PV Enhanced Concentrating Solar Generation in South Africa

18
1

Transcript of PV Enhanced Concentrating Solar Generation in South Africa

Page 1: PV Enhanced Concentrating Solar Generation in South Africa

1

Page 2: PV Enhanced Concentrating Solar Generation in South Africa

2

PV Enhanced Concentrating Solar Power (CSP) for Base Load Power Generation in South Africa

Christoph A. Pan

Solar Thermal Energy Research Group (STERG), University of Stellenbosch

Page 3: PV Enhanced Concentrating Solar Generation in South Africa

3

• Motivation• Objective• Methodology• PV power plant simulation• Central receiver with molten salt TES• CSP vs. CSP/PV• Conclusion• References

Page 4: PV Enhanced Concentrating Solar Generation in South Africa

4

92,0%

1,6%5,0%

0,7% 0,5%0,3%

primary energy consumption for electricity generation 2012

Coal

Hydro

Nuclear

Gas

Oil

Renewables & Waste

Constrained fossil power system• electricity generation highly dependant on coal• average age of power plant fleet: 34 years• load shedding of up to 4 GW• need for supply security

source: Eskom 2015a,b

3,68%4,63% 4,34%

5,13%4,38%

5,10%6,14%

7,97%

12,12%12,61%

15,22%

0%

2%

4%

6%

8%

10%

12%

14%

16%

UC

LF [

%]

unplanned capability loss factor

source: IEA 2015

Page 5: PV Enhanced Concentrating Solar Generation in South Africa

5

Solar resource in South Africa• GHI up to 2,300 kWh/m²a (Seville 1,800 kWh/m²a)• DNI up to 3,200 kWh/m²a (Seville 2,100 kWh/m²a)

GHI DNI

source: SolarGIS 2014a,b

Page 6: PV Enhanced Concentrating Solar Generation in South Africa

6

Research question• Can the advantages of cheap PV and dispatchability of CSP with

thermal energy storage (TES) be combined to supply 100 MW constant base load capacity in South Africa?

0

50

100

150

200

250

0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18 21 0 3 6 9 12 15 18

po

wer

pla

nt

cap

acit

y (M

W)

time of day

effect of PV and CSP dispatchability

PV CSP dispatched energy 100 MW

Page 7: PV Enhanced Concentrating Solar Generation in South Africa

7

• power plant simulation in SAM (NREL)• fixed parameters for PV (one option)• varying solar multiple (SM) and TES size for CSP (multiple options)• simulated power plants:

• comparison of plant performance, capacity factor and load profiles

PV

100 MW

CSP

100 MW

CSP/PV

200 MW

PV

100 MW

CSP (modified)

100 MW

base load capacity 100 MW

Page 8: PV Enhanced Concentrating Solar Generation in South Africa

8

Item Unit Value

total module capacity MWp 110

total inverter capacity MWAC 100.3

annual energy GWh 223.6

capacity factor % 23.2

specific yield kWhAC/kWDC 2,033

performance ratio % 84.00

50

100

150

200

250

300

0

5

10

15

20

25

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

GH

I [kW

h/m

²]

ener

gy p

rod

uct

ion

[G

Wh

]

monthly PV electricity production

electricity production GHI

typical winter week

hourly load profile over a year

Page 9: PV Enhanced Concentrating Solar Generation in South Africa

9

heliostat field layout SM 3

Simulated configurations

Item Unit Value

Turbine capacity, gross MWe 115

Turbine capacity, net MWe 100

design HTF inlet temperature °C 565

design HTF outlet temperature °C 290

cycle gross efficiency % 42

steam generator thermal power MWth 273.8

heat transfer fluid -Salt

(60% NaNO3, 40% KNO3

TES full load hours h 14 16solar multiple - 1.5 2 2.5 3 3.5 4 1.5 2 2.5 3 3.5 4TES full load hours h 18 20solar multiple - 1.5 2 2.5 3 3.5 4 1.5 2 2.5 3 3.5 4

Gemasolar (Seville, Spain)

Page 10: PV Enhanced Concentrating Solar Generation in South Africa

10

• No possibility to provide hourly load profile of PV in SAM to determine CSP demand

• Very simplistic implementation:– TES dispatch control with 24 h representing an average day every month– based on average monthly PV generation profile– CSP fills the gap to 100 MW

• Huge improvement possible but sufficient for this study

PeriodTurbine output

fraction [%]

2 20

3 30

4 40

5 50

6 60

7 70

8 80

9 95

TES dispatch control matrix

Page 11: PV Enhanced Concentrating Solar Generation in South Africa

11

Net electricity generation

higher electricity yield with small CSP/PV than with larger standalone CSP

Page 12: PV Enhanced Concentrating Solar Generation in South Africa

12

Capacity factors

40

50

60

70

80

90

100

1,5 2 2,5 3

cap

acit

y fa

cto

r [%

]

SM

CSP/PV

14 h 16 h 18 h 20 h

40

50

60

70

80

90

100

1,5 2 2,5 3

cap

acit

y fa

cto

r [%

]

SM

CSP/PV

40

50

60

70

80

90

100

1,5 2 2,5 3 3,5 4

cap

acit

y fa

cto

r [%

]

SM

CSP *based on 100 MW (actually 200 MW installed)

Page 13: PV Enhanced Concentrating Solar Generation in South Africa

13

Load profiles

CSP/PV

solar resource

SM 3, 20 h

DNI/GHI

SM 4, 20 h

CSP

Page 14: PV Enhanced Concentrating Solar Generation in South Africa

14

Hourly load profile over a year

CSP/PV – SM 3, 20 h TESCSP – SM 3, 20 h TES

solar field is too small to charge large storage which leads to several turbine stops

less turbine stops due to additional PV

Page 15: PV Enhanced Concentrating Solar Generation in South Africa

15

Probability distributionCSP

SM 4, 18 h TESCSP/PV

SM 3, 16 h TES

6 % no generation

mostly oversupply

3 % no generation

desired capacity

uneven generation

even generation around set point

Page 16: PV Enhanced Concentrating Solar Generation in South Africa

16

0

20

40

60

80

100

120

140

160

180

0

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

00

:00

01

:00

02

:00

03

:00

04

:00

05

:00

06

:00

07

:00

08

:00

09

:00

10

:00

11

:00

12

:00

13

:00

14

:00

15

:00

16

:00

17

:00

18

:00

19

:00

20

:00

21

:00

22

:00

23

:00

00

:00

PV

& C

SP s

up

ply

cap

acit

y (M

W)

syst

em lo

ad (

MW

)

time of day

typical system load and PV & CSP supply capacity

system load winter system load summer PV

CSP (SM 2.5, 14 h TES) CSP (SM 3, 16 h TES) CSP/PV (SM 3, 16 h TES)

PV enhanced CSP plants can provide base loadcapacity for the SA grid• Higher electricity yields• compared to standalone CSP• High capacity factors (>90 %)• Reduced system size and• therefore costs• Constant power output• for base load generation• Improved control strategy leads• to even better results

Page 17: PV Enhanced Concentrating Solar Generation in South Africa

17

• Eskom. 2015a. Integrated Report 2015. Available at: http://www.eskom.co.za/IR2015/Documents/EskomIR2015single.pdf [Accessed August 14, 2015].

• Eskom. 2015b. System Status Presentation. Media Presentation (January 15, 2015) by Tshediso Matona, Eskom Holding.

• IEA (International Energy Agency). 2015. Electricity & Heat Statistics South Africa. Paris, France. Available at: http://www.iea.org/statistics/statisticssearch/ [Accessed March 18, 2015].

• SolarGIS. 2014a. SolarGIS Global Horizontal Irradiation Map for South Africa, Lesotho and Swaziland. GeoModel Solar. Available at: http://www.sauran.net/Docs/SolarGIS_GHI_South_Africa_width15cm_300dpi.png [Accessed May 04, 2015].

• SolarGIS. 2014b. SolarGIS Direct Normal Irradiation Map for South Africa, Lesotho and Swaziland. GeoModel Solar. Available at: http://www.sauran.net/Docs/SolarGIS_DNI_South_Africa_width15cm_300dpi.png [Accessed May 04, 2015].

Page 18: PV Enhanced Concentrating Solar Generation in South Africa

18

ACKNOWLEDGEMENTS:

CONTACT DETAILS:

visit us: concentrating.sun.ac.za

Solar Thermal Energy Research Group (STERG)Stellenbosch University South Africa

Christoph Adrian Pan

[email protected]+27 (0)21 808 4016