pt slab for high rise building peer am 2009

download pt slab for high rise building   peer am 2009

of 31

Embed Size (px)

description

 

Transcript of pt slab for high rise building peer am 2009

  • Seismic behavior and modeling of gravity- slab-framing system in concrete core wall high-rise buildings Tony Yang, Ph.D. Assistant Professor, University of British Columbia
  • 116 Completed (>75m ~= 240 ft.) 43 Planned 20 Demolished 5 under construction 13 Never built Source: http://www.emporis.com/ High-rise buildings in San Francisco (On hold.)
  • Concrete core shear wall buildings MKA
  • San Francisco, Rincon Center
  • MKA Concrete core shear wall buildings Core shear wall Link beamPT slab
  • Concrete core shear wall buildings http://activerain.com Gravity columnCore wall PT slab
  • Structural design Code design: Design the core wall without the gravity system. Design the gravity system without the seismic effect. Gravity system need to be design for the ductility Questions: Is it safe ? Is it all? MKA
  • PT slab column wall gravity system UCB
  • PT slab column wall gravity system
  • PT slab column wall gravity system
  • PT slab column wall gravity system
  • PT slab column wall gravity system m1 m2 w m2 Slab (BC element with lumped plastic hinges). Wall (BC element) Column (BC element) F1, D1 (master) F1, D1 (slaved)
  • PT slab column wall gravity system -0.1 -0.05 0 0.05 -30 -20 -10 0 10 20 30 40 Drift ratio [-] Force[kips] Experimental Test Analytical Simulation
  • FloorNumber Lateral system Gravity-only system Nonlinear analytical model Fiber section
  • UCLA J. Wallace Modeling the concrete coupling beams M, M, Analytical Experimental M
  • Perform3D gravity framing systems A A Plane A-A view Lump plastic hinge model:
  • Nonlinear dynamic analyses 3D bi-directional shaking. Ground motion are selected based on: Database: PEER NGA database. Magnitude (Mw): 6.5 - 8. Distance (R): 10 km (0 - 20 km). Useable periods: > 8 sec.
  • Selection of the ground motions 0 1 2 3 4 5 6 7 8 9 10 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Period [sec] Sa[g] CW48WGF (T1 = 4.3 sec) CapCPM (SF = 2.1) CapFOR (SF = 4.1) CapPET (SF = 2.3) DuzDZC (SF = 1.2) GazGAZ (SF = 1.8) KobAMA (SF = 2.1) KobFKS (SF = 2.5) KobPRI (SF = 1.4) LomLGP (SF = 1.1) LomSTG (SF = 2.5) LomWVC (SF = 2.1) Target spectrum (MCE - SF) Mean (MCE - SF) 0.2 T1 to 1.5 T1
  • Variation of EDP vs. story height
  • Variation of EDP vs. story height X S -9 -8 -7 -6 -5 -4 -3 -2 -1 0 B5 L1 L6 L11 L16 L21 L26 L31 L36 L41 axialForceGCS [kips] Floornumber[-] x 1e3 GL + GM GL + PushoverX GL + mean GM GL + mean GM std GM CW48WGF Average = 96% of PushoverXMax = 99% of PushoverXMin = 90% of PushoverX
  • Maximum un-factored axial forces -12 -10 -8 -6 -4 -2 0 B5 L1 L6 L11 L16 L21 L26 L31 L36 L41 axialForceGCS [kips] Floornumber[-] DL LL LLred EQ -14 x 10 3
  • Maximum factored axial forces -2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 x 10 4 B5 L1 L6 L11 L16 L21 L26 L31 L36 L41 axialForceGCS [kips] Floornumber[-] 1.4*DL 1.2*DL+1.6*LLred 1.0*DL+0.25*LL+EQ 90% of design load.
  • Effect of modeling the gravity system Change in structural periods and stiffness T1 T2 T3 CW48NGF 4.72 sec 4.10 sec 2.66 sec CW48WGF 4.27 sec 3.86 sec 2.65 sec % change in stiffness 22% 13% 1%
  • Effect of modeling the gravity system 0 50 100 B5 L1 L6 L11 L16 L21 L26 L31 L36 L41 Floornumber[-] Story Drift H1 [in.] 0 1e4 2e4 3e4 B5 L1 L6 L11 L16 L21 L26 L31 L36 L41 Core Shear - H1 [kips] 0 1 2 3 x10 7B5 L1 L6 L11 L16 L21 L26 L31 L36 L41 Core Moment - H2 [kip-in.] CW48WGF CW48NGF 1.5% of building height
  • Summary and conclusions Slab-wall-column framing is a prevalent design. Experimental tests and analytical simulations have been conducted to study the seismic effect. Effect on structural responses: Stiffness: Core wall: Gravity column: (10% ~ 25% ).Modest change. Insignificant. a) Potential significance. b) Simplified plastic analysis.
  • Questions and suggestions?Thank you for your attention! Contact information: Tony Yang: yangtony2004@gmail.com http://peer.berkeley.edu/~yang/
  • PT slab column wall gravity system Hwang and Moehle (2000) ACI Structural Journal Beff = 120 Beff = 80 Effective slab width:
  • PT slab column wall gravity system 8 120 1.5 1.5 #5 A615 Grade 60 steel @ 12 o.c. fc = 6100 psi (@ 17 days) 67 100 Stress [ksi] Strain [-] 0.08 0.12 E = 2900 ksi 90 A615 Grade 60 steel rebar: 0 Stress [ksi] Strain [-]0.002 0.005 Concrete (fc = 6100 psi @ 17 days): 0 6.1
  • PT slab column wall gravity system Plastic rotation [-] M1[kip-in.] -0.2 -0.1 0 0.1 0.2 -2 -1 0 1 2 -0.1 -0.05 0 0.05 0.1 -4 -3 -2 -1 0 1 x1e3 x1e3 M2[kip-in.] Plastic rotation [-] M+,+