13

14

25 15 21 56 58 15-16 14-15 14-14 13-14

15-16 15-16 15-16

15-18 13-16 13-15 12-14

15-18 14-17 13-16 13-16

15-18 14-17 13-16 13-16

15-22 15-21 14-20 13-19

15-31 11-27 4-21 22-23

15-32 11-28 4-21 23-23

16 16

16 16 16

16

14 15

15 15 15

15

12 14

14 15 15

16

12 13

14 15 15

18

16-16 15-15 14-15 14-14

16-17 15-16 14-15 14-15

16-17 15-17 15-18 15-19

16-17 16-19 15-19 15-19

440nm 500nm 600nm 700nm Page:

2-2 2-2 1-2 1-2 (Mn,Mgh(Mn,Sb,Fe)BOs 52

2-3 2-2 2-2 2-2 Bi20(OHhS04 73

2-3 2-2 2-2 2-2 Sn02 76

2-6 2-9 2-13 2-15 4(Fe,Cu)S.3(Mg,Al)(OHh 603

Aus(Cu,Feh(Te,Pbh 53

2 2 2 2 (Ca,NahTa206(O,OH,F) 373

2-2 2-2 2-2 2-2 (Mn,Mg)4SbFeOs 171

ZnCr204 632

2 2 2 1 (Ca,Na,Uh(Ti,Nb,Tah06(OH) 45

3 3 2 2 NiO 66

3

3

3-3

3-4

3-5

3-8

3

3

3

3

3

2-2 2-4

2-4

3-7

3

3

3

2 2 2 2 2-2 2-2

2-4 1-4

2-4 3-5

3-6 3-6

3 2 3 3 3 3

333 3

3-4 3-3 3-3 3-3

3-3 3-3 3-3 3-3

4-6 4-6 4-6 6-8

3-9 2-7 2-5 2-5

Bi2(C03)02

(Mn,Mg)4SbFeOs

MgCr204 (Zn,Mn)O

Fe2FeB03

MgTi03 MnO.OH

(Ca,Nah~06(OH,F)

(Mg,Feh(Ti,Fe,Al)04

Th02

FeCr204

3PbC12·PbC03·H20 zr02

(V,Fe,Fe,Tiho014(OHh y-FeO.OH

3-9 3-8 3-7 3-6 MnMn20 4 5-12 6-12 12-12 19-19 (Cu,Fe)4S4

4-16 2-12 3-9 28-10 CuS

4 3 3 3 MnO

4-4 3-4 3-4

4-5 3-4 3-4

4-6 3-5 3-5

4-6 3-5 3-5

4-8 4-8 3-7

5-16 2-13 2-8

4-17 2-13 2-8

4 4 3

5 5 5

U02

K2Cu3FeS4 AU4Cu(Te,Pb)

3-4 MnTa206 V2Ti30 9

3-4 P~Mn2Si209

3-4 S~03

3-5 (K,Bah(Ti,Fe)6013 3-6 MnO.OH

25-10 CUS

27-10 CuS

3

4

Fes V 3 V 12039(OH)9·9H20

FeCr204 Bi2Mo06

Pbs(As04hCl

(Ca,Nah~06(OH,F)

5

5-5

4-5

4-5

4 5 6 TiFe204

4-4 4-4 4-4 NaNb03 4-4 4-4 4-4 (Ta,Fe,Sn,Nb,Mn)40S

4-5 4-6 4-6 Ba(T4V2)016

Nao.3C~.Hp

49

170

338

631

611

190

215

462

469

574

94

34

33

396

319

223

397

117

351

597

387

46

352

307

281

602

269

350

116

118

279

95

292

376

463

595

333

263

353

502

Tugarinovite

Mackinawite

Loparite-(Ce)

Murdochite

Ferrotapiolite

Ferrotapiolite

Wolframite

Ferrocolumbite

Tomichite

Berdesinskiite

Pyrobelonite

Wulfenite

Mawsonite

Kamiokite

Tugarinovite

Rasvumite

Tungstenite-3R

Klockmannite

Perovskite (niobian)

Loparite-(Ce)

Sphalerite

Perovskite

Sphalerite

Sphalerite

Loveringite

Chromite (ferrian)

Wiistite

Bornite

Djerfisherite

Shadlunite

Chvilevaite

Renierite

Hawthorneite

Hemloite

Haycockite

Ilmenite

Stannoidite

Damaraite

Goethite

Hetaerolite

Hausmannite

Stannoidite

Thoreaulite

Quenselite

Kamiokite

Yarrowite

Sphalerite (manganoan-

ferroan)

Sphalerite

Gallite

Franklinite

R%

440nm 500nm 600nm 700nm

16-20 16-19 21-21 31-25

16-30 16-37 17-43 18-45

17 17 16 16 17 17 19 19

17-17 16-16 15-16 15-16

17-17 16-18 15-17 15-16

17-18 16-17 15-16 15-16

17-18 17-18 17-17 16-17

17-18 17-18 17-18 17-18

17-18 19-19 20-21 20-22

17-19 16-18 15-17 14-16

17-20 16-19 15-18 14-17

17-21 23-24 36-30 42-34

17-25 17-25 16-23 15-23

17-28 15-22 21-20 37-23

17-31 18-29 20-31 21-34

17-37 17-36 17-33 17-33

17-41 17-40 14-35 18-30

18 17 16 15 18 17 16 16

18

18 18

18

18

18

18

18 18

18

17

17 17

17

17

18

18

19 21

22

16

16 16

16

17

17

19

26

24

28

16

16 16

16

17

17

20

33

26

31

18-18 20-17 24-18 27-19

18-18 20-20 29-29 34-34

18-19 17-18 16-17 16-17

18-19 17-18 17-18 17-17

18-19 28-30 38-38 40-40

18-20 16-19 17-20 19-21

18-20 22-24 26-28 30-31

18-21 17-18 16-16 15-16

18-21 17-19 15-17 14-16

18-21 17-20 16-19 15-19

18-21 17-20 16-20 15-20

18-21 21-24 25-27 31-30

18-22 17-20 16-19 16-18

18-23 17-21 16-19 15-18

18-23 17-23 16-21 16-22

18-31 14-28 6-22 9-23

19

19

19 19

18

18

18 19

17

17

17 18

16

17

17 17

Air and Oil data 44O-700nm key continued

440nm 500nm 600nm 700nm

6-9 6-8

5-20 5-25

12-11 21-15 Mo02

6-31 6-31 (Fe,Ni)gSs

5 5

6 6 5-5 4-5

5-5 5-6

5-6

5-5 6-6

5-6

4-6

4-5

5-6

5-6

7-8

4-6

4

7

4-5

4-5

4-5

5-5 5-6

8-9

4-5

4

7 4-4

4-5

4-5

5-5 5-6

9-9

4-4

(Ce,Na,Cah(Ti,Nbh06

PbCu60s_x(Cl,Brhx

(Fe,Mn)(Ta,Nbh06

(Fe,Mn) (Ta,Nbh06

(Fe,Mn)W04

Fe~06

(V,Fe)4Ti3As013(OH) V2TiOS

PbMn(V04)(OH)

PbMo04 8-10 13-13 25-17 28-21 CU6Fe2SnSS

5-11 5-11 4-10 4-10 Fe2Mo30S

Mo02

7-20 7-17 8-18

5-22 5-20 5-19

7-26 7-24 6-20

554 555

6

6

6 6

5

7

6

5

5

5

5

5

7

8

5

5

5

5

5

7

14

9-20 KFe2~

5-18 W~

12-15 CuSe

4 CaTi03 5 (Ce,Na,Cah(Ti,Nbh06

4

5

5 5

5 8

19

ZnS

CaTi03 (Zn,Fe)S

ZnS

(Ca,Ce )(Ti,Fe,Cr,Mgb 03S

FeCr204

FeO

CUSFeS4

K6(Cu,Fe,Nihs~6Cl

(Cu,Fe MPb,Cd )Ss

Page

587 335

330

386

168

169

625

165 580

42

461

626

360

275

586

474

588 290

431 329

525

430 522

523

331

96

627

54

142

508

Na(Cu,Fe,Znh~ 97

8-8 10-10 16-17 20-20 (Cu,Zn)11(Ge,AshFe4~6 478

6-6 5-6 5-5 5-5 Ba(Ti3Cr4Fe2Fe2Mg)019 224

6-7 6-6 5-6 5-6 (As,Sbh(Ti,V,Fe,Fe,Alh20230H 231

10-11 18-18 25-24 26-25 CU4FesSs 225

5-7

8-9

6-8

6-8

5-7

6-8

7-9

6-9

6-9

5-7 5-7 6-8

10-12 14-15 17-17 CUs(Fe,ZnhSn2~2

5-6 4-5 4-4 3PbO.PbC12 5-6

5-7

5-8

4-5

4-7

4-7

4-5

4-6

4-7

10-12 13-14 17-16 CU8(Fe,ZnhSn2~2

5-7 5-7 5-6 SnTa206

5-8 4-7 4-6 PbMn02(OH)

Fe2Mo30S

6-18 4-14 1-9 12-10 CugSs

6

6

7

6

6

6

6

6

5

5

5

6

5

5

5

5

(Zn,Fe)S

ZnS

CuG~

(Zn,Fe,Mn)(Fe,MnhO,

244

533

134

202

238

222

534

573

470

276

629

526

524

188 176

Air and Oil data 44O-700nm key continued

Bartonite

Asisite

Lindsleyite

Renierite

Armalcolite

Mathiasite

Marokite

Plattnerite

Delafossite

Montroydite

Goethite

Pyrophanite

Edgarbaileyite

Magnetite

Jacobsite

Magnetite (chromian)

Mooihoekite

Umangite

Stannoidite

Sternbergite

Magnesioferrite

Germanite

Greenockite

Magnetite

Vinciennite

Manganese-shadlunite

Geffroyite

Eskolaite

Derbylite

Pseudobrookite

Senaite

Parkinsonite

Braunite

Molybdenite

Magnetite (nickeloan)

Bixbyite

Bixbyite

Argentopentlandite

Anatase

Kuramite

Wattersite

Stannite

Caswellsilverite

Tenorite

Paramelaconite

Sakuraiite

Florensovite

Brookite

Pirquitasite

Rutile

R%

440nm 500nm 600nm 700nm

19 21 24 25

19-19 18-17 17-16 16-15

19-19 18-18 17-17 17-17

19-19 22-21 33-31 36-35

19-20 18-18 17-17 16-17

19-20 18-18 17-17 16-17

19-21 17-19 16-19 15-18

19-21 18-19 17-17 14-15

19-21 18-22 19-22 20-23

19-21 19-20 17-19 16-18

19-22 17-20 15-17 14-16

19-22 17-20 16-18 15-18

19-24 16-22 14-20 14-19

20

20

20

20

20

20

20

31

20

21

21

39

20

20

20

40

20-21 16-18 14-16 29-19

20-23 22-26 26-28 31-30

20-32 22-35 26-38 28-38

21

21

21

21

21

21

21

19

20

21

21

24

27

28

17

23

18

21

33

31

34

17

27

17

20

38

35

37

21-21 21-20 19-18 19-18

21-22 19-20 17-19 17-18

21-22 19-20 18-18 17-17

21-22 19-21 18-19 18-19

21-22 19-22 17-19 17-19

21-22 20-21 18-19 18-18

21-46 21-42 19-39 19-39

22 21 21 21

22 22 22 22

22 22 23 22

22 26 33 39

22-22 20-20 19-19 18-18

22-23 24-25 26-27 28-28

22-24 26-21 23-19 21-18

22-25 25-27 26-27 27-28

22-26 22-32 21-32 18-29

22-27 21-28 20-27 20-26

22-28 22-26 22-24 22-23

23

23

23

26

23

27

23

26

23-24 21-23 20-21 19-21

23-24 22-23 23-23 22-21

23-25 21-24 19-23 18-22

440nm 500nm 600nm 700nm

10

6-5

6-6

11

5-5

5-5

12

5-4

5-5

8

6-6

6-7

8-8

6-7

11-10 20-18 22-21

6-6 5-5 5-5

6-7 6-6

6-8 5-6

6-8 6-7

6-8 6-9

7-8 7-8

6-9 5-7

6-8 5-7

7-10 5-8

9 9 7 8

8 8

17

5-6

5-6

5-6

5-5

6-9

5-6

4-5

4-6

4-7

9

8

8

24

7-6

5-6

4-6

3-4

7-9

5-6

4-4

4-6

3-7

8

7

8

25

21-9

9

8-8

9-11

8-20

10-13 13-14 17-16

10-22 13-24 14-23

8

9

5

9

9

8-7

7-8

8-9

8-8

7-9

6

8

6

8

12

8-7

6-7

7-7

7-7 6-8

5

11

5

8

20

7-6

5-6

6-6

6-7

5-7

8-8 7-7 6-7

10-33 9-28 7-24

998

6 14

4

8

24

7-6

5-6

5-5

6-6

5-6

6-6

7-24

8

K3FeloSi4

P~Si08C12

(Ba,Sr)(Ti,Cr,Fe,Mg,Zrb 0 38

(Cu,Zn)l1 (Ge,AshFe4St6

(Mg,Fe)Ti20s

(K,Ca,Sr)(Ti,Cr,Fe,Mgb 0 38 CaMn20 4

Pb02

CuFe02

HgO

a-FeO.OH

MnTi03 Hg6Si20 7

Fe304

(Mn,Fe,Mg) (Fe,Mnh04

Fe304

CU9Feg5,.6

CU3Se2

CU8(Fe,ZnhSn2St2

AgFe2~

MgFe204

CU26Fe4Ge4~2

CdS

Fe304

CUlOFe4Sn(As,Sb)St6

(Mn,Pb,Cd)(Cu,Fe )858

(Ag,Cu,Fe )g(Se,S)8

Cr203

(Fe,Fe,Ti)7SbOdOH)

(Fe,Feh(Ti,Fe)Os

Pb(Ti,Fe,Mnb 0 38

(Pb,Mo'[])808CI2 MnMn6Si012 Mo~

Fe304

9 9 9 8 (Mn,Feh03

9 9 9 8 (Mn,Fe h03

12 15 21 26 Ag(Fe,Ni)8Ss

8-8 7-7 6-6 6-6 Ti02 10-10 11-12 13-13 14-14 CU3SnS4

10-10 13-8 9-6 8-6 Hg4HgCr06 11-13 13-14 13-14 13-14 CU2FeSnS4

9-13 8-13 7-13

9-13 9-12 9-10

9 9

9-10 8-9

9-10 9-9

9-11 7-10

9

7-8

9-10

7-9

7-12

9-9

9

7-8

8-8

6-9

NaC~

(Cu,Zn,Fe h(In,Sn)S4

CU(Crl.5SbO.S)S4 Ti02

Ag2ZnSnS4 Ti02

Page

35

27

322

479

20

357

355

442

137

383

203

464

150

340

265

342

384

596

532

536

339

193

213

341

607

349

189

161

138

454

507

419

61

378

343

50

51

16

11

306

620

530

77

562

414

497

174

64

437

494

Petrukite

Vulcanite

Argentopyrite

Mackinawite (nickelian)

Thalfenisite

Kiddcreekite

Hemusite (antimonian)

Hemusite

Sulvanite

Cuprospinel

Chatkalite

Stannite

Magnetoplumbite

Deanesmithite

Luzonite

Rickardite

Terlinguaite

Dervillite

Hauerite

Kiddcreekite (selenian)

Mohite

Colusite

Nekrasovite (zincian)

Isocubanite

Roquesite

Kesterite

Chalcopyrite

Plumboferrite

Cubanite

Poyarkovite

Spionkopite

Trechmannite

Litharge

Alabandite

Alabandite

Chameanite Trevorite

Colusite

Colusite

Radhakrishnaite

Arsenosulvanite

Chalcopyrite

Hocartite

Enargite

Bukovite

Troilite

Raguinite

Crednerite

Romanechite

Realgar

R% 440nm 500nm 600nm 700nm

23-25 26-27 29-30 29-30

23-31 18-57 12-75 15-79

23-31 25-33 28-36 31-39

23-36 23-42 25-47 27-49

24 27

24

24

24

24

23

25

26

31

24

25

26

30

22

25

27

26

24-24 23-24 22-23 20-21

24-25 26-27 28-29 28-29

24-25 27-28 27-28 27-27

24-26 23-24 21-23 20-21

24-26 24-23 21-20 20-19

24-26 24-25 27-29 29-30

24-33 15-25 20-18 48-29

24-38 21-26 19-21 19-20

25

25

25

25

24

24

24

26

22 22

25

26

20 21

24

26 25 26 29 29

25 29 29 28

25 31 38 41

25-25 23-23 22-22 22-23

25-26 26-26 24-25 25-25

25-26 39-40 47-48 48-49

25-27 24-26 23-24 21-22

25-30 32-37 38-41 42-44

25-31 23-30 20-24

25-32 22-30 15-24 9-24

25-36 23-32 22-28 20-26

26 22 21 23

26 23 22 22

26

26

26

26

26 26

24

25

26

28

29 29

22

26

23

32

32 33

22

26

21

31

31

34

26 30 32 30

26 40 48 48 26-26 24-25 24-24 24-24

26-27 26-26 26-24 27-26

26-30 27-31 26-29 30-31

26-31 30-36 37-41 42-44

26-32 26-29 28-35 29-39

26-34 25-33 23-30 21-27

26-36 24-33 22-29 21-27

27 24 21 19

Air and Oil data 44O-700nm key continued

440nm 500nm 600nm 700nm

11-12 13-14 15-15 15-15 (Cu,Fe,Znh(Sn,In)S4

9-22 6-49 3-67 10-72 CuTe

11-19 13-20 15-22 17-24 AgFe25:3

10-25 11-29 12-34 14-35 (Fe,Ni)~

10

10 9 11

10

11

10 12 12

11 17 15

10-11 10-10 9-9

9 12

13

12

8-8

Tl6(Fe,Ni,Cuhs~6Cl

CU6SnWSg

CU4Cu2SnMoSg

CU4Cu2SnMoSg

CU3VS4

(Cu,Mg)FeP4

CU6FeSn2SS 11-12 13-14 13-13 13-13 CU2FeSnS4

10-11 9-10 8-9 7-8 Pb(Fe,Mnh2019

11-13 11-9 8-7 8-7 Hg2H&CrOs~

12-12 12-12 14-15 15-16 CU3AsS4

10-18 5-11

10-22 8-11

11 10

10 10

12 12

11 15

15 20

10-11 9-9

15-8 40-18 CU7TeS 7-8 6-7 Hg2CIO

Ag2As~

9 8 Mn~

11 10 CU6SnWSS

15

14

25

9-9

15

13

28

9-9

CU2Sn5:3

CU26V2(As,Sn,Sb)65:32

CU26V2(Sn,As,Sb)65:32

CuFe25:3

Culn~

11-12 12-12 11-11 11-11 CU2ZnSnS4

CuFe~

11-12 10-11 9-10 8-9

17-23 21-27 26-29 29-31 CuFe25:3

H&CIO

12-19 8-15 4-11

11-20 10-16 8-13

11

10

12

13

13

13

19

9 10

11

15

15

16

30

9

9

10

17

18

18 35

2-11

7-12

8

9

8

17

17

16

34

CU3~S

AgAs~

PbO

MnS

MnS

(Cu,Fe)4As(Se,S)4

NiFe204

CU26 V 2( As,Sn,Sb )65:32

CU26 V 2(As,Sn,Sb)65:32 PbTe3(CI,Sh

CU3(As,V)S4

CuFe~

12-12 11-11 10-10 10-10 Ag2FeSnS4

12-13 12-12 12-11 13-12 CU3AsS4

Tl2(Cu,Fe)4Se4

16-20 19-24 25-28 29-31 FeS

12-18 13-16 14-21 14-24 TlFe~

12-19 11-18 10-15 8-12 CuMn02

12-20 11-18 9-14 8-12 (Ba,H20)(Mn,Mn)SOlO

13 10 8 7 AsS

Page

433

613

17

336

572

286

233

232

546

130

90

531

344

136

334

480

563

139

221

2ff7

377

109

390

259

484

283

84

443

122

452

529

581

324

5

4

89

582

107 108

471

26 85

239

155

65

583

472

119

483

477

Air and Oil data 44O-700nm key continued

Metacinnabar

Chameanite

Kolarife

Wakabayashilite

Argyrodite

Chalcothallite Eskebomite

Cinnabar

Cameronite Zenzenite

Selenium (synthetic)

Digenite

Hematophanite

Rohaite

Permingeatite

Gortdrumite

Cinnabar

Hollandite Maghemite Galkhaite

CanJieldife

V illamaninite Coronadife

Thalcusite

Hematite

H;ematite

Orpiment Pyrrhotite

Kermesite Argentotennantite

Berzelianite

Tennantite (zincian) Stromeyerite

CanJieldife (fellurian)

Tennantite (plumbian)

Goldfieldite

Tennantite Tennantite (bismuthian) Tennantite (mercurian)

Tetrahedrite (argentian)

Tetrahedrite (argentian)

Goldfieldite

Routhierite

Routhierite

Cuprite

Xanthoconite

Sabatierite

Pyrrhotite

Hutchinsonite

Pyrrhotite

R%

440nm 500nm 600nm 700nm

27

27

27

26

27

28

25

28

29

25

29

30 27-27 24-24 21-21 20-20

27-28 25-26 24-25 25-25

27-30 26-29 25-27 25-27

27-30 30-34 33-36 34-39

27-31 25-29 23-27 22-26 27-31 31-34 33-33 34-32 27-32 26-30 24-28 23-27

27-47 26-42 30-40 28-37

28 25 19 15

28-29 26-28 22-24 21-22

28-30 25-28 23-27 22-26

28-31 26-27 24-25 28-30

28-31 27-31 26-29 25-28

28-33 26-32 24-28 22-26

28-35 27-34 25-31 23-28

29 26 22 20

29 27 23 21

29

29

27

27

25 26

25 30

29 28 26 24

29-31 30-31 28-30 32-36 29-32 28-31 25-29 22-25

29-33 28-32 25-29 22-25 29-34 25-29 22-27 21-25

29-34 32-38 37-42 41-44 29-35 26-32 24-29 23-28 30 30 30 28

30

30

31

31

24

28

19

25 30-42 27-34 26-29 27-29

31 29 27 26

31 30 29 25

31

31 31 31

31

31

30 31

31 31 31

31

30

28 29 30

31

31

31 26

27 27

27

28

31 31 31 31

31-31 30-30 26-27 25-25

31-32 30-31 26-27 24-25

31-33 30-29 25-24 23-22

31-34 27-30 23-25 22-24

31-34 30-32 25-27 21-22

31-34 34-38 39-42 43-46 31-35 29-32 26-28 24-25

31-35 34-39 39-44 43-47

440nm 500nm 600nm 700nm Page

13 12 11 11 HgS 367

(Cu,Fe)4As(Se,S)4 88

PbTeCl2 293

12-12 10-10 8-8 7-7 (As,Sb)l1~S 616 13-13 11-12 11-11 11-11 AgsGeS6 19

TI2(Cu,Fe)6Sb54 87 15-19 17-22 19-23 20-25 CuFeSe2 160

12-16 11-14 10-13 9-11 HgS 99

16-19 18-20 20-19 20-18 CU7AgTelO 70

12-17 12-16 10-14 9-12 Pba(Fe,Mn)4Mn3Dts 630

14-32 12-26 16-25 13-21 Se 504

13 11 7 4 Cu~ 141

13-14 11-13 9-10 8-9 Pb4Fe30S(OH,CI) 230

TlCusSb~ 482 16-19 14-15 12-14 15-18 CU3(Sb)Se4 429

13-16 13-16 11-14 11-13 (Cu,Fe)6Hg25s 210 13-17 11-16 10-13 9-12 HgS 98

14-21 13-19 11-16 10-14 Ba(Mn,Mn)S016 241

14 12 9 7 y-Fe203 337 14 12 9 8 (Cs,TI)(Hg,Cu,ZnMAs,Sb)4~2 187

14

16

12

14 11

14

11

18

14-17 13-16 11-14 9-11

15-18 13-17 11-14 9-11

14-18 11-15 9-12 8-12 17-22 20-25 25-29 28-31

14-19 12-16 10-14 9-13

15

15

16

16

10

13

6 11

AgsSnS6 (Cu,Ni,Co,Fe)~

Pb(Mn,Mn)S016

CU3_x Tl2Fel +xS4 a-Fe203

a-Fe203

As25a Fel_xS

S~~O

(Ag,Cu)g(Zn,Feh(As,Sb)'~3

CU2Se

(Cu,Feh2As4~3

15-26 13-18 12-14 13-14 AgCuS

16 15 13 12 AgsSnS6

16 15 14 11 (Cu,Fe)12As4~3

17

16 16 17

16

16

16

16 16

15 16

16

16

16

16

14 14 15

16

16

16

16 12 13

12 13

14

16

16-17 15-16 12-12 10-11

16-17 15-14 11-10 9-9

CudTe,Sb,As)4~3

(Cu,Feh2As4~3

(Cu,Feh2As4~3

(Cu,Feh2As4~3

(Cu,Feh25b4~3

(Cu,Fe)12Sb4~3

CU12(Te,Sb,As )'~3 CuTlHg2(Sb,AshS6

CuTIHg2(Sb,As h S6

CU20

15-18 12-15 9-11 8-10 AgaAs5a

CU6TlSe4 18-21 21-25 26-29 30-32 Fel_xS

16-19 14-17 12-13 10-11 (Pb,TlhAss~

19-23 21-26 26-31 30-33 Fel_xS

71

606

113

571

228

229

400 466

282

18

44

561 539

72

560

208 557 558 559

567

568

209

4f!7

486 125

628

495

467 242

468

Rohaite

Stibnite

Cuprite

Tetrahedrite (zincian)

Tetrahedrite

Giraudite

Greigite

Stephanite

Watanabeite

Wittichenite

Proustite

Berthierite

Vaesite (cobaltian)

R% 440nm 500nm 600nm 700nm

31-37 28-36 26-35 24-34

31-53 31-51 30-45 29-40

32

32

32

32

32

30

32

32

32

33

24

31

32

32

36

22

27

30

31

39

32-33 30-32 28-30 28-28

32-33 32-32 30-31 28-29

32-34 33-35 33-36 32-35

32-35 27-30 23-26 22-25

32-46 30-44 31-41 31-38

33

Tetrahedrite (mercurian) 33

32

32

33

32

33

29

33

29

26 Acanthite 33

Daubreelite

Hakite

Polybasite

Parapierrotite

Pearceite

Samsonite

Lautite

Lapieite

Crooke site

Cuprobismutite

Lapieite

Imiterite

Chaboumeite

Livingstonite

Fischesserite

Fischesserite

Vaesite (cuprian)

Krutaite

Freibergite

Hakite

Vaesite (selenian)

Orcelite

Eucairite

Larosite

Seligmannite

Duranusite

Mckinstryite

Laphamite

Cylindrite

Tiemannite

Pyrite (nickeloan)

Cattierite

Pyrite (nickelian)

Gold (argent ian)

Gold (argentian)

33

33

33

34

33

34

32

33-33 32-34 30-31 27-28

33-34 31-32 28-30 26-28

33-34 31-33 29-31 27-29

33-35 31-32 27-28 25-26

33-35 31-33 31-31 32-31

33-35 36-35 37-34 40-38

33-36 33-35 33-35 31-35

33-36 35-38 37-40 37-41

33-37 35-37 37-34 40-32

33-38 31-34 29-31 28-29

33-39 32-37 30-34 27-30

33-44 32-44 30-38 27-34

34 31 32 36

34

34

34

34

34

34

32

33

34

34

34

34

32

33

30

32

34

34

35

36

28

29

35

34 45 53 55

34-34 35-38 37-36 34-33

34-35 33-33 32-33 33-32

34-35 33-35 31-33 29-31

34-37 31-33 29-31 27-29

34-39 32-35 29-31 27-28

34-40 32-36 27-32 26-30

34-40 33-39 30-36 28-34

35 32 29 28

35

35

35

35

35

34

35

37

53

65

36

39

42

92

91

38

43

47

95

93

Air and Oil data 44O-700nm key continued

440nm 500nm 600nm 700nm

TICusSb~

16-40 16-37 15-30 15-25 Sb:z5:3

15 14 11 9 CU20

17 17 16 13 (Cu,Fe)12Sb4St3

17 17 17 15 (Cu,Feh2Sb4St3

(Cu,Zn,Agh2(As,Sb)4(5e,Sh3

19 20 23 25 Fe3S4

18-18 15-17 13-15 14-14 AgsSbS4 17-18 17-18 15-16 14-15 CU4(As,SbhSs

18-20 18-20 19-20 18-19 CU3Bi5:3

16-19 12-15 9-12 9-11 A~As5:3

17-30 15-28 16-25 16-23 FeSb:zS4

19 18 18 19 Ni~

18

18 17

17 17

14

14

12 (Cu,Feh2Sb4St3 Ag2S

19 18 18 17 FeCr2S4

(Cu,Hg,Agh2Sb4(5e,Sh3

18-18 16-18 15-16 12-13 (Ag,Cuh6Sb:zStl

18-20 17-19 14-16 12-14 Tl(Sb,As)sSs

18-19 16-18 14-16 13-14 Ag16As2Stl

18-19 16-17 13-13 11-11 Ag4MnSb:zS6

18-20 16-17 16-16 17-16 CuAsS

19-20 22-20 22-20 25-24 CuNiSb5:3

18-21 18-20 18-20 17-20 CU7(Tl,Ag)5e4

21-24 22-25 23-26 23-26 CUloBi12~3

20-23 23-22 23-19 27-17 CuNiSb5:3

Ag2H~

18-23 17-21 15-18 13-15 (Tl,Pbb(Sb,As)91St47

18-29 17-28 15-23 13-18 HgSb45s

19

20

21

19

20

17

19

20

18

20

17

20

16

16

20

20

22

16

14

20

A~AuSe2

A~Au5e2

Ni~

Cu5e2

(Ag,Cu,Fe )dSb,As )4St3

(Cu,Hg,Agh2Sb4(5e,Sh3

Ni~

Nis_xAs2

19-20 20-23 22-21 19-18 AgCuSe

20-21 18-18 17-18 18-17 (Cu,Agb(Pb,BihSt3

19-20 18-19 16-18 14-16 CuPbAs5:3

As4S

19-23 17-20 14-16 13-14 (Ag,CuhS

19-24 17-20 12-16 12-16 As2(5e,Sh

19-25 17-23 15-21 14-19 Pb4FeSn4Sb:zSt6

21 17 15 14 Hg5e

20

20

26

28

20

21

47

59

21

26

89

88

23

29

94

91

(Fe,Ni,Co)~

Co~

Fe~

AU.94Ag.06

Au.soAK20

Page

481

538

124

570

566

199

214

535

617

623

453

43

599

569

1

135

219

447

415

420

498

316

311

121

126

312

246

81

326

173

172 600

303

177 218

601

399

162

313

505

148

361

310

132

575

460

78

459

206

205

Air and Oil data 44O-700nm key continued

Jalpaite

Furutobeite

Aguilarite

Laffittite

Levyclaudite

Vaughanite

Junoite

Falkmanite

Gold

Pyrostilpnite

Benleonardite

Pyrargyrite

Djurleite

Emplectite

Godlevskite

Miargyrite

Boumonite

Donharrisite

Millerite

Uchucchacuaite

Krutaite (nickeloan)

Coloradoite

Pentlandite

Boumonite

Potosiite

Sartorite

Sopcheite

Roschinite

Naumannite

Baumhauerite

Vozhminite

Nickeline

Fiiloppite

Plagionite

Bismuthinite

Pentlandite

Chalcocite

Gratonite

Lengenbachite

Franckeite

Heazlewoodite

Diaphorite

Millerite

Baumhauerite-2a

Aramayoite

Rayite

Freieslebenite

Andorite

Pierrotite

Rathite

R% 440nm 500nm 600nm 700nm

35-35 34-33 31-31 29-29

35-35 34-36 35-36 34-36

35-35 35-35 32-34 30-31

35-37 33-34 28-30 26-29

35-37 34-35 31-33 30-32

35-40 33-39 30-39 28-34

35-43 35-42 35-43 35-42

35-46 35-43 33-41 31-37

36 45 90 95

36-36 33-34 28-28 25-26

36-36 35-34 32-30 31-28

36-37 32-33 26-28 24-26

36-37 34-35 29-31 25-28

36-38 38-41 37-42 37-40

36-38 47-49 55-54 58-57

36-39 34-37 30-32 27-29

36-39 35-37 33-34 30-31

36-39 41-44 48-50 51-53

36-39 48-47 58-53 61-54

36-44 35-44 33-42 31-40

37 36 34 32

37 36 39 36

37 43 50 54

37-37 35-37 33-35 31-32

37-38 36-37 34-36 32-34

37-40 35-38 32-35 29-32

37-40 43-41 44-44 46-48

37-41 36-40 35-39 33-36

37-41 38-39 33-35 31-33

37-42 36-40 34-37 31-34

37-43 44-49 51-53 54-57

37-44 40-46 54-57 62-64

37-45 37-43 35-39 30-34

37-45 37-44 35-41 31-36

37-48 38-49 37-48 36-45

38 45 52 54

38-38 36-36 31-32 29-29

38-38 36-36 37-37 33-33

38-39 37-38 35-36 32-33

38-39 37-38 35-37 33-35

38-39 50-52 54-58 57-60

38-40 37-39 35-37 33-36

38-40 51-48 60-52 63-55

38-41 36-40 33-36 30-33

38-41 38-39 35-37 32-34

38-41 38-40 37-38 35-37

38-42 37-41 35-39 33-36

38-42 37-42 36-40 34-38

38-43 36-42 33-38 31-35

38-44 37-43 33-39 30-35

440nm 500nm 600nm 700nm

20-20 19-18 16-16 14-15 Ag3Cu~

20-20 19-21 20-21 19-21 (CU,Ag)6PbS,

20-20 20-20 17-18 15-16 Ag,SeS

AgHgAs~

20-21 19-20 18-19 17-19 PbSSn7Cu3(Bi,Sbh~s

19-24 18-24 16-23 14-19 TlHgSb,~

P~Cu2Bis(S,Seh6

Pb5.,S~.6S11

26 38 86 93 Au

20-20 18-18 13-13 11-11 A~Sb~

21-21 20-19 17-15 16-14 Ags(Sb,As)Te2~

20-21 16-18 12-13 10-11 A~Sb~

21-22 19-19 14-16 11-13 CU31~6

21-23 22-26 22-27 21-24 CuBi~

27-29 37-39 43-43 47-46 (Ni,FehS6

20-23 18-20 15-17 12-14 AgSb~

22-24 20-22 18-19 16-16 PbCuSb~

24-27 29-32 35-38 38-40 NisH~S9

27-29 39-36 47-40 49-42 f3-NiS

AgMnP~Sb5~2

23 23 20 19 CuSe2 22 21 24 20 HgTe

26 30 37 41 (Fe,Ni)gSs

21-22 20-21 18-20 16-17 PbCuSb~

22-23 21-22 19-20 17-19 Pb48SnlSFe7S~6~15

22-24 21-23 17-20 15-17 PbAs2S,

24-26 29-27 30-30 32-35 Ag,Pd3Te4

Ag19P~oSb51 S96 23-25 23-23 18-20 16-18 Ag2Se

22-26 20-24 18-21 15-18 P~As4S9

(Ni,CoMAs,Sb)~

23-29 26-33 42-44 51-52 NiAs

22-30 21-28 19-24 15-19 P~SbS~5

21-30 21-28 20-25 16-20 Pb5Sbs~7

23-32 23-34 22-32 21-30 Bi2~

28 34 40 42

22-22 20-20 17-17 15-14

23-22 21-20 21-21 18-18

23-24 21-23 20-20 17-18

23-24 22-23 20-21 18-19

(Fe,Ni)gSs

CU2S

Pb9As4~5

Pb6(Ag,CuhAs'~3

(Pb,Sn)6FeSn2S~~,

30-30 39-42 42-48 45-50 Ni3~

22-24 21-24 20-22 18-21 P~Ag3Sb3SS

31-32 44-38 51-41 54-43 f3-NiS

22-26 20-24 17-21 15-17 P~lAg(As,Sbhs~6

23-25 22-24 19-21 16-19 Ag(Sb,Bi)~

Pbs(Ag,TlhSbsSn

24-28 22-26 20-23 18-21 PbAgSb~

23-27 22-27 20-24 19-22 AgPbS~S6

22-27 20-25 17-21 15-19 Tl2Sb6As4~6

23-28 21-27 18-23 15-19 (Pb,TlhAs5~O

Page

266

181

2

308

320

604

274

163

204

465

41

456

143

153

201

369

56

146

375

592

305

106

424

57

450

499

519

485

389

36

612

394

180 438

48

425

82

212

318

175

226

140

374

37

15

476

178

12

435

475

Semseyite

Jask61skiite

Jamesonite

Empressite

Henryite

Krutaite (nickeloan)

Criddleite

Sopcheite

Weissite

Dufrenoysite

Tvalchrelidzeite

Tucekite

Domeykite (f3 domeykite)

Liveingite

Benavidesite

Zinkenite

Zoubekite

Tintinaite

Meneghinite

Aikinite

Chalcos tibite

Cervelleite

Penroseite (cuprian)

Penroseite

Sopcheite

Hessite

Cherepanovite

Veenite

Jordanite

Boulangerite

Geocronite

Hammarite

Owyheeite

Krupkaite

Penroseite

Pentlandite (cobaltian)

Inaglyite

Stiitzite

Teallite

Dadsonite

Luberoite

Kirkiite

Breithauptite

Piiakkonenite

Petzite

Carrollite

Carrollite (nickelian)

Linnaeite (nickelian)

Domeykite

Keithconnite

R%

440nm 500nm 600nm 700nm

38-44 37-43 35-41 32-38

38-44 37-43 36-41 34-39

38-45 37-45 35-43 33-39

38-46 39-51 40-53 39-54

39 35 30 26

39 39 38 37

39-40 38-39 35-37 33-34

39-40 45-43 46-48 47-51

39-41 36-37 31-33 26-30

39-41 37-40 35-36 31-32

39-41 40-39 36-34 32-31

39-41 42-46 48-50 52-53

39-41 44-47 46-50 44-48

39-42 37-41 34-38 30-33

39-42 40-43 38-41 36-38

39-44 38-43 36-41 33-37

39-44 38-44 37-42 34-38

39-44 38-44 37-42 34-39

39-45 38-44 36-42 34-39

39-45 40-46 39-46 38-44

39-46 40-47 35-40 33-38

40

40

40

40

39

40

41

42

37

40

43

45

35

39

44

49

40-41 40-40 42-39 44-39

40-41 42-44 45-47 45-48

40-43 38-42 36-40 33-37

40-43 39-41 37-40 35-37

40-44 38-43 36-40 34-37

40-44 39-43 38-41 35-38

40-44 40-44 40-45 39-43

40-45 39-45 37-43 35-39

40-46 40-47 39-47 38-45

41 41 42 43

41 48 54 57

41-42 40-42 40-42 41-43

41-42 41-41 41-39 41-37

41-44 42-44 42-43 40-41

41-45 39-44 38-41 35-37

41-45 44-50 49-55 52-58

41-46 40-45 38-42 37-41

41-47 37-45 45-53 54-61

41-52 38-50 37-46 36-45

42

42

42

40

42

44

38

44

46

38

45

47

42 45 50 54

42 48 54 55

42-42 43-43 47-48 54-53

Air and Oil data 44O-700nm key continued

440nm 500nm 600nm 700nm

22-29 22-28 20-26 17-22 Pb~bsS:!l

23-29 21-27 20-26 19-24 P~+xCux(Sb,Bih_xSs

22-30 22-30 20-27 17-23 Pb4FeSb6~4

23-32 24-37 25-39 24-40 AgTe

23 20 16 12 CU4A&Te4

25 25 24 22 CuSe2 25-26 23-25 21-23 19-20 TlAg2Au3S~oSio

27-28 31-30 32-35 33-38 Ag4Pd3Te4

23-25 21-22 16-18 13-16 CUSTe3

23-26 22-24 19-21 16-17 P~AS2Ss

23-26 24-23 20-18 17-16 H&(Sb,As)~

26-29 29-33 35-37 39-40 Ni~~Sg

27-29 32-35 32-36 30-33 CU3As

23-27 21-26 18-22 15-18 Pb9As13S:!S

Pb4(Mn,Fe )Sb6~4

24-29 23-28 21-25 18-22 Pb~~2S42

AgPb4Sb4~O

P~2CU4(Sb,BihoS69

24-30 23-29 21-27 19-23 P~3CuSb;S:!4

25-31 25-32 24-31 23-29 CuPbBi~

24-31 24-31 19-23 18-22 CuSbS:!

24 23 21 19 Ag4TeS

26 26 25 25 (Ni,Co,Cu)Se2

26 27 29 30 (Ni,Co,Cu)Se2

Ag4Pd3Te4

25-26 25-24 27-24 28-24 Ag2Te

RhAs

24-28 23-27 21-25 18-21 P~(Sb,AshSs

25-28 24-26 22-24 20-22 P~4As6S:!3

26-30 24-29 22-26 20-22 PbsSb4~1

25-29 24-28 22-25 20-23 P~4(Sb,As)6~

25-29 25-29 25-29 23-27 P~Cu2Bi4S9

25-30 23-30 22-28 19-24 Ag2Pb;(Sb,Bi)sS:!o

25-32 24-32 23-32 22-29 PbCuBi3S6 27 26 27 28 (Ni,Co,Cu)Se2

32 37 43 45 (Fe,Ni)~S

CU3Pb(Ir,Pt)s~6

27-27 26-26 26-24 26-22 Ag2_xTe

28-31 28-30 27-28 25-26 PbSnS:!

25-31 24-29 22-25 18-22 P~o+xS~4-x~l-xClx

28-33 32-38 36-42 39-46

27-33 23-32 32-42 41-49

27

28

29

30

30

25

28

30

32

35

23

29

32

37

42

22

31

33

41

42

PtSSe4

P~oBi3As3~9

NiSb

S~AsS:!

A&AuTe2

Cu(Co,NihS4

Cu(Co,Nih S4

CoCo2S4 CU3As Pd3_xTe

Page

506

268

267

154

234

304

120

518

622

147

589

585

145

325

39

633

634

577

364

3

86

80

423

422

517

237

91

605

271

55

192

220

404

302

421

426

247

540

549

133

332

288

62

405

434

74

75

323

144

280

Air and Oil data 44O-700nm key continued

Cabriite

Braggite

Braggite

Neyite

Cooperite

Breithauptite (synthetic)

Matildite

Guanajuatite

Violarite

Palladseite

Pentlandite (rhodian)

Violarite (cobaltian)

Pyrite

Pyrite

Vysotskite

Konderite

Cabriite

Ferroselite

Marcasite

Cooperite

Erlichmanite

Erlichmanite

Siegenite

Tyrrellite

Siegenite (cuprian)

Mertieite II

Orcelite

Isomertieite

Electrum

Watkinsonite

Potarite

Kashinite

Plumbopalladinite

Izoklakeite

Soucekite

Kostovite

Petrovicite

Polydymite

Tyrrellite

Padmaite

Telargpalite

Telluropalladinite

Gladite

Imgreite

Bowieite

Skippenite

Nagyagite

Paolovite

Parkerite

Stibiopalladinite

R%

440nm 500nm 600nm 700nm

42-42 43-46 49-56 60-69

42-43 43-44 42-44 42-44

42-43 43-44 43-44 42-44

42-45 42-45 41-45 40-44

42-46 41-46 39-45 36-44

42-47 37-45 45-54 54-61

42-48 43-49 42-47 39-46

42-52 43-52 42-52 41-51

43

43

43

43

43

43

44

45

45

45

48

51

48

46

49

50

54

55

54

46

51

55

55

56

43-43 44-45 45-46 45-46

43-45 42-45 44-46 45-47

43-45 43-48 49-58 61-70

43-45 44-47 48-54 50-57

43-47 46-55 50-55 47-51

43-48 42-48 37-46 35-43

44

44

44

44

44

44

44

44

44

43

43

45

46

46

47

47

49

78

41

42

49

47

48

53

53

57

93

38

40

53

48

51

58 59 61

94

44-45 45-46 46-47 46-47

44-45 49-50 55-56 60-62

44-46 47-46 47-46 46-47

44-47 48-51 55-58 63-66

44-48 42-46 40-44 38-43

44-48 44-47 44-47 43-48

44-58 49-61 52-61 53-61

45 46 46 46 45 46 46 53

45

45

47

48

48

46

49

51

45 48 52 57

45 48 54 60 45-46 45-47 45-47 43-44

45-46 45-50 53-57 64-63

45-46 46-47 47-48 47-49

45-46 48-50 49-51 49-51

45-47 42-44 39-40 36-37

45-47 46-50 53-57 63-61

45-47 47-49 49-51 51-53

45-47 50-52 56-57 61-59

440nm 500nm 600nm 700nm

29-30 30-34 36-45 49-60 Pd2SnCu

27-28 27-29 27-29 27-29 (Pt,Pd,Ni)S

27-28 27-29 28-29 27-29 (Pt,Pd,Ni)S

Pb;(Cu,AghBi6~7

26-31 26-31 24-30 21-29 (Pt,Pd,Ni)S

27-34 23-32 32-42 41-49 NiSb

28-34 28-34 26-32 24-31 AgBi~

28-38 28-38 27-38 26-36 Bi2Se3 31 32 35 42 FeNi2S4 29 31 31 32 Pd17Se1S

31

30

26

33

32

36

36

37

41

38

42

42

(Fe,Ni)~s

FeNi2S4

Fe~

29 37 41 42 Fe~

28-29 30-30 31-31 30-31 (Pd,Pt)S

CU3Pb(Rh,Pt,Ir)S~6

Pd2SnCu

29-30 30-33 33-40 35-43 FeSe2 29-34 32-41 34-40 31-36 FeS2

27-32 26-33 22-30 19-28 (Pt,Pd,Ni)S

28

28

31

31

31

31

38

27

28

32

32

33

36

73

25

26

36

33

35

45

90

22

25

40

34

38

48

91

Os~

Os~

CoNi2S4

(Cu,Co,NihSe4 CoNi2S4

Pds(Sb,Ash Nis_xAs2

PdllS~As2

AU.64Ag.36

PbCU2Bi4(Se,S,Te)s

32-33 38-38 44-44 49-51 PdHg

(Ir,Rhh~

Pd3P~

28-33 26-31 24-28 23-27 (Cu,FehP~(Sb,Bih~S7

CuPbBi(S,Seh

32-46 36-49 39-49 40-48 AuCuTe4

PbHgCu3BiSes

34

33

34

34

33

35

41

36

NiNi2S4 (Cu,Ni,Co hSe4 PdBiSe

(Pd,AghTe

Pd9Te4

30-32 30-32 29-31 27-29 PbCuBisS9

33-34 32-38 42-46 53-52 NiTe (?)

30-31 31-32 32-33 32-34 (Rh,Ir,Pth~

Bi2Se2Te

30-32 27-29 24-25 21-22 PbsAu(Te,Sb)4SS-8

Pd2Sn

33-36 35-37 36-39 38-40 Ni3(Bi,Pbh~

32-34 38-40 44-44 49-46 PdsS~

Page

68

59

60

392

111

63

358

216

608

409

427

609

457

458

615

295

67

167

354

110

159

158

509

590

510

366

398

262

152

618

449

277

444

264

520

296

432

448

591

406

550

556

200

245

58

514

388

410

418

537

Cupropavonite Benjaminite

Niggliite Herzenbergite Lillianite

Isomertieite

Cobalt pentlandite

Maucherite

Arsenopalladinite

Cosalite

Weibullite

Laurite Irarsite Platarsite

Majakite

Gold (palladian) Watkinsonite

Ikunolite Galenobismutite

Wittite

Palarstanide Poubaite Paraguanajuatite

Galena

Khamrabaevite

Gersdorffite II Platarsite Cobaltite

Suessite

Genkinite

Alloclasite Paracostibite

Palladoarsenide

Kobellite Arsenopyrite

Kawazulite

Paraguanajuatite Sylvanite

Laurite

Galena

R% 440nm 500nm 600nm 700nm

45-49 44-50 42-47 41-46

45-49 45-49 43-47 43-45 45-53 46-60 45-66 45-69 45-54 44-51 41-47 39-43

46 44 43 43

46

46

51

54

59

60

61

62

46-46 47-48 52-53 57-58

46-47 49-51 55-57 59-60

46-50 43-47 41-45 40-45

46-52 45-51 42-48 41-47

47 45 42 39 47 46 45 44 47 47 49 50

47 51 56 59

47 52 68 77

47-47 48-48 48-49 48-49 47-48 46-49 46-49 45-48

47-49 46-48 44-46 43-45

47-50 45-49 42-46 41-45

47-50 51-53 56-57 60-61 47-51 48-53 49-53 49-53 47-58 49-58 49-57 46-55

48 45 42 42

48 47 48 50

48

48 48 48

48

49 49

51

49 49

53 55

49 47 54 58

48-48 51-52 57-57 60-60

48-49 48-50 49-51 49-50

48-49 48-50 50-49 51-51 48-49 51-53 55-56 58-59

48-51 46-49 44-46 43-45

48-52 50-52 53-52 52-51

48-52 50-55 52-57 52-56 48-57 50-58 50-58 47-55

48-58 52-62 53-63 54-62

49

49

45

45

41

43

38

43

Gersdorffite I 49 47

48 48

48

45

46 47

47

46

47 47

48

Ullmannite (arsenian) 49

Gersdorffite (antimonian) 49

Ullmannite 49

Aleksite

Atheneite

Urvantsevite

Stumpflite

Arsenopyrite (cobaltian)

Mo~tbrayite

49-50 50-51 50-52 50-52

49-51 52-55 56-58 58-59

49-51 54-53 57-56 61-60

49-52 57-60 62-67 65-71

49-53 50-52 51-51 52-51

49-53 54-57 59-61 61-62

Air and Oil data 44O-700nm key continued

440nm 500nm 600nm 700nm

30-35 29-35 27-31 26-30 AgPbCu2Bis~o

31-34 30-34 28-32 27-30 (Ag,Cuh(Bi,Pbh~2

31-42 32-49 31-55 31-58 PtSn 30-40 28-36 25-31 24-28 SnS

33

36

38

43

46

48

49

49

PbaBi2S6

32-32 33-34 39-39 45-45 NinAss

33-33 36-38 43-45 46-48 Pds(As,Sbh

32-36 29-33 26-31 25-30 P~Bi2Ss

32-38 30-36 27-33 26-32 Pb6Bis(S,Sehs

31 31 30

35 41 59

28

69

Ru~

(Ir,Ru,Rh,Pt)AsS

(Pt,Rh,Ru)AsS PdNiAs

Au

PbCU2Bi4(Se,S,Te)s 32-35 32-35 31-35 30-34 Bi4(S,Seh 32-34 31-33 29-30 28-29 PbBi2S4 31-35 30-34 26-31 25-30 Pb9BidS,Seb

35-46 35-45 34-43 32-41

34 30 27 27

33 33 34 36

33

34

34 34

34

34

34

32

Pds(Sn,Ash PbBi2Se2(Te,Sh

Bi2(S,Seh PbS

(Ti,Fe,V)C

NiAsS (Pt,Rh,Ru)AsS

33 35 38 40 CoAsS

36 39 43 45 (Fe,NihSi

35-35 38-39 44-44 47-47 (Pt,Pd)4Sba

34-34 33-35 34-36 34-35 (Co,Fe)AsS 34-35 34-35 35-35 36-37 CoSbS

Pd2As

35-37 32-34 30-31 28-30 P~(Bi,SbhSs

33-37 35-37 39-37 39-37 FeAsS

35-39 37-42 38-43 37-42 34-44 35-45 34-44 31-40 35-46 39-50 39-51 41-50

33 29 25 23

34

35 35 35

35

30

32 33 34

34

27

31

32 32

32

27

32

33 33

33

Bi2Te2Se Bi2(Se,sh

(Au,AghTe4

Ru~

PbS

NiAsS NiSbS

NiAsS

NiSbS 35-37 36-38 36-38 35-37 PbBi2Te2~

36-38 39-42 44-45 45-46 (Pd,HghAs

Pd(Bi,Pbh

Pt(Sb,Bi) 35-40 36-38 36-37 37-36 FeAsS

37-41 41-45 47-49 49-50 (Au,SbhTe3

Page

128 40

395 236

321

261

103

359

22

115

621

314 252

439 345

207

619

243 186 624

407

451 412

184

284

198 440 104

544

191

9 411

408

291

23

278 413 547

315

185

195 594

194

593

7

28

598

541

24

382

Air and Oil data 44O-700nm key continued

sudburyite

Krennerite (argentian)

Cobaltite

Chromferide

Maldonite

sudburyite (nickelian)

Laitakarite

Gudmundite

Insizwaite

Copper

J olliffeite Kotulskite

Kotulskite (bismuthian)

Arsenopyrite (cobalt ian)

Krennerite

Bismuth

Calaverite

Zvyagintsevite

Kitkaite

Polarite

Algodonite

Kotulskite

Joseite

sulphotsumoite

Moncheite

Froodite

Ingodite

Cuprostibite

Tetradymite

Nickel-skutterudite

Nevskite

Lollingite (cobalt ian)

Lollingite

sperrylite

Gersdorffite II

Michenerite

Melonite (palladian-

bismuthian)

Arsenic

Melonite

safflorite

Moncheite

Polarite

Ferchromide

Joseite-B

Clinosafflorite

skutterudite

skutterudite

Michenerite

Maslovite

Ferronickelplatinum

R%

440nm 500nm 600nm 700nm

49-53 56-59 62-67 64-71

49-55 54-59 56-61 57-61

50 50

50

50 53

55

52 58

60

53

61

60

50-52 57-58 64-67 66-70

50-54 50-55 48-55 46-52

50-56 50-57 53-55 54-52

51 54 55 57

51 59 96 99

51-51 51-51 51-51 51-51

51-52 60-64 66-71 69-75

51-54 59-58 66-65 69-70

51-55 52-55 53-53 53-52

51-56 57-61 59-63 59-63

51-60 56-64 62-70 64-73

51-60 58-65 62-68 63-68

52 57 62 65

52-52 56-53 63-59 66-63

52-53 55-56 59-60 62-62

52-53 58-56 66-61 67-63

52-53 63-69 69-76 70-77

52-54 52-55 51-55 49-54

52-54 53-56 54-58 54-58

52-54 55-56 57-58 58-59

52-54 55-57 57-60 59-63

52-56 52-57 52-57 50-55

52-57 46-50 40-43 63-56

52-57 53-59 55-60 54-60

53 55 55 53

53-58 51-56 50-54 49-52

53-58 54-55 55-52 54-49

53-60 54-56 56-51 53-48

54

54

54

54

54

56

54

55

57

51

55

59

54-55 56-55 60-62 64-66

54-56 52-56 51-55 50-55

54-56 58-55 66-62 71-66

54-57 54-56 54-53 52-52

54-60 55-62 56-63 54-62

55 55

56

57

60

61

62

63

55-56 55-58 57-61 56-60

55-59 56-56 55-52 53-50

56

56

56

56

56

55

56

56

56

58

53

54

56

56

60

52

53

57

58

63

440nm 500nm 600nm 700nm

38-42 45-48 51-57 53-61 (Pd,Ni)sb

37-43 41-47 44-49 44-49 (Au,Ag)Te2

35 35 37

37 42 48

38

48

CoAss

Fel.5CrO.5_x AU2Bi

39-41 46-48 53-57 55-61 (Pd,Ni)sb

37-41 36-41 34-40 31-37 Bi4(s,Seh

36-44 37-44 40-41 41-38 Fesb5

Pt(Bi,sbh

42 50 95 98 Cu

37-38 37-37 38-38 37-37 NiAsSe Pd(Te,Bi)

Pd(Te,Bi)

36-41 37-40 38-39 38-37 Fe AsS

39-44 45-49 47-51 46-51 AuTe2

40-50 44-53 51-59 53-63 Bi

39-49 46-54 50-58 51-57 AuTe2

40 45 51 53 (Pd,Pt,Auh(Pb,sn)

40-39 44-40 51-47 54-51 NiTese

39-41 43-45 47-48 49-50 Pd(Bi,Pb)

42-42 48-44 55-50 57-52 CU6As

42-44 53-59 59-68 59-68 Pd(Te,Bi)

38-41 37-41 36-41 34-40 Bi4Te~

Bi3Te25 39-40 41-42 43-44 44-45 (Pt,Pd)(Te,Bih

PdBi2 38-43 38-43 37-43 36-41 Bi2Tes

37-43 32-35 29-30 52-43 CU2(5b,Tl)

38-44 39-46 41-47 39-46 Bi2Te2s

40 42 41 38 (Ni,Co,Fe )AS3

Bi(se,s)

39-44 40-41 41-37 40-34 FeAs2 38-46 40-42 42-36 39-33 FeAs2 39

40

42

39

40

44

38

41

45

36

40

47

PtAs2 NiAss

(Pd,Pt)BiTe

NiTe2 40-43 38-42 36-42 36-41 As

43-44 47-43 56-50 61-55 NiTe2

39-44 40-42 39-39 37-37 CoAs2

(Pt,Pd)(T e, Bih

Pd(Pb,Bi)

Cr3Fel_x (x-0.6)

41-43 41-45 42-47 41-46 Bi4Te25

41-45 41-42 40-38 38-35 (Co,Fe,Ni)As2

41

43

40

42

38

40

37

38

CoAs2-3

CoAs2-3

(Pd,Pt)BiTe

PtBiTe

Pt2FeNi

Page

542

301

105

93

348

543

309

217

250

112

270

297

299

25

300

47

69

635

289

446

8

298

272

545

379

179

249

131

564

393

391

328

327

521

197

371

363

21

362

496

380

445

164

273

102

515

516

370

356

166

Volynskite

Michenerite (antimonian)

Gersdorffite II

Insizwaite

Moncheite (palladian)

Rammels bergite

Clausthalite (synthetic)

Iron

Aurostibite

Awaruite

Pararammelsbergite

Dyscrasite

Tellurium (synthetic)

Iron (nickelian)

Tellurium

Tellurium (synthetic)

Tetraferroplatinum

Electrum

Hedleyite

Tellurantimony

Isoferroplatinum

Kolymite

Tsumoite

Claus thalite

Rucklidgeite

Tellurobismuthite

Pilsenite

Schachnerite

Seintijokite

Platinum

Merenskyite

Osmium

Altaite

Osmium (iridian)

Rutheniridosmine

Osmium (iridian)

Cupalite

Rutheniridosmine

Belendorffite

Lead

Iridium

Iridium

Ruthenium (iridian)

Ruthenium (synthetic)

Ruthenium

Iridium

Paraschachnerite

Khatyrkite

Iridium (ruthenian)

Antimony

R%

440nm 500nm 600nm 700nm

56-57 54-56 55-55 55-56

57 56 56 58

57 57 57 57

57 59 60 60

57-58 58-60 59-61 60-62

57-61 56-61 57-61 57-58

58 54 49 47

58 58 58 59

58

58

60

61

61

65

61

66

58-58 59-59 59-61 57-61

58-60 60-62 60-63 60-63

58-68 58-69 58-68 53-64

59 59 59 60

59-65 60-67 60-66 55-61

59-70 60-70 60-69 57-65

60 63 65 65

60 84 93 93

60-63 61-65 62-68 64-69

60-64 62-66 64-68 63-68

61 63 66 70

61 69 74 78

61-62 62-63 63-65 63-66

62 57 51 48

62-63 62-64 62-66 63-67

62-64 63-65 63-67 65-68

63-64 64-65 65-67 65-68

63-65 69-70 76-77 81-81

64

64

61 68

61 71

65

73

64-65 62-65 64-68 67-73

64-65 63-64 60-61 59-60

65 71 67 59

65-65 64-64 59-60 56-62

66 66 63 62

66-67 65-67 62-65 60-66

67

67

68 69

69

65

68 70 70

70

60

65

74 69

73

57

63

77

70

74 69 72 74 75

69-69 70-71 69-71 67-70

69-72 71-71 73-72 71-68

70 71 69 65

70 72 74 75

70-71 75-76 82-83 85-86 70-76 73-77 79-73 80-68

71 72 75 78

73-76 75-78 72-77 68-74

Air and Oil data 44O-700nm key continued

440nm 500nm 600nm 700nm

43-45 40-42 41-41 42-42 AgBiTe2

(Pd,Pt)BiTe

44

44

43

46

43

48

43

47

NiAsS

Pt(Bi,Sbh

(Pt,Pd)(Te,Bih

44-49 43-48 43-48 43-45 NiAs2 46 40 34 32 PbSe

45

46

46

45

47

50

45

48

53

46

48

55

45-46 46-46 45-48 44-48 NiAs2 47-49 48-51 47-51 47 -52 A&Sb

46-58 46-58 44-56 39-51 Te

46 46 46 47 Fe

48-54 48-55 47-54 41-48 Te

48-60 47-58 46-56 42-52 Te

PtFe 55 80 90 90

49-53 50-54 51-57 52-58 B~Te3

50-54 51-56 52-57 50-56 Sb2Te3

49-52 49-52 50-54 51-55

49 43 36 33

50-52 50-53 50-55 51-55

(Pt,Pdh(Fe,Cu)

CU7Hg6 BiTe

PbSe

(Bi,PbhTe4

51-53 50-53 51-55 53-57 Bi2Te3

50-52 51-53 52-55 52-56 Bi4Te3

52-54 58-60 66-68 72-73 Ag1.l HgO•9

53 57 61

55 61 55

63

46

(Fe,Ni)(Sb,As h

Pt

(Pd,Pt )(Te,Se, Bih

Os

PbTe 53-54 51-52 45-47 42-51 Os

54 54 50 48 (Os,Ir,Ru)

54-55 53-55 49-53 47-53 (Os,Ir)

(Cu,Zn)AI 55

59 59

58

56

60

59

61

53

64

58

64

50

67

59

65

(Os,Ir,Ru)

CU7Hg6 Pb

Ir

Ir

Ru

57-62 60-60 63-61 60-57 Ru

58 59 57 52 Ru

58 61 64 65 Ir

60-62 66-68 74-76 78-79 A&Hg2

CuAl2 Ir

64-68 65-70 62-68 56-65 Sb

Page

610

372

196

251 381

473

101

257 30

31

416

149

554

258 552

553

565

151

227

551

260

294

584

100

488

555

436

500

503

441

365

401

10

402

490

403

123 489

38

317

253 254 492

493 491

255 417

285 256 14

Air and Oil data 44O-700nm key continued

R%

440nm 500nm 600nm 700nm

Moschellands bergite 76 80 84 85 Silver (antimonian) 76 83 88 88

Tin 76-82 81-87 82-88 80-85 Silver 86 91 94 96

Silver (synthetic) 92 98 >99 99

imR%

440nm 500nm 600nm 700nm

67 71 77 78

70 77 83 84

68-76 73-81 75-82 72-80 84 88 92 94

88 95 99 98

Ag2Hg3

Ag Sn

Ag

Ag

Page

385 512

576

511

513