Qualitative structure-metabolism relationships in the...

39
Introduction e carbamate moiety plays a noteworthy role in medici- nal chemistry, being found in drugs as well as in prod- rugs (Testa and Mayer, 2003). Many of the carbamates in the field of medicinal chemistry are marketed drugs or drug candidates in preclinical or clinical trials. For such drugs, the carbamate group is an important feature of the molecule, sometimes being endowed with a major role in drug-target interaction (e.g., acetylcholine inhibitors). In this case, metabolic hydrolysis may lead to an inactive metabolite and thus be a reaction of inactivation (e.g., felbamate) or yield an active metabolite that comple- ments and prolongs the activity of the parent drug (e.g., loratadine). In the case of prodrugs, hydrolysis yields the activated metabolite and is thus a reaction of bioactivation, as exemplified by bambuterol, the prodrug of terbutaline (Ettmayer et al, 2004; Raito et al, 2008; Testa, 2007, 2009; Testa and Krämer, 2009). But, whether drug or prodrug, the rate and extent of hydrolysis of carbamates is critical for the duration and intensity of their pharmacological activity. Fast hydrolysis of carbamate-bearing drugs may result in weak and/or short activity. e opposite is often true for carbamate-based prodrugs, whose hydrolysis to liberate an active amine or phenol must be extensive and of adequate velocity to obtain the expected level and time profile of activity. e aims of the present review were 1) to compile as many cases of metabolic hydrolysis of bioactive carbamates as possible and 2) to extract qualitative structure-metabolism relations from the compiled data, bearing in mind the great diversity of biological condi- tions under which such data were obtained. Data collection and classification An extensive literature search was performed to identify carbamate-bearing molecules for which chemical or met- abolic stability data were available, with a special focus on reactions of hydrolysis having the carbamate moiety as Drug Metabolism Reviews, 2010; 42(4): 551–589 Address for Correspondence: Federica Vacondio, Dipartimento Farmaceutico, Università degli Studi di Parma, Viale G.P. Usberti 27/a, I-43100 Parma, Italy; Fax: (+39) 0521 905006; E-mail: [email protected] REVIEW ARTICLE Qualitative structure-metabolism relationships in the hydrolysis of carbamates Federica Vacondio 1 , Claudia Silva 1 , Marco Mor 1 , and Bernard Testa 2 1 Dipartimento Farmaceutico, Università degli Studi di Parma, Parma, Italy, and 2 Department of Pharmacy, University Hospital Centre (CHUV), Lausanne, Switzerland Abstract The aims of this review were 1) to compile a large number of reliable literature data on the metabolic hydrolysis of medicinal carbamates and 2) to extract from such data a qualitative relation between molecular structure and lability to metabolic hydrolysis. The compounds were classified according to the nature of their substituents (R 3 OCONR 1 R 2 ), and a metabolic lability score was calculated for each class. A trend emerged, such that the metabolic lability of carbamates decreased (i.e., their metabolic stability increased), in the follow- ing series: Aryl-OCO-NHAlkyl >> Alkyl-OCO-NHAlkyl Alkyl-OCO-N(Alkyl) 2 ≥ Alkyl-OCO-N(endocyclic) ≥ Aryl- OCO-N(Alkyl) 2 Aryl-OCO-N(endocyclic) ≥ Alkyl-OCO-NHAryl Alkyl-OCO-NHAcyl >> Alkyl-OCO-NH 2 > Cyclic carbamates. This trend should prove useful in the design of carbamates as drugs or prodrugs. Keywords: Carbamates; structure-property relationships (SPR); hydrolysis; metabolic stability; drug metabolism (Received 20 November 2009; revised 05 February 2010; accepted 03 March 2010) ISSN 0360-2532 print/ISSN 1097-9883 online © 2010 Informa Healthcare USA, Inc. DOI: 10.3109/03602531003745960 http://www.informahealthcare.com/dmr Drug Metabolism Reviews Downloaded from informahealthcare.com by Cantonale et Universitaire on 09/30/10 For personal use only.

Transcript of Qualitative structure-metabolism relationships in the...

Page 1: Qualitative structure-metabolism relationships in the ...files.chuv.ch/internet-docs/pha/recherche/cb_2010_dmr_carbamates.pdf · Introduction The carbamate moiety plays a noteworthy

Introduction

The carbamate moiety plays a noteworthy role in medici-nal chemistry, being found in drugs as well as in prod-rugs (Testa and Mayer, 2003). Many of the carbamates in the field of medicinal chemistry are marketed drugs or drug candidates in preclinical or clinical trials. For such drugs, the carbamate group is an important feature of the molecule, sometimes being endowed with a major role in drug-target interaction (e.g., acetylcholine inhibitors). In this case, metabolic hydrolysis may lead to an inactive metabolite and thus be a reaction of inactivation (e.g., felbamate) or yield an active metabolite that comple-ments and prolongs the activity of the parent drug (e.g., loratadine).

In the case of prodrugs, hydrolysis yields the activated metabolite and is thus a reaction of bioactivation, as exemplified by bambuterol, the prodrug of terbutaline (Ettmayer et al, 2004; Raito et al, 2008; Testa, 2007, 2009; Testa and Krämer, 2009). But, whether drug or prodrug, the rate and extent of hydrolysis of carbamates is critical

for the duration and intensity of their pharmacological activity. Fast hydrolysis of carbamate-bearing drugs may result in weak and/or short activity. The opposite is often true for carbamate-based prodrugs, whose hydrolysis to liberate an active amine or phenol must be extensive and of adequate velocity to obtain the expected level and time profile of activity.

The aims of the present review were 1) to compile as many cases of metabolic hydrolysis of bioactive carbamates as possible and 2) to extract qualitative structure-metabolism relations from the compiled data, bearing in mind the great diversity of biological condi-tions under which such data were obtained.

Data collection and classification

An extensive literature search was performed to identify carbamate-bearing molecules for which chemical or met-abolic stability data were available, with a special focus on reactions of hydrolysis having the carbamate moiety as

Drug Metabolism ReviewsDrug Metabolism Reviews, 2010; 42(4): 551–589

2010

42

4

551

589

Address for Correspondence: Federica Vacondio, Dipartimento Farmaceutico, Università degli Studi di Parma, Viale G.P. Usberti 27/a, I-43100 Parma, Italy; Fax: (+39) 0521 905006; E-mail: [email protected]

20 November 2009

05 February 2010

03 March 2010

0360-2532

1097-9883

© 2010 Informa Healthcare USA, Inc.

10.3109/03602531003745960

R E V I E W A R T I C L E

Qualitative structure-metabolism relationships in the hydrolysis of carbamates

Federica Vacondio1, Claudia Silva1, Marco Mor1, and Bernard Testa2

1Dipartimento Farmaceutico, Università degli Studi di Parma, Parma, Italy, and 2Department of Pharmacy, University Hospital Centre (CHUV), Lausanne, Switzerland

AbstractThe aims of this review were 1) to compile a large number of reliable literature data on the metabolic hydrolysis of medicinal carbamates and 2) to extract from such data a qualitative relation between molecular structure and lability to metabolic hydrolysis. The compounds were classified according to the nature of their substituents (R3OCONR1R2), and a metabolic lability score was calculated for each class. A trend emerged, such that the metabolic lability of carbamates decreased (i.e., their metabolic stability increased), in the follow-ing series: Aryl-OCO-NHAlkyl >> Alkyl-OCO-NHAlkyl ∼ Alkyl-OCO-N(Alkyl)

2 ≥ Alkyl-OCO-N(endocyclic) ≥ Aryl-

OCO-N(Alkyl)2 ∼ Aryl-OCO-N(endocyclic) ≥ Alkyl-OCO-NHAryl ∼ Alkyl-OCO-NHAcyl >> Alkyl-OCO-NH

2 > Cyclic

carbamates. This trend should prove useful in the design of carbamates as drugs or prodrugs.

Keywords: Carbamates; structure-property relationships (SPR); hydrolysis; metabolic stability; drug metabolism

DMR

475118

(Received 20 November 2009; revised 05 February 2010; accepted 03 March 2010)

ISSN 0360-2532 print/ISSN 1097-9883 online © 2010 Informa Healthcare USA, Inc.DOI: 10.3109/03602531003745960 http://www.informahealthcare.com/dmr

Dru

g M

etab

olis

m R

evie

ws

Dow

nloa

ded

from

info

rmah

ealth

care

.com

by

Can

tona

le e

t Uni

vers

itair

e on

09/

30/1

0Fo

r pe

rson

al u

se o

nly.

Page 2: Qualitative structure-metabolism relationships in the ...files.chuv.ch/internet-docs/pha/recherche/cb_2010_dmr_carbamates.pdf · Introduction The carbamate moiety plays a noteworthy

552 F. Vacondio et al.

a target site (i.e., the “soft spot,” in the current parlance). A first decision was to limit the search of experimental data to carbamates of pharmaceutical interest. Carbamates acting as pesticides or herbicides were not considered and would have required a separate analysis.

The search began either by entering keywords in public or commercial databases (e.g., Current Contents, Medline, PubMed, ScienceDirect, etc.) or directly on the websites of xenobiotic metabolism and medicinal chemistry journals (e.g., British Journal of Pharmacology, Current Drug Metabolism, Drug Metabolism and Disposition, Drug Metabolism Reviews, Journal of Medicinal Chemistry, Journal of Pharmaceutical Sciences, Journal of Pharmacology and Experimental Therapeutics, Pharmaceutical Research, Xenobiotica, etc.) or by employ-ing two-dimensional (2D) structure-based search engines (e.g., Beilstein Commander, SciFinder Scholar). After identification of the hits, the search was further deepened by the subsequent reading and analysis of reference arti-cles and of the most relevant information within.

The classification of carbamates used in this article was based on strictly structural criteria. The primary subdivision separated O-alkyl (Tables 1–4) and O-aryl carbamates (Tables 5–7). Cyclic carbamates were clas-sified separately (Table 8). The secondary subdivision was based on the number and nature of substituents on the carbamate nitrogen, (i.e., unsubstituted nitrogen) (Table 1), monosubstituted nitrogen (Tables 2, 3, 5, and 7), and disubstituted nitrogen, including carbamates with endocyclic N-atoms (Tables 2, 4, 6, and 7).

Whenever available, the biological and accompanying data compiled in Tables 1–8 include 1) the pharmaco-logical class of the carbamate substrate (column II), 2) its chemical structure (column III), 3) the chemical struc-ture of its metabolites derived from carbamate cleavage (column IV), and 5) metabolic reactions (including conjugations) directly competitive with carbamate cleav-age (column V). This last piece of information is meant to help readers view the reaction of interest in a global metabolic context and grasp its relative importance. Useful indications on experimental conditions are also provided (column VI), including animal species, in vitro versus in vivo conditions, the type of in vitro models (i.e., S9000 liver fraction, microsomes, cytosol, cultured cells, and perfused organs), or the route of administration.

The analytical methods used are summarized in col-umn VI, together with the relevant reference, a useful information to estimate the quality of metabolic data. Interestingly, this information reveals the evolution of analytical methods over the years and decades, an issue beyond the scope of this review.

The last column (column VII) summarizes hydrolysis data obtained in buffers (i.e., chemical hydrolysis; first row in box), in in vitro bioassays (second row in box), and in in vivo (third row in box). The chemical and

in vitro results are reported with three score levels, from “0” [null to low extent (a few %) of hydrolysis] to “+” [low to medium (t

1/2 up to about 1 day)] to “++” [medium to high

(t1/2

about 1 hour or less)]. The third row refers instead to in vivo metabolism, and, in this case, a simple yes/no answer is reported: yes = metabolite due to carbamate cleavage observed; no = ≤5% of total metabolism could be attributed to hydrolytic cleavage. This was mainly due to the impossibility of evaluating the relative weight of the hydrolytic pathway in the whole scenario of in vivo hydrolytic and oxidative biotransformations. The foot-notes in Table 1 explain abbreviations. Supplementary material complementing Tables 1–8 is in Tables 10–35.

Comments on Tables 1–8

The first question that arises in any literature review of this type calls for a simple yes/no answer: Is this spe-cific carbamate a substrate for hydrolysis? Column IV shows whether one or more metabolites resulting from hydrolytic cleavage are known or not. The comment “not reported” indicates that no relevant information was found in the literature. However, such a lack of informa-tion is ambiguous, since the type and quality of data has to be taken into consideration. Indeed, the investigators of the study might not have searched for products of hydrolysis, their focus having been on metabolic oxida-tion, or may have used unadapted biological protocols or analytical techniques. Despite these limitations, we have attempted to present the reader with a simplified score (column VII), representing the relative weight of hydrolytic metabolism, compared to other metabolic pathways.

In broad terms, it can be seen that the carbamate group is widely present in drugs, drug candidates, and prodrugs. In fact, many of the retrieved hits are marketed drugs or candidates in clinical trials or under preclinical development. For these molecules, the carbamate group either represents an important structural motif or even has a direct role in drug-target interaction.

Table 1 features O-alkylcarbamates that have an unsubstituted nitrogen, most of which are known drugs. For many of these compounds, in vitro results were rare, while metabolic hydrolysis represented only a minor pathway of in vivo biotransformation. Thus, the muscle relaxant methocarbamol (A.1.2) was not hydrolyzed in vivo (Campbell et al., 1961). Its close analog, chlorphe-nesin carbamate (A.1.3), was predominantly metabo-lized in rats and humans by direct conjugation of the unchanged drug, with only a modest fraction of the dose being recovered in urine as p-chlorophenylacetic acid (formed by hydrolysis, followed by alcohol deshydro-genation) (Buhler, 1964). Decarbamoylated metabolites of capravirine (A.1.8) were observed only in dogs (Bu

Dru

g M

etab

olis

m R

evie

ws

Dow

nloa

ded

from

info

rmah

ealth

care

.com

by

Can

tona

le e

t Uni

vers

itair

e on

09/

30/1

0Fo

r pe

rson

al u

se o

nly.

Page 3: Qualitative structure-metabolism relationships in the ...files.chuv.ch/internet-docs/pha/recherche/cb_2010_dmr_carbamates.pdf · Introduction The carbamate moiety plays a noteworthy

Hydrolysis of carbamates: qualitative structure-metabolism relationships 553Ta

ble

1. Th

e m

etab

olic

hyd

roly

sis

of O

-alk

ylca

rbam

ates

(R

3 = A

lkyl

; R1 =

R2 =

H).

NO

OR3

R1

R2

No.

/nam

eP

har

mac

olog

ical

cl

ass

Ch

emic

al s

tru

ctu

re

All

iden

tifi

ed m

etab

olit

es

der

ivin

g fr

om c

leav

age

of

carb

amat

e gr

oup

Dir

ectl

y co

mp

etit

ive

reac

tion

sR

efer

ence

s an

d c

ond

itio

nsa–

d

Est

imat

ed

hyd

roly

sis

and

co

mm

ents

e–g

A.1

.1

O-(

n-a

lkyl

) ca

r-b

amat

es (

R =

Et,

B

u, H

exyl

& O

ctyl

)

OR

NH2

ON

one

rep

orte

d• (ω

−1)

-hyd

roxy

lati

on•  Sa

rgen

t et a

l., 1

982a

(R

m-

Viv

o-P

O+

IV)

(LSC

; TLC

)•  Sa

rgen

t et a

l., 1

982b

(R

m-V

ivo-

IP; R

-Hep

atoc

ytes

) (T

LC; M

S)

NR

e

0 (n

= 4

)f

Yesg

A.1

.2

Met

hoc

arb

amol

Mu

scle

rel

axan

tOCH3 O

OH

ONH2

ON

one

rep

orte

d•  Dea

lkylation of m

ethox

y 

grou

p• Hyd

roxylation

 of p

hen

yl ring

•  B

ruce

et a

l., 1

971

(H+

D+

R-

vivo

-PO

) (T

LC; L

SC; I

R; U

V;

NM

R)

•  C

amp

bel

l et a

l., 1

961

(H+

D-

vivo

-PO

) (L

SC)

•  M

uir

et a

l., 1

984

(Hor

se-

Viv

o-IV

) (H

PLC

-UV

)

NR

NR

No

A.1

.3

Ch

lorp

hen

esin

ca

rbam

ate

Mu

scle

rel

axan

t

O

OHO

NH2

O

Cl

OOH

COOH

Cl

• Glucu

ronidation

•  B

uh

ler

1964

, 196

5 (H

+R

m-

Viv

o-P

O)

(Pap

er C

; LSC

)•  B

uh

ler

et a

l., 1

966

(D-V

ivo-

P

O)

(Pap

er C

; LSC

)•  B

uh

ler

and

Har

poo

tlia

n, 1

967

(Rm

-Viv

o-P

O; R

-L-M

) (T

LC;

Pap

er C

);•  E

del

son

et a

l., 1

969

(Rm

+D

m-

Viv

o-P

O+

IP)

(TLC

; LSC

);•  K

aise

r an

d S

haw

, 197

4 (H

-Viv

o-P

O)

(GC

)

NR

NR

Yes

A.1

.4

Car

isb

amat

e

An

tiep

ilep

tic

Cl

O

O

NH

2

OH

Cl

OH

OH

• O-glucu

ronidation

• Su

lfon

ation

•  Chiral in

version at a

lcoh

ol 

fun

ctio

n• Aromatic hyd

roxylation

•  M

amid

i et a

l., 2

007

(R+

Mou

se+

Rab

bit

+D

-Viv

o-

PO

) (H

PLC

-MS;

HP

LC-R

AM

; N

MR

)•  M

ann

ens

et a

l., 2

007

(H-V

ivo-

PO

) (H

PLC

-MS;

H

PLC

-RA

M)

NR

NR

Yes

A.1

.5

Ron

idaz

ole

An

tip

aras

itic

ag

ent

N

N CH3

O2N

O

O

NH2

N

N CH3

O2N

OH

•  Exten

sive

 ring scission

 to 

pro

du

ce N

-met

hyl

glyc

ol-

am

ide

•  R

osen

blu

m e

t al.,

197

2

(Tu

rkey

-Viv

o-P

O)

(LSC

TLC

)N

R

NR

Yes

Tab

le 1

. co

nti

nu

ed o

n n

ext p

age

Dru

g M

etab

olis

m R

evie

ws

Dow

nloa

ded

from

info

rmah

ealth

care

.com

by

Can

tona

le e

t Uni

vers

itair

e on

09/

30/1

0Fo

r pe

rson

al u

se o

nly.

Page 4: Qualitative structure-metabolism relationships in the ...files.chuv.ch/internet-docs/pha/recherche/cb_2010_dmr_carbamates.pdf · Introduction The carbamate moiety plays a noteworthy

554 F. Vacondio et al.

No.

/nam

eP

har

mac

olog

ical

cl

ass

Ch

emic

al s

tru

ctu

re

All

iden

tifi

ed m

etab

olit

es

der

ivin

g fr

om c

leav

age

of

carb

amat

e gr

oup

Dir

ectl

y co

mp

etit

ive

reac

tion

sR

efer

ence

s an

d c

ond

itio

nsa–

d

Est

imat

ed

hyd

roly

sis

and

co

mm

ents

e–g

A.1

.6

Eth

inam

ate

Hyp

not

ic

CO

O NH2

HC

CO

2•  Hyd

roxylation

 of c

yclohex

yl 

rin

g.•  B

illin

gs e

t al.,

197

7 (R

-hep

atoc

yte)

(G

C-M

S)•  K

leb

er e

t al.,

197

7 (H

-Viv

o-

PO

) (G

C-M

S)•  M

cMah

on, 1

958

(R-V

ivo-

IV)

(Pap

er C

; LSC

)•  Pa

rli e

t al.,

197

2 (R

-Viv

o-IP

; D

-Viv

o-IV

; R-L

-M)

(GC

)

NR

0 No

A.1

.7

Cef

oxit

in

Ch

emot

her

a-p

euti

c ag

ent

S

NO

O

NH2NaO

O

ONH

O

S

H3C

O

S

NHO

NaO

O

ONH

O

S

H3C

O

• Dea

cetylation

•  B

rum

fitt

et a

l., 1

974

(H-V

ivo-

IM+

IV)

(dis

k-p

late

met

hod

)•  B

uh

s et

al.,

197

4 (H

-Viv

o-IV

+IP

) (H

PLC

-UV

)

NR

NR

No

A.1

.8

Cap

ravi

rin

e

Non

-nu

cleo

sid

e re

vers

e-

tran

scri

pta

se

inh

ibit

orN

N

ONH2

O

S

N

CI

CI

N

N

OH

S

N

CI

CI

• Su

lfox

idation

•  N-oxidation of p

yridinyl 

nit

roge

n a

tom

•  Hyd

roxylation

 at iso

propy

l gr

oup

•  B

u e

t al.,

200

4 (H

-Viv

o-P

O)

(HP

LC-R

AM

-MS)

•  B

u e

t al.,

200

5, 2

006

(H-L

-M)

(HP

LC-R

AM

-MS)

•  B

u e

t al.,

200

7 (R

-Viv

o-IV

; D

-Viv

o-P

O; R

+D

-L-M

)

(HP

LC-R

AM

-MS)

•  O

hka

wa

et a

l., 1

998

(H+

Rm

-L-

M)

(HP

LC-M

S)

NR

NR

No

A.1

.9

Mit

omyc

in C

An

titu

mor

an

tib

ioti

c

N

O O

H2N

OCONH2

NH

OCH3

NNH2

SG

O O

H2N

•  Enzymatic red

uction of 

qu

inon

e• Open

ing of aziridine ring

•  K

enn

edy

et a

l., 1

982

(Rm

-L-

M)

(UV

)•  La

ng

et a

l., 2

005

(H-L

-M)

(HP

LC-M

S-D

AD

)•  Pa

n e

t al.,

198

4 (R

-CY

P-N

AD

PH

) (H

PLC

-MS;

EP

R)

•  Sc

hw

artz

, 196

2 (R

m-L

-M)

(U

V);

•  To

mas

z an

d L

ipm

an, 1

981

(Rm

-L-M

) (U

V; N

MR

)

NR

NR

Yes

Tab

le 1

. co

nti

nu

ed o

n n

ext p

age

Tabl

e 1.

Con

tin

ued

.

Dru

g M

etab

olis

m R

evie

ws

Dow

nloa

ded

from

info

rmah

ealth

care

.com

by

Can

tona

le e

t Uni

vers

itair

e on

09/

30/1

0Fo

r pe

rson

al u

se o

nly.

Page 5: Qualitative structure-metabolism relationships in the ...files.chuv.ch/internet-docs/pha/recherche/cb_2010_dmr_carbamates.pdf · Introduction The carbamate moiety plays a noteworthy

Hydrolysis of carbamates: qualitative structure-metabolism relationships 555

No.

/nam

eP

har

mac

olog

ical

cl

ass

Ch

emic

al s

tru

ctu

re

All

iden

tifi

ed m

etab

olit

es

der

ivin

g fr

om c

leav

age

of

carb

amat

e gr

oup

Dir

ectl

y co

mp

etit

ive

reac

tion

sR

efer

ence

s an

d c

ond

itio

nsa–

d

Est

imat

ed

hyd

roly

sis

and

co

mm

ents

e–g

A.1

.10

Por

firo

myc

in

An

titu

mor

an

tib

ioti

c

N

O O

H2N

OCONH2

NCH3

OCH3

N

OPO3H

2

OOH2N

NHCH3

N

SCysNH2

OOH2N

NHCH3

•  Enzymatic red

uction of 

qu

inon

e• Open

ing of aziridine ring

•  La

ng

et a

l., 2

000a

(R

-L-S

9;

H+

D-V

ivo-

IV)

(HP

LC-M

S-D

AD

; LSC

; NM

R)

•  La

ng

et a

l., 2

000b

(R

-L-S

9)

(HP

LC-D

AD

-MS;

NM

R)

NR

NR

Yes

A.1

.11

Felb

amat

e

An

tiep

ilep

tic

OOONH2

ONH2

O

OH

O

NH2

ONH

HO

O

O ON

H2

OH

O

•  4-hyd

roxylation

 of p

hen

yl 

rin

g• Hyd

roxylation

 of C

H group

•  A

du

sum

alli

et a

l., 1

991

(Rm

-L-M

) (H

PLC

-RA

M)

•  A

du

sum

alli

et a

l., 1

993

(H+

D-

Viv

o-P

O)

(HP

LC-R

AM

-MS)

•  D

ieck

hau

s et

al.,

200

1 (H

+R

-V

ivo-

PO

) (H

PLC

-MS)

•  K

apet

anov

ic e

t al.,

199

8 (H

-L-

S9+

M)

(HP

LC-U

V; G

C-M

S)•  R

olle

r et

al.

2002

(H

SA)

(HP

LC-M

S)•  R

oman

ysh

yn e

t al.,

199

4

(H-P

) (H

PLC

-UV

)•  Th

omp

son

et a

l., 1

996,

199

7,

1999

, 200

0 (B

uff

er; H

-Viv

o-

PO

) (H

PLC

-MS-

DA

D)

•  Ya

ng

et a

l., 1

991,

199

2 (R

+D

+R

abb

it-V

ivo-

PO

)

(HP

LC-U

V-R

AM

)

NR

NR

Yes

A.1

.12

Flu

orof

elb

amat

e

An

tiep

ilep

tic

O

OH

2N

OF

O NH

2

OH

O

FON

H2

Non

e re

por

ted

•  Pa

rker

et a

l., 2

005

(H-L

-S9)

(H

PLC

-DA

D-M

S)•  R

oeck

lein

et a

l., 2

007

(H-L

- S9

) (H

PLC

-DA

D-M

S)

NR

NR

Yes

Tab

le 1

. co

nti

nu

ed o

n n

ext p

age

Tabl

e 1.

Con

tin

ued

.

Dru

g M

etab

olis

m R

evie

ws

Dow

nloa

ded

from

info

rmah

ealth

care

.com

by

Can

tona

le e

t Uni

vers

itair

e on

09/

30/1

0Fo

r pe

rson

al u

se o

nly.

Page 6: Qualitative structure-metabolism relationships in the ...files.chuv.ch/internet-docs/pha/recherche/cb_2010_dmr_carbamates.pdf · Introduction The carbamate moiety plays a noteworthy

556 F. Vacondio et al.

No.

/nam

eP

har

mac

olog

ical

cl

ass

Ch

emic

al s

tru

ctu

re

All

iden

tifi

ed m

etab

olit

es

der

ivin

g fr

om c

leav

age

of

carb

amat

e gr

oup

Dir

ectl

y co

mp

etit

ive

reac

tion

sR

efer

ence

s an

d c

ond

itio

nsa–

d

Est

imat

ed

hyd

roly

sis

and

co

mm

ents

e–g

A.1

.13

Mep

rob

amat

e

Mu

scle

rel

axan

t

H2N

OO

NH

2

OO

CO

2• Side-ch

ain oxidation

•  B

ram

nes

s et

al.,

200

3 (H

-B)

(GC

; HP

LC-U

V)

•  E

mm

erso

n e

t al.,

196

0 (R

m-V

ivo-

IP)

(TLC

; LSC

)•  Lu

dw

ig e

t al.,

196

1 (H

+D

m-

Viv

o-P

O)

(LSC

; Pap

er C

)•  P

hill

ips

et a

l., 1

962

(Rm

-Viv

o-IP

) (L

SC; P

aper

C)

•  W

alke

nst

ein

et a

l., 1

958

(Rm

+D

m-V

ivo-

PO

+IP

; H

-Viv

o-P

O)

(LSC

; Pap

er C

)

NR

NR

No

A.1

.14

Meb

uta

mat

e

Hyp

oten

sive

ag

ent

H2N

OO

NH

2

OO

Non

e re

por

ted

• Side-ch

ain oxidation

•  D

ougl

as e

t al.,

196

2 (D

m-V

ivo-

PO

) (P

aper

C;

NM

R)

•  E

del

son

an

d D

ougl

as, 1

968

(R+

Rab

bit

-L-M

) (P

aper

C;

LSC

)

NR

0 No

Tabl

e 1.

Con

tin

ued

.

Dru

g M

etab

olis

m R

evie

ws

Dow

nloa

ded

from

info

rmah

ealth

care

.com

by

Can

tona

le e

t Uni

vers

itair

e on

09/

30/1

0Fo

r pe

rson

al u

se o

nly.

Page 7: Qualitative structure-metabolism relationships in the ...files.chuv.ch/internet-docs/pha/recherche/cb_2010_dmr_carbamates.pdf · Introduction The carbamate moiety plays a noteworthy

Hydrolysis of carbamates: qualitative structure-metabolism relationships 557

Tabl

e 2.

The

met

abol

ic h

ydro

lysi

s of

O-a

lkyl

carb

amat

es (

R3 =

Alk

yl; R

1 = A

lkyl

; R2 =

H o

r A

lkyl

).

NO

OR

3

R1

R2

No.

/nam

eP

har

mac

olog

ical

cl

ass

Ch

emic

al s

tru

ctu

reA

ll id

enti

fied

met

abol

ites

der

ivin

g fr

om c

leav

age

of c

arb

amat

e gr

oup

Dir

ectl

y co

mp

etit

ive

reac

tion

sR

efer

ence

s an

d c

ond

itio

nsa–

d

Est

imat

ed

hyd

roly

sis

and

co

mm

ents

e–g

A.2

.1

Am

pre

nav

ir

HIV

-1 p

rote

ase

inh

ibit

or

NH

2

SN

OO

HNO

O

O

OH

NH

2

SN

OO

H2N

OH

•  Oxidation of tetra-

hyd

rofu

ran

rin

g•  Ring op

ening

•  Oxidation of the 

p-a

nili

ne

sulf

onat

e gr

oup

•  Hyd

roxylation

 of 

anili

ne

rin

g•  Hyd

roxylation

 of 

ben

zylic

pos

itio

n•  Glucu

ronidation

•  D

ecke

r, 19

98 (

H+

R+

D-

Viv

o-P

O)

(HP

LC-M

S)•  Sa

dle

r et

al.,

200

1 (H

-Viv

o-P

O)

(LSC

; H

PLC

-F)

•  Si

ngh

et a

l., 1

996

(H+

R+

Mon

key-

L-S9

) (H

PLC

-DA

D-M

S)•  T

rélu

yer

et a

l., 2

003

(H

-L-M

) (H

PLC

-MS)

NR

e

+f

Yesg

A.2

.2

Rit

onav

ir

HIV

-1 p

rote

ase

inh

ibit

or

NN

OH

H

N

OO

HN H

O

O

SN

NS

CH

3

NN H

OH N

OO

HN

H2

SN

CH

3

•  Hyd

roxylation

 of 

isop

ropy

l gro

up

•  N-d

ealkylation of 

ure

a gr

oup

•  N-oxidation of u

rea 

grou

p•  Oxidation of 

met

hyl

thia

zoly

l m

oiet

y•  Glucu

ronidation

•  D

enis

sen

et a

l., 1

997

(R

+D

-Viv

o-IV

+P

O+

ID;

H-V

ivo-

PO

) (H

PLC

-R

AM

-MS;

LSC

)•  K

oud

riak

ova

et a

l., 1

998

(H-I

nte

stin

al-M

) (H

PLC

-R

AM

-MS)

•  K

um

ar e

t al.,

199

6 (H

-L-M

) (H

PLC

-RA

M-M

S)•  G

angl

et a

l., 2

002

(H-L

-M)

(HP

LC-M

S; N

MR

)

NR

+ Yes

A.2

.3

Car

met

hiz

ole

An

titu

mor

age

nt

SCH

3N N C

H3

H3C

HN

OC

O

OC

ON

HC

H3

SCH3

N N CH3

H3CHNOCO

OH

Non

e re

por

ted

•  A

nd

erso

n e

t al.,

198

9 (B

uff

er)

(HP

LC-U

V; N

MR

)+ N

R

NR

Tab

le 2

. co

nti

nu

ed o

n n

ext p

age

Dru

g M

etab

olis

m R

evie

ws

Dow

nloa

ded

from

info

rmah

ealth

care

.com

by

Can

tona

le e

t Uni

vers

itair

e on

09/

30/1

0Fo

r pe

rson

al u

se o

nly.

Page 8: Qualitative structure-metabolism relationships in the ...files.chuv.ch/internet-docs/pha/recherche/cb_2010_dmr_carbamates.pdf · Introduction The carbamate moiety plays a noteworthy

558 F. Vacondio et al.

No.

/nam

eP

har

mac

olog

ical

cl

ass

Ch

emic

al s

tru

ctu

reA

ll id

enti

fied

met

abol

ites

der

ivin

g fr

om c

leav

age

of c

arb

amat

e gr

oup

Dir

ectl

y co

mp

etit

ive

reac

tion

sR

efer

ence

s an

d c

ond

itio

nsa–

d

Est

imat

ed

hyd

roly

sis

and

co

mm

ents

e–g

A.2

.4

Doc

etax

el

An

titu

mor

ag

ent

OO

H

OH

O

O

OH

H N

O

O

O

HO

OO

O

O

OOH

OH

O

O

OH

N

O

HOO

OO

OO

HO

O

OOH

OH

O

O

OH

N

O

HOO

OO

OO

HO

O

OO

H

OH

O

O

OH

H N

O

O

O

HO

OO

HO

O

•  Ring clos

ure 

wit

h e

ith

er S

or

R

ster

eoch

emis

try

•  Oxidation to

 ox

azol

idin

dio

ne

•  Oxidation at the 

bac

cati

n m

oiet

y

•  B

ard

elm

eije

r et

al.,

200

5 (M

ouse

-Viv

o-IV

) (H

PLC

-U

V-M

S; L

SC)

•  G

uit

ton

et a

l., 2

005

(H-V

ivo-

IV)

(HP

LC-M

S)•  R

osin

g et

al.,

200

0 (H

-Viv

o-IV

) (H

PLC

-MS)

•  Sp

arre

boo

m e

t al.,

199

6 (H

-Viv

o) (

HP

LC-D

AD

-MS)

NR

NR

No

A.2

.5

Taxa

nes

An

titu

mor

ag

ents

O

OO

O

R'

Ac

O

O

OH

NH

O

O

OO

OH

OH

R

Non

e re

por

ted

•  Hyd

roxylation

 at R

 si

de

chai

n•  Los

s of propionyl on 

C10

•  Hyd

roxylation

 of 

met

hyl

on

the

C10

d

imet

hyl

amin

o

grou

p•  Hyd

roxylation

 of 

arom

atic

rin

g

•  G

ut e

t al.,

200

6 (H

+R

m+

Pig

+M

inip

ig-

L-M

) (H

PLC

-UV-

MS)

NR

0 (n

= 3

)

NR

A.2

.6

Ch

lora

lure

tan

e

Hyp

not

ic

CC

l 3

OH

N H

O

OC

Cl 3

OH

• O-glucu

ronation;

•  N-d

ealkylation to

 tr

ich

loro

eth

anol

•  Oxidation to

 tri-

chlo

roac

etic

aci

d

•  G

lazk

o et

al.,

195

7 (H

+R

+D

m-V

ivo-

PO

)

(Pap

er C

; UV

)

NR

NR

Yes

A.2

.7

Car

baz

eran

An

tiar

ryth

mic

NN

N

OO

HN

H3CO

OCH3

OCH3

H3CO

NN

N

OH

• 4-hyd

roxylation

;•  N-d

ealkylation to

 N

-des

eth

yl-4

- h

ydro

xy c

arb

azer

an•  Hyd

roxylation

 on 

pyp

erid

ine

rin

g•  O-d

emethylation

•  C

ritc

hle

y et

al.,

199

4 (G

uin

ea P

ig-V

ivo-

PO

) (H

PLC

-UV-

MS;

IR; L

SC)

•  K

aye

et a

l., 1

984

(H+

Dm

-V

ivo-

PO

+IV

) (H

PLC

-UV

; T

LC-F

; LSC

)•  K

aye

et a

l., 1

985

(H+

D+

Bab

oon

-L-C

) (H

PLC

-UV

)

NR

0 Yes

Tabl

e 2.

Con

tin

ued

.

Tab

le 2

. co

nti

nu

ed o

n n

ext p

age

Dru

g M

etab

olis

m R

evie

ws

Dow

nloa

ded

from

info

rmah

ealth

care

.com

by

Can

tona

le e

t Uni

vers

itair

e on

09/

30/1

0Fo

r pe

rson

al u

se o

nly.

Page 9: Qualitative structure-metabolism relationships in the ...files.chuv.ch/internet-docs/pha/recherche/cb_2010_dmr_carbamates.pdf · Introduction The carbamate moiety plays a noteworthy

Hydrolysis of carbamates: qualitative structure-metabolism relationships 559

No.

/nam

eP

har

mac

olog

ical

cl

ass

Ch

emic

al s

tru

ctu

reA

ll id

enti

fied

met

abol

ites

der

ivin

g fr

om c

leav

age

of c

arb

amat

e gr

oup

Dir

ectl

y co

mp

etit

ive

reac

tion

sR

efer

ence

s an

d c

ond

itio

nsa–

d

Est

imat

ed

hyd

roly

sis

and

co

mm

ents

e–g

A.2

.8

(2-o

xo-1

,3-

dio

xol-

4-yl

)m

eth

yl

carb

amat

es

(see

Tab

le 1

0)h

OCH3

OCH3

HN O

O

O

O

R

O

H2N

OCH3 OCH3

Non

e re

por

ted

•  A

lexa

nd

er e

t al.,

199

6 (B

uff

er; R

+D

-P)

(H

PLC

-UV

)

+ (

n =

3)

++

(n

= 3

)

NR

A.2

.9

Am

inoc

arb

onyl

-ox

ymet

hyl

es

ters

(see

Ta

ble

11)

RN H

O

OO

O

R'

NH2

RN

one

rep

orte

d•  M

end

es e

t al.,

200

2

(Bu

ffer

; H-P

) (H

PLC

-UV

)0/

+/+

+ (

n =

9)

++

(n

= 9

)

NR

A.2

.10

Am

inoc

arb

onyl

-ox

ymet

hyl

es

ters

(see

Ta

ble

11)

CH3

R'

RN

O

OO

O

CH3

R

H NN

one

rep

orte

d•  M

end

es e

t al.,

200

2

(Bu

ffer

; H-P

) (H

PLC

-UV

)+

(n

= 2

)

++

(n

= 2

)

NR

A.2

.11

PE

G p

rod

rugs

of

dau

nor

ub

icin

(s

ee T

able

12)

An

titu

mor

ag

ents

CH3

H3C

H3C

R'R

O

O

O

O

O

OO

HO

HO

HO

OH

NH

OCH3

NH2 CH3

H3C

O

OO

OH

OH

O

OO

HO

HO

Non

e re

por

ted

•  G

reen

wal

d e

t al.,

199

9 (B

uff

er; R

-P)

(HP

LC-U

V)

0 (n

= 4

)

+ (

n =

4)

NR

A.2

.12

Pro

dru

gs o

f R

WJ-

4451

67

(see

Tab

le 1

3)

Ora

l an

ti-

coag

ula

nt d

rug

RO

ONH O

O

N

H3C

HN

HN

HN

HN

OSO O

CH3

Non

e R

epor

ted

Non

e R

epor

ted

•  M

arya

noff

et a

l., 2

006

(Rm

-Viv

o-P

O)

(HP

LC-M

S)N

R

NR

No

(n =

2)

Tabl

e 2.

Con

tin

ued

.

Dru

g M

etab

olis

m R

evie

ws

Dow

nloa

ded

from

info

rmah

ealth

care

.com

by

Can

tona

le e

t Uni

vers

itair

e on

09/

30/1

0Fo

r pe

rson

al u

se o

nly.

Page 10: Qualitative structure-metabolism relationships in the ...files.chuv.ch/internet-docs/pha/recherche/cb_2010_dmr_carbamates.pdf · Introduction The carbamate moiety plays a noteworthy

560 F. Vacondio et al.

Tabl

e 3.

The

met

abol

ic h

ydro

lysi

s of

O-a

lkyl

carb

amat

es (

R3 =

Alk

yl; R

1 = A

ryl o

r H

eter

oary

l or

Acy

l; R

2 = H

).

NO

OR3

R1

R2

No.

/nam

eP

har

mac

olog

ical

cl

ass

Ch

emic

al s

tru

ctu

reA

ll id

enti

fied

met

abol

ites

der

ivin

g fr

om c

leav

age

of c

arb

amat

e gr

oup

Dir

ectl

y co

mp

etit

ive

reac

tion

sR

efer

ence

s an

d c

ond

itio

nsa–

d

Est

imat

ed

hyd

roly

sis

and

co

mm

ents

e–g

A.3

.1

Eth

aciz

in

An

tiar

rhyt

hm

ic

NS

ON

N H

O

ON H

N H

SO

OH

• N-d

eethylation

•  Su

lfox

idation

•  N10

 amido grou

p 

hyd

roly

sis

•  Hyd

roxylation

 of the 

arom

atic

rin

g

•  B

elob

orod

ov e

t al.,

198

9 (H

-Viv

o-

PO

) (H

PLC

-UV

; UV

; IR

; NM

R; M

S)N

Re

NR

f

Yesg

A.3

.2

Mor

iciz

ine

An

tiar

rhyt

hm

ic

N HNS

O

O

O

NO

N HN H

OH

SO

NS

O

NH2

N

O

• Oxidation to

 sulfox

ide

•  Oxidative op

ening of 

mor

ph

olin

e ri

ng

•  Oxidative clea

vage

 of 

3-m

orp

hol

ino

pro

pio

-n

yl s

ide

chai

n

•  P

ien

iasz

ek e

t al.,

199

4, 1

999

(H-V

ivo-

PO

) (H

PLC

-UV

; LSC

)•  R

ich

ard

s et

al.,

199

7 (H

-Viv

o-P

O)

(HP

LC-U

V; N

MR

; MS)

•  Ya

ng

and

Ch

an, 1

995

(Rm

-Viv

o-IV

; H

-Viv

o-P

O)

(HP

LC-U

V; M

S; IR

; T

LC)

NR

NR

Yes

A.3

.3

Zafi

rlu

kast

An

tias

thm

atic

N H

O

ON

HN

O

CH3

H3CO

SO

O

ON

HN

N H

OH3CO

SO

O

CH3

HN

H3CO

H2N

N

O SO

O

CH3

•  N-d

emethylation at 

ind

ole

nit

roge

n•  Cleav

age of sulfon

a-m

ide

linka

ge•  Cyclopen

tyl o

xidation

•  To

lyl o

xidation

•  Indole N-m

ethyl 

oxid

atio

n

•  K

assa

hu

n e

t al.,

200

5 (H

+R

-L-M

; R

m-V

ivo-

PO

) (H

PLC

-MS;

NM

R)

•  Sa

vid

ge e

t al.,

199

8 (R

+D

+M

ouse

-V

ivo-

PO

; R+

D-V

ivo-

IV)

(HP

LC-

MS;

NM

R)

NR

+ Yes

Tab

le 3

. co

nti

nu

ed o

n n

ext p

age

Dru

g M

etab

olis

m R

evie

ws

Dow

nloa

ded

from

info

rmah

ealth

care

.com

by

Can

tona

le e

t Uni

vers

itair

e on

09/

30/1

0Fo

r pe

rson

al u

se o

nly.

Page 11: Qualitative structure-metabolism relationships in the ...files.chuv.ch/internet-docs/pha/recherche/cb_2010_dmr_carbamates.pdf · Introduction The carbamate moiety plays a noteworthy

Hydrolysis of carbamates: qualitative structure-metabolism relationships 561

No.

/nam

eP

har

mac

olog

ical

cl

ass

Ch

emic

al s

tru

ctu

reA

ll id

enti

fied

met

abol

ites

der

ivin

g fr

om c

leav

age

of c

arb

amat

e gr

oup

Dir

ectl

y co

mp

etit

ive

reac

tion

sR

efer

ence

s an

d c

ond

itio

nsa–

d

Est

imat

ed

hyd

roly

sis

and

co

mm

ents

e–g

A.3

.4

Ret

igab

ine

An

tiep

ilep

tic

F

N H

H N

O

O

NH2

N HH NO

N H

O

FHN

NH

O

NH2

•  N-d

ealkylation of the 

flu

orob

enzy

lic s

ide

chai

n a

nd

su

bse

qu

ent

acet

ylat

ion

•  Ring clos

ure rea

ctions

•  N2- and 

N4-

glu

curo

nid

atio

n

•  H

emp

el e

t al.,

199

9 (H

+R

-L-S

lices

; H

-L-M

; H+

R+

D-V

ivo-

PO

) (H

PLC

- U

V-R

AM

-MS;

NM

R)

•  H

iller

et a

l., 1

999

(H+

R+

D-L

-M;

H+

R+

D-V

ivo-

PO

) (H

PLC

-UV

; LSC

)•  M

cNei

lly e

t al.,

199

7 (H

-L-M

+Sl

ices

) (H

PLC

-DA

D-R

AM

-MS)

NR

+ Yes

A.3

.5

Flu

pir

tin

e

An

alge

sic

F

N HN

H N

O

O

NH2

FHN

NNHO

NH2

•  N-D

ealkylation of the 

flu

oro-

ben

zylic

sid

e ch

ain

•  Ring clos

ure rea

ctions

•  H

lavi

ca a

nd

Nie

bch

, 198

5 (H

-Viv

o-P

O+

IV+

Rec

tal)

(H

PLC

-UV

; MS;

LS

C)

•  O

ber

mei

er e

t al.,

198

5 (R

+D

-Viv

o-P

O+

IV)

(HP

LC-U

V; L

SC)

NR

NR

Yes

A.3

.6

Tira

cizi

ne

An

tiar

rhyt

hm

ic

N

O

(H3C) 2N

HN

O O(H3C) 2NN

ONH2

•  Oxidative 

N-d

emet

hyl

atio

n•  K

lem

m e

t al.,

198

5 (R

-Viv

o-IV

+P

O)

(TLC

; LSC

)N

R

NR

Yes

A.3

.7

Pen

taca

ine

Loc

al

anes

thet

ic

O

H NO

O

N

OH

N•  Aromatic ring 

hyd

roxy

lati

on•  Hyd

roxylation

 of the 

alip

hat

ic s

ide-

chai

n

•  St

efek

an

d B

ezek

, 198

5 (R

m-L

-M

+H

epat

ocyt

es; R

m-p

erfu

sed

-L)

(GC

-MS)

•  St

efek

et a

l., 1

986

(Rm

-L-M

+C

) (G

C-M

S; L

SC)

NR

+ NR

Tabl

e 3.

Con

tin

ued

.

Tab

le 3

. co

nti

nu

ed o

n n

ext p

age

Dru

g M

etab

olis

m R

evie

ws

Dow

nloa

ded

from

info

rmah

ealth

care

.com

by

Can

tona

le e

t Uni

vers

itair

e on

09/

30/1

0Fo

r pe

rson

al u

se o

nly.

Page 12: Qualitative structure-metabolism relationships in the ...files.chuv.ch/internet-docs/pha/recherche/cb_2010_dmr_carbamates.pdf · Introduction The carbamate moiety plays a noteworthy

562 F. Vacondio et al.

No.

/nam

eP

har

mac

olog

ical

cl

ass

Ch

emic

al s

tru

ctu

reA

ll id

enti

fied

met

abol

ites

der

ivin

g fr

om c

leav

age

of c

arb

amat

e gr

oup

Dir

ectl

y co

mp

etit

ive

reac

tion

sR

efer

ence

s an

d c

ond

itio

nsa–

d

Est

imat

ed

hyd

roly

sis

and

co

mm

ents

e–g

A.3

.8

Cam

ben

daz

ole

An

thel

min

tic

H N N

S

NN H

O

O

H N

N HO

N

S

NO

•  Open

ing of th

e th

iazo

le r

ing

follo

wed

by

oxi

dat

ion

s an

d

dec

arb

oxyl

atio

n•  Hyd

roxylation

 of 

isop

ropy

l gro

up

•  Aromatic 

hyd

roxy

lati

on

•  V

and

enH

euve

l et a

l., 1

978

(Cat

tle+

Pig

+Sh

eep

-Viv

o-P

O)

(G

C-M

S; T

LC)

•  W

olf e

t al.,

198

0 (H

amst

er-L

-M)

(GC

-FID

-MS;

NM

R; T

LC)

NR

NR

Yes

A.3

.9

Cap

ecit

abin

e

Thym

idyl

ate

sy

nth

etas

e in

hib

itor

O

N

OH

OH

N

O

FHN

O

OO

N

OH

HO

NO

F

H2N

•  Oxidative clea

vage

 of

4-a

min

o gr

oup

on

py

rim

idin

e ri

ng

•  Red

uction to

 dihyd

ro-

pyri

mid

ine

rin

g•  Oxidative op

ening of 

dih

ydro

pyri

mid

ine

ri

ng

•  D

esm

oulin

et a

l., 2

002,

200

3 (R

m-V

ivo-

PO

) (H

PLC

-UV-

MS;

N

MR

)•  Is

hik

awa

et a

l., 1

998

(H+

R-V

ivo-

PO

) (H

PLC

-MS)

•  M

iwa

et a

l., 1

998

(H-L

-CE

S)

(HP

LC-U

V)

•  R

eign

er e

t al.,

200

1 (H

-Viv

o-P

O)

(HP

LC-M

S-U

V; N

MR

)•  Ts

uka

mot

o et

al.,

200

1 (H

-L-S

9/C

+G

ut-

S9/C

) (H

PLC

-MS)

NR

+ Yes

A.3

.10

Pro

dru

gs o

f O6 -

ben

zylg

uan

ine

DN

A r

epai

r in

acti

vato

rs

N H

O

COONa

ONO2

O

O

N

NNN R

O

HO

HO

OH

NH2

NN

NN

R

O

Non

e re

por

ted

•  W

ei e

t al.,

200

5 (B

uff

er; R

-L-

Glu

curo

nid

ase)

(H

PLC

-UV

)0

(n =

2)

+(n

= 2

)

NR

Tab

le 3

. co

nti

nu

ed o

n n

ext p

age

Tabl

e 3.

Con

tin

ued

.

Dru

g M

etab

olis

m R

evie

ws

Dow

nloa

ded

from

info

rmah

ealth

care

.com

by

Can

tona

le e

t Uni

vers

itair

e on

09/

30/1

0Fo

r pe

rson

al u

se o

nly.

Page 13: Qualitative structure-metabolism relationships in the ...files.chuv.ch/internet-docs/pha/recherche/cb_2010_dmr_carbamates.pdf · Introduction The carbamate moiety plays a noteworthy

Hydrolysis of carbamates: qualitative structure-metabolism relationships 563

No.

/nam

eP

har

mac

olog

ical

cl

ass

Ch

emic

al s

tru

ctu

reA

ll id

enti

fied

met

abol

ites

der

ivin

g fr

om c

leav

age

of c

arb

amat

e gr

oup

Dir

ectl

y co

mp

etit

ive

reac

tion

sR

efer

ence

s an

d c

ond

itio

nsa–

d

Est

imat

ed

hyd

roly

sis

and

co

mm

ents

e–g

A.3

.11

Alb

end

azol

e

An

thel

min

tic

N HNS

OCH3

ONH

N H

NH2

NS

•  Oxidation of sulfur to 

sulf

oxid

e an

d s

ulf

one

•  Side-ch

ain hyd

roxy

-la

tion

at t

he

β- a

nd

γ-

pos

itio

ns

•  6-hyd

roxylation

 on 

ben

zim

idaz

ole

rin

g•  Methylation of b

oth 

ben

zim

idaz

ole

nit

ro-

gen

s an

d s

ulf

ur

•  Fa

rget

ton

et a

l., 1

986

(R-L

-M)

(HP

LC-U

V)

•  G

okb

ulu

t et a

l., 2

007

(D-V

ivo-

PO

) (H

PLC

-DA

D)

•  G

yuri

k et

al.,

198

1 (C

attl

e+Sh

eep

+

Rf+

Mou

se-V

ivo-

PO

) (L

SC; I

R;

NM

R; G

C-M

S; T

LC)

•  M

arri

ner

an

d B

ogan

, 198

0 (S

hee

p-

Viv

o-P

O)

(HP

LC-U

V)

•  M

erin

o et

al.,

200

3 (R

-L+

Inte

stin

e-

M; R

-Viv

o-P

O)

(HP

LC-U

V)

•  M

oron

i et a

l., 1

995

(Rm

-L-M

)

(HP

LC-U

V-F

)•  P

enic

aut e

t al.,

198

3 (H

-Viv

o-P

O)

(TLC

; LSC

; HP

LC-U

V)

•  R

awd

en e

t al.,

200

0 (H

-L-M

) (H

PLC

-UV

)•  R

olin

et a

l., 1

989

(H-L

-M+

hep

atom

a ce

lls)

(HP

LC-U

V; L

SC)

•  So

uh

aili-

El A

mri

, et a

l., 1

987,

198

8 (R

m+

Pig

-L-M

+p

erfu

sed

live

rs)

(HP

LC-U

V; U

V; F

)•  Ta

kaya

nag

ui e

t al.,

200

2 (H

-Viv

o-

PO

) (H

PLC

-F)

•  V

elik

et a

l., 2

005

(Dee

r+C

attl

e+P

ig+

Shee

p-L

-M)

(HP

LC-F

)•  V

illav

erd

e et

al.,

199

5 (R

f-in

test

ine-

M

) (H

PLC

-UV

)•  V

irke

l et a

l., 2

000;

200

4 (S

hee

p+

Cat

tle-

L+lu

ng+

inte

stin

e-M

) (H

PLC

-UV

)

NR

+ Yes

A.3

.12

Cic

lob

end

azol

e

An

thel

min

tic

N HOCH3

N

OO

NH

N H

NH2

N

O

•  6-hyd

roxylation

 of 

ben

zim

idaz

ole

rin

g•  Red

uction of k

eto 

gr

oup

•  B

rod

ie e

t al.,

197

7 (R

+D

-Viv

o-P

O)

(LSC

)•  M

ayo

et a

l., 1

978

(R+

D-V

ivo-

PO

+IV

) (T

LC; L

SC; H

PLC

-UV-

MS;

NM

R)

NR

NR

Yes

Tab

le 3

. co

nti

nu

ed o

n n

ext p

age

Tabl

e 3.

Con

tin

ued

.

Dru

g M

etab

olis

m R

evie

ws

Dow

nloa

ded

from

info

rmah

ealth

care

.com

by

Can

tona

le e

t Uni

vers

itair

e on

09/

30/1

0Fo

r pe

rson

al u

se o

nly.

Page 14: Qualitative structure-metabolism relationships in the ...files.chuv.ch/internet-docs/pha/recherche/cb_2010_dmr_carbamates.pdf · Introduction The carbamate moiety plays a noteworthy

564 F. Vacondio et al.

No.

/nam

eP

har

mac

olog

ical

cl

ass

Ch

emic

al s

tru

ctu

reA

ll id

enti

fied

met

abol

ites

der

ivin

g fr

om c

leav

age

of c

arb

amat

e gr

oup

Dir

ectl

y co

mp

etit

ive

reac

tion

sR

efer

ence

s an

d c

ond

itio

nsa–

d

Est

imat

ed

hyd

roly

sis

and

co

mm

ents

e–g

A.3

.13

Parb

end

azol

e

An

thel

min

tic

N

ON H

OCH3

N HN

one

rep

orte

d•  Hyd

roxylation

 of 

5-b

uty

l ch

ain

at α

-,

β-, a

nd

δ-p

osit

ion

s•  Oxidation of c

arbon

  in

δ to

giv

e ca

rbox

ylic

ac

id•  6-hyd

roxylation

 on 

ben

zim

idaz

ole

rin

g•  Oxidation of c

arbon

 γ

to c

arb

onyl

gro

up

•  D

icu

ollo

et a

l., 1

974

(Sh

eep

-Viv

o-

PO

) (L

SC; T

LC; U

V; M

S; IR

; NM

R)

•  D

un

n e

t al.,

197

3 (S

hee

p+

Cat

tle-

Viv

o-P

O)

(UV

; MS;

NM

R)

NR

NR

No

A.3

.14

Meb

end

azol

e

An

thel

min

tic

NO

O

NHNHOCH3

N H

NH2

NO

•  Red

uction of k

eto 

gr

oup

•  A

llan

an

d W

atso

n, 1

982,

198

3 (R

m-V

ivo-

IV)

(HP

LC-U

V; L

SC)

•  B

ehm

et a

l., 1

983

(Sh

eep

-Viv

o-In

trar

um

inal

) (H

PLC

-UV

)•  B

rugm

ans

et a

l., 1

971

(H-V

ivo-

PO

) (L

SC)

•  D

awso

n e

t al.,

198

2, 1

985

(H-V

ivo-

PO

+IV

) (L

SC)

•  G

ottm

ann

s et

al.,

199

1 (R

m-

per

fuse

d in

test

ine)

(H

PLC

-UV

)•  Io

sifi

dou

et a

l., 1

997

(Eel

-Viv

o-P

O)

(HP

LC-U

V)

•  M

euld

erm

ans

et a

l., 1

976

(Rm

+D

+P

ig-L

-M)

(TLC

; LSC

; MS)

NR

+ Yes

Tab

le 3

. co

nti

nu

ed o

n n

ext p

age

Tabl

e 3.

Con

tin

ued

.

Dru

g M

etab

olis

m R

evie

ws

Dow

nloa

ded

from

info

rmah

ealth

care

.com

by

Can

tona

le e

t Uni

vers

itair

e on

09/

30/1

0Fo

r pe

rson

al u

se o

nly.

Page 15: Qualitative structure-metabolism relationships in the ...files.chuv.ch/internet-docs/pha/recherche/cb_2010_dmr_carbamates.pdf · Introduction The carbamate moiety plays a noteworthy

Hydrolysis of carbamates: qualitative structure-metabolism relationships 565

No.

/nam

eP

har

mac

olog

ical

cl

ass

Ch

emic

al s

tru

ctu

reA

ll id

enti

fied

met

abol

ites

der

ivin

g fr

om c

leav

age

of c

arb

amat

e gr

oup

Dir

ectl

y co

mp

etit

ive

reac

tion

sR

efer

ence

s an

d c

ond

itio

nsa–

d

Est

imat

ed

hyd

roly

sis

and

co

mm

ents

e–g

A.3

.15

Fen

ben

daz

ole

An

thel

min

tic

NNH

NH

OCH3

S

O

NH

NNH2

S

•  4′

-hyd

roxy

lati

on

Sulf

oxid

atio

n•  B

ench

aou

i an

d M

cKel

lar,

1996

(S

hee

p+

Goa

t-V

ivo-

PO

; Rf-

L-M

) (H

PLC

-UV

)•  G

okb

ulu

t et a

l., 2

007

(D-V

ivo-

PO

) (H

PLC

-DA

D)

•  M

cKel

lar

et a

l., 2

002

(Hor

se-V

ivo-

P

O+

Intr

acec

al; H

orse

-L-M

) (H

PLC

-UV

)•  M

onte

siss

a et

al.,

198

9 (R

m+

Cat

tle+

Hor

se+

Shee

p+

Pig

+C

hic

ken

+T

rou

t-L-

M)

(HP

LC-U

V)

•  M

urr

ay e

t al.,

199

2 (R

m-L

-M)

(HP

LC-U

V)

•  P

eter

sen

et a

l., 2

000

(Pig

-Viv

o-

PO

+IV

) (H

PLC

-UV

)•  Sa

nch

ez e

t al.,

200

3 (S

hee

p-V

ivo-

P

O)

(HP

LC-U

V)

•  Sh

ort e

t al.,

198

8a, 1

988b

(Sh

eep

+

Ch

icke

n+

Du

ck+

Turk

ey+

Rab

bit

+

R+

Cat

fish

-L-S

9) (

HP

LC-U

V; M

S)•  V

irke

l et a

l., 2

004

(Sh

eep

+C

attl

e-

L+ lu

ng+

inte

stin

e-M

) (H

PLC

-UV

)

NR

0 Yes

A.3

.16

N-(

Alk

oxy-

ca

rbon

yl)

carb

oxam

ide

der

ivat

ives

(s

ee T

able

14)

h

O

N H

O

OR

O NH2

Non

e re

por

ted

•  K

ahn

s an

d B

un

dga

ard

, 199

1 (B

uff

er;

R-P

) (H

PLC

-UV

)+

(n

= 5

)

+ (

n =

3)

NR

A.3

.17

Feb

ante

l

An

thel

min

tic

NH NH

HN

OCH3 OCH3

H3CO

S

O

N

O

O

Non

e re

por

ted

•  Cycliz

ation to

 fe

nb

end

azol

e•  Su

lfox

idation

•  B

eret

ta e

t al.,

198

7 (R

m+

Hor

se+

C

attl

e+Sh

eep

+P

ig+

Ch

icke

n+

Tro

ut-

L-

M+

C)

(HP

LC-U

V)

•  D

elat

our

et a

l., 1

983,

198

5 (S

hee

p-

Viv

o-P

O)

(HP

LC-U

V)

•  M

onte

siss

a et

al.,

198

9 (R

m+

Cat

tle+

Hor

se+

Shee

p+

Pig

+C

hic

ken

+T

rou

t-L-

M)

(HP

LC-U

V)

NR

0 No

Tab

le 3

. co

nti

nu

ed o

n n

ext p

age

Tabl

e 3.

Con

tin

ued

.

Dru

g M

etab

olis

m R

evie

ws

Dow

nloa

ded

from

info

rmah

ealth

care

.com

by

Can

tona

le e

t Uni

vers

itair

e on

09/

30/1

0Fo

r pe

rson

al u

se o

nly.

Page 16: Qualitative structure-metabolism relationships in the ...files.chuv.ch/internet-docs/pha/recherche/cb_2010_dmr_carbamates.pdf · Introduction The carbamate moiety plays a noteworthy

566 F. Vacondio et al.

No.

/nam

eP

har

mac

olog

ical

cl

ass

Ch

emic

al s

tru

ctu

reA

ll id

enti

fied

met

abol

ites

der

ivin

g fr

om c

leav

age

of c

arb

amat

e gr

oup

Dir

ectl

y co

mp

etit

ive

reac

tion

sR

efer

ence

s an

d c

ond

itio

nsa–

d

Est

imat

ed

hyd

roly

sis

and

co

mm

ents

e–g

A.3

.18

Mol

sid

omin

e

An

ti-a

ngi

nal

NO

NNO

NO O

N

O

NNO

HN

Non

e re

por

ted

•  D

ell a

nd

Ch

amb

erla

in, 1

978

(H+

D-

Viv

o-P

O)

(HP

LC-U

V; L

SC)

•  Fr

omso

n e

t al.,

198

1 (R

+D

+R

abb

it+

M

ouse

+M

onke

y-V

ivo-

PO

+IV

)

(LSC

)•  Ta

nay

ama

et a

l., 1

970,

197

4 (R

m+

Mou

se-V

ivo-

PO

+IV

; Rm

-L-

Slic

es)

(TLC

; Pap

er C

; IR

; LSC

)•  W

ilson

et a

l., 1

986,

198

7 (H

+R

+D

-V

ivo-

PO

; Rab

bit

-Viv

o-IV

) (H

PLC

- U

V; L

SC; G

C-M

S; N

MR

)

NR

+ Yes

A.3

.19

Dab

igat

ran

-et

exila

te

An

tith

rom

bot

ic

agen

tN

N

O

OO

NNCH3 HN

HNNH

OON

H

NH

2

HN

CH

3

NN

O

OH

O

NN

•  Hyd

rolysis of th

e ethyl 

este

r•  Oxidation of the hex

yl 

sid

e ch

ain

•  B

lech

et a

l., 2

008

(H-V

ivo-

PO

+IV

; H

-L-M

; H-P

) (H

PLC

-F-U

V-R

AM

; H

PLC

-MS;

LSC

)•  St

angi

er e

t al.

2005

(H

-Viv

o-P

O)

(HP

LC-M

S)

NR

+ Yes

A.3

.20

Lef

rad

afib

an

Pla

tele

t gly

co-

pro

tein

IIb

/II

Ia r

ecep

tor

anta

gon

ist

HN

HNO

O

OH N

OO

O

HN

H2N

OH N

OO

OH

Non

e re

por

ted

•  M

ulle

r et

al.,

199

7 (H

-Viv

o-P

O)

(HP

LC-F

; LSC

)N

R

NR

Yes

A.3

.21

Car

bam

ate

pro

dru

gs o

f La

mifi

ban

(s

ee T

able

15)

Pla

tele

t gly

co-

pro

tein

IIb

-II

Ia r

ecep

tor

anta

gon

ist

N

OCOOR'''

OHN

ON

NH2

R'

R''O

Non

e re

por

ted

Non

e re

por

ted

• W

elle

r et

al.,

199

6 (M

ouse

-Viv

o-

PO

)N

R

NR

Yes

A.3

.22

Am

idin

o ca

rbam

ates

as

pro

dru

gs

(see

Tab

le 1

6)

Fact

or V

IIa

inh

ibit

ors

NH

N

H2N

OH

O OR

OH

Non

e re

por

ted

Non

e re

por

ted

•  R

iggs

et a

l., 2

006

(H+

R-P

; H+

R-L

-M;

Rm

-Viv

o-P

O)

(HP

LC-M

S)N

R

0 (n

= 4

)

No

Tab

le 3

. co

nti

nu

ed o

n n

ext p

age

Tabl

e 3.

Con

tin

ued

.

Dru

g M

etab

olis

m R

evie

ws

Dow

nloa

ded

from

info

rmah

ealth

care

.com

by

Can

tona

le e

t Uni

vers

itair

e on

09/

30/1

0Fo

r pe

rson

al u

se o

nly.

Page 17: Qualitative structure-metabolism relationships in the ...files.chuv.ch/internet-docs/pha/recherche/cb_2010_dmr_carbamates.pdf · Introduction The carbamate moiety plays a noteworthy

Hydrolysis of carbamates: qualitative structure-metabolism relationships 567

No.

/nam

eP

har

mac

olog

ical

cl

ass

Ch

emic

al s

tru

ctu

reA

ll id

enti

fied

met

abol

ites

der

ivin

g fr

om c

leav

age

of c

arb

amat

e gr

oup

Dir

ectl

y co

mp

etit

ive

reac

tion

sR

efer

ence

s an

d c

ond

itio

nsa–

d

Est

imat

ed

hyd

roly

sis

and

co

mm

ents

e–g

A.3

.23

Car

bam

ate

pro

dru

gs o

f 2,

5-b

is(4

- am

idin

o-

ph

enyl

)fu

ran

Ch

emio

ther

apic

ag

ent

O

N

NH

O

OR''

N

HN

O OR''

R'

R'

Non

e re

por

ted

Non

e re

por

ted

•  R

ahm

ath

ulla

h e

t al.,

199

9 (R

-Viv

o-IV

+P

O)

NR

NR

Yes

A.3

.24

Car

bam

ate

pro

dru

g of

BII

L 28

4

LTB

4 rec

epto

r an

tago

nis

t

HO

OO

NH2

NO

O

HO

OO

NH2

NH

Non

e re

por

ted

•  B

irke

et a

l., 2

001

(R+

Gu

inea

P

ig+

Mon

key-

Viv

o-P

O+

IV)

NR

NR

Yes

A.3

.25

Car

bam

ate

p

rod

rugs

of

fuse

d r

ing

d

icat

ion

ic

com

pou

nd

s R

= H

, Me,

Et

& i-

Pr

An

tip

roto

zoal

ag

ent

N H

HN

NN

NHR

O

OEt

OOEt

NHR

Non

e re

por

ted

Non

e re

por

ted

• A

rafa

et a

l., 2

005

(Mou

se-V

ivo-

P

O+

IP)

NR

NR

Yes

A.3

.26

Car

bam

ate

pro

dru

gs o

f 2-

guan

idin

oim

i-d

azol

ined

ion

e d

eriv

ativ

es

An

tim

alar

ial

agen

tCl Cl

NN

OO N NH

H N OO

Cl

Cl

HN

NNH

O ON

N

OO

Non

e re

por

ted

Non

e re

por

ted

• G

uan

et a

l., 2

005

(Mon

key-

V

ivo-

IM)

NR

NR

Yes

(n =

2)

Tabl

e 3.

Con

tin

ued

.

Dru

g M

etab

olis

m R

evie

ws

Dow

nloa

ded

from

info

rmah

ealth

care

.com

by

Can

tona

le e

t Uni

vers

itair

e on

09/

30/1

0Fo

r pe

rson

al u

se o

nly.

Page 18: Qualitative structure-metabolism relationships in the ...files.chuv.ch/internet-docs/pha/recherche/cb_2010_dmr_carbamates.pdf · Introduction The carbamate moiety plays a noteworthy

568 F. Vacondio et al.

Tabl

e 4.

The

met

abol

ic h

ydro

lysi

s of

O-a

lkyl

carb

amat

es h

avin

g an

en

doc

yclic

N-a

tom

.

NO

OR3

R1

R2

No.

/nam

eP

har

mac

olog

ical

cl

ass

Ch

emic

al s

tru

ctu

re

All

iden

tifi

ed m

etab

olit

es

der

ivin

g fr

om c

leav

age

of

carb

amat

e gr

oup

Dir

ectl

y co

mp

etit

ive

reac

tion

sR

efer

ence

s an

d c

ond

itio

nsa–

d

Est

imat

ed

hyd

roly

sis

and

co

mm

ents

e–g

A.4

.1

(Acy

loxy

)alk

yl

carb

amat

es o

f n

orfl

oxac

in

(see

Tab

le 1

7)h

An

tib

acte

rial

ag

ents

NN

O

O

RO

O

N

OH

OF

O

HN

N

NOH

O

FO

Non

e re

por

ted

•  A

lexa

nd

er e

t al.,

199

1 (B

uff

er; H

+R

+D

- P

) (H

PLC

-UV

)0

(n =

1)e

++

(n

= 2

)f

NR

g

A.4

.2

Lor

atad

ine

H1-

rece

pto

r an

tago

nis

t

NCl

N

OO

NCl

N H

•  3-, 5

-, and 

6-h

ydro

xyla

tion

•  B

arec

ki e

t al.,

200

1 (H

-L-M

) (H

PLC

-D

AD

-F)

•  H

ilber

t et a

l., 1

987

(H-V

ivo-

PO

) (R

IA;

HP

LC-F

)•  K

atch

en e

t al.,

198

5 (H

-Viv

o-P

O)

(RIA

; H

PLC

-F)

•  P

iwin

ski e

t al.,

199

0 (B

uff

er)

(HP

LC-

MS;

TLC

; NM

R)

•  Yu

mib

e et

al.,

199

5, 1

996

(H-L

-M)

(H

PLC

-UV-

MS)

•  R

aman

ath

an e

t al.,

200

5, 2

007

(H+

R+

Mou

se+

Mon

key-

Viv

o-P

O)

(HP

LC-M

S; L

SC)

+ + Yes

A.4

.3

Pro

dru

g of

d

oxaz

olid

ine

(R =

pen

tyl)

An

titu

mor

age

nt

OCH3

O O

OH

OH

O

OHO

ONO

HO

OO

R

OCH3

O O

OH

OH

O

OHO

ONH

O

HO

Non

e re

por

ted

•  B

urk

har

t et a

l., 2

006

(Bu

ffer

; H

-P+

CE

S1+

CE

S2)

(HP

LC-U

V-F

)0 0 N

R

Tab

le 4

. co

nti

nu

ed o

n n

ext p

age

Dru

g M

etab

olis

m R

evie

ws

Dow

nloa

ded

from

info

rmah

ealth

care

.com

by

Can

tona

le e

t Uni

vers

itair

e on

09/

30/1

0Fo

r pe

rson

al u

se o

nly.

Page 19: Qualitative structure-metabolism relationships in the ...files.chuv.ch/internet-docs/pha/recherche/cb_2010_dmr_carbamates.pdf · Introduction The carbamate moiety plays a noteworthy

Hydrolysis of carbamates: qualitative structure-metabolism relationships 569

No.

/nam

eP

har

mac

olog

ical

cl

ass

Ch

emic

al s

tru

ctu

re

All

iden

tifi

ed m

etab

olit

es

der

ivin

g fr

om c

leav

age

of

carb

amat

e gr

oup

Dir

ectl

y co

mp

etit

ive

reac

tion

sR

efer

ence

s an

d c

ond

itio

nsa–

d

Est

imat

ed

hyd

roly

sis

and

co

mm

ents

e–g

A.4

.4

N-(

alko

xy

carb

onyl

)

ph

enyt

oin

d

eriv

ativ

es

(see

Tab

le 1

8)

An

tiep

ilep

tics

NNH

O

O

O OR

HN

NH

O

O

Non

e re

por

ted

•  Ta

nin

o et

al.,

199

8 (B

uff

er;

R-P

+L+

inte

stin

e) (

HP

LC-U

V)

0 (n

= 2

)

++

(n

= 2

)

NR

A.4

.5

1-al

koxy

-

carb

onyl

d

eriv

ativ

es o

f 5-

flu

orou

raci

l (s

ee T

able

19)

An

titu

mor

ag

ents

HN

N

FO

O

OOR

N H

NH

F OO

Non

e re

por

ted

•  B

uu

r an

d B

un

dga

ard

, 198

6 (B

uff

er;

H-P

; Rab

bit

-Viv

o-re

ctal

) (U

V;

HP

LC-U

V)

+ (

n =

6)

++

(n

= 5

)

NR

A.4

.6

N-a

lkox

y-ca

rbon

yl

der

ivat

ives

of

thyr

otro

pin

- re

leas

ing

hor

mon

e (s

ee T

able

20)

N H

NH

N

O

N

N

O

RO

O

O

OH2N

N H

H NN

OHN

N

OO

O

H 2N

Non

e re

por

ted

•  B

un

dga

ard

an

d M

øss,

199

0 (B

uff

er;

H-P

) (H

PLC

-UV

)•  M

øss

et a

l., 1

990

(R+

Rab

bit

-gu

t)

(HP

LC-U

V)

0/+

(n

= 1

1)

+/+

+ (

n =

10)

NR

A.4

.7

N-a

lkox

y-ca

rbon

yl

der

ivat

ives

of

cim

etid

ine

(s

ee T

able

21)

An

tiu

lcer

dru

g

NN

S

NH

HN

NNC

O

OR

H3C

HN

N

S

NH

HN

NNC

H3C

Non

e re

por

ted

•  B

uu

r an

d B

un

dga

ard

, 199

1 (B

uff

er;

H-P

; R-L

) (H

PLC

-UV

)0/

+ (

n =

5)

+ (

n =

5)

NR

Tab

le 4

. co

nti

nu

ed o

n n

ext p

age

Tabl

e 4.

Con

tin

ued

.

Dru

g M

etab

olis

m R

evie

ws

Dow

nloa

ded

from

info

rmah

ealth

care

.com

by

Can

tona

le e

t Uni

vers

itair

e on

09/

30/1

0Fo

r pe

rson

al u

se o

nly.

Page 20: Qualitative structure-metabolism relationships in the ...files.chuv.ch/internet-docs/pha/recherche/cb_2010_dmr_carbamates.pdf · Introduction The carbamate moiety plays a noteworthy

570 F. Vacondio et al.

No.

/nam

eP

har

mac

olog

ical

cl

ass

Ch

emic

al s

tru

ctu

re

All

iden

tifi

ed m

etab

olit

es

der

ivin

g fr

om c

leav

age

of

carb

amat

e gr

oup

Dir

ectl

y co

mp

etit

ive

reac

tion

sR

efer

ence

s an

d c

ond

itio

nsa–

d

Est

imat

ed

hyd

roly

sis

and

co

mm

ents

e–g

A.4

.8

Mon

o- a

nd

dic

ar-

bam

ates

of (

R)-

α-

met

hyl

-his

tam

ine

(see

Tab

le 2

2)

His

tam

ine

H3

rece

pto

r ag

onis

tsN N

H N

O

O

OOR

HR'

N N H

H N

O

OR'

H

Non

e re

por

ted

•  St

ark

et a

l., 2

001

(Bu

ffer

; R-L

; Mou

se-

Viv

o-P

O)

(RIA

)0

(n =

2)

0 (n

= 4

)

NR

A.4

.9

1H-i

mid

azol

e-1-

ca

rbox

ylat

es o

f R

OS2

03

(see

Tab

le 2

3)

His

tam

ine

H3

rece

pto

r

anta

gon

ists

NN

SSN

O

OR

HN

N

SSN

Non

e re

por

ted

•  R

ivar

a et

al.,

200

8 (B

uff

er; H

+R

-P;

R-L

+B

rain

) (H

PLC

-UV

)+

/++

(n

= 8

)

+/+

+ (

n =

8)

NR

Tabl

e 4.

Con

tin

ued

.

Dru

g M

etab

olis

m R

evie

ws

Dow

nloa

ded

from

info

rmah

ealth

care

.com

by

Can

tona

le e

t Uni

vers

itair

e on

09/

30/1

0Fo

r pe

rson

al u

se o

nly.

Page 21: Qualitative structure-metabolism relationships in the ...files.chuv.ch/internet-docs/pha/recherche/cb_2010_dmr_carbamates.pdf · Introduction The carbamate moiety plays a noteworthy

Hydrolysis of carbamates: qualitative structure-metabolism relationships 571

Tabl

e 5.

The

met

abol

ic h

ydro

lysi

s of

O-a

rylc

arb

amat

es (

R3 =

Ary

l; R

1 = A

lkyl

, R2 =

H).

NO

OR3

R1

R2

No.

/nam

eP

har

mac

olog

ical

cl

ass

Ch

emic

al s

tru

ctu

re

All

iden

tifi

ed m

etab

olit

es

der

ivin

g fr

om c

leav

age

of

carb

amat

e gr

oup

Dir

ectl

y co

mp

etit

ive

reac

tion

sR

efer

ence

s an

d c

ond

itio

nsa–

d

Est

imat

ed

hyd

roly

sis

and

co

mm

ents

e–g

B.1

.1

N-(

sub

stit

ute

d

2-h

ydro

xyp

ropy

l)ca

rbam

ate

pro

dru

g of

par

acet

amol

(s

ee T

able

24)

h

H NO

OOH

N H

OO

R

OONHO

R

OH

H N

O

Non

e re

por

ted

•  V

igro

ux

et a

l., 1

995

(Bu

ffer

; H+

R-P

) (H

PLC

-UV

; NM

R)

+ (

n =

2)e

++

(n

= 2

)f

NR

g

B.1

.2

Ary

lcar

bam

ates

(s

ee T

able

25)

ArONH

RO

ArOH

Non

e re

por

ted

•  H

uan

g et

al.,

199

3 (H

+M

ouse

+R

-L-M

) (U

V)

++

(n

= 1

)

0 (n

= 3

)

NR

B.1

.3

Car

bam

ate

d

eriv

ativ

es o

f ty

rosy

l pep

tid

es

(see

Tab

le 2

6)

NH

O

H2N

O

O

O

H NR

NH

O

H2N

O

OH

Non

e re

por

ted

•  K

ahn

s an

d B

un

dga

ard

, 199

1 (B

uff

er;

H-P

; R-L

) (H

PLC

-UV

)+

(n

= 2

)

+ (

n =

2)

NR

B.1

.4

Ary

l car

bam

ates

(s

ee T

able

27)

Inh

ibit

ors

of F

AA

H

(fat

ty a

cid

am

ide

hyd

rola

se)

OO NH

RR

R'

R''

HO

R

R'

R''

Non

e re

por

ted

•  V

acon

dio

et a

l., 2

009

(Bu

ffer

; R-P

; R-

L-S9

) (H

PLC

-UV-

MS)

+/+

+ (

n =

10)

+/+

+ (

n =

10)

NR

Tab

le 5

. co

nti

nu

ed o

n n

ext p

age

Dru

g M

etab

olis

m R

evie

ws

Dow

nloa

ded

from

info

rmah

ealth

care

.com

by

Can

tona

le e

t Uni

vers

itair

e on

09/

30/1

0Fo

r pe

rson

al u

se o

nly.

Page 22: Qualitative structure-metabolism relationships in the ...files.chuv.ch/internet-docs/pha/recherche/cb_2010_dmr_carbamates.pdf · Introduction The carbamate moiety plays a noteworthy

572 F. Vacondio et al.

No.

/nam

eP

har

mac

olog

ical

cl

ass

Ch

emic

al s

tru

ctu

re

All

iden

tifi

ed m

etab

olit

es

der

ivin

g fr

om c

leav

age

of

carb

amat

e gr

oup

Dir

ectl

y co

mp

etit

ive

reac

tion

sR

efer

ence

s an

d c

ond

itio

nsa–

d

Est

imat

ed

hyd

roly

sis

and

co

mm

ents

e–g

B.1

.5

N-a

lkyl

- ca

rbam

ates

(se

e Ta

ble

28)

Dop

amin

ergi

c p

rod

rugs

N

OCl

OO NH

R

CH3

N

OCl

HO

CH3

Non

e re

por

ted

•  H

anse

n e

t al.,

199

1 (B

uff

er; H

+R

+

D-P

) (H

PLC

-UV

)+

+ (

n =

6)

++

(n

= 6

)

NR

B.1

.6

Ph

enyl

car

bam

ates

of

su

bst

itu

ted

et

hyl

1,2

-dia

min

es

(see

Tab

le 2

9)

ON

NO

R

R'

R''

OH

Non

e re

por

ted

•  Th

omse

n e

t al.,

199

4 (B

uff

er; H

-P;

R+

Pig

-L)

(HP

LC-U

V)

+ (

n =

3)

+ (

n =

3)

NR

B.1

.7

N-a

lkyl

-car

bam

ic

este

rs o

f en

taca

pon

e (s

ee

Tab

le 3

0)

CO

MT

Inh

ibit

ors

NO2OH

O

ON HR

N

O

N

NO2 OH

OH

CN

O N

Non

e re

por

ted

•  Sa

vola

inen

et a

l., 2

000

(Bu

ffer

; H-P

) (H

PLC

-UV

)+

(n

= 3

)

+ (

n =

3)

NR

Tabl

e 5.

Con

tin

ued

.

Dru

g M

etab

olis

m R

evie

ws

Dow

nloa

ded

from

info

rmah

ealth

care

.com

by

Can

tona

le e

t Uni

vers

itair

e on

09/

30/1

0Fo

r pe

rson

al u

se o

nly.

Page 23: Qualitative structure-metabolism relationships in the ...files.chuv.ch/internet-docs/pha/recherche/cb_2010_dmr_carbamates.pdf · Introduction The carbamate moiety plays a noteworthy

Hydrolysis of carbamates: qualitative structure-metabolism relationships 573

Tabl

e 6.

The

met

abol

ic h

ydro

lysi

s of

O-a

rylc

arb

amat

es (

R3 =

Ary

l; R

1 = R

2 = A

lkyl

, or

N-e

nd

ocyc

lic). N

OO

R3

R1

R2

No.

/nam

eP

har

mac

olog

ical

cl

ass

Ch

emic

al s

tru

ctu

re

All

iden

tifi

ed m

etab

olit

es

der

ivin

g fr

om c

leav

age

of

carb

amat

e gr

oup

Dir

ectl

y co

mp

etit

ive

reac

tion

sR

efer

ence

s an

d c

ond

itio

nsa–

d

Est

imat

ed

hyd

roly

sis

and

co

mm

ents

e–g

B.2

.1

Riv

asti

gmin

e

Ace

tylc

hol

ine-

ster

ase

(Ach

E)

inh

ibit

orO

N(CH3)2

N

OH3C

OH

N(CH3)2

• N-d

emethylation

•  H

abu

cky

and

Tse

, 199

8 (R

abb

it-V

ivo-

PO

+IV

) (L

SC; G

C-M

S)•  P

olin

sky,

199

8 (H

+R

+D

-Viv

o-P

O+

IV)

(LSC

; GC

-MS)

•  Ts

e an

d L

apla

nch

e, 1

998

(Min

ipig

- V

ivo-

PO

+IV

+d

erm

al)

(LSC

)

NR

e

+f

Yesg

B.2

.2

Bam

bu

tero

l

Pro

dru

g of

β2-

rece

pto

r ag

onis

tO

O

O

(H3C) 2N

O

(H3C) 2N

OH

N H

OH

HO

OH

N H

•  Hyd

roxylation

 of 

met

hyl

gro

up

s on

ca

rbam

ate

nit

roge

n•  N-d

emethylation

•  Li

nd

ber

g et

al.,

198

9 (R

m-L

-M)

(HP

LC-M

S; L

SC)

•  N

yber

g et

al.,

199

8 (H

-Viv

o-IV

+P

O)

(GC

-MS)

•  R

yrfe

ldt e

t al.,

198

8 (G

uin

ea P

ig-l

un

g)

(LSC

)•  Sv

enss

on a

nd

Tu

nek

, 198

8 (H

+R

+

Gu

inea

pig

-L-M

; H-V

ivo-

PO

) (H

PLC

-MS)

•  Tu

nek

 et a

l., 198

8 (H

+R+Guinea

 p

ig+

Mou

se+

D+

rab

bit

-B)

(HP

LC-M

S)•  Tu

nek

 and Sve

nsson

, 198

8 (H

-B) (U

V)

NR

+ Yes

B.2

.3

Est

ram

ust

ine

An

titu

mor

age

nt

OH

O

O

NCl

Cl

OH

HO

• Dep

hos

phor

ylation

•  17

-oxidation to

  es

tron

e

•  A

nd

erss

on e

t al.,

198

1(H

-Viv

o-P

O)

(GC

-MS;

RIA

)•  B

erge

nh

eim

an

d H

enri

ksso

n, 1

998

(H-V

ivo-

IV+

PO

) (L

SC)

•  C

arb

one

and

Dix

on, 1

979

(D-V

ivo-

PO

) (L

SC)

•  D

ixon

et a

l., 1

980

(H+

D+

Rm

-Viv

o-P

O)

(HP

LC-F

)•  K

ird

ani e

t al.,

197

5, 1

977

(H+

Bab

oon

+D

+R

-Viv

o-P

O+

IV)

(LSC

)•  G

un

nar

sson

et a

l., 1

984

(H-V

ivo-

PO

) (L

SC)

NR

NR

Yes

Tab

le 6

. co

nti

nu

ed o

n n

ext p

age

Dru

g M

etab

olis

m R

evie

ws

Dow

nloa

ded

from

info

rmah

ealth

care

.com

by

Can

tona

le e

t Uni

vers

itair

e on

09/

30/1

0Fo

r pe

rson

al u

se o

nly.

Page 24: Qualitative structure-metabolism relationships in the ...files.chuv.ch/internet-docs/pha/recherche/cb_2010_dmr_carbamates.pdf · Introduction The carbamate moiety plays a noteworthy

574 F. Vacondio et al.

No.

/nam

eP

har

mac

olog

ical

cl

ass

Ch

emic

al s

tru

ctu

re

All

iden

tifi

ed m

etab

olit

es

der

ivin

g fr

om c

leav

age

of

carb

amat

e gr

oup

Dir

ectl

y co

mp

etit

ive

reac

tion

sR

efer

ence

s an

d c

ond

itio

nsa–

d

Est

imat

ed

hyd

roly

sis

and

co

mm

ents

e–g

B.2

.4

Ph

enyl

ca

rbam

ates

of

sub

stit

ute

d e

thyl

d

iam

ines

(se

e Ta

ble

29)

h

ON

N

OR

R'

R''

OH

Non

e re

por

ted

•  Th

omse

n e

t al.,

199

4 (B

uff

er; H

-P;

R+

Pig

-L)

(HP

LC-U

V)

+/+

+ (

n =

4)

+/+

+ (

n =

4)

NR

B.2

.5

N,N

-dia

lkyl

-ca

rbam

ates

(s

ee T

able

28)

Dop

amin

ergi

c p

rod

rugs

NCH3

O

Cl O

O

NR

R'

NCH3

O

Cl

HO

Non

e re

por

ted

•  H

anse

n e

t al.,

199

1 (B

uff

er; H

+R

+D

-P)

(HP

LC-U

V)

0 (n

= 3

)

0 (n

= 3

)

NR

B.2

.6

Cam

azep

am

An

xiol

ytic

N

NO

Cl

OO(H3C) 2N

CH3

N

NO

Cl

CH3

HO

•  Hyd

roxylation

 of o

ne 

or

two

N-m

eth

yl

grou

ps

of th

e ca

r-b

amat

e, fo

llow

ed b

y N

-dem

eth

ylat

ion

•  Oxidative N-

dea

lkyl

atio

n o

n N

1

•  Ic

him

aru

, 198

4 (H

-Viv

o-P

O)

(LSC

)•  Lu

an

d Y

ang,

199

3 (R

-L-M

) (H

PLC

-U

V-M

S)•  M

orin

o et

al.,

198

5 (M

ouse

+R

m+

D+

Mon

key-

Viv

o-IV

+P

O)

(LSC

; TLC

)•  N

akam

ura

et a

l., 1

986

(Rm

-Viv

o-

PO

+IV

) (L

SC; T

LC; H

PLC

-UV

; NM

R)

NR

+ Yes

B.2

.7

Neo

stig

min

e

Ach

E in

hib

itor

O

O

N(CH3)2

(H3C) 3N

OH

(H3C) 3N

Non

e re

por

ted

•  B

urd

fiel

d e

t al.,

197

3 (R

m-L

-M+

C)

(L

SC; p

aper

ele

ctro

ph

ores

is)

•  H

usa

in e

t al.,

196

9 (R

-Viv

o-IM

) (L

SC;

pap

er e

lect

rop

hor

esis

)•  R

ober

ts e

t al.,

196

6, 1

968

(Rm

-Viv

o-

PO

; Rm

-L-M

) (L

SC; p

aper

el

ectr

oph

ores

is)

•  Sc

ott e

t al.,

196

2 (H

-Viv

o-P

O+

IM)

(p

aper

C)

NR

+ Yes

Tab

le 6

. co

nti

nu

ed o

n n

ext p

age

Tabl

e 6.

Con

tin

ued

.

Dru

g M

etab

olis

m R

evie

ws

Dow

nloa

ded

from

info

rmah

ealth

care

.com

by

Can

tona

le e

t Uni

vers

itair

e on

09/

30/1

0Fo

r pe

rson

al u

se o

nly.

Page 25: Qualitative structure-metabolism relationships in the ...files.chuv.ch/internet-docs/pha/recherche/cb_2010_dmr_carbamates.pdf · Introduction The carbamate moiety plays a noteworthy

Hydrolysis of carbamates: qualitative structure-metabolism relationships 575

No.

/nam

eP

har

mac

olog

ical

cl

ass

Ch

emic

al s

tru

ctu

re

All

iden

tifi

ed m

etab

olit

es

der

ivin

g fr

om c

leav

age

of

carb

amat

e gr

oup

Dir

ectl

y co

mp

etit

ive

reac

tion

sR

efer

ence

s an

d c

ond

itio

nsa–

d

Est

imat

ed

hyd

roly

sis

and

co

mm

ents

e–g

B.2

.8

Pyr

idos

tigm

ine

Ach

E in

hib

itor

NO

O

N(CH3)2

H3C

NOH

H3C

Non

e re

por

ted

•  B

urd

fiel

d e

t al.,

197

3 (R

m-L

-M+

C)

(L

SC; p

aper

ele

ctro

ph

ores

is)

•  H

usa

in e

t al.,

196

8 (R

m-V

ivo-

PO

)

(LSC

; pap

er e

lect

rop

hor

esis

)

NR

+ Yes

B.2

.9

Mu

ragl

itaz

ar

Act

ivat

or o

f th

e p

erox

isom

e p

ro-

lifer

ator

-act

ivat

ed

rece

pto

r (P

PAR

)O

NO

OH

OOOCH

3

N O

Non

e re

por

ted

• Hyd

roxylation

•  O-d

emethylation

•  O-d

ealkylation

•  Carbox

ylic acid 

form

atio

n•  Oxa

zole ring op

ening

•  Li

et a

l., 2

006

(Mou

se-V

ivo-

PO

) (L

SC;

HP

LC-U

V-M

S)•  W

ang

et a

l., 2

006

(H-V

ivo-

PO

) (L

SC;

HP

LC-D

AD

-RA

M-M

S)•  Z

han

g et

al.,

200

6 (H

-Viv

o-P

O)

(LSC

; H

PLC

-DA

D-M

S; N

MR

)•  Z

han

g et

al.,

200

7a, 2

007b

(H

+R

+D

+M

onke

y-V

ivo-

PO

; H+

R-

Mon

key-

hep

atoc

yte;

H-L

-M)

(LSC

; H

PLC

-DA

D-R

AM

-MS)

NR

0 No

B.2

.10

Irin

otec

an

An

titu

mor

dru

g

NN

O OHO

OO

N

N

ON

N

O OHO

OHO

•  Hyd

roxylation

 of termi-

nal

pip

erid

ine

rin

g•  Oxidative clea

vage

 of 

one

or b

oth

α-c

arb

ons

of

ou

ter

pip

erid

ine

ri

ng

•  Ring op

ening

•  Oxidation of c

amp

-to

thec

in n

ucl

eus

•  Oxidation of terminal 

pip

erid

ine

rin

g w

ith

lo

ss o

f 2H

•  D

odd

s et

al.,

199

8 (H

-Viv

o-IV

; H-L

-M)

(HP

LC-F

-MS)

•  H

aaz

et a

l., 1

997

(H-L

-M)

(HP

LC-F

)•  K

aned

a et

al.,

199

0 (M

ouse

-L+

Inte

stin

e-S9

; Mou

se-P

; Mou

se-

Viv

o-IV

) (H

PLC

-F)

•  L

okie

c et

al.,

199

6 (H

-Viv

o-IV

)

(HP

LC-F

-MS)

•  M

ath

ijsse

n e

t al.,

200

1 (H

-Viv

o-IV

; H

-L-M

; H-C

ES)

(H

PLC

-F-M

S)•  R

ivor

y et

al.,

199

5, 1

996

(H-V

ivo-

IV)

(HP

LC-F

-MS;

NM

R)

•  Sa

i, 20

01 (

H-L

-M)

(HP

LC-M

S)•  Sa

ngh

ani e

t al.,

200

4 (H

-L-C

ES)

(H

PLC

-F)

•  Sa

nto

s et

al.,

200

0 (H

-Viv

o-IV

; H-L

-M)

(HP

LC-M

S)•  Sl

atte

r et

al.,

199

7, 2

000

(H-L

-M;

H-V

ivo-

IV)

(HP

LC-F

-RA

M-M

S; L

SC)

•  X

ie e

t al.,

200

3 (M

ouse

-L-C

ES)

(H

PLC

-F)

NR

+ Yes

Tabl

e 6.

Con

tin

ued

.

Dru

g M

etab

olis

m R

evie

ws

Dow

nloa

ded

from

info

rmah

ealth

care

.com

by

Can

tona

le e

t Uni

vers

itair

e on

09/

30/1

0Fo

r pe

rson

al u

se o

nly.

Page 26: Qualitative structure-metabolism relationships in the ...files.chuv.ch/internet-docs/pha/recherche/cb_2010_dmr_carbamates.pdf · Introduction The carbamate moiety plays a noteworthy

576 F. Vacondio et al.

Tabl

e 7.

The

met

abol

ic h

ydro

lysi

s of

O-a

rylc

arb

amat

es (

R3 =

Ary

l; R

1 = A

ryl;

R2 =

H o

r A

lkyl

or

Oth

er).

NO

OR3

R1

R2

No.

/nam

eP

har

mac

olog

ical

cl

ass

Ch

emic

al s

tru

ctu

re

All

iden

tifi

ed m

etab

olit

es

der

ivin

g fr

om c

leav

age

of

carb

amat

e gr

oup

Dir

ectl

y co

mp

etit

ive

reac

tion

sR

efer

ence

s an

d c

ond

itio

nsa–

d

Est

imat

ed

hyd

roly

sis

and

co

mm

ents

e–g

B.3

.1

Gan

stig

min

e

AC

hE

inh

ibit

or

N HO

NN

OCH3 OH

H3C

CH3

HO

NNCH3 OH

H3C

CH3

•  Aromatic oxidation

• N-red

uction

•  N-d

emethylation at 

bot

h n

itro

gen

s•  Oxidation of e

thyl 

chai

n

•  C

atin

ella

et a

l., 2

001

(R+

D+

Mon

key-

L-M

) (H

PLC

-UV-

MS)

•  P

eliz

zi e

t al.,

200

3 (H

+R

+D

+M

onke

y-h

epat

ocyt

es)

(HP

LC-M

S)

NR

e

+f

NR

g

B.3

.2

Car

zele

sin

An

titu

mor

age

nt

ONCl

HN

OO

NH

HN

O

O

N(C

2H5)2

H NH

ONCl

HN HO

HN

O

O

N(C

2H5)2

NN

one

rep

orte

d•  A

wad

a et

al.,

199

9 (H

-Viv

o-IV

) (H

PLC

-UV

)•  Li

et a

l., 1

992

(Bu

ffer

; H+

Mou

se-P

) (H

PLC

-UV

)•  V

an T

ellin

gen

et a

l., 1

998a

, 199

8b

(H+

R+

Mou

se-V

ivo-

IV)

(HP

LC-U

V)

0 ++

Yes

B.3

.3

Car

bam

ate

d

eriv

ativ

es o

f m

eth

yltr

iaze

nes

(s

ee T

able

31)

h

An

titu

mor

age

nts

N NN H

N

OCH2Ph

NN

NH3C

ORO

Non

e re

por

ted

Non

e re

por

ted

•  W

ann

er e

t al.,

200

4 (B

uff

er)

(NM

R)

+/+

+ (

n =

6)

NR

NR

B.3

.4

N-(

sub

stit

ute

d-

hyd

roxy

ph

enyl

) ca

rbam

ates

(se

e Ta

ble

32)

Skel

etal

mu

scle

re

laxa

nts

; an

alge

sics

; an

tipy

reti

cs

O OHN O

H3C

NH

OH R

ROH N

O

Non

e re

por

ted

•  V

igro

ux

et a

l., 1

995

(Bu

ffer

; R+

H-P

) (H

PLC

-UV

; NM

R)

++

(n

= 3

)

++

(n

= 3

)

NR

B.3

.5

O-p

hen

yl

carb

amat

es o

f N

-su

bst

itu

ted

2-

amin

o-

ben

zam

ides

(s

ee T

able

33)

O

HN

RN

O OR''

R'

N

N

OR'

RO

Non

e re

por

ted

•  Th

omse

n a

nd

Bu

nd

gaar

d, 1

993

(B

uff

er; H

-P)

(HP

LC-U

V)

0/+

(n

= 1

6)

+/+

+ (

n =

14)

NR

Dru

g M

etab

olis

m R

evie

ws

Dow

nloa

ded

from

info

rmah

ealth

care

.com

by

Can

tona

le e

t Uni

vers

itair

e on

09/

30/1

0Fo

r pe

rson

al u

se o

nly.

Page 27: Qualitative structure-metabolism relationships in the ...files.chuv.ch/internet-docs/pha/recherche/cb_2010_dmr_carbamates.pdf · Introduction The carbamate moiety plays a noteworthy

Hydrolysis of carbamates: qualitative structure-metabolism relationships 577

Tabl

e 8.

The

met

abol

ic h

ydro

lysi

s of

cyc

lic c

arb

amat

es.

No.

/nam

eP

har

mac

olog

ical

cl

ass

Ch

emic

al s

tru

ctu

re

All

iden

tifi

ed m

etab

olit

es

der

ivin

g fr

om c

leav

age

of

carb

amat

e gr

oup

Dir

ectl

y co

mp

etit

ive

reac

tion

sR

efer

ence

s an

d c

ond

itio

nsa–

d

Est

imat

ed

hyd

roly

sis

and

co

mm

ents

e–g

C.1

.1

Efa

vire

nz

HIV

-1 r

ever

se-

tran

scri

pta

se

inh

ibit

or

Cl

N H

O

F 3C

O

Cl

NH2OH

F 3C

• Hyd

roxylation

 on C7 an

d C8

•  Hyd

roxylation

 on cyclo-

pro

pan

e ri

ng

•  N-G

lucu

ronidation

•  B

um

pu

s et

al.,

200

6 (H

-L-

CY

P)

(HP

LC-U

V; U

V-V

IS)

•  M

auri

n e

t al.,

200

2 (B

uff

er)

(HP

LC-U

V-M

S)•  M

utl

ib e

t al.,

199

9a

(H+

R+

Mon

key-

L+ki

dn

ey-

S9+

M+

C; H

+R

+G

uin

ea

pig

+H

amst

er+

Mon

key-

Vi-

vo-P

O)

(HP

LC-M

S-N

MR

)•  M

utl

ib e

t al.,

199

9b

(Rm

-Viv

o-P

O)

(HP

LC-M

S-N

MR

)•  M

utl

ib e

t al.,

200

0 (R

-Viv

o-

PO

) (H

PLC

-MS)

•  W

ard

et a

l., 2

003

(H-L

-M+

C

YP

) (H

PLC

-UV-

MS)

+e

0f Nog

C.1

.2

Met

axal

one

Mu

scle

rel

axan

t

CH3

CH3

OO

HN

O

14C

O2

•  Oxidation of m

ethyl to

  ca

rbox

ylic

aci

d•  Cleav

age of th

e ether linka

ge

•  B

ruce

et a

l., 1

966

( H

+D

-V

ivo-

PO

) (U

V; I

R; T

LC)

NR

NR

No

C.1

.3

Lin

ezol

id

An

tib

acte

rial

d

rug

NO

F

NO

O

NHAc

Non

e re

por

ted

•  Hyd

roxylation

 of the 

m

orp

hol

ine

rin

g to

the

h

emia

ceta

l met

abol

ite

•  Morpholine ring op

ening to 

carb

oxyl

ic a

cid

an

d d

iol

•  Sl

atte

r et

al.,

200

1 (H

-Viv

o-

PO

) (L

SC; H

PLC

- R

AM

-UV-

MS;

NM

R)

•  W

ynal

da

et a

l., 2

000

(H

-L-M

) (H

PLC

-RA

M-M

S)

NR

0 No

C.1

.4

Alk

enyl

-d

iary

lmet

han

es

(AD

AM

)(se

e Ta

ble

34)

h

Non

-nu

cleo

sid

e

HIV

inh

ibit

ors

F

RR'

H3CO

H3CO

N

OO

Non

e re

por

ted

Non

e re

por

ted

• D

eng

et a

l., 2

005

(R-P

) (H

PLC

-UV

)N

R

0 (n

= 2

)

NR

Tab

le 8

. co

nti

nu

ed o

n n

ext p

age

Dru

g M

etab

olis

m R

evie

ws

Dow

nloa

ded

from

info

rmah

ealth

care

.com

by

Can

tona

le e

t Uni

vers

itair

e on

09/

30/1

0Fo

r pe

rson

al u

se o

nly.

Page 28: Qualitative structure-metabolism relationships in the ...files.chuv.ch/internet-docs/pha/recherche/cb_2010_dmr_carbamates.pdf · Introduction The carbamate moiety plays a noteworthy

578 F. Vacondio et al.

No.

/nam

eP

har

mac

olog

ical

cl

ass

Ch

emic

al s

tru

ctu

re

All

iden

tifi

ed m

etab

olit

es

der

ivin

g fr

om c

leav

age

of

carb

amat

e gr

oup

Dir

ectl

y co

mp

etit

ive

reac

tion

sR

efer

ence

s an

d c

ond

itio

nsa–

d

Est

imat

ed

hyd

roly

sis

and

co

mm

ents

e–g

C.1

.5

Telit

hro

myc

in

An

tib

acte

rial

ag

ent

OO

(H3C) 2N

OH O

OON

O

O

OCH3

O

NN

N

Non

e re

por

ted

• Los

s of aryl rings

•  N-d

emethylation on 

des

osam

ine

rin

g•  N-oxidation of p

yridine

•  N

amou

r et

al.,

200

1 (H

-Viv

o-P

O)

(HP

LC-M

S)•  P

erre

t et a

l., 2

002

(H-V

ivo-

PO

+IV

) (H

PLC

-MS)

•  Sh

i et a

l. 20

05 (

H-V

ivo-

PO

) (L

SC).

NR

NR

No

C.1

.6

CD

RI-

85/9

2

An

tiu

lcer

age

nt

NH

OO

HOOC

Non

e re

por

ted

• Cis-trans isom

erization

•  Oxidation of side ch

ain

•  Sr

ivas

tava

et a

l., 2

004

(Rm

-L-

S9+

M+

C; R

m-V

ivo-

PO

) (H

PLC

-MS;

UV

)

NR

0 No

C.1

.7

E 2

011

MA

O-A

inh

ibit

orO

NO

S

NH3CO

OH

CN

Non

e re

por

ted

• O-d

emethylation

•  4-hyd

roxylation

 on 

oxaz

olid

inon

e ri

ng

•  Hyd

roxylation

 of side ch

ain

•  N

aito

h e

t al.,

199

7a

(Rm

-Viv

o-P

O)

(LSC

; TLC

; H

PLC

-F-R

AM

; MS;

NM

R)

•  N

aito

h e

t al.,

199

7b (

Rm

+

D-V

ivo-

PO

) (H

PLC

-F; T

LC;

LSC

)

NR

NR

No

C.1

.8

Cim

oxat

one

MA

O-A

inh

ibit

or

NO

O

OH3CO

CN

Non

e re

por

ted

• O-d

emethylation

•  Oxidation to

 carbox

ylic acid

•  Cleav

age of te

rminal phen

yl 

rin

g•  Hyd

roxylation

 of the 

ox

azol

idin

one

rin

g

•  R

ovei

et a

l., 1

984

(H-V

ivo-

P

O)

(HP

LC-U

V)

NR

NR

No

C.1

.9

TAK

-536

An

giot

ensi

n II

re

cep

tor

an

tago

nis

t

O

N HN

O

NN

COOH

EtO

H2NHN

NN

COOH

EtO

Non

e re

por

ted

•  K

ohar

a et

al.,

199

5, 1

996

(Rm

-Viv

o-P

O)

NR

NR

Yes

Tabl

e 8.

Con

tin

ued

.

Tab

le 8

. co

nti

nu

ed o

n n

ext p

age

Dru

g M

etab

olis

m R

evie

ws

Dow

nloa

ded

from

info

rmah

ealth

care

.com

by

Can

tona

le e

t Uni

vers

itair

e on

09/

30/1

0Fo

r pe

rson

al u

se o

nly.

Page 29: Qualitative structure-metabolism relationships in the ...files.chuv.ch/internet-docs/pha/recherche/cb_2010_dmr_carbamates.pdf · Introduction The carbamate moiety plays a noteworthy

Hydrolysis of carbamates: qualitative structure-metabolism relationships 579

No.

/nam

eP

har

mac

olog

ical

cl

ass

Ch

emic

al s

tru

ctu

re

All

iden

tifi

ed m

etab

olit

es

der

ivin

g fr

om c

leav

age

of

carb

amat

e gr

oup

Dir

ectl

y co

mp

etit

ive

reac

tion

sR

efer

ence

s an

d c

ond

itio

nsa–

d

Est

imat

ed

hyd

roly

sis

and

co

mm

ents

e–g

C.1

.10

1,2,

4-ox

adia

zol-

5-

one

der

ivat

ive

as p

rod

rug

of

amid

ine

grou

p

(see

Tab

le 3

5)

Pla

tele

t gly

co-

pro

tein

IIb

-III

a re

cep

tor

an

tago

nis

tN

NCOOH

OH

COOMe

ON H

OMe

NO

NH

O

O

NN

COOH

OH

COOMe

ON H

OMe

HN H 2N

O

Non

e re

por

ted

•  K

itam

ura

et a

l., 2

001

(Gu

inea

P

ig-P

+L+

smal

l in

test

ine;

G

uin

ea P

ig-V

ivo-

PO

)

(HP

LC-U

V)

NR

+/0

(n

= 1

)

Yes

C.1

.11

3-ar

ylaz

o-1,

2,4-

oxad

iazo

l-5-

ones

as

pro

dru

gs o

f N

O-d

onor

s

An

tith

rom

bot

ic

agen

t

NNH

OO

NN R

Non

e re

por

ted

Non

e re

por

ted

•  R

ehse

et a

l., 1

997

(R-

Viv

o-P

O)

NR

NR

Yes

C.1

.12

Bis

-1,2

,4-

oxad

iazo

l-5-

one

as p

rod

rug

of

bis

-alk

ylam

ido-

oxim

e

An

tim

alar

ial

agen

t

NN

10

NO

ON

OO

CH3

H3C

H NH N

10

NOH

OH

N

CH3

CH3

Non

e re

por

ted

•  O

uat

tara

et a

l., 2

007

(M

ouse

-Viv

o-P

O+

IP)

NR

NR

Yes

a Spec

ies:

H, h

um

an; R

, rat

; Rm

, mal

e ra

t; R

f, fe

mal

e ra

t; D

, dog

.bIn

viv

o/in

vit

ro/o

rgan

/tis

sue:

Viv

o, in

viv

o; V

ivo-

PO

, per

os;

Viv

o-IV

, i.v

.; V

ivo-

IM, i

.m.;

Viv

o-ID

, in

trad

uod

enal

; L, l

iver

; P, p

lasm

a or

ser

um

; B, b

lood

.c In

vit

ro p

rep

arat

ion

: S9,

9,0

00-g

su

per

nat

ant;

M, m

icro

som

es; C

, cyt

osol

; CE

S, c

arb

oxyl

este

rase

; CY

P, c

ytoc

hro

me

P45

0.dA

nal

ytic

al te

chn

iqu

e: D

AD

, dio

de-

Arr

ay d

etec

tor;

IR, i

nfr

ared

sp

ectr

osco

py; U

V, u

ltra

viol

et s

pec

tros

copy

or d

etec

tor;

HP

LC, h

igh

-per

form

ance

liq

uid

ch

rom

atog

rap

hy;

GC

, gas

ch

rom

atog

rap

hy;

T

LC, t

hin

-lay

er c

hro

mat

ogra

ph

y; L

SC, l

iqu

id s

cin

tilla

tion

cou

nti

ng;

MS,

mas

s sp

ectr

omet

ry; F

ID, fl

ame

ion

izat

ion

det

ecto

r; R

AM

, rad

iom

etri

c d

etec

tor;

F, fl

uor

esce

nce

det

ecto

r; E

PR

, ele

ctro

n

par

amag

net

ic r

eson

ance

; NM

R, n

ucl

ear

mag

net

ic r

eson

ance

.e,

f Firs

t row

: ch

emic

al h

ydro

lysi

s; s

econ

d r

ow: i

n v

itro

met

abol

ism

. Rat

e or

ext

ent o

f hyd

roly

sis:

NR

= n

ot r

epor

ted

; 0 =

nu

ll to

low

; + =

low

to m

ediu

m; +

+ =

med

ium

to h

igh

.g Th

ird

row

: in

viv

o m

etab

olis

m. Y

es =

met

abol

ite

du

e to

car

bam

ate

clea

vage

ob

serv

ed; N

o =

met

abol

ite

du

e to

car

bam

ate

clea

vage

not

ob

serv

ed o

r ob

serv

ed t

o a

min

ute

ext

ent

(< 5

% o

f to

tal

met

abol

ism

cou

ld b

e at

trib

ute

d to

hyd

roly

tic

clea

vage

).hSe

e Su

pp

lem

enta

ry M

ater

ial.

Tabl

e 8.

Con

tin

ued

.

Dru

g M

etab

olis

m R

evie

ws

Dow

nloa

ded

from

info

rmah

ealth

care

.com

by

Can

tona

le e

t Uni

vers

itair

e on

09/

30/1

0Fo

r pe

rson

al u

se o

nly.

Page 30: Qualitative structure-metabolism relationships in the ...files.chuv.ch/internet-docs/pha/recherche/cb_2010_dmr_carbamates.pdf · Introduction The carbamate moiety plays a noteworthy

580 F. Vacondio et al.

et al., 2007), while none were observed in humans and rats, indicating significant species differences in terms of identities and relative abundance of circulating capra-virine metabolites.

Table 2 presents O-alkylcarbamates with monoalkyl or dialkyl substitution on the nitrogen. Table 2 includes a number of drugs, plus five series of potential carbamate prodrugs (A.2.8, A.2.9, A.2.10, A.2.11, and A.2.12), whose details are compiled in Supplementary Tables 10, 11, 12, and 13. In a few cases, cleavage of the carbamate group was demonstrated to be catalyzed by cytochrome P450 enzymes. Thus, the N-decarbamoylated metabolite of the HIV-1 protease inhibitor, amprenavir (A.2.1), necessitated the presence of NADPH in human liver S

9 incubations for

its formation, implicating the involvement of cytochrome P450 (Singh et al., 1996). The same was true for the HIV-1 protease inhibitor, ritonavir (A.2.2) (Kumar et al., 1996).

The hydrolysis of carmethizole (A.2.3) in aqueous neutral buffer at 25°C proceeded with a half-life of ca. 150 minutes, forming an initial monocarbamate, which, itself, had a hydrolytic half-life of 22 hours. Hydrolysis of the isomeric, synthetic monocarbamate was much faster (t

1/2 ∼ 30 minutes). This shows that the reactivity of the

two carbamate moieties in carmethizole are significantly different, with the higher reactivity of the C-5 carbamate moiety being rationalized by sulfur participation in the elimination of the carbamate moiety (Anderson et al., 1989). Carbamate prodrugs of the oxyguanidine-based dual inhibitor of thrombin and factor Xa RWJ-445167 (A.2.12 and Supplementary Table 13) are also reported.

Although methyl and ethyl carbamates were quickly absorbed after oral administration to rats, neither compound was converted in vivo into the parent drug (Maryanoff et al., 2006).

Table 3 contains O-alkylcarbamates monosubsti-tuted on the nitrogen atom by an aryl, heteroaryl, or acyl moiety. Many representatives with an N-heteroaryl sub-stituent are benzimidazole anthelmintics bearing a car-bamate group in the 2-position of the ring. Their product of carbamate hydrolysis was identified in all these cases, except parbendazole (A.3.13). In the case of mebendazole (A.3.14), whose metabolism was extensively investigated in a number of animal species, ketone reduction was the more important metabolic route in rats in vivo, account-ing for two thirds of a dose after conjugation; carbamate hydrolysis accounted only for about 1.7%. In contrast, the product of hydrolysis was the major unconjugated metab-olite detected in human urine. In the case of parbenda-zole, the indication “none reported” states that no proof of hydrolytic cleavage was found in available literature data. Series A.3.16 in Table 3 is presented in greater detail in the Supplementary Table 14. Another populated subcategory of Table 3 is that of carbamate prodrugs of aryl amidines and guanidines. Two significative examples are dabigatran etexilate (A.3.19), a double prodrug of the direct thrombin inhibitor, dabigatran, and lefradafiban (A.3.20), a double prodrug of the platelet glycoprotein IIb/IIIa receptor antagonist, fradafiban. After oral administration, both prodrugs were converted into the active drug via hydroly-sis of the alkyl ester and of the N-alkoxycarbonyl moiety

Table 9. A summary of the qualitative data in Tables 1–8, including the series covered in Tables 10–31 (Supplementary Material).

Hydrolysis in buffer In vitro hydrolysis In vivo hydrolysis Total data (n) Scorea– + ++ – + ++ No Yes

Table 1 Alkyl-O-CO-NH

2

0 0 0 6 0 0 6 8 20 0.4

Table 2 Alkyl-O-CO-NH-Alkyl or Alkyl-O-CO-N(Alkyl)

2

5 13 1 4 6 14 3 4 50 1.1

Table 3 Alkyl-O-CO-NH-Aryl or Alkyl-O-CO-NH-Heteroaryl or Alkyl-O-CO-NH-Acyl

2 5 0 6 13 0 3 21 50 0.8

Table 4 Alkyl-O-CO-N(endocyclic)

11 25 1 5 22 18 0 1 83 1.0

Table 5 Aryl-O-CO-NH-Alkyl

0 16 15 3 12 12 0 0 58 1.4

Table 6 Aryl-O-CO-N(Alkyl)

2 or Aryl-O-

CO-N(endocyclic)

3 1 3 4 7 3 1 7 29 0.9

Table 7 Aryl-O-CO-NH-Aryl or Aryl-O-CO-N(Alkyl)Aryl or Aryl-O-CO-N(other)Aryl

1 5 1 0 1 1 0 1 10 —

Table 8 Cyclic carbamates

0 1 0 7 1 0 7 4 20 0.3

aTotal of points (− = 0; + = 1; ++ = 2; No = 0; Yes = 1) divided by the numer of data (n) and rounded off to the first decimal place. A score was calculated only when n > 10 and the number of metabolic datapoints was larger than the number of data points in buffers.

Dru

g M

etab

olis

m R

evie

ws

Dow

nloa

ded

from

info

rmah

ealth

care

.com

by

Can

tona

le e

t Uni

vers

itair

e on

09/

30/1

0Fo

r pe

rson

al u

se o

nly.

Page 31: Qualitative structure-metabolism relationships in the ...files.chuv.ch/internet-docs/pha/recherche/cb_2010_dmr_carbamates.pdf · Introduction The carbamate moiety plays a noteworthy

Hydrolysis of carbamates: qualitative structure-metabolism relationships 581

by unspecified esterases (Blech et al., 2008; Muller et al., 1997). The N-carbamoylation of basic and protonated amidine or guanidine groups, as a strategy to improve oral bioavailability and overall in vivo pharmacological activity, is also the focus of the prodrug design reported from A.3.21 to A.3.26. It must be noted, however, that direct identification of the metabolite deriving from in vivo cleavage of the carbamate group is seldom reported by the investigators, and this explains our comment “none reported” in column IV of Table 3. The observed in vivo pharmacological activity after peripheral administration of the prodrug is the indirect proof, presented by the investigators, that metabolic cleavage has taken place and that the active drug has been released from the prodrug moiety. However, data interpretation may be complicated, because, in some cases, it cannot be rigorously excluded that the carbamate itself shows some pharmacological activity (e.g., A.3.23) or that pharmacokinetic factors other than prodrug stability (e.g., poor oral absorption or distribution) could be evoked to explain the reported in vivo data.

Table 4 focuses on O-alkyl carbamates having an endocyclic N-atom, the majority of which are prodrug candidates that released the parent compound after in vitro incubations in biological media known to have high hydrolytic activity (i.e., plasma, liver, and intestine homogenates). A special behavior is that of (acyloxy)alkyl carbamates of norfloxacin (A.4.1 and Supplementary Table 17); esterase-catalyzed hydrolysis of these modi-fied carbamates triggered the regeneration of the parent amine through the intermediate formation of an unstable carbamic acid. The other series of candidate prodrugs are detailed in Supplementary Tables 18–23. The only full drug in Table 4 is loratadine (A.4.2); yet, its hydro-lyzed metabolite is also an effective antiallergic agent. Interestingly, the formation of this metabolite was also found to be CYP dependent.

Table 5 focuses on the O-arylcarbamates having one or two alkyl groups on the nitrogen atom. Table 5 begins with a series of two N-(2-hydroxypropyl)carbamates (B.1.1 and Supplementary Table 24), which were not consid-ered in our search for qualitative structure-metabolism relations (SMRs); indeed, their mechanism of carbamate cleavage is a specific base-catalyzed intramolecular nucleophilic attack, resulting in cyclization and libera-tion of metaxalone or mephenoxalone, respectively. But, the story does not end here, since compounds B.1.1 are, in fact, dual prodrugs, with the intramolecular reaction also liberating paracetamol. The other series in Table 5 (series B.1.2–B.1.7) are detailed in the Supplementary Tables 25–30.

Table 6 features O-arylcarbamates bearing a dialkyl-substituted or endocyclic nitrogen atom. Some com-pounds in this class are prodrugs whose activation can occur by hydrolysis or CYP-catalyzed oxidation of an

N-alkyl substituent. This is illustrated by the activation of bambuterol (B.2.2) to terbutaline; both the hydrolytic and oxidative routes act cooperatively for optimal bioac-tivation. Serum cholinesterases predominantly catalyzed hydrolysis, while hydroxylation of the methyl groups, followed by elimination of formaldehyde, was due to CYPs. Similarly, camazepam (B.2.6) was metabolized by stepwise demethylation with mono- and dihydroxymeth-ylated metabolites as intermediates; this pathway forms the decarbamoylated metabolite known as oxazepam. This dual mechanism does not appear to be a general rule for this class of carbamates, as CYPs were not involved in the decarbamoylation of rivastigmine (B.2.1).

Table 7 features N,O-diarylcarbamates, as exempli-fied by ganstigmine (B.3.1) and carzelesin (B.3.2), the latter being a prodrug. The carbamates of a methyltria-zene derivative (B.3.3 and Supplementary Table 31) are not strictly N,O-diaryl carbamates, but have been arbi-trarily classified here given the conjugated character of the N-substituent. The two subsequent series of poten-tial prodrugs, N-(2-hydroxyphenyl)carbamates (B.3.4) and N-(2-carboxamidophenyl)carbamates (B.3.5) (see Supplementary Tables 32 and 33, respectively), are, again, special, in that their activation proceeds by an intramo-lecular nucleophilic attack. Like the series B.1.1 in Tables 5 and 24, these two series were not taken into account in our search for qualitative SMRs. Indeed, and taking series B.3.5 as an example, its high reactivity observed in neutral solutions was shown to be purely nonenzymatic.

Table 8 outlines the specific class of cyclic carbamates, be they six-membered (efavirenz, C.1.1) or five- membered drugs (C.1.2–C.1.12). The majority of these drugs share the property of being metabolically stable, as far as the cyclic carbamate moiety is concerned. Degradation, fol-lowed by ring opening, was observed for efavirenz (C.1.1), but under drastic experimental conditions at 60°C over a pH range from 0.6 to 12.8 (Maurin et al., 2002). Mass spectra data identified a break-down product, with molecular weight consistent with the hydrolysis of the cyclic carbamate to the corresponding amino alcohol. The metabolic stability of the oxazolidinone ring was, for example, confirmed by the fact that only traces of 14CO

2

were obtained from rats receiving metaxalone (C.1.2) 14C-labeled on the carbonyl carbon. Metabolic cleavage was also reported for 1,2,4-oxadiazol-5-one derivatives, which are designed to be cyclic prodrugs of amidines. In the clinical trials of the potent angiotensin II receptor antagonist, TAK-536 (C.1.9), the 1,2,4-oxadiazol-5-one ring was converted in vivo to an amidino group in one of the metabolites (Kohara et al., 1995). Metabolic conver-sion of the 1,2,4-oxadiazol-5-one ring to amidine was also observed in vitro by Kitamura et al. (2001) in the presence of guinea pig liver homogenate, but not in the presence of plasma or small-intestine homogenate. This prompted the investigators to suggest that an oxidative cleavage

Dru

g M

etab

olis

m R

evie

ws

Dow

nloa

ded

from

info

rmah

ealth

care

.com

by

Can

tona

le e

t Uni

vers

itair

e on

09/

30/1

0Fo

r pe

rson

al u

se o

nly.

Page 32: Qualitative structure-metabolism relationships in the ...files.chuv.ch/internet-docs/pha/recherche/cb_2010_dmr_carbamates.pdf · Introduction The carbamate moiety plays a noteworthy

582 F. Vacondio et al.

catalyzed by cytochrome P450 could take place, involving the cleavage of the N-O bond in the 1,2,4-oxadiazol-5-one ring, followed by the elimination of carbon dioxide from the carbamicacid intermediate.

Qualitative SMRs

Table 9 was set up to summarize all qualitative data reported in Tables 1–8, plus the quantitative data in Supplementary Tables 10–35. Carbamates reacting intramolecularly were excluded from this compilation (series B.1.1 in Table 5; B.3.4 and B.3.5 in Table 7). The qualitative data in Tables 1–8 mainly contributed to pop-ulate the in vivo hydrolysis column of Table 9, for which a yes/no answer was given for the in vivo cleavage of the carbamate group. The quantitative data in Tables 10–35 were more difficult to encode. A three-level score was chosen (–, +, and ++), based on half-lives of hydrolytic reactions in abiotic media (i.e., buffers) or in in vitro bio-logical preparations (e.g., blood plasma, homogenates). Specifically, the symbol “–“ was chosen to mean t

1/2 >

48 hours, while the symbol “++” was attributed to t1/2

< 1 hour. Half-lives in the intermediate range (1 hour < t

1/2 < 48

hours) were encoded by the symbol “+”.A final score, representing the metabolic lability of the

carbamate group to hydrolytic cleavage, was calculated for each row in Table 9. This score was calculated by attrib-uting a numerical value to each symbol, namely: – = 0; + = 1; ++ = 2; No = 0; Yes = 1 (see also footnotes in Table 9) and normalizing the resulting total for the number of data points (n). A score was calculated only when n > 10 and when the number of enzymatic data points (in vivo and in vitro) was larger than the number of abiotic half-lives (in buffers). This led us to exclude, from the final scor-ing, the class of carbamates in Table 7 (O-aryl carbamates with an aryl amino group), which, based on our criteria, was not sufficiently populated. All remaining chemical classes of carbamates did fulfill our criteria.

It can be seen from Table 9 that the trend convexed by the score was such that metabolic lability toward hydrolysis decreased (i.e., stability increased) in the fol-lowing series: Aryl-OCO-NHAlkyl >> Alkyl-OCO-NHAlkyl ∼ Alkyl-OCO-N(Alkyl)

2 ≥ Alkyl-OCO-N(endocyclic) ≥ Aryl-

OCO-N(Alkyl)2 ∼ Aryl-OCO-N(endocyclic) ≥ Alkyl-OCO-

NHAryl ∼ Alkyl-OCO-NHAcyl >> Alkyl-OCO-NH2 > Cyclic

carbamates. The last two classes appeared, clearly and markedly, more stable than the others. In contrast, the first class was particularly labile. The other classes fell in between, and their differences were modest enough to appear fortuitous. Yet, given the rather large number of data points in most classes, the trend unveiled here should be indicative enough to be taken into consideration when designing carbamate drugs and prodrugs endowed with a nominal range of stability toward metabolic hydrolysis.

Supplementary material

Tables 10–35 can be found at the website of the Medicinal Chemistry Group at the Dipartimento Farmaceutico, Università degli Studi di Parma (Available at: www.unipr.it/arpa/dipfarm/medchem/). Access date: from May 2010.

Acknowledgements

The authors are grateful to Emeritus Prof. Pier Vincenzo Plazzi for his kind interest during the early phases of the project

Declaration of interest

Research support from the University of Parma is grate-fully acknowledged. The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

References

Adusumalli, V. E., Wong, K. K., Kucharczyk, N., Sofia, R. D. (1991). Felbamate in vitro metabolism by rat liver microsomes. Drug Metab Dispos 19:1135–1138.

Adusumalli, V. E., Choi, Y. M., Romanyshyn, L. A., Sparadoski, R. E., Wichmann, J. K., Wong, K. K., et al. (1993). Isolation and iden-tification of 3-carbamoyloxy-2-phenylpropionic acid as a major human urinary metabolite of felbamate. Drug Metab Dispos 21:710–716.

Alexander, J., Fromtling, R. A., Bland, J. A., Pelak, B. A., Gilfillan, E. C. (1991). (Acyloxy)alkyl carbamate prodrugs of norfloxacin. J Med Chem 34:78–81.

Alexander, J., Bindra, D. S., Glass, J. D., Holahan, M. A., Renyer, M. L., Rork, G. S., et al. (1996). Investigation of (oxodioxolenyl)methyl carbamates as nonchiral bioreversible prodrug moieties for chi-ral amines. J Med Chem 39:480–486.

Allan, R. J., Watson, T. R. (1982). Identification of biliary metabolites of mebendazole in the rat. Eur J Drug Metab Pharmacokinet 7:131–136.

Allan, R. J., Watson, T. R. (1983). The metabolic and pharmacoki-netic disposition of mebendazole in the rat. Eur J Drug Metab Pharmacokinet 8:373–381.

Anderson, W. K., Bhattacharjee, D., Houston, D. M. (1989). Design, synthesis, antineoplastic activity, and chemical properties of bis(carbamate) derivatives of 4,5-bis (hydroxyl methyl)imidazole. J Med Chem 32:119–127.

Andersson, S. B., Gunnarsson, P. O., Nilsson, T., Forshell, G. P. (1981). Metabolism of estramustine phosphate (Estracyt) in patients with prostatic carcinoma. Eur J Drug Metab Pharmacokinet 6:149–154.

Arafa, R. K., Brun, R., Wenzler, T., Tanious, F. A., Wilson, W. D., Stephens, C. E., et al. (2005). Synthesis, DNA affinity, and anti-protozoal activity of fused ring dicationic compounds and their prodrugs. J Med Chem 48:5480–5488.

Awada, A., Punt, C. J., Piccart, M. J., Van Tellingen, O., Van Manen, L., Kerger, J., et al. (1999). Phase I study of carzelesin (U-80,244) given (4-weekly) by intravenous bolus schedule. Br J Cancer 79:1454–1461.

Bardelmeijer, H. A., Roelofs, A. B., Hillebrand, M. J., Beijnen, J. H., Schellens, J. H., van Tellingen, O. (2005). Metabolism of docetaxel in mice. Cancer Chemother Pharmacol 56:299–306.

Dru

g M

etab

olis

m R

evie

ws

Dow

nloa

ded

from

info

rmah

ealth

care

.com

by

Can

tona

le e

t Uni

vers

itair

e on

09/

30/1

0Fo

r pe

rson

al u

se o

nly.

Page 33: Qualitative structure-metabolism relationships in the ...files.chuv.ch/internet-docs/pha/recherche/cb_2010_dmr_carbamates.pdf · Introduction The carbamate moiety plays a noteworthy

Hydrolysis of carbamates: qualitative structure-metabolism relationships 583

Barecki, M. E., Casciano, C. N., Johnson, W. W., Clement, R. P. (2001). In vitro characterization of the inhibition profile of loratadine, desloratadine, and 3-OH-desloratadine for five human cytochrome P-450 enzymes. Drug Metab Dispos 29: 1173–1175.

Behm, C. A., Cornish, R. A., Bryant, C. (1983). Mebendazole concen-trations in sheep plasma. Res Vet Sci 34:37–41.

Beloborodov, V. L., Rodionov, A. P., Tyukavkina, N. A., Klimov, A. V., Kaverina, N. V., Kolesnik Yu, A., et al. (1989). Ethacizin metabo-lism in humans. Xenobiotica 19:755–767.

Benchaoui, H. A., McKellar, Q. A. (1996). Interaction between fenben-dazole and piperonyl butoxide: pharmacokinetic and pharmaco-dynamic implications. J Pharm Pharmacol 48:753–759.

Beretta, C., Fadini, L., Stracciari, J. M., Montesissa, C. (1987). In vitro febantel transformation by sheep and cattle ruminal fluids and metabolism by hepatic subcellular fractions from different ani-mal species. Biochem Pharmacol 36:3107–3114.

Bergenheim, A. T., Henriksson, R. (1998). Pharmacokinetics and phar-macodynamics of estramustine phosphate. Clin Pharmacokinet 34:163–172.

Billings, R. E., McMahon, R. E., Ashmore, J., Wagle, S. R. (1977). The metabolism of drugs in isolated rat hepatocytes. A comparison with in vivo drug metabolism and drug metabolism in subcellular liver fractions. Drug Metab Dispos 5:518–526.

Birke, F. W., Meade, C. J., Anderskewitz, R., Speck, G. A., Jennewein, H. M. (2001). In vitro and in vivo pharmacological characteriza-tion of BIIL 284, a novel and potent leukotriene B(4) receptor antagonist. J Pharmacol Exp Ther 297:458–466.

Blech, S., Ebner, T., Ludwig-Schwellinger, E., Stangier, J., Roth, W. (2008). The metabolism and disposition of the oral direct thrombin inhibitor, dabigatran, in humans. Drug Metab Dispos 36:386–399.

Bramness, J. G., Skurtveit, S., Fauske, L., Grung, M., Molven, A., Morland, J., et al. (2003). Association between blood carisoprodol:meprobamate concentration ratios and CYP2C19 genotype in carisoprodol-drugged drivers: decreased metabolic capacity in heterozygous CYP2C19*1/CYP2C19*2 subjects? Pharmacogenetics 13:383–388.

Brodie, R. R., Mayo, B. C., Chasseaud, L. F., Hawkins, D. R. (1977). The disposition of radioactivity after administration of the anthelmin-thic methyl-14C-5-cyclopropylcarbonyl-2-benzimidazole car-bamate (ciclobendazole) to rats and dogs. Arzneim-Forsch Drug Res 27:593–598.

Bruce, R. B., Turnbull, L., Newman, J., Pitts, J. (1966). Metabolism of metaxalone. J Med Chem 9:286–288.

Bruce, R. B., Turnbull, L., Newman, J. (1971). Metabolism of methocarbamol in the rat, dog, and human. J Pharm Sci 60: 104–106.

Brugmans, J. P., Thienpont, D. C., van Wijngaarden, I., Vanparijs, O. F., Schuermans, V. L., Lauwers, H. L. (1971). Mebendazole in entero-biasis. Radiochemical and pilot clinical study in 1,278 subjects. JAMA 217:313–316.

Brumfitt, W., Kosmidis, J., Hamilton-Miller, J. M., Gilchrist, J. N. (1974). Cefoxitin and cephalothin: antimicrobial activity, human phar-macokinetics, and toxicology. Antimicrob Agents Chemother 6:290–299.

Bu, H. Z., Pool, W. F., Wu, E. Y., Raber, S. R., Amantea, M. A., Shetty, B. V. (2004). Metabolism and excretion of capravirine, a new non-nucleoside reverse transcriptase inhibitor, alone and in combi-nation with ritonavir in healthy volunteers. Drug Metab Dispos 32:689–698.

Bu, H. Z., Kang, P., Zhao, P., Pool, W. F., Wu, E. Y. (2005). A simple sequential incubation method for deconvoluting the complicated sequential metabolism of capravirine in humans. Drug Metab Dispos 33:1438–1445.

Bu, H. Z., Zhao, P., Kang, P., Pool, W. F., Wu, E. Y. (2006). Identification of enzymes responsible for primary and sequential oxygenation reactions of capravirine in human liver microsomes. Drug Metab Dispos 34:1798–1802.

Bu, H. Z., Zhao, P., Kang, P., Pool, W. F., Wu, E. Y., Shetty, B. V. (2007). Evaluation of capravirine as a CYP3A probe substrate: in vitro and in vivo metabolism of capravirine in rats and dogs. Drug Metab Dispos 35:1593–1602.

Bumpus, N. N., Kent, U. M., Hollenberg, P. F. (2006). Metabolism of efavirenz and 8-hydroxyefavirenz by P450 2B6 leads to inac-tivation by two distinct mechanisms. J Pharmacol Exp Ther 318:345–351.

Buhler, D. R. (1964). The metabolism of chlorphenesin carbamate. J Pharmacol Exp Ther 145: 232–241.

Buhler, D. R. (1965). Characterization of the glucuronide conjugate of chlorphenesin carbamate from the rat and from man. Biochem Pharmacol 14:371–373.

Buhler, D. R., Harpootlian, H., Johnston, R. L. (1966). The absorption, excretion, and metabolism of chlorphenesin carbamate in the dog. Biochem Pharmacol 15:1507–1521.

Buhler, D. R., Harpootlian, H. (1967). Metabolism of 3-(p-chlorophenoxy)-2-methoxypropyl carbamate in the rat. Proc Soc Exp Biol Med 125:469–471.

Buhs, R. P., Maxim, T. E., Allen, N., Jacob, T. A., Wolf, F. J. (1974). Analysis of cefoxitin, cephalothin, and their deacylated metabo-lites in human urine by high-performance liquid chromatogra-phy. J Chromatogr 99:609–618.

Bundgaard, H., Moss, J. (1990). Prodrugs of peptides. 6. Bioreversible derivatives of thyrotropin-releasing hormone (TRH) with increased lipophilicity and resistance to cleavage by the TRH-specific serum enzyme. Pharm Res 7:885–892.

Burdfield, P. A., Calvey, T. N., Roberts, J. B. (1973). In vitro metabo-lism of neostigmine and pyridostigmine. J Pharm Pharmacol 25:428–429.

Burkhart, D. J., Barthel, B. L., Post, G. C., Kalet, B. T., Nafie, J. W., Shoemaker, R. K., et al. (2006). Design, synthesis, and preliminary evaluation of doxazolidine carbamates as prodrugs activated by carboxylesterases. J Med Chem 49:7002–7012.

Buur, A., Bundgaard, H. (1986). Prodrugs of 5-fluorouracil V. 1-alkox-ycarbonyl derivatives as potential prodrug forms for improved rectal or oral delivery of 5-fluorouracil. J Pharm Sci 75:522–527.

Buur, A., Bundgaard, H. (1991). Prodrugs of cimetidine with increased lipophilicity: N-acyloxymethyl and N-alkoxycarbonyl derivatives. Acta Pharm Nord 1:51–56.

Campbell, A. D., Coles, F. K., Eubank, L. L., Huf, E. G. (1961). Distribution and metabolism of methocarbamol. J Pharmacol Exp Ther 131:18–25.

Carbone, J. J., Dixon, R. (1979). Estramustine phosphate: metabolism in the dog. Fed Proc 38:442.

Catinella, S., Pelizzi, N., Puccini, P., Marchetti, S., Zanol, M., Acerbi, D., et al. (2001). Phase I metabolism of ganstigmine. Rat, dog, monkey, and human liver microsomal extracts investigated by liquid chromatography electrospray tandem mass spectrometry. J Mass Spectrom 36:1287–1293.

Critchley, D. J., Rance, D. J., Beedham, C. (1994). Biotransformation of carbazeran in guinea pig: effect of hydralazine pretreatment. Xenobiotica 24:37–47.

Dawson, M., Allan, R. J., Watson, T. R. (1982). The pharmacokinetics and bioavailability of mebendazole in man: a pilot study using [3H]-mebendazole. Br J Clin Pharmacol 14:453–455.

Dawson, M., Watson, T. R. (1985). The effect of dose form on the bioavailability of mebendazole in man. Br J Clin Pharmacol 19:87–90.

Decker, C. J., Laitinen, L. M., Bridson, G. W., Raybuck, S. A., Tung, R. D., Chaturvedi, P. R. (1998). Metabolism of amprenavir in liver microsomes: role of CYP3A4 inhibition for drug interactions. J Pharm Sci 87:803–807.

Delatour, P., Tiberghien, M. P., Besse, S. (1983). An HPLC procedure for the quantification of five metabolites of febantel in sheep serum. J Vet Pharmacol Ther 6:233–235.

Delatour, P., Tiberghien, M. P., Garnier, F., Benoit, E. (1985). Comparative pharmacokinetics of febantel and its metabolites in sheep and cattle. Am J Vet Res 46:1399–1402.

Dell, D., Chamberlain, J. (1978). Determination of molsidomine in plasma by high-performance liquid column chromatography. J Chromatogr 146:465–473.

Deng, B. L., Hartman, T. L., Buckheit, R. W., Pannecouque, C., De Clercq, E., Fanwick, P. E., et al. (2005). Synthesis, anti-HIV activ-ity, and metabolic stability of new alkenyldiarylmethane HIV-1 non-nucleoside reverse transcriptase inhibitors. J Med Chem 48:6140–6155.

Dru

g M

etab

olis

m R

evie

ws

Dow

nloa

ded

from

info

rmah

ealth

care

.com

by

Can

tona

le e

t Uni

vers

itair

e on

09/

30/1

0Fo

r pe

rson

al u

se o

nly.

Page 34: Qualitative structure-metabolism relationships in the ...files.chuv.ch/internet-docs/pha/recherche/cb_2010_dmr_carbamates.pdf · Introduction The carbamate moiety plays a noteworthy

584 F. Vacondio et al.

Denissen, J. F., Grabowski, B. A., Johnson, M. K., Buko, A. M., Kempf, D. J., Thomas, S. B., et al. (1997). Metabolism and disposition of the HIV-1 protease inhibitor ritonavir (ABT-538) in rats, dogs, and humans. Drug Metab Dispos 25:489–501.

Desmoulin, F., Gilard, V., Malet-Martino, M., Martino, R. (2002). Metabolism of capecitabine, an oral fluorouracil prodrug: 19F-NMR studies in animal models and human urine. Drug Metab Dispos 30:1221–1229.

Desmoulin, F., Gilard, V., Martino, R., Malet-Martino, M. (2003). Isolation of an unknown metabolite of capecitabine, an oral 5-fluorouracil prodrug, and its identification by nuclear mag-netic resonance and liquid chromatography-tandem mass spec-trometry as a glucuroconjugate of 5′-deoxy-5-fluorocytidine, namely 2′-(beta-D-glucuronic acid)-5′-deoxy-5-fluorocytidine. J Chromatogr B Analyt Technol Biomed Life Sci 792:323–332.

Dicuollo, C. J., Miller, J. A., Mendelson, W. L., Pagano, J. F. (1974). Metabolic and tissue residue studies on parbendazole in sheep. J Agric Food Chem 22:948–953.

Dieckhaus, C. M., Santos, W. L., Sofia, R. D., Macdonald, T. L. (2001). The chemistry, toxicology, and identification in rat and human urine of 4-hydroxy-5-phenyl-1,3-oxazaperhydroin-2-one: a reac-tive metabolite in felbamate bioactivation. Chem Res Toxicol 14:958–964.

Dixon, R., Brooks, M., Gill, G. (1980). Estramustine phosphate: plasma concentrations of its metabolites following oral administration to man, rat, and dog. Res Commun Chem Pathol Pharmacol 27:17–29.

Dodds, H. M., Haaz, M. C., Riou, J. F., Robert, J., Rivory, L. P. (1998). Identification of a new metabolite of CPT-11 (irinotecan). Pharmacological properties and activation to SN-38. J Pharmacol Exp Ther 286:578–583.

Douglas, J. F., Ludwig, B. J., Ginsberg, T., Berger, F. M. (1962). The metabolic fate of mebutamate (Capla). J Pharmacol Exp Ther 136:5–9.

Dunn, G. L., Gallagher, G., Davis, L. D., Hoover, J. R., Stedman, R. J. (1973). Metabolites of methyl 5(6)-butyl-2-benzimidazolecar-bamate (Parbendazole). Structure and synthesis. J Med Chem 16:996–1002.

Edelson, J., Douglas, J. F. (1968). In vitro metabolism of mebutamate. Arch Int Pharmacodyn Ther 173:182–188.

Edelson, J., Douglas, J. F., Ludwig, B. J. (1969). Chlorphenesin metabo-lism in the rat and dog. Biochem Pharmacol 18:2331–2338.

Emmerson, J. L., Miya, T. S., Yim, G. K. (1960). The distribution and metabolic state of carbon-14 meprobamate in the rat brain. J Pharmacol Exp Ther 129:89–93.

Ettmayer, P., Amidon, G., Clement, B., Testa, B. (2004). Lessons learned from marketed and investigational prodrugs. J Med Chem 47:2393–2404.

Fargetton, X., Galtier, P., Delatour, P. (1986). Sulfoxidation of albenda-zole by a cytochrome P450–independent monooxygenase from rat liver microsomes. Vet Res Commun 10:317–324.

Fromson, J. M., Illing, H. P., Ings, R. M., Johnson, K. I., Johnson, P., Ostrowski, J., et al. (1981). Absorption and disposition of [14C]-molsidomine in laboratory animals. Arzneim-Forsch Drug Res 31:337–345.

Gangl, E., Utkin, I., Gerber, N., Vouros, P. (2002). Structural elucidation of metabolites of ritonavir and indinavir by liquid chromatogra-phy-mass spectrometry. J Chromatogr A 974:91–101.

Glazko, A. J., Dill, W. A., Wolf, L. M., Kazenko, A. (1957). Metabolic disposition of ethyl trichloramate. J Pharmacol Exp Ther 121:119–129.

Gokbulut, C., Bilgili, A., Hanedan, B., McKellar, Q. A. (2007). Comparative plasma disposition of fenbendazole, oxfendazole, and albendazole in dogs. Vet Parasitol 148:279–287.

Gottmanns, H., Kroker, R., Ungemach, F. R. (1991). Investigations on the biotransformation of mebendazole using an isolated perfused rat gut system. Xenobiotica 21:1431–1439.

Greenwald, R. B., Pendri, A., Conover, C. D., Zhao, H., Choe, Y. H., Martinez, A., et al. (1999). Drug delivery systems employing 1,4- or 1,6-elimination: poly(ethylene glycol) prodrugs of amine-containing compounds. J Med Chem 42:3657–3667.

Guan, J., Zhang, Q., Montip, G., Karle, J. M., Ditusa, C. A., Milhous, W. K., et al. (2005). Structure identification and prophylactic

antimalarial efficacy of 2-guanidinoimidazolidinedione deriva-tives. Bioorg Med Chem 13:699–704.

Guitton, J., Cohen, S., Tranchand, B., Vignal, B., Droz, J-P., Guillaumont, M., et al. (2005). Quantification of docetaxel and its main metabolites in human plasma by liquid chromatogra-phy/tandem mass spectrometry. Rapid Commun Mass Spectrom 19:2419–2426.

Gunnarsson, P. O., Andersson, S. B., Johansson, S. A., Nilsson, T., Plym Forshell, G. (1984). Pharmacokinetics of estramustine phosphate (Estracyt) in prostatic cancer patients. Eur J Clin Pharmacol 26:113–119.

Gut, I, Ojima, I, Vaclavikova, R, Simek, P, Horsky, S, Linhart, I, et al. (2006). Metabolism of new-generation taxanes in human, pig, minipig, and rat liver microsomes. Xenobiotica 36:772–792.

Gyurik, R. J., Chow, A. W., Zaber, B., Brunner, E. L., Miller, J. A., Villani, A. J., et al. (1981). Metabolism of albendazole in cattle, sheep, rats, and mice. Drug Metab Dispos 9:503–508.

Haaz, M. C., Rivory, L. P., Riche, C., Robert, J. (1997). The transfor-mation of irinotecan (CPT-11) to its active metabolite, SN-38, by human liver microsomes. Differential hydrolysis for the lactone and carboxylate forms. Naunyn Schmiedebergs Arch Pharmacol 356:257–262.

Habucky, K., Tse, F. L. (1998). Disposition of SDZ ENA 713, an acetyl-cholinesterase inhibitor, in the rabbit. Biopharm Drug Dispos 19:285–290.

Hansen, K. T., Faarup, P., Bundgaard, H. (1991). Carbamate ester prodrugs of dopaminergic compounds: synthesis, stability, and bioconversion. J Pharm Sci 80:793–798.

Hempel, R., Schupke, H., McNeilly, P. J., Heinecke, K., Kronbach, C., Grunwald, C., et al. (1999). Metabolism of retigabine (D-23129), a novel anticonvulsant. Drug Metab Dispos 27:613–622.

Hilbert, J., Radwanski, E., Weglein, R., Luc, V., Parentesis, G., Symchowicz, S., et al. (1987). Pharmacokinetics and dose pro-portionality of loratadine. J Clin Pharmacol 27:694–698.

Hiller, A., Nguyen, N., Strassburg, C. P., Li, Q., Jainta, H., Pechstein, B., et al. (1999). Retigabine N-glucuronidation and its potential role in enterohepatic circulation. Drug Metab Dispos 27:605–612.

Hlavica, V. P., Niebch, G. (1985). Pharmacokinetics and biotransfor-mation of the analgesic flupirtine in humans. Arzneim-Forsch Drug Res 35:67–74.

Huang, T. L., Szekacs, A., Uematsu, T., Kuwano, E., Parkinson, A., Hammock, B. D. (1993). Hydrolysis of carbonates, thiocar-bonates, carbamates, and carboxylic esters of alpha-naphthol, beta-naphthol, and p-nitrophenol by human, rat, and mouse liver carboxylesterases. Pharm Res 10:639–648.

Husain, M. A., Roberts, J. B., Thomas, B. H., Wilson, A. (1968). Excretion and metabolism of oral pyridostigmine-14C in the rat. Br J Pharmacol 34:445–450.

Husain, M. A., Roberts, J. B., Thomas, B. H., Wilson, A. (1969). Metabolism and exretion of 3-hydroxyphenyltrimethylammo-nium and neostigmine. Br J Pharmacol 35:344–350.

Ichimaru, S., Kudo, Y., Kawakita, Y., Shimada, O. (1984). Phase I study of KTH-497, a new benzodiazepine derivative. Clin Eval 12:15–42.

Iosifidou, E. G., Haagsma, N., Olling, M., Boon, J. H., Tanck, M. W. (1997). Residue study of mebendazole and its metabo-lites hydroxy-mebendazole and amino-mebendazole in eel (Anguilla anguilla) after bath treatment. Drug Metab Dispos 25: 317–320.

Ishikawa, T., Utoh, M., Sawada, N., Nishida, M., Fukase, Y., Sekiguchi, F., et al. (1998). Tumor selective delivery of 5-fluorouracil by capecitabine, a new oral fluoropyrimidine carbamate, in human cancer xenografts. Biochem Pharmacol 55:1091–1098.

Kahns, A. H., Bundgaard, H. (1991). N-acyl derivatives as prodrugs forms for amides: chemical stability and enzymatic hydrolysis of various N-acyl and N-alkoxycarbonyl amide derivatives. Int J Pharm 71:31–43.

Kahns, A. H., Bundgaard, H. (1991). Prodrugs of peptides. 14. Bioreversible derivatization of the tyrosine phenol group to effect protection of tyrosyl peptides against [alpha]-chymotrypsin. Int J Pharm 76:99–112.

Kaiser, D. G., Shaw, S. R. (1974). GLC determination of chlorphenesin carbamate in serum. J Pharm Sci 63:1094–1097.

Dru

g M

etab

olis

m R

evie

ws

Dow

nloa

ded

from

info

rmah

ealth

care

.com

by

Can

tona

le e

t Uni

vers

itair

e on

09/

30/1

0Fo

r pe

rson

al u

se o

nly.

Page 35: Qualitative structure-metabolism relationships in the ...files.chuv.ch/internet-docs/pha/recherche/cb_2010_dmr_carbamates.pdf · Introduction The carbamate moiety plays a noteworthy

Hydrolysis of carbamates: qualitative structure-metabolism relationships 585

Kaneda, N., Nagata, H., Furuta, T., Yokokura, T. (1990). Metabolism and pharmacokinetics of the camptothecin analogue CPT-11 in the mouse. Cancer Res 50:1715–1720.

Kapetanovic, I. M., Torchin, C. D., Thompson, C. D., Miller, T. A., McNeilly, P. J., Macdonald, T. L., et al. (1998). Potentially reactive cyclic carbamate metabolite of the antiepileptic drug felbamate produced by human liver tissue in vitro. Drug Metab Dispos 26:1089–1095.

Kassahun, K., Skordos, K., McIntosh, I., Slaughter, D., Doss, G. A., Baillie, T. A., et al. (2005). Zafirlukast metabolism by cyto-chrome P450 3A4 produces an electrophilic alpha,beta-unsaturated iminium species that results in the selective mechanism-based inactivation of the enzyme. Chem Res Toxicol 18: 1427–1437.

Katchen, B., Cramer, J., Chung, M., Gural, M., Hilbert, J., Luc, V., et al. (1985). Disposition of 14C-SCH 29851 in humans. Ann Allerg 55:393.

Kaye, B., Offerman, J. L., Reid, J. L., Elliott, H. L., Hillis, W. S. (1984). A species difference in the presystemic metabolism of carbazeran in dog and man. Xenobiotica 14:935–945.

Kaye, B., Rance, D. J., Waring, L. (1985). Oxidative metabolism of car-bazeran in vitro by liver cytosol of baboon and man. Xenobiotica 15:237–242.

Kennedy, K. A., Sligar, S. G., Polomski, L., Sartorelli, A. C. (1982). Metabolic activation of mitomycin C by liver microsomes and nuclei. Biochem Pharmacol 31:2011–2016.

Kirdani, R. Y., Mittelman, A., Murphy, G. P., Sandberg, A. A. (1975). Studies on phenolic steroids in human subjects. XIV. Fate of a nitrogen mustard of estradiol-17beta. J Clin Endocrinol Metab 41:305–318.

Kirdani, R. Y., Murphy, G. P., Sandberg, A. A. (1977). Studies on a nitro-gen mustard of estradiol in dogs and rats. Proc Soc Exp Biol Med 155:94–98.

Kitamura, S., Fukushi, I., Miyawaki, T., Kawamura, M., Terashita, E., Naka, T. (2001). Orally active GPIIb/IIIa antagonists: synthesis and biological activities of masked amidines as prodrugs of 2-[(3S)-4. Chem Pharm Bull (Tokyo) 49:268–277.

Kleber, J. W., Bechtol, L. D., Brunson, M. K., Chernish, S. M. (1977). GLC determination of ethinamate and its hydroxy derivative in biological fluids. J Pharm Sci 66:992–994.

Klemm, W., Morgenroth, U., Joram, U., Rodionov, A. P. (1985). Pharmacokinetics and metabolism of 3-carbethoxyamino-5-dimethylamino-acetyl-iminodibenzylhydro chloride (Bonnecor, AWD 19-166, GS 015) in the rat. Pharmazie 40:864–867.

Kohara, Y., Imamiya, E., Kubo, K., Wada, T., Inada, Y., Naka, T. (1995). A new class of angiotensin II receptor antagonists with a novel acidic bioisostere. Bioorg Med Chem Lett 5:1903–1908.

Kohara, Y., Kubo, K., Imamiya, E., Wada, T., Inada, Y., Naka, T. (1996). Synthesis and angiotensin II receptor antagonistic activities of benzimidazole derivatives bearing acidic heterocycles as novel tetrazole bioisosteres. J Med Chem 39:5228–5235.

Koudriakova, T., Iatsimirskaia, E., Utkin, I., Gangl, E., Vouros, P., Storozhuk, E., et al. (1998). Metabolism of the human immu-nodeficiency virus protease inhibitors, indinavir and ritonavir, by human intestinal microsomes and expressed cytochrome P4503A4/3A5: mechanism-based inactivation of cytochrome P4503A by ritonavir. Drug Metab Dispos 26:552–561.

Kumar, G. N., Rodrigues, A. D., Buko, A. M., Denissen, J. F. (1996). Cytochrome P450–mediated metabolism of the HIV-1 protease inhibitor ritonavir (ABT-538) in human liver microsomes. J Pharmacol Exp Ther 277:423–431.

Lang, W., Mao, J., Doyle, T. W., Almassian, B. (2000a). Isolation and identification of urinary metabolites of porfiromycin in dogs and humans. Drug Metab Dispos 28:899–904.

Lang, W., Mao, J., Wang, Q., Niu, C., Doyle, T. W., Almassian, B. (2000b). Isolation and identification of metabolites of porfiro-mycin formed in the presence of a rat liver preparation. J Pharm Sci 89:191–198.

Lang, W., Caldwell, G. W., Masucci, J. A. (2005). Evaluation of the effect of oxygen exposure on human liver microsomal metabolism of mitomycin C in the presence of glutathione using liquid chro-matography-quadrupole time of flight mass spectrometry. Anal Biochem 343:268–276.

Li, L. H., DeKoning, T. F., Kelly, R. C., Krueger, W. C., McGovren, J. P., Padbury, G. E., et al. (1992). Cytotoxicity and antitumor activity of carzelesin, a prodrug cyclopropylpyrroloindole analogue. Cancer Res 52:4904–4913.

Li, W., Zhang, D., Wang, L., Zhang, H., Cheng, P. T., Zhang, D., et al. (2006). Biotransformation of carbon-14–labeled muraglitazar in male mice: interspecies difference in metabolic pathways leading to unique metabolites. Drug Metab Dispos 34:807–820.

Lindberg, C., Roos, C., Tunek, A., Svensson, L. A. (1989). Metabolism of bambuterol in rat liver microsomes: identification of hydroxy-lated and demethylated products by liquid chromatography mass spectrometry. Drug Metab Dispos 17:311–322.

Lokiec, F., du Sordier, B. M., Sanderink, G. J. (1996). Irinotecan (CPT-11) metabolites in human bile and urine. Clin Cancer Res 2:1943–1949.

Lu, X. L., Yang, S. K. (1993). Enantioselective metabolism of camazepam by rat liver microsomes. J Pharm Biom Anal 11:1189–1196.

Ludwig, B. J., Douglas, J. F., Powell, L. S., Meyer, M., Berger, F. M. (1961). Structures of the major metabolites of meprobamate. J Med Pharm Chem 3:53–64.

Mannens, G. S., Hendrickx, J., Janssen, C. G., Chien, S., Van Hoof, B., Verhaeghe, T., et al. (2007). The absorption, metabolism, and excretion of the novel neuromodulator RWJ-333369 (1,2-ethan-ediol, [1-2-chlorophenyl]-2-carbamate, [S]-) in humans. Drug Metab Dispos 35:554–565.

Mamidi, R. N., Mannens, G., Annaert, P., Hendrickx, J., Goris, I., Bockx, M., et al. (2007). Metabolism and excretion of RWJ-333369 [1,2-ethanediol, 1-(2-chlorophenyl)-, 2-carbamate, (S)-] in mice, rats, rabbits, and dogs. Drug Metab Dispos 35:566–575.

Marriner, S. E., Bogan, J. A. (1980). Pharmacokinetics of albendazole in sheep. Am J Vet Res 41:1126–1129.

Maryanoff, B. E., McComsey, D. F., Costanzo, M. J., Yabut, S. C., Lu, T., Player, M. R., et al. (2006). Exploration of potential prodrugs of RWJ-445167, an oxyguanidine-based dual inhibitor of thrombin and factor Xa. Chem Biol Drug Des 68:29–36.

Mathijssen, R. H., van Alphen, R. J., Verweij, J., Loos, W. J., Nooter, K., Stoter, G., et al. (2001). Clinical pharmacokinetics and metabo-lism of irinotecan (CPT-11). Clin Cancer Res 7:2182–2194.

Maurin, M. B., Rowe, S. M., Blom, K., Pierce, M. E. (2002). Kinetics and mechanism of hydrolysis of efavirenz. Pharm Res 19:517–521.

Mayo, B. C., Brodie, R. R., Chasseaud, L. F., Hawkins, D. R. (1978). Biotransformation of methyl 5-cyclopropylcarbonyl-2-benzimi-dazolecarbamate (ciclobendazole) in rats and dogs. Drug Metab Dispos 6:518–527.

McKellar, Q. A., Gokbulut, C., Muzandu, K., Benchaoui, H. (2002). Fenbendazole pharmacokinetics, metabolism, and potentiation in horses. Drug Metab Dispos 30:1230–1239.

McMahon, R. E. (1958). The in vivo hydroxylation of 1-ethynylcy-clohexyl carbamate. J Am Chem Soc 80:411–414.

McNeilly, P. J., Torchin, C. D., Anderson, L. W., Kapetanovic, I. M., Kupferberg, H. J., Strong, J. M. (1997). In vitro glucuronidation of D-23129, a new anticonvulsant, by human liver microsomes and liver slices. Xenobiotica 27:431–441.

Mendes, E., Furtado, T., Neres, J., Iley, J., Jarvinen, T., Rautio, J., et al. (2002). Synthesis, stability, and in vitro dermal evaluation of aminocarbonyloxymethyl esters as prodrugs of carboxylic acid agents. Bioorg Med Chem 10:809–816.

Merino, G., Molina, A. J., Garcia, J. L., Pulido, M. M., Prieto, J. G., Alvarez, A. I. (2003). Effect of clotrimazole on microsomal metab-olism and pharmacokinetics of albendazole. J Pharm Pharmacol 55:757–764.

Meuldermans, W. E., Hurkmans, R. M., Lauwers, W. F., Heykants, J. J. (1976). The in vitro metabolism of mebendazole by pig, rat, and dog liver fractions. Eur J Drug Metab Pharmacokinet 1:35–40.

Miwa, M., Ura, M., Nishida, M., Sawada, N., Ishikawa, T., Mori, K., et al. (1998). Design of novel oral fluoropyrimidine carbamate, capecitabine, which generates 5-fluorouracil selectively in tumours by enzymes concentrated in human liver and cancer tissue. Eur J Cancer 34:1274–1281.

Montesissa, C., Stracciari, J. M., Fadini, L., Beretta, C. (1989). Comparative microsomal oxidation of febantel and its metabo-lite fenbendazole in various animal species. Xenobiotica 19: 97–100.

Dru

g M

etab

olis

m R

evie

ws

Dow

nloa

ded

from

info

rmah

ealth

care

.com

by

Can

tona

le e

t Uni

vers

itair

e on

09/

30/1

0Fo

r pe

rson

al u

se o

nly.

Page 36: Qualitative structure-metabolism relationships in the ...files.chuv.ch/internet-docs/pha/recherche/cb_2010_dmr_carbamates.pdf · Introduction The carbamate moiety plays a noteworthy

586 F. Vacondio et al.

Morino, A., Nakamura, A., Nakanishi, K., Tatewaki, N., Sugiyama, M. (1985). Species differences in the disposition and metabolism of camazepam. Xenobiotica 15:1033–1043.

Moroni, P., Buronfosse, T., Longin-Sauvageon, C., Delatour, P., Benoit, E. (1995). Chiral sulfoxidation of albendazole by the flavin ade-nine dinucleotide-containing and cytochrome P450–dependent monooxygenases from rat liver microsomes. Drug Metab Dispos 23:160–165.

Møss, J., Buur, A., Bundgaard, H. (1990). Prodrugs of peptides. 8. In vitro study of intestinal metabolism and penetration of thyro-tropin-releasing hormone (TRH) and its prodrugs. Int J Pharm 66:183–191.

Muir, W. W., Sams, R. A., Ashcraft, S. (1984). Pharmacologic and phar-macokinetic properties of methocarbamol in the horse. Am J Vet Res 45:2256–2260.

Muller, T. H., Weisenberger, H., Brickl, R., Narjes, H., Himmelsbach, F., Krause, J. (1997). Profound and sustained inhibition of plate-let aggregation by fradafiban, a nonpeptide platelet glycoprotein IIb/IIIa antagonist, and its orally active prodrug, lefradafiban, in men. Circulation 96:1130–1138.

Murray, M., Hudson, A. M., Yassa, V. (1992). Hepatic microsomal metabolism of the anthelmintic benzimidazole, fenbendazole: enhanced inhibition of cytochrome P450 reactions by oxidized metabolites of the drug. Chem Res Toxicol 5:60–66.

Mutlib, A. E., Chen, H., Nemeth, G. A, Markwalder, J. A., Seitz, S. P., Gan, L. S., et al. (1999a). Identification and characterization of efavirenz metabolites by liquid chromatography/mass spectrom-etry and high-field NMR: species differences in the metabolism of efavirenz. Drug Metab Dispos 27:1319–1333.

Mutlib, A. E., Chen, H., Nemeth, G., Gan, L-S., Christ, D. D. (1999b). Liquid chromatography/mass spectrometry and high-field nuclear magnetic resonance characterization of novel mixed diconjugates of the non-nucleoside human immunodeficiency virus-1 reverse transcriptase inhibitor, efavirenz. Drug Metab Dispos 27:1045–1056.

Mutlib, A. E., Gerson, R. J., Meunier, P. C., Haley, P. J., Chen, H., Gan, L. S., et al. (2000). The species-dependent metabolism of efavirenz produces a nephrotoxic glutathione conjugate in rats. Toxicol Appl Pharmacol 169:102–113.

Nakamura, A., Tatewaki, N., Morino, A., Sugiyama, M. (1986). The met-abolic fate of camazepam in rats. Xenobiotica 16:1079–1089.

Naitoh, T., Kakiki, M., Kozaki, T., Mishima, M., Yuzuriha, T., Horie, T. (1997a). Identification of the metabolites of a new oxazolidinone MAO-A inhibitor in rat. Xenobiotica 27:1071–1089.

Naitoh, T., Mishima, M., Kawaguchi, S., Matsui, K., Andoh, T., Kagei, K., et al. (1997b). Absorption, distribution, metabolism, and excretion of a new, 14C-labelled oxazolidinone MAO-A inhibitor in rat and dog. Xenobiotica 27:1053–1070.

Namour, F., Wessels, D. H., Pascual, M. H., Reynolds, D., Sultan, E., Lenfant, B. (2001). Pharmacokinetics of the new ketolide telithro-mycin (HMR 3647) administered in ascending single and multi-ple doses. Antimicrob Agents Chemother 45:170–175.

Nyberg, L., Rosenborg, J., Weibull, E., Jonsson, S., Kennedy, B. M., Nilsson, M. (1998). Pharmacokinetics of bambuterol in healthy subjects. Br J Clin Pharmacol 45:471–478.

Obermeier, K., Niebch, G., Thiemer, K. (1985). Pharmacokinetics and biotransformation of the analgesic flupirtine in the rat and dog. Arzneim-Forsch Drug Res 35:60–67.

Ohkawa, T., Goto, S., Miki, S., Sato, A., Kuroda, T., Iwatani, K., et al. (1998). Structural determination of metabolites of S-1153, a new, potent, non-nucleoside, anti-HIV agent in rat liver microsomes. Xenobiotica 28:877–886.

Ouattara, M., Wein, S., Calas, M., Hoang, Y. V., Vial, H., Escale, R. (2007). Synthesis and antimalarial activity of new 1,12-bis(N,N’-acetamidinyl)dodecane derivatives. Bioorg Med Chem Lett 17:593–596.

Pan, S. S., Andrews, P. A., Glover, C. J., Bachur, N. R. (1984). Reductive activation of mitomycin C and mitomycin C metabolites cata-lyzed by NADPH-cytochrome P-450 reductase and xanthine oxi-dase. J Biol Chem 259:959–966.

Parker, R. J., Hartman, N. R., Roecklein, B. A., Mortko, H., Kupferberg, H. J., Stables, J., et al. (2005). Stability and comparative metab-olism of selected felbamate metabolites and postulated

fluorofelbamate metabolites by postmitochondrial suspensions. Chem Res Toxicol 18:1842–1848.

Parli, C. J., Wang, N., McMahon, R. E. (1972). Effects of microsomal mono-oxygenase inhibitors upon the in vivo metabolism and duration of action of 1-ethynylcyclohexyl carbamate. J Pharmacol Exp Ther 180:791–796.

Pelizzi, N., Puccini, P., Riccardi, B., Acerbi, D., Catinella, S. (2003). Characterization of ganstigmine metabolites in hepatocytes by low- and high-resolution mass spectrometry coupled with liquid chromatography. Rapid Commun Mass Spectrom 17:1691–1698.

Penicaut, B., Maucein, P., Maissonneuve, H., Rossignol, J. F. (1983). Pharmacokinetics and metabolism of albendazole in humans. Bull Soc Path Ex 76:698–708.

Perret, C., Lenfant, B., Weinling, E., Wessels, D. H., Scholtz, H. E., Montay, G., et al. (2002). Pharmacokinetics and absolute oral bioavailability of an 800-mg oral dose of telithromycin in healthy young and elderly volunteers. Chemotherapy 48:217–223.

Petersen, M. B., Friis, C. (2000). Pharmacokinetics of fenbendazole following intravenous and oral administration to pigs. Am J Vet Res 61:573–576.

Phillips, B. M., Miya, T. S., Yim, G. K. (1962). Studies on the mecha-nism of meprobamate tolerance in the rat. J Pharmacol Exp Ther 135:223–239.

Pieniaszek, H. J., Davidson, A. F., McEntegart, C. M., Quon, C. Y., Sampliner, R. E., Mayersohn, M. (1994). The effect of hepatic disease on the disposition of moricizine in humans. Biopharm Drug Dispos 15:243–252.

Pieniaszek, H. J., Davidson, A. F., Chaney, J. E., Shum, L., Robinson, C. A., Mayersohn, M. (1999). Human moricizine metabolism.II. Quantification and pharmacokinetics of plasma and urinary metabolites. Xenobiotica 29:945–955.

Piwinski, J. J., Wong, J. K., Chan, T-M., Green, M. J., Ganguly, A. K. (1990). Hydroxylated metabolites of loratadine: an exemple of conformational diasteroisomers due to atropisomerism. J Org Chem 55:3341–3350.

Polinsky, R. J. (1998). Clinical pharmacology of rivastigmine: a new generation acetylcholinesterase inhibitor for the treatment of Alzheimer’s disease. Clin Ther 20:634–647.

Rahmathullah, S. M., Hall, J. E., Bender, B. C., McCurdy, D. R., Tidwell, R. R., Boykin, D. W. (1999). Prodrugs for amidines: synthesis and anti–Pneumocystis carinii activity of carbamates of 2,5-bis(4-amidinophenyl)furan. J Med Chem 42:3994–4000.

Raito, J., Kumpulainen, H., Heimbach, T., Oliyai, R., Oh, D., Järvinen, T., et al. (2008). Prodrugs: design and clinical applications. Nat Rev Drug Discov 7:255–270.

Ramanathan, R., Alvarez, N., Su, A. D., Chowdhury, S., Alton, K., Stauber, K., Patrick, J. (2005). Metabolism and excretion of lorata-dine in male and female mice, rats, and monkeys. Xenobiotica 35:155–189.

Ramanathan, R., Reyderman, L., Kulmatycki, K., Su, A. D., Alvarez, N., Chowdhury, S. K., et al. (2007). Disposition of loratadine in healthy volunteers. Xenobiotica 37:753–769.

Rawden, H. C., Kokwaro, G. O., Ward, S. A., Edwards, G. (2000). Relative contribution of cytochromes P-450 and flavin-containing monoxygenases to the metabolism of albendazole by human liver microsomes. Br J Clin Pharmacol 49:313–322.

Rehse, K., Bade, S., Harsdorf, A., Clement, B. (1997). New NO-donors with antithrombotic and vasodilating activities, Part 17. Arylazoamidoximes and 3-arylazo-1,2,4-oxadiazol-5-ones. Arch Pharm (Weinheim) 330:392–398.

Reigner, B., Blesh, K., Weidekamm, E. (2001). Clinical pharmacokinet-ics of capecitabine. Clin Pharmacokinet 40:85–104.

Richards, L. E., Pieniaszek, H. J., Shatzmiller, S., Page, G. O., Blom, K. F., Read, J. M., et al. (1997). Human moricizine metabolism. I. Isolation and identification of metabolites in human urine. Xenobiotica 27:217–229.

Riggs, J. R., Kolesnikov, A., Hendrix, J., Young, W. B., Shrader, W. D., Vijaykumar, D., et al. (2006). Factor VIIa inhibitors: a prodrug strategy to improve oral bioavailability. Bioorg Med Chem Lett 16:2224–2228.

Rivara, M., Vacondio, F., Silva, C., Zuliani, V., Fantini, M., Bordi, F., et al. (2008). Synthesis and stability in biological media of 1H-

Dru

g M

etab

olis

m R

evie

ws

Dow

nloa

ded

from

info

rmah

ealth

care

.com

by

Can

tona

le e

t Uni

vers

itair

e on

09/

30/1

0Fo

r pe

rson

al u

se o

nly.

Page 37: Qualitative structure-metabolism relationships in the ...files.chuv.ch/internet-docs/pha/recherche/cb_2010_dmr_carbamates.pdf · Introduction The carbamate moiety plays a noteworthy

Hydrolysis of carbamates: qualitative structure-metabolism relationships 587

imidazole-1-carboxylates of ROS203, an antagonist of the hista-mine H3 receptor. Chem Biodivers 5:140–152.

Rivory, L. P., Robert, J. (1995). Identification and kinetics of a beta-glucuronide metabolite of SN-38 in human plasma after admin-istration of the camptothecin derivative irinotecan. Cancer Chemother Pharmacol 36:176–179.

Rivory, L. P., Bowles, M. R., Robert, J., Pond, S. M. (1996). Conversion of irinotecan (CPT-11) to its active metabolite, 7-ethyl-10- hydroxycamptothecin (SN-38), by human liver carboxylesterase. Biochem Pharmacol 52:1103–1111.

Roberts, J. B., Thomas, B. H., Wilson, A. (1966). Excretion and metab-olism of oral neostigmine-14C in the rat. Biochem Pharmacol 15:71–75.

Roberts, J. B., Thomas, B. H., Wilson, A. (1968). Metabolism of neostig-mine in vitro. Biochem Pharmacol 17:9–12.

Roecklein, B. A., Sacks, H. J., Mortko, H., Stables, J. (2007). Fluorofelbamate. Neurotherapeutics 4:97–101.

Rolin, S., Souhaili-el Amri, H., Batt, A. M., Levy, M., Bagrel, D., Siest, G. (1989). Study of the in vitro bioactivation of albendazole in human liver microsomes and hepatoma cell lines. Cell Biol Toxicol 5:1–14.

Roller, S. G., Dieckhaus, C. M., Santos, W. L., Sofia, R. D., Macdonald, T. L. (2002). Interaction between human serum albumin and the felbamate metabolites 4-hydroxy-5-phenyl-[1,3]oxazinan-2-one and 2-phenylpropenal. Chem Res Toxicol 15:815–824.

Romanyshyn, L. A., Wichmann, J. K., Kucharczyk, N., Sofia, R. D. (1994). Simultaneous determination of felbamate and three metabolites in human plasma by high-performance liquid chro-matography. Ther Drug Monit 16:83–89.

Rosenblum, C., Trenner, N. R., Buhs, R. P., Hiremath, C. B., Koniuszy, F. R., Wolf, D. E. (1972). Metabolism of ronidazole (1-methyl-5-nitroimidazol-2-ylmethyl carbamate). J Agric Food Chem 20:360–371.

Rosing, H., Lustig, V., van Warmerdam, L. J., Huizing, M. T., ten Bokkel Huinink, W. W., Schellens, J. H., et al. (2000). Pharmacokinetics and metabolism of docetaxel administered as a 1-hour intrave-nous infusion. Cancer Chemother Pharmacol 45:213–218.

Rovei, V., Mitchard, M., Strolin Benedetti, M., Kendall, M. J. (1984). Pharmacokinetic and relative bioavailability studies of cimoxa-tone in humans. Int J Clin Pharmacol Ther Toxicol 22:56–62.

Ryrfeldt, A., Nilsson, E., Tunek, A., Svensson, L. A. (1988). Bambuterol: uptake and metabolism in guinea pig isolated lungs. Pharm Res 5:151–155.

Sadler, B. M., Chittick, G. E., Polk, R. E., Slain, D., Kerkering, T. M., Studenberg, S. D., et al. (2001). Metabolic disposition and phar-macokinetics of [14C]-amprenavir, a human immunodeficiency virus type 1 (HIV-1) protease inhibitor, administered as a single oral dose to healthy male subjects. J Clin Pharmacol 41:386–396.

Sai, K., Kaniwa, N., Ozawa, S., Sawada, J. I. (2001). A new metabolite of irinotecan in which formation is mediated by human hepatic cytochrome P-450 3A4. Drug Metab Dispos 29:1505–1513.

Sanchez, S., Small, J., Jones, D. G., McKellar, Q. A. (2003). Dexamethasone decreases plasma levels of the prochiral fen-bendazole and its chiral and achiral metabolites in sheep. Xenobiotica 33:731–742.

Sanghani, S. P., Quinney, S. K., Fredenburg, T. B., Davis, W. I., Murry, D. J., Bosron, W. F. (2004). Hydrolysis of irinotecan and its oxidative metabolites, 7-ethyl-10-[4-N-(5-aminopentanoic acid)-1-piperidino]carbonyloxy-camptothecin and 7-ethyl-10-[4-(1-piperidino)-1-amino]-carbonyloxycamptothecin, by human carboxylesterases CES1A1, CES2, and a newly expressed carboxy-lesterase isoenzyme, CES3. Drug Metab Dispos 32:505–511.

Santos, A., Zanetta, S., Cresteil, T., Deroussent, A., Pein, F., Raymond, E., et al. (2000). Metabolism of irinotecan (CPT-11) by CYP3A4 and CYP3A5 in humans. Clin Cancer Res 6:2012–2020.

Sargent, N. S., Upshall, D. G., Bridges, J. W. (1982a). The relationship between binding to cytochrome P-450 and metabolism of n-alkyl carbamates in isolated rat hepatocytes. Biochem Pharmacol 31:1309–1313.

Sargent, N. S., Wood, S. G., Upshall, D. G., Bridges, J. W. (1982b). The relationship between chemical structure and the in vivo metab-olism of an homologous series of n-alkyl carbamates. J Pharm Pharmacol 34:367–372.

Savidge, R. D., Bui, K. H., Birmingham, B. K., Morse, J. L., Spreen, R. C. (1998). Metabolism and excretion of zafirlukast in dogs, rats, and mice. Drug Metab Dispos 26:1069–1076.

Savolainen, J., Leppanen, J., Forsberg, M., Taipale, H., Nevalainen, T., Huuskonen, J., et al. (2000). Synthesis and in vitro/in vivo evalu-ation of novel oral N-alkyl- and N,N-dialkyl-carbamate esters of entacapone. Life Sci 67:205–216.

Schwartz, H. S. (1962). Pharmacology of mitomycin C. III. In vitro metabolism by rat liver. J Pharmacol Exp Ther 36:250–258.

Scott, C. A., Nowell, P. T., Wilson, A. (1962). An investigation of the metabolism of neostigmine in patients with myasthenia gravis. J Pharm Pharmacol 14:31T–33T.

Shi, J., Montay, G., Bhargava, V. O. (2005). Clinical pharmacokinetics of telithromycin, the first ketolide antibacterial. Clin Pharmacokin 44:915–934.

Short, C. R., Barker, S. A., Flory, W. (1988a). Comparative drug metab-olism and disposition in minor species. Vet Hum Toxicol 30 (Suppl 1):2–8.

Short, C. R., Flory, W., Hsieh, L. C., Barker, S. A. (1988b). The oxida-tive metabolism of fenbendazole: a comparative study. J Vet Pharmacol Ther 11:50–55.

Singh, R., Chang, S. Y., Taylor, L. C. (1996). In vitro metabolism of a potent HIV-protease inhibitor (141W94) using rat, mon-key, and human liver S9. Rapid Commun Mass Spectrom 10: 1019–1026.

Slatter, J. G., Su, P., Sams, J. P., Schaaf, L. J., Wienkers, L. C. (1997). Bioactivation of the anticancer agent, CPT-11, to SN-38 by human hepatic microsomal carboxylesterases and the in vitro assessment of potential drug interactions. Drug Metab Dispos 25:1157–1164.

Slatter, J. G., Schaaf, L. J., Sams, J. P., Feenstra, K. L., Johnson, M. G., Bombardt, P. A., et al. (2000). Pharmacokinetics, metabolism and excretion of irinotecan (CPT-11) following i.v. infusion of [14C]CPT-11 in cancer patients. Drug Metab Dispos 28:423–433.

Slatter, J. G., Stalker, D. J., Feenstra, K. L., Welshman, I. R., Bruss, J. B., Sams, J. P., et al. (2001). Pharmacokinetics, metabolism, and excretion of linezolid following an oral dose of [(14)C]linezolid to healthy human subjects. Drug Metab Dispos 29:1136–1145.

Souhaili-El Amri, H., Fargetton, X., Delatour, P., Batt, A. M. (1987). Sulphoxidation of albendazole by the FAD-containing and cyto-chrome P-450 dependent mono-oxygenases from pig liver micro-somes. Xenobiotica 17:1159–1168.

Souhaili-El Amri, H., Mothe, O., Totis, M., Masson, C., Batt, A. M., Delatour, P., et al. (1988). Albendazole sulfonation by rat liver cytochrome P-450c. J Pharmacol Exp Ther 246:758–764.

Sparreboom, A., Van Tellingen, O., Scherrenburg, E. J., Boesen, J. J., Huizing, M. T., Nooijen, W. J., et al. (1996). Isolation, purifica-tion, and biological activity of major docetaxel metabolites from human feces. Drug Metab Dispos 24:655–658.

Srivastava, P., Sharma, P., Lal, J., Dikshit, D. K., Madhusudanan, K. P., Gupta, R. C. (2004). Metabolism of CDRI-85/92, a new potent anti-ulcer agent, involving cis-trans conversion. Drug Metab Drug Interact 20:57–75.

Stangier, J., Eriksson, B. I., Dahl, O. E., Ahnfelt, L., Nehmiz, G., Stahle, H., et al. (2005). Pharmacokinetic profile of the oral direct thrombin inhibitor dabigatran etexilate in healthy volunteers and patients undergoing total hip replacement. J Clin Pharmacol 45:555–563.

Stark, H., Krause, M., Rouleau, A., Garbarg, M., Schwartz, J-C., Schunack, W. (2001). Enzyme-catalyzed prodrug approaches for the histamine H3-receptor agonist, (R)-α-methylhistamine. Bioorg Med Chem 9:191–198.

Stefek, M., Bezek, S. (1985). Hepatic uptake and metabolism of penta-caine: a study with microsomes, hepatocytes, and perfused livers of rats. Xenobiotica 15:805–812.

Stefek, M., Benes, L., Kovacik, V. (1986). Identification of in vitro rat metabolites of pentacaine, a carbanilate local anesthetic, by gas chromatography/mass spectrometry. Biomed Environm Mass Spectrom 13:193–198.

Svensson, L. A., Tunek, A. (1988). The design and bioactivation of presystemically stable prodrugs. Drug Metab Rev 19:165–194.

Takayanagui, O. M., Bonato, P. S., Dreossi, S. A., Lanchote, V. L. (2002). Enantioselective distribution of albendazole metabolites in

Dru

g M

etab

olis

m R

evie

ws

Dow

nloa

ded

from

info

rmah

ealth

care

.com

by

Can

tona

le e

t Uni

vers

itair

e on

09/

30/1

0Fo

r pe

rson

al u

se o

nly.

Page 38: Qualitative structure-metabolism relationships in the ...files.chuv.ch/internet-docs/pha/recherche/cb_2010_dmr_carbamates.pdf · Introduction The carbamate moiety plays a noteworthy

588 F. Vacondio et al.

cerebrospinal fluid of patients with neurocysticercosis. Br J Clin Pharmacol 54:125–130.

Tanino, T., Ogiso, T., Iwaki, M., Tanabe, G., Muraoka, O. (1998). Enhancement of oral bioavailability of phenytoin by esterifi-cation and in vitro hydrolytic characteristics of prodrugs. Int J Pharm 163:91–102.

Tanayama, S., Fujita, T., Shirakawa, Y., Suzuoki, Z. (1970). Metabolic fate of 5-ethoxycarbonyl-3-morpholinosydnonimine (SIN-10). 1. Absorption, excretion, and tissue distribution in rats and mice. Jpn J Pharmacol 20:413–423.

Tanayama, S., Nakai, Y., Fujita, T., Sukuoki, Z., Imashiro, Y., Masuda, K. (1974). Biotransformation of molsidomine (N-ethoxycarbonyl-3-morpholinosyndonimine), a new antianginal agent in rats. Xenobiotica 4:175–191.

Testa, B., Mayer, J. M. (2003). Hydrolysis in drug and prodrug metab-olism—chemistry, biochemistry, and enzymology. Weinheim, Germany: Wiley-VCH.

Testa, B. (2007). Prodrug objectives and design. In: Testa, B., van de Waterbeemd, H. (Eds.), ADME-Tox approaches, vol 5 (pp 1009–1041). In: Taylor, J. B., Triggle, D. J. (Eds.), Comprehensive medicinal chemistry II. Oxford, UK: Elsevier.

Testa, B. (2009). Prodrugs: bridging pharmacodynamic/pharmacoki-netic gaps. Curr Opin Chem Biol 13:338–344.

Testa, B., Krämer, S. D. (2009). The biochemistry of drug metabo-lism—an introduction. Part 5: metabolism and bioactivity. Chem Biodivers 6:591–684.

Thomsen, K., Bundgaard, H. (1993). Cyclization-activated phenyl car-bamate prodrug forms for protecting phenols against first-pass metabolism. Int J Pharm 91:39–49.

Thomsen, K., Strom, F., Sforzini, B. V., Begtrup, M., Mork, N. (1994). Evaluation of phenyl carbamates of ethyl diamines as cyclization-activated prodrug forms for protecting phenols against first-pass metabolism. Int J Pharm 112:143–152.

Thompson, C. D., Kinter, M. T., Macdonald, T. L. (1996). Synthesis and in vitro reactivity of 3-carbamoyl-2-phenylpropionaldehyde and 2-phenylpropenal: putative reactive metabolites of felbamate. Chem Res Toxicol 9:1225–1229.

Thompson, C. D., Gulden, P. H., Macdonald, T. L. (1997). Identification of modified atropaldehyde mercapturic acids in rat and human urine after felbamate administration. Chem Res Toxicol 10:457–462.

Thompson, C. D., Barthen, M. T., Hopper, D. W., Miller, T. A., Quigg, M., Hudspeth, C., et al. (1999). Quantification in patient urine samples of felbamate and three metabolites: acid carbamate and two mercapturic acids. Epilepsia 40:769–776.

Thompson, C. D., Miller, T. A., Barthen, M. T., Dieckhaus, C. M., Sofia, R. D., Macdonald, T. L. (2000). The synthesis, in vitro reactivity, and evidence for formation in humans of 5-phenyl-1,3-oxazi-nane-2,4-dione, a metabolite of felbamate. Drug Metab Dispos 28:434–439.

Tréluyer, J. M., Bowers, G., Cazali, N., Sonnier, M., Rey, E., Pons, G., et al. (2003). Oxidative metabolism of amprenavir in the human liver. Effect of the CYP3A maturation. Drug Metab Dispos 31:275–281.

Tsukamoto, Y., Kato, Y., Ura, M., Horii, I., Ishitsuka, H., Kusuhara, H., et al. (2001). A physiologically based pharmacokinetic analysis of capecitabine, a triple prodrug of 5-FU, in humans: the mech-anism for tumor-selective accumulation of 5-FU. Pharm Res 18:1190–1202.

Tomasz, M., Lipman, R. (1981). Reductive metabolism and alkylat-ing activity of mytomycin C induced by rat liver microsomes. Biochemistry 20:5056–5061.

Tse, F. L., Laplanche, R. (1998). Absorption, metabolism, and disposi-tion of [14C]SDZ ENA 713, an acetylcholinesterase inhibitor, in minipigs following oral, intravenous, and dermal administration. Pharm Res 15:1614–1620.

Tunek, A., Levin, E., Svensson, L-Å,. (1988a). Hydrolysis of 3H-bam-buterol, a carbamate prodrug of terbutaline, in blood from humans and laboratory animals in vitro. Biochem Pharmacol 37:3867–3876.

Tunek, A., Svensson, L. A. (1988b). Bambuterol, a carbamate ester prodrug of terbutaline, as inhibitor of cholinesterases in human blood. Drug Metab Dispos 16:759–764.

Vacondio, F., Silva, C., Lodola, A., Fioni, A., Rivara, S., Duranti, A., et al. (2009). Structure-property relationships of a class of carbamate-based fatty acid amide hydrolase (FAAH) inhibitors: chemical and biological stability. ChemMedChem 4:1495–1504.

VandenHeuvel, W. J., Wolf, D. E., Arison, B. H., Buhs, R. P., Carlin, J. R., Ellsworth, R. L., et al. (1978). Urinary metabolites of camben-dazole. J Agric Food Chem 26:1357–1364.

van Tellingen, O., Nooijen, W. J., Schaaf, L. J., van der Valk, M., van Asperen, J., Henrar, R. E., et al. (1998a). Comparative pharmacol-ogy of the novel cyclopropylpyrroloindole-prodrug carzelesin in mice, rats, and humans. Cancer Res 58:2410–2416.

van Tellingen, O., Punt, C. J., Awada, A., Wagener, D. J., Piccart, M. J., Groot, Y., et al. (1998b). A clinical pharmacokinetics study of carzelesin given by short-term intravenous infusion in a phase I study. Cancer Chemother Pharmacol 41:377–384.

Velik, J., Baliharova, V., Skalova, L., Szotakova, B., Wsol, V., Lamka, J. (2005). Liver microsomal biotransformation of albendazole in deer, cattle, sheep, and pig and some related wild breeds. J Vet Pharmacol Ther 28:377–384.

Vigroux, A., Bergon, M., Zedde, C. (1995). Cyclization-activated pro-drugs: N-(substituted 2-hydroxyphenyl and 2-hydroxypropyl)carbamates based on ring-opened derivatives of active ben-zoxazolones and oxazolidinones as mutual prodrugs of aceta-minophen. J Med Chem 38:3983–3994.

Villaverde, C., Alvarez, A. I., Redondo, P., Voces, J., Del Estal, J. L., Prieto, J. G. (1995). Small intestinal sulphoxidation of albenda-zole. Xenobiotica 25:433–441.

Virkel, G., Lifschitz, A., Soraci, A., Sansinanea, A., Lanusse, C. (2000). Enantioselective liver microsomal sulphoxidation of albendazole in cattle: effect of nutritional status. Xenobiotica 30:381–393.

Virkel, G., Lifschitz, A., Sallovitz, J., Pis, A., Lanusse, C. (2004). Comparative hepatic and extrahepatic enantioselective sul-foxidation of albendazole and fenbendazole in sheep and cattle. Drug Metab Dispos 32:536–544.

Walkenstein, S. S., Knebel, C. M., Macmullen, J. A., Seifter, J. (1958). The excretion and distribution of meprobamate and its metabo-lites. J Pharmacol Exp Ther 123:254–258.

Wang, L, Zhang, D, Swaminathan, A, Xue, Y, Cheng, PT, Wu, S, et al. (2006). Glucuronidation as a major metabolic clearance path-way of 14C-labeled muraglitazar in humans: metabolic profiles in subjects with or without bile collection. Drug Metab Dispos 34:427–439.

Wanner, M. J., Melle, K., Koomen, G-J. (2004). Synthesis and anti-tumor activity of methyltriazene prodrugs simultaneously releasing DNA-methylating agents and the antiresistance drug O6-benzylguanine. J Med Chem 47:6875–6883.

Ward, B. A., Gorski, J. C., Jones, D. R., Hall, S. D., Flockhart, D. A., Desta, Z. (2003). The cytochrome P450 2B6 (CYP2B6) is the main catalyst of efavirenz primary and secondary metabolism: impli-cation for HIV/AIDS therapy and utility of efavirenz as a sub-strate marker of CYP2B6 catalytic activity. J Pharmacol Exp Ther 306:287–300.

Wei, G., Loktionova, N. A., Pegg, A. E., Moschel, R. C. (2005). Beta-glucuronidase-cleavable prodrugs of O6-benzylguanine and O6-benzyl-2′-deoxyguanosine. J Med Chem 48: 256–261.

Weller, T., Alig, L., Beresini, M., Blackburn, B., Bunting, S., Hadvary, P., et al. (1996). Orally active fibrinogen receptor antago-nists. 2. Amidoximes as prodrugs of amidines. J Med Chem 39:3139–3147.

Wilson, I. D., Watson, K. V., Troke, J., Illing, H. P., Fromson, J. M. (1986). The metabolism of [14C]N-ethoxycarbonyl-3-morpholinosydnonimine (molsidomine) in laboratory animals. Xenobiotica 16:1117–1128.

Wilson, I. D., Fromson, J. M., Illing, H. P., Schraven, E. (1987). The metabolism of [14C]N-ethoxycarbonyl-3-morpholinosydnonimine (molsidomine) in man. Xenobiotica 17:93–104.

Wolf, D. E., VandenHeuvel, J. A., Tyler, T. R., Walker, R. W., Koniuszy, F. R., Gruber, V., et al. (1980). Identification of a glutathione con-jugate of cambendazole formed in the presence of liver micro-somes. Drug Metab Dispos 8:131–136.

Wynalda, M. A., Hauer, M. J., Wienkers, L. C. (2000). Oxidation of the novel oxazolidinone antibiotic linezolid in human liver micro-somes. Drug Metab Dispos 28:1014–1017.

Dru

g M

etab

olis

m R

evie

ws

Dow

nloa

ded

from

info

rmah

ealth

care

.com

by

Can

tona

le e

t Uni

vers

itair

e on

09/

30/1

0Fo

r pe

rson

al u

se o

nly.

Page 39: Qualitative structure-metabolism relationships in the ...files.chuv.ch/internet-docs/pha/recherche/cb_2010_dmr_carbamates.pdf · Introduction The carbamate moiety plays a noteworthy

Hydrolysis of carbamates: qualitative structure-metabolism relationships 589

Xie, M., Yu, D., Wu, M., Xue, B., Yan, B. (2003). Mouse liver and kidney carboxylesterase (M-LK) rapidly hydrolyzes antitumor prodrug irinotecan and the N-terminal three quarter sequence deter-mines substrate selectivity. Drug Metab Dispos 31:21–27.

Yang, J. M., Chan, K. (1995). Isolation and characterization of sulphox-idation metabolites of moricizine in rat and human biological fluids. Meth Find Exp Clin Pharmacol 17:415–421.

Yang, J. T., Adusumalli, V. E., Wong, K. K., Kucharczyk, N., Sofia, R. D. (1991). Felbamate metabolism in the rat, rabbit, and dog. Drug Metab Dispos 19:1126–1134.

Yang, J. T., Morris, M., Wong, K. K., Kucharczyk, N., Sofia, R. D. (1992). Felbamate metabolism in pediatric and adult Beagle dogs. Drug Metab Dispos 20:84–88.

Yumibe, N., Huie, K., Chen, K. J., Clement, R. P., Cayen, M. N. (1995). Identification of human liver cytochrome P450s involved in the microsomal metabolism of the antihistaminic drug loratadine. Int Arch Allerg Immunol 107:420.

Yumibe, N., Huie, K., Snow, M., Clement, R. P., Cayen, M. N. (1996). Identification of human liver cytochrome P450 enzymes that metabolize the nonsedating antihistamine, loratadine. Biochem Pharmacol 51:165–172.

Zhang, D., Zhang, H., Aranibar, N., Hanson, R., Huang, Y., Cheng, P. T., et al. (2006). Structural elucidation of human oxidative metabolites of muraglitazar: use of microbial bioreactors in the biosynthesis of metabolite standards. Drug Metab Dispos 34: 267–280.

Zhang, D., Wang, L., Chandrasena, G., Ma, L., Zhu, M., Zhang, H., et al. (2007a). Involvement of multiple cytochrome P450 and UDP-glucuronosyltransferase enzymes in the in vitro metabolism of muraglitazar. Drug Metab Dispos 35:139–149.

Zhang, D., Wang, L., Raghavan, N., Zhang, H., Li, W., Cheng, P. T., et al. (2007b). Comparative metabolism of radiolabeled muraglitazar in animals and humans by quantitative and qualitative metabo-lite profiling. Drug Metab Dispos 35:150–167.

Dru

g M

etab

olis

m R

evie

ws

Dow

nloa

ded

from

info

rmah

ealth

care

.com

by

Can

tona

le e

t Uni

vers

itair

e on

09/

30/1

0Fo

r pe

rson

al u

se o

nly.