QPA_Rietveld.pdf

38
Rietveld Method for Quantitative Phase Analysis Innovation with Integrity

Transcript of QPA_Rietveld.pdf

Page 1: QPA_Rietveld.pdf

Rietveld Method for Quantitative Phase Analysis

Innovation with Integrity

Page 2: QPA_Rietveld.pdf

History of Rietveld Analysis

14-15/12/2011 2Advanced XRD Workshop

Milestones

1966 7th Congress of the IUCr in Moscow

1969 publication in J.Appl.Crystallogr.

1977 acceptance for X-ray diffraction

1983 Quantitative Phase Analysis

Dr. Hugo M. Rietveld

pictures by courtesy of Hugo Rietveld (http://home.wxs.nl/~rietv025/)

Page 3: QPA_Rietveld.pdf

• Full profile fitting

• Using crystallographic constraints

• Lattice parameters and space group to constrain peak positions

• Crystal structure to constrain peak intensities

14-15/12/2011 3Advanced XRD Workshop

Rietveld Method

Page 4: QPA_Rietveld.pdf

14-15/12/2011 4Advanced XRD Workshop

• An accurate description of the line profile shapes in a powder pattern is

critical to the success of any profile fitting application!

• Today’s profile fitting techniques:

• Analytical profile fitting

• Direct convolution approach

Profile Fitting

Page 5: QPA_Rietveld.pdf

14-15/12/2011 5Advanced XRD Workshop

• Characterized by peak shape functions (PSFs) with an explicit and relatively

simple mathematical form which can be differentiated analytically with

respect to each of the refined parameters

• Most common are the Gaussian, Lorentzian, sums of Gaussians or

Lorentzians, Voigt, pseudo-Voigt and PearsonVII functions

• Convenient to use

• No physical meaning

• Large number of parameters required to fit profiles well over the whole 2θ

range pattern frequently leading to:

• Correlation problems

• Loss of uniqueness

• Instability of the refinement procedure

Profile Fitting MethodsAnalytical Profile Fitting

Page 6: QPA_Rietveld.pdf

14-15/12/2011 6Advanced XRD Workshop

• PSFs are generated by convoluting functions together to form the observed

profile shape Y(2θ) = F1(2θ) x F2(2θ) x ... x Fi(2θ) x ... x Fn(2θ)

Profile Fitting MethodsDirect Convolution Approach

Page 7: QPA_Rietveld.pdf

14-15/12/2011 7Advanced XRD Workshop

• In powder diffractometry the functions Fi(2θ) can be interpreted as the

aberration functions of the diffractometer:

Fundamental Parameters Approach (FPA)

Profile Fitting MethodsDirect Convolution - FPA

Page 8: QPA_Rietveld.pdf

14-15/12/2011 8Advanced XRD Workshop

Benefits:

• The ideal approach for all profile fit applications -

not only if micro-structure information is of interest

• The Bragg Brentano geometry is the most convenient

• Micro-structure information can be derived

• Allows to deal with higher degrees of peak overlap

(with significant impact on e.g. quantitative Rietveld analysis)

• Uses a minimal number of profile parameters

(specimen contributions such as size/strain/...) – stabile refinement

• Refined profile parameters have a physical meaning

(size/strain/...)

• …

Profile Fitting MethodsDirect Convolution - FPA

Page 9: QPA_Rietveld.pdf

Profile Fitting MethodsFPA vs. Analytical Profile Fitting

14-15/12/2011 9Advanced XRD Workshop

Page 10: QPA_Rietveld.pdf

14-15/12/2011 10Advanced XRD Workshop

• Single peak fitting

• Full pattern fitting

• Le Bail / Pawley methods

• Rietveld method

Fitting

Page 11: QPA_Rietveld.pdf

14-15/12/2011 11Advanced XRD Workshop

• Results:

• Positions

• Intensity(amplitude, integral)

• Width, shape

• Calculate:

yio observed step intensity

yco calculated step intensity

• Needs profile function

Single Peak Fit

Page 12: QPA_Rietveld.pdf

14-15/12/2011 12Advanced XRD Workshop

• Profile functions Pi• Gaussian G(2θi,Ii,wi)

• Lorentzian L(2θi,Ii,wi)

• Pseudo-Voigt xGi+(1-x)Li• Asymmety function (one or two parameters)

split-functions: two independent functionsPil for 2θ < 2θi

Pir for 2θ > 2θi

• About 6 parameters per peak

Single Peak Fit - Parameters

Page 13: QPA_Rietveld.pdf

Single Peak Fit

14-15/12/2011 13Advanced XRD Workshop

Huge number of parametersfor many peaks

Page 14: QPA_Rietveld.pdf

14-15/12/2011 14Advanced XRD Workshop

• WPPF

• Whole Powder Pattern Fit

• Pawley

• LeBail

• Pattern matching

• Use lattice parameters andspacegroup info to constrainpeak positions

• calculate

Full Pattern Fitting

Page 15: QPA_Rietveld.pdf

Peak Shape Functions

14-15/12/2011 15Advanced XRD Workshop

Page 16: QPA_Rietveld.pdf

WPPF

14-15/12/2011 16Advanced XRD Workshop

structuresolution

Page 17: QPA_Rietveld.pdf

WPPF vs. Rietveld

14-15/12/2011 17Advanced XRD Workshop

Rietveld

Page 18: QPA_Rietveld.pdf

Step Intensity

14-15/12/2011 18Advanced XRD Workshop

Page 19: QPA_Rietveld.pdf

14-15/12/2011 19Advanced XRD Workshop

• Lorentz

reciprocal lattice nodes needs different times to pass the Ewald sphere

• Polarization

depends on polarization state of the incident beam and scattering angle of the diffracted beam

Rietveld Refinement -

Lorentz-polarisation correction

⇒⇒⇒⇒ synchrotron radiation: LP = 90 (totally polarized)

filters, energy dispersive detector: LP = 0 (not polarized)

monochromator cystals: LP = Bragg angle

Page 20: QPA_Rietveld.pdf

Rietveld Refinement -

Structure factor

14-15/12/2011 20Advanced XRD Workshop

= drr

Krrf

sin)(4 ρπ

−=2

20 sin

expλ

θBff jj

( )[ ]∑ ++=N

jjjjj lzkyhxifhklF π2exp)(

Page 21: QPA_Rietveld.pdf

14-15/12/2011 21Advanced XRD Workshop

• Cell parameters (edge lengths, angles)a,b,c, alpha, beta, gamma

• Symmetry group, space group

• Asymmetric unit i.e. atom coordinates, TDPs, occupancy:

Structure Model

NOTE ! Rietveld isstructure refinement, not structure determination

Page 22: QPA_Rietveld.pdf

14-15/12/2011 22Advanced XRD Workshop

• Literature, journals (e.g. Acta Cryst., Z. Krist., …)

• CSD (Cambridge Structural Database)

• ICSD (Inorganic Crystal Structure Database)

• PDF-4

• COD

• PDB (Protein Data Bank)

• From structure solution

Structure ModelWhere to get it from?

Close starting model necessary!

Page 23: QPA_Rietveld.pdf

14-15/12/2011 23Advanced XRD Workshop

• March Dollase function

αK = angle between (hkl) and preferred orientation vector

• Spherical harmonics

only even orders (Friedel‘s Law)start always with lowest orderincrease order until no improvement of Rwp is obtained!!! Check plot of phase intensity for negative values !!!

Rietveld Refinement

Preferred Orientation

( )[ ] 23

222 sin1cos−

+= kkk GGP αα

Page 24: QPA_Rietveld.pdf

Rietveld RefinementPrincipal and Visual Quality Check

14-15/12/2011 24Advanced XRD Workshop

MeasuredCalculatedDifference

Page 25: QPA_Rietveld.pdf

Rietveld RefinementNumerical Quality Criteria

14-15/12/2011 25Advanced XRD Workshop

Page 26: QPA_Rietveld.pdf

Quantitative Phase Analysis

14-15/12/2011 26Advanced XRD Workshop

Page 27: QPA_Rietveld.pdf

14-15/12/2011 27Advanced XRD Workshop

• Accurate, standardless quantitative analysis of a Cu concentrate containing24 phases:

Rietveld QPAState-of-the-Art

Page 28: QPA_Rietveld.pdf

14-15/12/2011 28Advanced XRD Workshop

• The grains in the powder should be randomly oriented!

• Typical sample-related problems:

• Not enough scattering particles (spotiness)

• Sample not representative for the bulk

• Bad sampling / particle heterogeneity / phase separation

• Preferred orientation

• Extinction

• Microabsortion (multiphase samples)

Sample

Page 29: QPA_Rietveld.pdf

14-15/12/2011 29Advanced XRD Workshop

• Spotiness effect

Sample Not enough scattering particles

Page 30: QPA_Rietveld.pdf

14-15/12/2011 30Advanced XRD Workshop

• Rotation parallel to the scattering vector does not minimize preferred orientation effects!

SamplePreferred Orientation

Page 31: QPA_Rietveld.pdf

Sample PreparationSi/Zr mixture 50/50 – coarse grained

14-15/12/2011 31Advanced XRD Workshop

Page 32: QPA_Rietveld.pdf

14-15/12/2011 32Advanced XRD Workshop

• For structure refinement, go as far as reasonably possible

• For quantitative refinement, somewhat less strict since generally less

parameters are refined

• Use appropriate divergence slits (avoid beam overspill at low angles!)

• No variable slits (for structure refinement)

• 5000 to 10000 counts for main peaks (only as rule of thumb!)

• Step size as to collect 5 to 10 points above FWHM

• Variable counting time strategy (enhance statistics of high angle data)

Data Collection Strategy

Page 33: QPA_Rietveld.pdf

14-15/12/2011 33Advanced XRD Workshop

• Raw data – NO smoothing or Kα2-stripping

• Start with Le Bail or Pawley fit ⇒ gives the best RwP that can be achieved

• Describe background with as less parameters as possible ⇒ correlation

• Do not refine zero-error and sample displacement at the same time, unless

lattice parameters are from a certified material

Refinement Strategy (1)

Page 34: QPA_Rietveld.pdf

14-15/12/2011 34Advanced XRD Workshop

For qualitative Rietveld (single phase):

• Heavy atoms first

• As a general rule, use isotropic displacement vectors Biso (in literature

sometimes called „thermal parameters“)

• Constrain Biso for chemically identical elements

e.g. BC and BO for two independent oxalate ions C2O42-

• Use constraints for refinement of occupancy factors

For quantitative Rietveld (mixture):

• As a general rule, do not refine positional (x, y, z) and displacement vectors

(B)

Refinement Strategy (2)

Page 35: QPA_Rietveld.pdf

14-15/12/2011 35Advanced XRD Workshop

• Poor background

⇒ increase polynomial coefficients, use peak phase to describe bumps

(e.g. from capillary), use 1/X at low angle

• Poor peak shape description

⇒ check instrument set-up

⇒ low absorbing material – transparancy

⇒ high absorbing material – surface roughness

⇒ anisotropic behaviour

• Mismatch calculated vs. observed pattern

⇒ unit cell parameters correct?

⇒ 2θ correction checked?

Possible Problems (1)

Page 36: QPA_Rietveld.pdf

14-15/12/2011 36Advanced XRD Workshop

• Relative intensities of few reflection too high, none too low

⇒ poor particle statistics, recollect data after grinding/sieving, sample

spinning

• Small unindexed reflections

⇒ Kβ or W-Lα (if no monochromator)

⇒ impurity?

⇒ unit cell parameters correct? Other space group?

• Refinement does not converge

⇒ check structural model

⇒ check correlation between parameters

⇒ use restraints and/or constraints

⇒ correct space group?

Possible Problems (2)

Page 37: QPA_Rietveld.pdf

14-15/12/2011 37Advanced XRD Workshop

• Refinement converged, but angle dependent intensity mismatch and/or

unreasonable thermal parameters

⇒ check Lorentz-polarisation correction (monochromator?)

⇒ absorption correction?

⇒ surface-roughness correction?

⇒ preferred orientation?

⇒ check atoms

More can be found in:

„Rietveld refinement guidelines“ Mc. Cusker et al. Journal of Applied

Crystallography 32 (1999) 36-50

Possible Problems (3)

Page 38: QPA_Rietveld.pdf

Innovation with Integrity

© Copyright Bruker Corporation. All rights reserved. 38