Puzzling pairing in the non-centrosymmetric superconductor LaNiC2

58
ISIS Facility, STFC Rutherford Appleton Laboratory School of Physical Sciences Puzzling pairing in the non-centrosymmetric superconductor LaNiC 2 Jorge Quintanilla SEPnet, University of Kent Hubbard Theory Centre, Rutherford Appleton Laboratory CMMP’10, University of Warwick, 15 December 2010 Adrian Hillier (RAL) Bob Cywinski (Huddersfield) James F. Annett (Bristol) Bayan Mazidian (Bristol and RAL) Collaborators: STFC, SEPnet Funding:

Transcript of Puzzling pairing in the non-centrosymmetric superconductor LaNiC2

ISIS Facility, STFC Rutherford Appleton Laboratory

School of Physical Sciences

Puzzling pairing in the

non-centrosymmetric superconductor

LaNiC2

Jorge Quintanilla

SEPnet, University of Kent

Hubbard Theory Centre, Rutherford Appleton Laboratory

CMMP’10, University of Warwick, 15 December 2010

Adrian Hillier (RAL)

Bob Cywinski (Huddersfield)

James F. Annett (Bristol)

Bayan Mazidian (Bristol and RAL)

Collaborators:

STFC, SEPnetFunding:

LaNiC2 – a weakly-correlated, paramagnetic superconductor?

Tc=2.7 K

W. H. Lee et al., Physica C 266, 138 (1996)V. K. Pecharsky, L. L. Miller, and Zy, Physical Review B 58, 497 (1998)

ΔC/TC=1.26 (BCS: 1.43)

specific heat susceptibility

ISIS

muSR

Hillier, Quintanilla & Cywinski,PRL 102 117007 (2009)

Relaxation due to electronic moments

Moment

size

~ 0.1G

(~ 0.01μB)

(longitudinal)

Timescale:

> 10-4

s~

e

_

e

backward detector

forward detector

sample

Hillier, Quintanilla & Cywinski,PRL 102 117007 (2009)

Relaxation due to electronic moments

Moment

size

~ 0.1G

(~ 0.01μB)

(longitudinal)

Timescale:

> 10-4

s~

e

_

e

backward detector

forward detector

sample

Hillier, Quintanilla & Cywinski,PRL 102 117007 (2009)

Relaxation due to electronic moments

Moment

size

~ 0.1G

(~ 0.01μB)

(longitudinal)

Timescale:

> 10-4

s~

e

_

e

backward detector

forward detector

sample

Hillier, Quintanilla & Cywinski,PRL 102 117007 (2009)

Relaxation due to electronic moments

Moment

size

~ 0.1G

(~ 0.01μB)

Spontaneous, quasi-static fields appearing at Tc

⇒ superconducting state breaks time-reversal symmetry[ c.f. Sr2RuO4 - Luke et al., Nature (1998) ]

(longitudinal)

Timescale:

> 10-4

s~

e

_

e

backward detector

forward detector

sample

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

Symmetry of the gap function

kk

kkkˆ

See J.F. Annett Adv. Phys. 1990.

Neutron diffraction

30 40 50 60 70 800

5000

10000

15000

20000

25000

30000

35000

Inte

nsity (

arb

un

its)

2o

Orthorhombic Amm2 C2v

a=3.96 Å

b=4.58 Å

c=6.20 Å

Data from

D1B @ ILL

Note no inversion centre.

C.f. CePt3Si

(1), Li

2Pt

3B & Li

2Pd

3B

(2), ...

(1) Bauer et al. PRL’04 (2) Yuan et al. PRL’06

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

ˆ k 0 0

0 0

dx idy dz

dz dx idy

singlet

[ 0(k) even ]

triplet

[ d(k) odd ]

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

Singlet, triplet, or both?

Impose Pauli’s exclusion principle:

, ' k ', k

Neglect (for now!) spin-orbit coupling:

ˆ k either singlet yiˆ

0', kk

or triplet yiˆˆ.', σkdk

Singlet and triplet representations of SO(3):

Γns = - (Γn

s)T , Γnt = + (Γn

t)T

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

Character table

Hillier, Quintanilla & Cywinski,PRL 102 117007 (2009)

180o

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

C2v

Symmetries and

their characters

Sample basis

functions

Irreducible

representation

E C2

v

’v

Even Odd

A1

1 1 1 1 1 Z

A2

1 1 -1 -1 XY XYZ

B1

1 -1 1 -1 XZ X

B2

1 -1 -1 1 YZ Y

Character table

Hillier, Quintanilla & Cywinski,PRL 102 117007 (2009)

These must be combined with the singlet and triplet representations of SO(3).

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

SO(3)xC2v

Gap function

(unitary)

Gap function

(non-unitary)

1A

1(k)=1 -

1A

2(k)=k

xk

Y-

1B

1(k)=k

Xk

Z-

1B

2(k)=k

Yk

Z-

3A

1d(k)=(0,0,1)k

Zd(k)=(1,i,0)k

Z

3A

2d(k)=(0,0,1)k

Xk

Yk

Zd(k)=(1,i,0)k

Xk

Yk

Z

3B

1d(k)=(0,0,1)k

Xd(k)=(1,i,0)k

X

3B

2d(k)=(0,0,1)k

Yd(k)=(1,i,0)k

Y

Possible order parameters

Hillier, Quintanilla & Cywinski,PRL 102 117007 (2009)

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

SO(3)xC2v

Gap function

(unitary)

Gap function

(non-unitary)

1A

1(k)=1 -

1A

2(k)=k

xk

Y-

1B

1(k)=k

Xk

Z-

1B

2(k)=k

Yk

Z-

3A

1d(k)=(0,0,1)k

Zd(k)=(1,i,0)k

Z

3A

2d(k)=(0,0,1)k

Xk

Yk

Zd(k)=(1,i,0)k

Xk

Yk

Z

3B

1d(k)=(0,0,1)k

Xd(k)=(1,i,0)k

X

3B

2d(k)=(0,0,1)k

Yd(k)=(1,i,0)k

Y

Possible order parameters

Hillier, Quintanilla & Cywinski,PRL 102 117007 (2009)

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

SO(3)xC2v

Gap function

(unitary)

Gap function

(non-unitary)

1A

1(k)=1 -

1A

2(k)=k

xk

Y-

1B

1(k)=k

Xk

Z-

1B

2(k)=k

Yk

Z-

3A

1d(k)=(0,0,1)k

Zd(k)=(1,i,0)k

Z

3A

2d(k)=(0,0,1)k

Xk

Yk

Zd(k)=(1,i,0)k

Xk

Yk

Z

3B

1d(k)=(0,0,1)k

Xd(k)=(1,i,0)k

X

3B

2d(k)=(0,0,1)k

Yd(k)=(1,i,0)k

Y

Possible order parameters

Hillier, Quintanilla & Cywinski,PRL 102 117007 (2009)

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

SO(3)xC2v

Gap function

(unitary)

Gap function

(non-unitary)

1A

1(k)=1 -

1A

2(k)=k

xk

Y-

1B

1(k)=k

Xk

Z-

1B

2(k)=k

Yk

Z-

3A

1d(k)=(0,0,1)k

Zd(k)=(1,i,0)k

Z

3A

2d(k)=(0,0,1)k

Xk

Yk

Zd(k)=(1,i,0)k

Xk

Yk

Z

3B

1d(k)=(0,0,1)k

Xd(k)=(1,i,0)k

X

3B

2d(k)=(0,0,1)k

Yd(k)=(1,i,0)k

Y

Non-unitaryd x d* ≠ 0

Possible order parameters

Hillier, Quintanilla & Cywinski,PRL 102 117007 (2009)

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

SO(3)xC2v

Gap function

(unitary)

Gap function

(non-unitary)

1A

1(k)=1 -

1A

2(k)=k

xk

Y-

1B

1(k)=k

Xk

Z-

1B

2(k)=k

Yk

Z-

3A

1d(k)=(0,0,1)k

Zd(k)=(1,i,0)k

Z

3A

2d(k)=(0,0,1)k

Xk

Yk

Zd(k)=(1,i,0)k

Xk

Yk

Z

3B

1d(k)=(0,0,1)k

Xd(k)=(1,i,0)k

X

3B

2d(k)=(0,0,1)k

Yd(k)=(1,i,0)k

Y

Non-unitaryd x d* ≠ 0

breaks only SO(3) x U(1) x T

Possible order parameters

* C.f. Li2Pd3B & Li2Pt3B,H. Q. Yuan et al. PRL’06

*

Hillier, Quintanilla & Cywinski,PRL 102 117007 (2009)

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

Spin-up superfluid coexisting with spin-down Fermi liquid.

Non-unitary pairing

0

00or

00

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

Spin-up superfluid coexisting with spin-down Fermi liquid.

Non-unitary pairing

0

00or

00

C.f.

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

Spin-up superfluid coexisting with spin-down Fermi liquid.

The A1 phase of liquid 3He.

Non-unitary pairing

0

00or

00

C.f.

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

Spin-up superfluid coexisting with spin-down Fermi liquid.

The A1 phase of liquid 3He.

Non-unitary pairing

0

00or

00

C.f.

Ferromagnetic superconductors.

F. Hardy et al., Physica B 359-61, 1111-13 (2005)

[ See A. de Visser in Encyclopedia of Materials: Science and Technology (Eds.

K. H. J. Buschow et al.), Elsevier, 2010 ]

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

Ferromagnetic superconductors

A. de Visser in Encyclopedia of Materials: Science and Technology (Eds. K. H. J. Buschow et al.), Elsevier, 2010

But LaNiC2 is a paramagnet !

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

Isn’t there a more simple explanation?

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

yxz

zyx

iddd

didd

0

0

0k

The role of spin-orbit coupling (SOC)

Gap function may have both singlet and triplet components

kkorbitspin

',',

• However, if we have a centre of inversion

basis functions either even or odd under inversion

still have either singlet or triplet pairing (at Tc)

• No centre of inversion: may have singlet and triplet (even at Tc)

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

G = [SO(3)×Gc]×U(1)×T

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

G = [SO(3)×Gc]×U(1)×T

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

G = [SO(3)×Gc]×U(1)×T

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

G = [SO(3)×Gc]×U(1)×T

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

G = [SO(3)×Gc]×U(1)×T

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

G = Gc,J×U(1)×T

The role of spin-orbit coupling (SOC)

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

G = Gc,J×U(1)×T

The role of spin-orbit coupling (SOC)

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

G = Gc,J×U(1)×T

The role of spin-orbit coupling (SOC)

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)

E.g. reflection through a vertical plane perpendicular to the y axis:

y

JJv CI ,2,

xy

z

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)

E.g. reflection through a vertical plane perpendicular to the y axis:

y

JJv CI ,2,

xy

z

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)

E.g. reflection through a vertical plane perpendicular to the y axis:

y

JJv CI ,2,

xy

z

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)

E.g. reflection through a vertical plane perpendicular to the y axis:

y

JJv CI ,2,

xy

z

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)

E.g. reflection through a vertical plane perpendicular to the y axis:

y

JJv CI ,2,

This affects d(k) (a vector under spin rotations).

xy

z

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

The role of spin-orbit coupling (SOC)

Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)

E.g. reflection through a vertical plane perpendicular to the y axis:

y

JJv CI ,2,

This affects d(k) (a vector under spin rotations).

It does not affect 0(k) (a scalar).xy

z

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

C2v,Jno t

Gap function,

singlet component

Gap function,

triplet component

A1

(k) = A d(k) = (Bky,Ck

x,Dk

xk

yk

z)

A2

(k) = Akxk

Yd(k) = (Bk

x,Ck

y,Dk

z)

B1

(k) = AkXk

Zd(k) = (Bk

xk

yk

z,Ck

z,Dk

y)

B2

(k) = AkYk

Zd(k) = (Bk

z, Ck

xk

yk

z,Dk

x)

The role of spin-orbit coupling (SOC)

Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

C2v,Jno t

Gap function,

singlet component

Gap function,

triplet component

A1

(k) = A d(k) = (Bky,Ck

x,Dk

xk

yk

z)

A2

(k) = Akxk

Yd(k) = (Bk

x,Ck

y,Dk

z)

B1

(k) = AkXk

Zd(k) = (Bk

xk

yk

z,Ck

z,Dk

y)

B2

(k) = AkYk

Zd(k) = (Bk

z, Ck

xk

yk

z,Dk

x)

The role of spin-orbit coupling (SOC)

None of these break time-reversal symmetry!

Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

How could this happen?

Gap matrices evolve smoothly as SOC is turned on.

yiA

yy ii ˆˆ.ˆˆ0 σkdkk

E.g. ( 1A1 )

( A1 ) yzyxxyy ikkkkki ˆˆ.D,C,BˆA σ

for B = C = D = 0

Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

How could this happen?Some instabilities split in two under the influence of SOC:

yz iki ˆ.0,,1 σE.g. ( 3A1(b) )

( B2 )

0,1,0,0DC,B,A, with

ˆˆ.D,C,BˆA yxzyxzyzy ikkkkkikk σ

( B1 )

0,0,1,0DC,B,A, with

ˆˆ.D,C,BˆA yyzzyxyzx ikkkkkikki

σ

Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

Relativistic and non-relativistic instabilities: a complex relationship

Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)

spin-orbit coupling

spin-orbit coupling

1A1

1A2

1B1

1B2

3A1(a)

3A2(a)

3B1(a)

3B2(a)

A1

A2

B1

B2

A2

A1

B2

B1

3A1(b)

3A2(b)

3B1(b)

3B2(b)

B2

B1

B1

B2

A2

A1

A1

A2

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

Relativistic and non-relativistic instabilities: a complex relationship

singlet

Pairing

instabilities

non-unitary

triplet

pairing

instabilities

unitary

triplet

pairing

instabilities

A1 B1

3B1(b) 3B2(b)

1A11A2

3A1(a) 3A2(a)

A2 B2

1B11B2

3B1(a) 3B2(a)

3A1(b) 3A2(b)

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

The second (lower-Tc) instability can be symmetry-breaking because it is no longer an instability of the normal state:

3A1 (b)

(kz,ik

z,0)

B2

B1

i(0,kz,0)

(kz,0,0)

SOC

The experiments show a transition straight into the broken TRS phase

⇒ SOC must be small in LaNiC2

The role of spin-orbit coupling (SOC)

N.B. singlet component must be very small too.

Quintanilla, Hillier, Annett and Cywinski, PRB 82, 174511 (2010)

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

Recap

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

What have we learned about LaNiC2?

Recap

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

What have we learned about LaNiC2?

Recap

Experimental observation:

the superconducting state

breaks time-reversal symmetry.

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

What have we learned about LaNiC2?

Recap

Experimental observation:

the superconducting state

breaks time-reversal symmetry.

Theoretical implications:

non-unitary triplet pairing ; weak SOC ; split transition.

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

What have we learned about LaNiC2?

Recap

Experimental observation:

the superconducting state

breaks time-reversal symmetry.

What do we not know yet?

Theoretical implications:

non-unitary triplet pairing ; weak SOC ; split transition.

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

What have we learned about LaNiC2?

Recap

Experimental observation:

the superconducting state

breaks time-reversal symmetry.

What do we not know yet?

Theoretical implications:

non-unitary triplet pairing ; weak SOC ; split transition.

Which of the four pairing symmetries?

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

What have we learned about LaNiC2?

Recap

Experimental observation:

the superconducting state

breaks time-reversal symmetry.

What do we not know yet?

Theoretical implications:

non-unitary triplet pairing ; weak SOC ; split transition.

Which of the four pairing symmetries?

Why non-unitary?

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

What have we learned about LaNiC2?

Recap

Experimental observation:

the superconducting state

breaks time-reversal symmetry.

What do we not know yet?

Theoretical implications:

non-unitary triplet pairing ; weak SOC ; split transition.

Which of the four pairing symmetries?

Why non-unitary?

Take this home:

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

What have we learned about LaNiC2?

Recap

Experimental observation:

the superconducting state

breaks time-reversal symmetry.

What do we not know yet?

Theoretical implications:

non-unitary triplet pairing ; weak SOC ; split transition.

Which of the four pairing symmetries?

Why non-unitary?

Take this home:

•There’s more than Rashba to noncentrosymmetric

superconductors

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

What have we learned about LaNiC2?

Recap

Experimental observation:

the superconducting state

breaks time-reversal symmetry.

What do we not know yet?

Theoretical implications:

non-unitary triplet pairing ; weak SOC ; split transition.

Which of the four pairing symmetries?

Why non-unitary?

Take this home:

•There’s more than Rashba to noncentrosymmetric

superconductors

•There’s more than strong correlations to unconventional pairing

CMMP’10, Warwick, 15 Dec 2010 blogs.kent.ac.uk/strongcorrelations

Thanks!