Pumping a 100‐600 Pa yield stress clay slurry with a centrifugal pump.

19
John M. Furlan GIW Industries, USA Presented by: John M. Furlan Pumping a 100600 Pa Yield Stress Clay Slurry with a Centrifugal Pump Robert J. Visintainer GIW Industries, USA Anders Sellgren Lulea Univ. of Tech., Sweden

Transcript of Pumping a 100‐600 Pa yield stress clay slurry with a centrifugal pump.

Page 1: Pumping a 100‐600 Pa yield stress clay slurry with a centrifugal pump.

John M. FurlanGIW Industries, USAPresented by:John M. Furlan

Pumping a 100‐600 Pa Yield Stress Clay Slurry with a Centrifugal Pump

Robert J. VisintainerGIW Industries, USA

Anders SellgrenLulea Univ. of Tech., Sweden

Page 2: Pumping a 100‐600 Pa yield stress clay slurry with a centrifugal pump.

Effects of Non‐Newtonian Slurries on Pump Performance

Performance for a 0.31 m diameter closed impeller pump while moving a tailings product, Solids concentration by volume of 47 and 49 % (Sellgren et al., 2011)

Page 3: Pumping a 100‐600 Pa yield stress clay slurry with a centrifugal pump.

Slurry Test Schematic – GIW Hydraulic Lab

• 3 vane, 0.31 m Impeller Diameter• 0.1016 m suction• 0.0762 m line discharge• Diff. Pressure measured across

pump and 3 m horizontal section • Torque Bar• Tachometer• RTD Temperature read in tank• Magnetic Flow Meter• S.G. loop removed at high 

yield stress values to reduce pipe friction   higher % BEPQ

• Phosphate Clay, D93 = 20 um,D98 = 200 um

Page 4: Pumping a 100‐600 Pa yield stress clay slurry with a centrifugal pump.

Tank Arrangement

Page 5: Pumping a 100‐600 Pa yield stress clay slurry with a centrifugal pump.

Slurry Test Rig – GIW Hydraulic Lab

Page 6: Pumping a 100‐600 Pa yield stress clay slurry with a centrifugal pump.
Page 7: Pumping a 100‐600 Pa yield stress clay slurry with a centrifugal pump.

Results‐ Rheograms

3 ' 1 84 '

du n Vdy n D

Page 8: Pumping a 100‐600 Pa yield stress clay slurry with a centrifugal pump.

Results‐ Pump Performance, varying Slurry

All Scaled to 1778 rpm

Page 9: Pumping a 100‐600 Pa yield stress clay slurry with a centrifugal pump.

Results‐ Pump Performance, varying Speed

All Scaled to 1778 rpm, Slurry A

Page 10: Pumping a 100‐600 Pa yield stress clay slurry with a centrifugal pump.

Results‐ Pump Performance, varying Speed and Slurry

All Scaled to 1778 rpm

Page 11: Pumping a 100‐600 Pa yield stress clay slurry with a centrifugal pump.

Discussion/Analysis

( )1 y naµ k

2

Re impp

D

Solids Effects on Performance, HI Standard

Newtonian Viscosity Effects on Performance, HI Standard 

Page 12: Pumping a 100‐600 Pa yield stress clay slurry with a centrifugal pump.

Discussion/Analysis‐ Comparisons with Models

Head and Efficiency Derates Compared to Walker and Goulas, Slurry A, 50 % BEPQ

Page 13: Pumping a 100‐600 Pa yield stress clay slurry with a centrifugal pump.

Discussion/Analysis‐ Comparisons with Models

• Sellgren and Addie (1990) looked at ways to find apparent viscosity from pump dimensions• Head and Efficiency Derates Compared to Graham et al. 2007:

42( )

imph

imp

w DD

D w

V   8V/D   a H.I. 9.6.7-2010 HR, ER

Graham et al. method with w=0.25.Dimp= 0.078 m to the phosphate clay results here at 80 m3/hr HR = 0.85 and 0.82 for 1800 and 1450 rpm, respectively.  The corresponding measured head ratios were 0.93 and 0.87, which would require w’ values of 0.041 m and 0.049 m in order to match the experimental head data.  The actual width, w, for the pump used in the experiments is 0.028m. 

Page 14: Pumping a 100‐600 Pa yield stress clay slurry with a centrifugal pump.

Discussion/Analysis‐ Comparisons with Models

Head and Efficiency Derates Compared to Graham et al., w’=0.041, W&G, Slurry A 

Page 15: Pumping a 100‐600 Pa yield stress clay slurry with a centrifugal pump.

Conclusions• By removing entrained air using a modified tank, phosphate clay slurries with 

Bingham yield stress values of 100‐600 Pa were able to be pumped.

• Derating in efficiency was generally larger than that for head. 

• Deratings depended more strongly on the rotary speed than on the yield stress.

• Literature from loop tests with thickened tailings which are rheologically comparable may confirm an airlock effect during loop testing.  

• Modeling approaches have been briefly discussed:  Walker &  Goulas, Graham et al.

• Future work• Thickened tailings two‐component behavior compared to clays calls for a 

repeated test now with authentic tailings. • CFD modeling of transient full machine pumping a Bingham Plastic fluid.

Page 16: Pumping a 100‐600 Pa yield stress clay slurry with a centrifugal pump.

Acknowledgements

Special thanks to John Tyler Leonard and Travis Basinger of GIW Industries for allof their work related to the experimental setup and data acquisition.   

Page 17: Pumping a 100‐600 Pa yield stress clay slurry with a centrifugal pump.
Page 18: Pumping a 100‐600 Pa yield stress clay slurry with a centrifugal pump.

Questions

???

Page 19: Pumping a 100‐600 Pa yield stress clay slurry with a centrifugal pump.

Slurry Test Rig – GIW Hydraulic Lab

Cooling Troughs packed with ice

Slurry Pot/ Pressure TapsMagnetic Flow Meter