PSpice Applications for Power Electronics

download PSpice Applications for Power Electronics

of 62

description

This book deals with simulation of power electronic circuits with pspice it covers how to operate pspice

Transcript of PSpice Applications for Power Electronics

  • 7/13/2019 PSpice Applications for Power Electronics

    1/62

    Power System Analysis Using PSpice

    Power System Division / ONYX Technologies, Inc.

    PSpice Applications for Power Electronics

    PSpice Applications for Power Electronics

    [email protected]

    TEL: 031-908-7577FAX: 031-908-7579

    Mobile: 011-237-3846

    mailto:[email protected]:[email protected]
  • 7/13/2019 PSpice Applications for Power Electronics

    2/62

    Power System Analysis Using PSpice

    Power System Division / ONYX Technologies, Inc.

    Magnetic Core Modeling

    Magnetic Core Modeling

    The parameters in the model library(magnetics.lib) were derived from the data sheetsfor each core.

    Model parameters for ferrite material (Philips 3C8) were obtained by trial simulations,

    using the B-H curves from the manufacturer's catalog.Then, the library was compiled from the data sheets for each core geometry.

    Notice that only the geometric values change once a material is characterized.

    The Jiles-Atherton magnetics model is described in:

    Theory of Ferromagnetic Hysteresis, by D C Jiles and D L Atherton,

    Journal of Magnetism and Magnetic Materials, vol 61 (1986) pp 48-60

    The Jiles-Atherton magnetics model is described in:

    Theory of Ferromagnetic Hysteresis, by D C Jiles and D L Atherton,

    Journal of Magnetism and Magnetic Materials, vol 61 (1986) pp 48-60

  • 7/13/2019 PSpice Applications for Power Electronics

    3/62

    Power System Analysis Using PSpice

    Power System Division / ONYX Technologies, Inc.

    Magnetic Core Modeling

    Magnetic Core Modeling

    Notes:

    1) Using a K device (formerly only for mutual coupling) with a model

    reference changes the meaning of the L device: the inductance value

    becomes the number of turns for the winding.

    2) K devices can "get away" with specifying only one inductor, as in the

    example above, to simulate power inductors.

    Demonstration of power inductor B-H curve To view results with Probe (B-Hcurve):

    1) Add Trace for B(K1)

    2) set X-axis variable to H(K1)

    Probe x-axis unit is Oersted

    Probe y-axis unit is Gauss

  • 7/13/2019 PSpice Applications for Power Electronics

    4/62

    Power System Analysis Using PSpice

    Power System Division / ONYX Technologies, Inc.

    Magnetic Core ModelingMagnetic Core Modeling

    Name Meaning Unit Default

    AREA Mean magnetic cross section cm2 0.1

    PATH Mean magnetic path length cm 1.0

    GAP Effective air-gap length cm 0

    PACK Pack(stacking) 1.0

    MS Magnetic saturation A/m 1E+6

    ALPHA Mean field parameter 1E-3

    A Shape parameter 1E+3

    C Domain wall-flexing constant 0.2

    K Domain wall-pinning constant 500

    1. K=0 : Anhysteric Curve Setup

    2. Bmax : Bmax=MS*0.012573. A : Get a Curve4. K : Create Hysteresis5. C : Initial Permeability

    1. K=0 : Anhysteric Curve Setup2. Bmax : Bmax=MS*0.012573. A : Get a Curve4. K : Create Hysteresis5. C : Initial Permeability

    Method I

    1. MS ; Bmax/0.01257

    2. 100A/m=1.25 oersted

    3. MS, A, C, K B-H Loop 4. Core Size Area Path

    1. MS ; Bmax/0.012572. 100A/m=1.25 oersted

    3. MS, A, C, K B-H Loop 4. Core Size Area Path

    Method II

  • 7/13/2019 PSpice Applications for Power Electronics

    5/62

    Power System Analysis Using PSpice

    Power System Division / ONYX Technologies, Inc.

    Magnetic Core ModelingMagnetic Core Modeling

    * 3C81_LSW CORE model

    * updated using Model Editor release 9.2.2 on 11/15/01 at 11:16

    * The Model Editor is a PSpice product.

    .MODEL 3C81_LSW CORE

    + GAP=0

    + MS=384.61E3

    + A=27.747+ C=.2418

    + K=18.396

    + AREA=2.7900

    + PATH=14.400

    *$

    Ferroxcube 3C81 Core: www.Ferroxcube.com

  • 7/13/2019 PSpice Applications for Power Electronics

    6/62

    Power System Analysis Using PSpice

    Power System Division / ONYX Technologies, Inc.

    Magnetic Core ModelingMagnetic Core Modeling

    Example(Ferroxcube )33C81C81

    H(Oersted) B(Gauss)

    0 1100

    0.176 0

    3.125 4250

    0.625 2560

    0.625 3400

    FIG. 1.

  • 7/13/2019 PSpice Applications for Power Electronics

    7/62

    Power System Analysis Using PSpice

    Power System Division / ONYX Technologies, Inc.

    Magnetic Core ModelingMagnetic Core Modeling

    Example(FerroxcubeExample(Ferroxcube ))H(Oersted) B(Gauss)

    0 1100

    0.176 0

    3.125 4250

    0.625 2560

    0.625 3400

    ValueName

    18.396

    0.2418

    27.747

    384610MS

    A

    K

    C

    Active ParametersInitial Perm : 2700

    FIG. 2.

  • 7/13/2019 PSpice Applications for Power Electronics

    8/62

    Power System Analysis Using PSpice

    Power System Division / ONYX Technologies, Inc.

    Magnetic Core ModelingMagnetic Core Modeling

    H( K1)

    - 3. 0 - 2. 0 - 1. 0 - 0. 0 1. 0 2. 0 3. 0

    B( K1)

    - 5 . 0K

    0

    5 . 0 K H( K2)

    - 3. 0 - 2. 0 - 1. 0 - 0. 0 1. 0 2. 0 3. 0B( K2)

    - 5 . 0K

    0

    5 . 0 K

    SEL>>

    3C81_LSW

    EC70_3C81

    BB--H CurveH Curve

    1. 3C81_LSW1. 3C81_LSW2. EC70_3C812. EC70_3C81

    FIG. 3

    I1IOFF = 0

    FREQ = 10kIAMPL = 0.5

    TD = 1usec

    0

    L2

    100

    1

    2

    K

    COUPLING=

    K1

    13C81_LSW

    R1

    0.1

    K

    COUPLING=

    K2

    1EC70_3C81

    L1

    100

    1

    2

    R3

    0.1

    R2

    0.1 FIG. 4

    FIG. 5

  • 7/13/2019 PSpice Applications for Power Electronics

    9/62

    Power System Analysis Using PSpice

    Power System Division / ONYX Technologies, Inc.

    Magnetic Core ModelingMagnetic Core Modeling

    BB--H CurveH Curve

    H( K1) @1

    - 8 0 0m - 4 0 0m 0 4 0 0m 80 0mB( K1)

    - 5 . 0K

    0

    5 . 0 K

    50T

    100T

    200T

    0

    PARAMETERS:L1 = 50

    L1

    {L1}

    1

    2

    R1

    0.1

    K

    COUPLING=

    K1

    13C81_LSW

    I1

    IOFF = 0

    FREQ = 1kIAMPL = 0.02

    TD = 1msec

    I3

    IOFF = 0

    FREQ = 1kIAMPL = 0.1

    TD = 3msec

    I2

    IOFF = 0

    FREQ = 1kIAMPL = 0.05

    TD = 2msec

    FIG. 6

    FIG. 7.

  • 7/13/2019 PSpice Applications for Power Electronics

    10/62

    Power System Analysis Using PSpice

    Power System Division / ONYX Technologies, Inc.

    Modeling of TransformerModeling of Transformer

    Equivalent Circuit : ABM1. K_Linear2. PSpice Template Properties

    Equivalent Circuit : ABM1. K_Linear2. PSpice Template Properties

  • 7/13/2019 PSpice Applications for Power Electronics

    11/62

    Power System Analysis Using PSpice

    Power System Division / ONYX Technologies, Inc.

    Whats ABM(Analog Behavioral Modeling)?Whats ABM(Analog Behavioral Modeling)?

    Behavioral Modeling is the process of developing a model for adevice or system component from the viewpoint of externallyobserved behavior rather than from a microscopic description

    Two important application of Behavioral Modeling in the domainof analog simulation are : modeling new device types : andblock-box modeling of complex systems.

    ApplicationsAveraged-PWM Switch, Transformer, PWM IC

    F1

    F

    Current-Controlled Voltage Source

    Current-Controlled Current Source

    +

    -

    G1

    G

    +-

    H1

    H

    Voltage-Controlled Voltage Source

    Voltage-Controlled Current Source

    -+

    +

    -

    E1

    E

    G2

    V(%IN+, %IN-)GVALUE

    OUT+OUT-

    IN+IN-

    E2

    V(%IN+, %IN-)EVALUE

    OUT+OUT-

    IN+IN-

    E1

    V(%IN+, %IN-)EVALUE

    G3

    V(%IN+, %IN-)GTABLE

    OUT+OUT-

    IN+IN-

    E3

    V(%IN+, %IN-)ETABLE

    OUT+OUT-

    IN+IN-

    G1

    V(%IN+, %IN-)GVALUE

  • 7/13/2019 PSpice Applications for Power Electronics

    12/62

    Power System Analysis Using PSpice

    Power System Division / ONYX Technologies, Inc.

    Transformer Equivalent CircuitTransformer Equivalent Circuit 1. : ABM 2. : R, L C

    4

    3

    3

    0.269m

    L1

    6

    2.51

    Rs

    0.0311

    R2

    -+

    +

    -

    E1

    ENOM

    F1

    FNOM

    4

    10R1

    4

    5

    65.578HLm

    R5

    1Meg

    3

    5

    V1

    6

    0.0269124

    L

    73kRm

    Ideal Transformer

    FIG. 9

    FIG. 8

  • 7/13/2019 PSpice Applications for Power Electronics

    13/62

    Power System Analysis Using PSpice

    Power System Division / ONYX Technologies, Inc.

    K_LinearK_Linear

    H( K1)

    - 10 - 5 0 5 10B( K1)

    -5 .0K

    0

    5. 0K

    R1

    0.1

    0

    V1

    FREQ = 1kVAMPL = 10VOFF = 0 R3

    {Ro}

    R2

    1meg

    PARAMETERS:Ro = 1

    L1

    1

    1

    2

    L2

    1

    1

    2

    K

    COUPLING=

    K1

    13C81_K_LINEAR_LSW

    FIG. 10

    FIG. 11

    P S t A l i U i PS i

  • 7/13/2019 PSpice Applications for Power Electronics

    14/62

    Power System Analysis Using PSpice

    Power System Division / ONYX Technologies, Inc.

    XFRM_LINEAR or XFRM_NONLINEAR Editing Transformer Template PropertiesXFRM_LINEAR or XFRM_NONLINEAR Editing Transformer Template Properties

    K^@REFDES L1^@REFDES L2^@REFDES@COUPLING\nL1^@REFDES %1 %2

    @L1_VALUE\nL2^@REFDES %3 %4 @L2_VALUE

    TX4

    L1_VALUE = 10uH L2_VALUE = 10uH

    XFRM_LINEAR

    XFRM_NONLINEAR

    K^@REFDES L1^@REFDES L2^@REFDES @COUPLING

    @MODEL\nL1^@REFDES %1 %2 @L1_TURNS

    \nL2^@REFDES %3 %4 @L2_TURNS

    TX23C81-HCM

    L1_TURNS = 2 L2_TURNS = 1

    K^@REFDES L1^@REFDES L2^@REFDES L3^@REFDES@COUPLING @MODEL\nL1^@REFDES %1 %2 @L1_TURNS

    \nL2^@REFDES %3 %4 @L2_TURNS \nL3^@REFDES %5 %6

    @L3_TURNS

    TX33C81-HCM

    L1_TURNS = 5

    L2_TURNS = 1

    L3_TURNS = 1

    Po er S stem Anal sis Using PSpice

  • 7/13/2019 PSpice Applications for Power Electronics

    15/62

    Power System Analysis Using PSpice

    Power System Division / ONYX Technologies, Inc.

    Waveforms with Nonlinear Transformer

    TX1

    kbreak

    L1_TURNS = 10 L2_TURNS = 1

    R51meg

    R2

    10

    0

    R1

    0.1

    V1

    FREQ = 100kVAMPL = 10VOFF = 0

    Ti me

    0s 5us 10us 15us 20usV( R1 : 2 ) V( TX1 : 3 )

    -10V

    - 5V

    0V

    5V

    10V

    Secondary

    Pri mar y

    FIG. 12 0

    V2

    FREQ = 100kVAMPL = 10VOFF = 0

    R6 1meg

    R3

    10

    TX23C81_LSW

    L1_TURNS = 10 L2_TURNS = 1

    R4

    0.1

    FIG. 14

    Ti me

    0s 5us 10us 15us 20usV( R4: 1 ) V( R3 : 1)

    -12V

    - 8V

    - 4V

    0V

    4V

    8V

    12V

    Secondary

    Pri mar y

    FIG. 15FIG. 13

    Power System Analysis Using PSpice

  • 7/13/2019 PSpice Applications for Power Electronics

    16/62

    Power System Analysis Using PSpice

    Power System Division / ONYX Technologies, Inc.

    Ti me

    0s 5us 10us 15us 20usV( R7: 2) V(TX3: 3) V(TX3 : 5 )

    -12V

    - 8V

    - 4V

    0V

    4V

    8V

    12V

    Secondar y2

    Secondar y1

    Pr i mar y

    XFRM_Nonlinear

    Template

    R11 1meg

    TX33C81_LSW

    L1_TURNS = 5

    L2_TURNS = 2

    L3_TURNS = 1

    V3

    FREQ = 100kVAMPL = 10

    VOFF = 0

    R9

    10

    R7

    0.1R8

    10

    0

    FIG. 16

    FIG. 17

    Power System Analysis Using PSpice

  • 7/13/2019 PSpice Applications for Power Electronics

    17/62

    Power System Analysis Using PSpice

    Power System Division / ONYX Technologies, Inc.

    Switching Mode Power Supply

    Isolation Type Non-Isolation Type

    Flyback

    Forward

    Half Bridge

    Full Bridge

    Push Pull

    Buck (Step Down)

    Boost (Step Up)

    Buck-Boost

    Power System Analysis Using PSpice

  • 7/13/2019 PSpice Applications for Power Electronics

    18/62

    Power System Analysis Using PSpice

    Power System Division / ONYX Technologies, Inc.

    Switching Mode Power Supply

    Type Inductor Capacitor

    Cuk

    Sepic

    Zeta

    Buck (Step Down)

    Boost (Step Up)

    Buck-Boost

    Flyback

    Forward

    Half Bridge

    Full BridgePush Pull

    Power System Analysis Using PSpice

  • 7/13/2019 PSpice Applications for Power Electronics

    19/62

    y y g p

    Power System Division / ONYX Technologies, Inc.

    Buck ConverterBuck Converter

    Ti me

    0s 2. 0ms 4. 0ms 6. 0ms

    V( R3: 1) I ( L1)

    - 4 . 0

    0

    4. 0

    8. 0

    I n du c t o r Cu r r e n t

    Out put

    C1

    200uIC = 0

    R4

    0.1

    R3

    10

    V6

    TD = 1n

    TF = 1nPW = 4uPER = 10u

    V1 = 0

    TR = 1n

    V2 = 10

    V70Vac

    TRAN =

    12VdcSG

    R6

    1meg

    R2

    0.001

    L1

    150uH

    G

    R5

    10

    R1

    0.1

    0

    M1IRF150

    D1

    MBR360

    S

    FIG. 19

    Ti me

    4. 560ms 4. 580ms 4. 600msV( R3: 1) I ( L1)

    400m

    500m

    345m

    567m

    FIG. 18

    FIG. 20

    Power System Analysis Using PSpice

  • 7/13/2019 PSpice Applications for Power Electronics

    20/62

    y y g p

    Power System Division / ONYX Technologies, Inc.

    vL

    (Vi-Vo)

    iL,peak

    iL

    (-Vo)

    DTs Ts t

    ILB=Io,min

    iL

    FIG. 21

    Design of Buck ConverterDesign of Buck ConverterInput Voltage : 12V

    Output Voltage : 4.8V

    Output Current : 0.1 ~ 3A

    Frequency : 100kHz

    )1(dt

    diLvL=

    )2()1()( SoSoi TDVDTVV =

    4.0)3(

    ===>=

    DDVV ino

    )7(1 cLccccco RiRiRidtiC

    v =+=

    )8(8

    )1(2

    LC

    DT

    V

    v S

    o

    o =

    )5()(22

    1min,ooi

    SLLB IVV

    LDTiI ===

    )4(Soin

    onoin

    L DTL

    VVT

    L

    VVi

    =

    =

    )9(

    8

    )1(2

    o

    oS

    v

    V

    L

    DTC

    =

    )6(2

    )1(

    min,o

    So

    I

    TDVL

    =

    Power System Analysis Using PSpice

  • 7/13/2019 PSpice Applications for Power Electronics

    21/62

    Power System Division / ONYX Technologies, Inc.

    Simulation WaveformsSimulation WaveformsFIG. 22

    Ti me

    4. 5 400ms 4. 5 420ms 4. 5 440ms 4. 5460ms 4. 5480ms 4. 5500ms 4. 5520ms 4. 5540ms1 V(L1:1)- V(L1:2) 2 I ( L1)

    -5 .00

    0

    5.00

    7.851

    400mA

    500mA

    324mA

    589mA2

    >>

    ( 4. 5500m, 359. 327m)

    ( 4. 5441m, 7. 2568)

    ( 4. 5541m, 556.37

    (4. 5400m, -4. 9904)

    On time : 4.551ms-4.54ms=4.1us

    Off time : 10us-4.1us=5.9us

    iL : 556.3mA-359.2mA=197.1mA

    (Vi-Vo) : 7.26

    (-Vo) : 4.99

    Inductor Voltage(1)

    Inductor Current(2)

    Ti me

    4. 428ms 4. 432ms 4. 436ms 4. 440ms 4. 444ms 4. 448ms1 I ( L1) 2 I ( C1) 3 V( C1: 1 )

    30 0mA

    40 0mA

    50 0mA

    60 0mA1

    >>- 400mA

    0A

    40 0mA2

    4 . 576V

    4 . 580V

    4 . 584V3

    I n d u c t o r Cu r r e n t Ca p a c i t o r Vo l t a g e

    Ca pa c i t o r Cu r r e n t

    FIG. 23

    Inductor Current(1)

    Capacitor Current(2)

    Capacitor Voltage(3)

    Power System Analysis Using PSpice

  • 7/13/2019 PSpice Applications for Power Electronics

    22/62

    Power System Division / ONYX Technologies, Inc.

    Ti me

    0s 5ms 10ms

    V( OUT) I ( L1)

    - 1 00

    0

    100

    200

    I n du ct o r Cu r r e n t

    Ou t pu t Vo l t age

    FIG. 25

    Boost ConverterBoost Converter

    in

    0

    R5

    100k

    R1

    0.1

    R3

    10R4

    10

    L1

    50uH

    V2

    TD = 1n

    TF = 1nPW = 3uPER = 10u

    V1 = 0

    TR = 1n

    V2 = 10

    C1

    470u

    switch out

    D1

    MBR1045

    R2

    0.01

    M1

    IRF540

    V1

    48Vdc

    Ti me

    8. 880ms 8. 920ms8. 854ms 8. 959msV( OUT) I ( L1)

    8 . 0 0

    1 0 . 0 0

    6 . 9 9

    1 1 . 6 5

    FIG. 24

    FIG. 26

    Power System Analysis Using PSpice

  • 7/13/2019 PSpice Applications for Power Electronics

    23/62

    Power System Division / ONYX Technologies, Inc.

    Design of Boost ConverterDesign of Boost ConverterInput Voltage : 12VOutput Voltage : 4.8V

    Output Current : 0.1 ~ 3A

    Frequency : 100kHz

    vL

    -(Vi-Vo)

    iL,peak

    iL

    Vi

    DTs Ts t

    ILB=Io,min

    iL

    FIG. 27

    )10(dtdiLvL =

    )11()1( SoSi TDVDTV =

    33.0

    )12(1

    1

    ===>

    =

    D

    VD

    V ino

    )17(1

    cLccccco RiRiRidtiC

    v =+=

    )14(22

    1i

    SLLB V

    L

    DTiI ==

    )13(Soin

    onoin

    L DTL

    VVT

    L

    VVi

    =

    =

    )18(C

    DT

    R

    Vo

    C

    DTI

    C

    Qv SSoo ==

    =

    )19(o

    oS

    v

    V

    R

    DTC =

    )16(2 min,

    2

    o

    So

    I

    TDDVL

    =

    )15(22

    )1(

    min,

    2

    oSo

    Si

    LBSLB

    T

    DT LBOB

    ITDDL

    VTDD

    L

    V

    DITDIdtII

    S

    S

    ===

    ===

    Power System Analysis Using PSpice

  • 7/13/2019 PSpice Applications for Power Electronics

    24/62

    Power System Division / ONYX Technologies, Inc.

    Boost ConverterBoost ConverterFIG. 28

    Ti me

    9. 970ms 9. 975ms 9. 980ms 9. 985ms 9. 990ms 9. 995ms 10. 000ms1 V( IN,L1:2) 2 I( L1)

    -50V

    0V

    50V1

    8A

    9A

    10A

    11A

    12A2

    >>

    ( 9. 983m, 11. 010)

    (9 . 980m, 8.2463)

    (9 . 973m, -19. 963)

    V( IN,L1:2)

    On time : 4.551ms-4.54ms=4.1us

    Off time : 10us-4.1us=5.9us

    iL : 556.3mA-359.2mA=197.1mA

    (Vi-Vo) : 7.26

    (-Vo) : 4.99

    Inductor Voltage(1)

    Inductor Current(2)

    Ti me

    9. 970ms 9. 975ms 9. 980ms 9. 985ms 9. 990ms 9. 995ms 10. 000ms1 I ( R2) 2 I ( L1) 3 V( R2: 2 )

    -10A

    - 5A

    0A

    5A1

    >>8A

    9A

    10A

    11A

    12A2

    66.40V

    66.42V

    66.44V

    66.46V3

    Induc tor Curr entCapaci t or Cur r ent Capaci t or Vol t age

    FIG. 29

    Inductor Current(2)

    Capacitor Current(1)Capacitor Voltage(3)

    Power System Analysis Using PSpice

  • 7/13/2019 PSpice Applications for Power Electronics

    25/62

    Power System Division / ONYX Technologies, Inc.

    Ti me

    0s 5ms 10msV( R3: 1 ) I D( M2)

    - 10

    0

    10

    20

    Swi t c h Cu r r e n t

    Ou t p u t Vo l t a g e

    FIG. 31

    Flyback ConverterFlyback Converter

    FIG. 30

    R2

    0.001

    0

    R4

    10

    M2

    IRF840

    TX1

    3C81_LSW

    50 10

    V2

    TD = 1n

    TF = 1nPW = 3uPER = 10u

    V1 = 0

    TR = 1n

    V2 = 10

    C1

    47u

    D1

    MBR1035

    R5

    100kR7

    100k

    R1

    0.1

    V3

    0.1VacTRAN =

    48Vdc

    R3

    100

    Ti me

    8. 5400ms 8. 5600ms8. 5287ms 8. 5743msV( R3 : 1) I D( M2)

    0

    250m

    - 9 3 m

    478m

    FIG. 32

    Power System Analysis Using PSpice

  • 7/13/2019 PSpice Applications for Power Electronics

    26/62

    Power System Division / ONYX Technologies, Inc.

    Forward ConverterForward Converter

    Ti me

    0s 2ms 4ms 6ms 8ms 10ms1 V( M4 : d ) 2 I ( L1 ) 3 V( OUT)

    - 5 0 V

    0V

    50 V

    100V1

    >>0A

    5 . 0 A

    1 0 . 0 A2

    - 5 . 0 V

    0V

    5 . 0 V3

    Ou t p u t Vo l t a g e

    VdsSwi t ch Curr ent

    Ti me

    9. 2600ms 9. 2800ms 9. 3000ms 9. 3200ms9. 2432ms 9. 3378ms1 V( M4 : d ) 2 I ( L 1) 3 V( OUT)

    7 0 . 0 V

    7 2 . 0 V

    6 8 . 4 V

    7 2 . 6 V1

    >>7 . 9 0 0 A

    8 . 0 0 0 A

    8 . 1 0 0 A

    8 . 1 7 4 A2

    2 . 9 0 0 V

    3 . 0 0 0 V

    3 . 1 0 0 V

    3 . 1 7 4 V3

    R7

    50

    R2

    0.1

    R3

    0.01

    R6

    100k

    V1

    48Vdc

    V2

    TD = 1n

    TF = 1nPW = 3u

    PER = 10u

    V1 = 0

    TR = 1n

    V2 = 10

    R4

    10

    TX1

    COUPLING = 0.93C81_LSW

    30 5

    30

    C1

    47u

    R9

    1

    0

    R5

    10Meg

    D2

    MBR1045

    D3

    MBR1045

    out

    M4

    IRF840

    R1

    1

    L1

    500uH

    D15

    MBR1045

    FIG. 34

    FIG. 33

    FIG. 35

    Power System Analysis Using PSpice

  • 7/13/2019 PSpice Applications for Power Electronics

    27/62

    Power System Division / ONYX Technologies, Inc.

    Buck ConverterBuck Converter

    1:D

    DIO

    DVin

    IO

    Vin VO

    A C

    P P

    A C

    P

    FIG. 37FIG. 36

    Duty

    D

    R1

    1Meg

    2

    1

    +-

    H2

    H

    Vout

    Vout=Vin*D

    R3

    1Meg

    2

    1

    P

    Vin0

    G2

    V(Io)*V(D)GVALUE

    OUT+OUT-

    IN+IN-Iin

    Io

    C

    AE2

    V(Vin)*V(D)EVALUE

    OUT+OUT-

    IN+IN-Iin=Iout*D

    R6

    1Meg

    0

    Averaged PWM Switch

    R4

    1Meg

    2

    1

    FIG. 39

    +-

    H1

    H

    V(Out,Diode)=V(In,Diode)*DDuty_Cycle

    D

    In

    Out

    Averaged PWM-Switch

    Diode

    E1

    EMULT

    IN1+IN1-

    IN2+IN2-

    OUT+

    OUT-I(In)=I(Out)*D

    G1

    GMULT

    IN1+IN1-

    IN2+IN2-

    OUT+

    OUT-

    FIG. 38

    Power System Analysis Using PSpice

  • 7/13/2019 PSpice Applications for Power Electronics

    28/62

    Power System Division / ONYX Technologies, Inc.

    Boost ConverterBoost Converter

    A

    0

    0

    Iin=Io/(1-D)

    E1

    V(Vin)/(1-V(D))EVALUE

    OUT+OUT-

    IN+IN-

    D

    + - H1

    H

    C

    Vo

    C

    G1

    V(Io)/(1-V(D))GVALUE

    OUT+OUT-

    IN+IN-

    Io

    R1

    1Meg

    0

    P

    P

    D

    Vin

    R2 1k

    A

    A

    Vo=Vin/(1-D)

    FIG. 40

    Power System Analysis Using PSpice

  • 7/13/2019 PSpice Applications for Power Electronics

    29/62

    Power System Division / ONYX Technologies, Inc.

    Average PWM Buck ConverterAverage PWM Buck Converter

    Ti me

    0s 5ms 10msV( R14: 2) I ( L3)

    - 4 . 0

    0

    4. 0

    8. 0

    I nductor Curr ent

    Out put Vol t age

    V( R14: 2) I ( L3)

    V10

    AC = 0VacTRAN =

    DC = 12Vdc

    R15

    0.01

    2

    1

    L3

    {L3}

    1 2R14

    0.1

    21

    S2_1

    AVG_PWM2

    A

    PDuty

    C

    R16

    10

    2

    1C6

    47u

    1

    2V12

    1Vac

    0.4Vdc

    0

    PARAMETERS:L3 = 150u

    FIG. 41

    FIG. 42

    Frequency

    1. 0Hz 100Hz 10KHz 1. 0MHz 100MHzVDB(R14: 2 ) VP(R14: 2 )

    -200

    -100

    0

    100

    Phase Cur ve

    Gai n Cur ve

    Frequency

    1. 0Hz 100Hz 10KHz 1. 0MHz 100MHzVDB( R14: 2) VP( R14: 2)

    -200

    -100

    0

    100

    Frequency

    1. 0Hz 100Hz 10KHz 1. 0MHz 100MHzVDB( R14: 2) VP( R14: 2)

    -200

    -100

    0

    100

    FIG. 43 FIG. 44 FIG. 45

    Power System Analysis Using PSpice

  • 7/13/2019 PSpice Applications for Power Electronics

    30/62

    Power System Division / ONYX Technologies, Inc.

    Average PWM Boost ConverterAverage PWM Boost Converter

    R1

    0.1

    L1

    200uH

    V2

    0.1Vac0.3Vdc

    S1

    Boost_PWM

    PC

    A D

    V10Vac

    TRAN =

    48Vdc

    0

    R3

    20

    C1

    470u

    R2

    0.01

    FIG. 46

    Power System Analysis Using PSpice

  • 7/13/2019 PSpice Applications for Power Electronics

    31/62

    Power System Division / ONYX Technologies, Inc.

    CompensationCompensationCompensation

    Type I.

    F r equency

    1. 0Hz 100Hz 10KHz 1. 0MHzVDB( C1 : 2 ) VP( C1 : 2 ) - 1 80

    - 1 0 0

    0

    10 0

    Phas e

    Gai n)20(2

    1

    RCfC =

    C1

    1n

    IC = 0

    1 2

    VCC+

    0

    U1A

    TL082

    3

    2

    8

    4

    1

    +

    -

    V+

    V-

    OUT

    V3

    5Vdc

    R1

    10k

    21

    VCC-

    VCC+

    V11Vac

    1Vdc

    VCC-

    V2

    0Vdc

    V4

    -5Vdc

    0

    FIG. 47

    FIG. 49

    R4

    10k

    21

    V7

    2.5Vdc

    -+

    +

    -

    E1

    E

    0

    V81Vac

    2.5Vdc

    C2

    1n

    IC = 0

    1 2

    0

    R5

    10Meg

    2

    1

    +

    -

    G1

    G

    FIG. 48

    Power System Analysis Using PSpice

  • 7/13/2019 PSpice Applications for Power Electronics

    32/62

    Power System Division / ONYX Technologies, Inc.

    Type II.

    )21(

    )(1)(

    )1(

    2

    21

    21121

    21

    +++

    +=

    RCC

    CCsRCCs

    RsC

    v

    v

    o

    c

    )22(2

    1

    21

    RCfZ

    =

    )23()(2

    1

    221

    22221

    21 CCRCRCC

    CCfP >>

    += Q

    )24(1

    21

    R

    RAV =

    F r e q u e nc y

    1. 0Hz 100Hz 10KHz 1. 0MHzVDB( C1 : 2 ) VP( C1 : 2 ) - 1 8 0

    - 1 0 0

    0

    10 0

    Phase

    Gai n

    R2

    10k

    21

    C2

    1n

    IC = 0

    1 2

    V11Vac

    2.5Vdc

    C1

    100nIC = 0

    1 2

    VCC+

    0

    VCC-

    V2

    2.5Vdc

    R1

    1k

    21

    U1A

    TL082

    3

    2

    8

    4

    1

    +

    -

    V+

    V-

    OUT

    FIG. 51

    FIG. 50

    Power System Analysis Using PSpice

  • 7/13/2019 PSpice Applications for Power Electronics

    33/62

    Power System Division / ONYX Technologies, Inc.

    F r equency

    1. 0Hz 100Hz 10KHz 1. 0MHzVDB( C2 : 2 ) VP( C2: 2 ) - 1 80

    - 1 0 0

    - 50

    0

    50

    Phase

    Gai n

    C2

    100nIC = 0

    1 2

    R2

    10k

    21

    V2

    2.5Vdc

    V11Vac

    2.5Vdc

    U1A

    TL082

    3

    2

    8

    4

    1

    +

    -

    V+

    V-

    OUTR150k

    21

    0

    VCC+

    C1

    5n

    IC = 0

    1 2

    VCC-

    R3

    100k

    21

    FIG. 52

    FIG. 53

    Type III.

    )25()1(

    )1)(1(

    2112

    3211

    RsCRsC

    RsCRsC

    v

    v

    o

    c

    +

    ++=

    )26(2

    1

    11

    1RC

    fZ

    =

    )27(2

    1

    322 RCfZ =

    )28(2

    1

    21RCfP

    =

    )29(21

    31

    RRRAV+

    =

    )30(2

    32

    R

    RAV =

    Power System Analysis Using PSpice

  • 7/13/2019 PSpice Applications for Power Electronics

    34/62

    Power System Division / ONYX Technologies, Inc.

    Type IV.

    )31(

    1)1()(

    )}(1){1(

    21

    221

    33121

    31321

    +

    +++

    +++=

    CC

    RCCsRsCRCCs

    RRsCRsC

    v

    v

    o

    c

    )32(2

    1

    21

    1RC

    fZ

    =

    )34(2

    1

    33

    1RC

    fP

    =

    )33(2

    1

    )(2

    1

    133132 RCRRCfZ +=

    )36(1

    21

    R

    RAV =

    )37()(

    3

    2

    31

    3122

    R

    R

    RR

    RRRAV

    +=

    )35()(2

    12

    21

    22221

    211 CC

    RCRCCCCfP >>+= Q

    Frequency

    1. 0Hz 100Hz 10KHz 1. 0MHzVDB( C1 : 2 ) VP( C1: 2 ) - 1 80

    -100

    - 50

    0

    50

    100

    Phase

    Gai n

    FIG. 54

    Power System Analysis Using PSpice

  • 7/13/2019 PSpice Applications for Power Electronics

    35/62

    Power System Division / ONYX Technologies, Inc.

    C3

    10p

    1 2R9

    5k

    R11Meg

    2

    1

    R15

    1meg

    R7

    0.1

    2

    1

    R10

    5k

    R13

    10

    f c=1/ {2*3. 14*sqr t ( LC)}

    R14

    1Meg

    R11

    {R11}

    R5

    1Meg

    EA

    Io

    A

    Vout=Vin*D

    D

    V5

    2.5Vdc

    0

    G2

    V(Io)*V(D)GVALUE

    OUT+OUT-

    IN+IN-

    V21Vac

    0.31Vdc

    EA_out

    C1

    {C1}

    1

    2

    0

    Vin L1

    {L1}

    1 2

    +-

    H2

    H

    E3

    V(EA_out)*0.5EVALUE

    OUT+OUT-

    IN+IN-

    R3

    1Meg

    2

    1

    C

    R8

    1

    2

    1

    V4

    5Vac0Vdc

    R2

    0.1

    21

    0

    E4

    if(V(EA)>10, 1, V(EA))EVALUE

    OUT+OUT-

    IN+IN-

    C2

    100nIC = 0

    12

    R4

    1meg

    PARAMETERS:C1 = 400uFL1 = 150uHR11 = 1k

    -+

    +-

    E1

    E

    +

    -G1

    G

    R61Meg

    Iin=Iout*D

    P

    V10Vac

    16Vdc

    R12

    100k

    VoutE2

    V(Vin)*V(D)EVALUE

    OUT+OUT-

    IN+IN-

    R16

    1meg

    D

    F r equency

    1. 0Hz 100Hz 10KHz 1. 0MHzVDB( L1: 2 ) VP( L1: 2 ) - 180

    - 2 0 0

    - 1 0 0

    0

    10 0

    Phase

    Gai n_R11=100k

    Gai n_R11=10k

    FIG. 56FIG. 55

    Power System Analysis Using PSpice

  • 7/13/2019 PSpice Applications for Power Electronics

    36/62

    Power System Division / ONYX Technologies, Inc.

    PF / THDPF / THD

    Power FactorPower Factor What Is It and Why Must It Be Corrected?

    INL ILjV )( =

    )( INR RIV =VIN

    IIN

    L

    R

    VL

    222 LRIV ININ +=

    R

    L=tan

    INL ILV =

    cosININ IRV =

    Apparent Power

    Reactive Power

    True PowerFIG. 57 FIG. 58

    Apparent Power = VINIIN

    Actual Power = VINIINcos

    Power System Analysis Using PSpice

  • 7/13/2019 PSpice Applications for Power Electronics

    37/62

    Power System Division / ONYX Technologies, Inc.

    PF / THDPF / THD

    PF avg v t i t

    Vrms Irms= =

    Average Power

    Apparent Power

    [ ( ) * ( )]

    *

    If v(t) has form of sine wave, power factor can be expressed as following.

    PF Vrms Irms

    Vrms Irms

    Irms

    IrmsKd K= = =

    * ( ) *cos

    *

    ( )cos *

    1 1

    THD Irms DIST

    Irms=

    ( )

    ( )*

    1100

    THD

    I rms I rms

    Irms=

    2 2 1

    1 100

    ( )

    ( ) *

    Irms DIST I rms I rms( ) ( )= 2 2 1Where,

    Power System Analysis Using PSpice

  • 7/13/2019 PSpice Applications for Power Electronics

    38/62

    Power System Division / ONYX Technologies, Inc.

    PF / THDPF / THD

    THD Irms

    Irms= (

    ( )) *

    11 1002

    THDK d

    = 1 1 1002 *

    KdTHD

    =

    +

    1

    1100

    2( )

    PF Irms

    IrmsKd K Kd= = =

    ( )cos *

    1

    =

    +

    PFTHD

    1

    1100

    2( )

    Power System Analysis Using PSpice

  • 7/13/2019 PSpice Applications for Power Electronics

    39/62

    Power System Division / ONYX Technologies, Inc.

    Relationship Between PF and THDRelationship Between PF and THD

    Kd

  • 7/13/2019 PSpice Applications for Power Electronics

    40/62

    Power System Division / ONYX Technologies, Inc.

    Equipment ClassificationEquipment Classification

    Balancedthree-phaseequipment?

    Portabletool?

    Lightingequipment?

    Equipmenthaving the

    specialwave shape?

    Motordriven?

    Class

    D

    Class

    A

    ClassC

    Class

    B

    No

    No

    No

    No

    Yes

    Yes

    Yes

    Yes

    Yes

    No

    /3 /3 /3

    /2 0

    0.35

    1pki

    i

    M

    t

    Class D Wave Shape DefinitionFIG. 61

    FIG. 60

    Power System Analysis Using PSpice

  • 7/13/2019 PSpice Applications for Power Electronics

    41/62

    Power System Division / ONYX Technologies, Inc.

    IEC 555-2 Absolute LimitsIEC 555-2 Absolute Limits

    10

    5

    21

    0.5

    0.2

    0.1

    0.05

    0.02

    0.01

    Amplitude

    1 2 3 5 10 20 30 50 100

    CLASS B

    CLASS A

    CLASS D

    CLASS C

    Harmonic Number (n)

    Arms

    FIG. 62

    Power System Analysis Using PSpice

  • 7/13/2019 PSpice Applications for Power Electronics

    42/62

    Power System Division / ONYX Technologies, Inc.

    IEC 555-2 Class D SpecificationIEC 555-2 Class D Specification

    Harmonic Orde r mA/W Maximum Pe rmis s ible

    Harmonic Current

    3

    57

    9

    1 1

    13 and on

    3 .4

    1 .91 .0

    0 .5

    0.35

    Linear Extrapolation

    3.85/n

    2.30

    1.140.77

    0.40

    0.33

    S e e Limits for Class

    A Equipment

    Notes:

    1. Class-D specifications apply to equipment operating from a single-phase 220V ac line

    with a waveshape such as that exhibited by the input current to a rectifier with a

    apacitive input filter.

    2. Current IEC documentation suggests that the above Class D limits will be applicable

    from 1st January 1995 to all equipment having an input power from 75W to 600W.

    Power System Analysis Using PSpice

  • 7/13/2019 PSpice Applications for Power Electronics

    43/62

    Power System Division / ONYX Technologies, Inc.

    PFC Specification InformationPFC Specification Information

    Power System Analysis Using PSpice

    C i

    Comparison

  • 7/13/2019 PSpice Applications for Power Electronics

    44/62

    Power System Division / ONYX Technologies, Inc.

    ComparisonComparison

    FIG. 63 FIG. 64

    Power System Analysis Using PSpice

  • 7/13/2019 PSpice Applications for Power Electronics

    45/62

    Power System Division / ONYX Technologies, Inc.

    Single Phase PFC TopologiesSingle Phase PFC Topologies

    Single-Phase

    PFC

    Boost PFC

    Buck+Boost

    PFC

    Flyback PFC

    Isolated Boost

    PFC

    Shower PFC

    Resonant

    PFC

    PWM Phase

    Shift PFC

    Dither PFC

    BIFRED PFC

    BIBRED PFC

    VPEC

    Circuits

    Two Cascade

    StagesSingle-Stage 1 Single-Stage 2

    Parallel Power

    Processing

    Power System Analysis Using PSpice

    B i T l & C t l M th d

  • 7/13/2019 PSpice Applications for Power Electronics

    46/62

    Power System Division / ONYX Technologies, Inc.

    Basic Topology & Control MethodBasic Topology & Control Method

    Vmo=K*Vm1*(Vm2-Vref)iL*Rcs

    Vout

    Vdet

    4.Feed-back

    AC

    F/FR

    SQ

    +

    _

    X

    +

    _

    3.Turn-ON

    2.Turn-OFF

    1.Boundary Vref

    FIG. 65 FIG. 66

    Power Factor :

    Target : Ballast, High Efficiency SMPS

    Switch turns on when iL reduces to zeroSwitch turns off when the switch current exceeds K*IViI*Vc

    1

    ,,1

    ,1,1cos..

    rmsTrms

    rmsrms

    rmsrms IV

    IV

    IV

    P

    S

    PFP ===

    1

    ,

    ,1cos

    rmsT

    rms

    I

    I=

    Power System Analysis Using PSpice

  • 7/13/2019 PSpice Applications for Power Electronics

    47/62

    Power System Division / ONYX Technologies, Inc.

    Experimental ResultsExperimental Results

    - 250

    - 200

    - 150

    - 100

    - 50

    0

    50

    100

    150

    200

    250

    0 100 200 300 400 500

    - 250

    - 200

    - 150

    - 100

    - 50

    0

    50

    100

    150

    200

    250

    0 100 200 300 400 500

    Output Power = 60W Output Power = 125WFIG. 67 FIG. 68

    Power System Analysis Using PSpice

  • 7/13/2019 PSpice Applications for Power Electronics

    48/62

    Power System Division / ONYX Technologies, Inc.

    Experimental ResultsExperimental Results

    - 250

    - 200

    - 150

    - 100

    - 50

    0

    50

    100

    150

    200

    250

    0 100 200 300 400 500

    0. 9

    0. 91

    0. 92

    0. 93

    0. 94

    0. 95

    0. 96

    0. 97

    0. 98

    0. 99

    1

    80 100 120 140 160 180 200 220 240

    I nput Vol t age

    Power

    Factor

    Ro=1. 5k

    Ro=1k

    Ro=500

    Output Power = 250WFIG. 69

    Power Factor Versus the Input Voltage Variation

    FIG. 70

    Power System Analysis Using PSpice

    Two Stage Topology

    Two Stage Topology

  • 7/13/2019 PSpice Applications for Power Electronics

    49/62

    Power System Division / ONYX Technologies, Inc.

    Two Stage TopologyTwo Stage Topology

    PWM IC

    L1

    ViC1

    Q1

    D1 Q2

    Q3

    Q4

    R1

    C2

    R2

    CCFL

    C3

    T1

    N1

    N2

    N3

    N4

    FIG. 71

    Buck + Royer Inverter

    Low System Efficiency

    Self Oscillation

    High Cost

    Power System Analysis Using PSpice

  • 7/13/2019 PSpice Applications for Power Electronics

    50/62

    Power System Division / ONYX Technologies, Inc.

    Simulation Circuit of Buck + Royer TopologySimulation Circuit of Buck + Royer Topology

    C4

    1u

    0

    L4

    0.88uH

    1

    2

    V

    0

    Q2

    Q2N6473

    V

    C3

    2u

    0

    L2

    8uH

    1

    2

    R7

    10meg

    0

    C1 22p

    DbreakD1

    R6

    10meg

    0

    R3

    0.21kV1

    TD = 0

    TF = 1n

    PW = 10uPER = 20u

    V1 = 7

    TR = 1n

    V2 = 15

    C2 22p

    0

    R2120k

    V2

    15Vdc

    Q1Q2N6473

    L5

    0.206H

    1

    2

    K K1

    COUPLING = 1

    K_Linear

    0

    R5

    0.2k

    R1

    120k

    M1IRFU9010

    L3

    8uH

    1

    2

    0

    L1

    60uH

    1 2

    FIG. 72

    Power System Analysis Using PSpice

    Si l ti R lt

    Simulation Result

  • 7/13/2019 PSpice Applications for Power Electronics

    51/62

    Power System Division / ONYX Technologies, Inc.

    Simulation ResultSimulation Result

    Ti me

    0s 200us 400us 500usV( Q1: c ) V( Q2: c )

    -10V

    0V

    10V

    20V

    30V

    40V

    FIG. 73

    Ti me

    0s 200us 400us 500usV( C1: 2) V( R2: 1)

    - 400V

    - 200V

    0V

    200V

    400V

    FIG. 74

    Power System Analysis Using PSpice

    Single Stage Topology

    Single Stage Topology

  • 7/13/2019 PSpice Applications for Power Electronics

    52/62

    Power System Division / ONYX Technologies, Inc.

    Single Stage TopologySingle Stage Topology

    Vi

    Q1

    Q2

    C2

    C1

    L1

    C3

    R1

    T1

    N1 N2

    C4

    CCFLR2

    CONTROL IC

    FIG. 75

    Half Bridge Converter

    High System Efficiency

    PWM / PFM Control Method

    Low Cost

    Power System Analysis Using PSpice

    Freq Characteristic of Po er Stage

    Freq Characteristic of Power Stage

  • 7/13/2019 PSpice Applications for Power Electronics

    53/62

    Power System Division / ONYX Technologies, Inc.

    Freq. Characteristic of Power StageFreq. Characteristic of Power Stage

    R8 VR1

    D4

    D3

    LAMP

    T1C4

    C5

    L1S1

    S2

    Vin 8 -

    20Vdc

    Feedback

    AC 1V

    V PROBE

    fr

    2kV

    Vin=8V

    Vin=20V

    Dimming Max

    Dimming Min

    f.min f.max

    Operating Area

    Pulse Frequency Modulation

    High Side Gate Drive

    Charge Pump Technique

    (NMOS) High System Efficiency

    Class D Type CCFL Inverter

    Low Cost

    FIG. 76

    Power System Analysis Using PSpice

    Power Stage AC Simulation

    Power Stage AC Simulation

  • 7/13/2019 PSpice Applications for Power Electronics

    54/62

    Power System Division / ONYX Technologies, Inc.

    Power Stage AC SimulationPower Stage AC Simulation

    FIG. 77

    Power System Analysis Using PSpice

    AC Simulation Result

    AC Simulation Result

  • 7/13/2019 PSpice Applications for Power Electronics

    55/62

    Power System Division / ONYX Technologies, Inc.

    AC Simulation ResultC S u at o esu t

    0

    50

    100

    150

    200

    250

    0 50000 100000 150000 200000 250000

    Fr equency

    Voltage

    V( R68K)

    V( R150K)

    FIG. 78

    Power System Analysis Using PSpice

    C S C

    AC Si l ti th t C id A t l P t

  • 7/13/2019 PSpice Applications for Power Electronics

    56/62

    Power System Division / ONYX Technologies, Inc.

    AC Simulation that Consider Actual ParametersAC Simulation that Consider Actual Parameters

    FIG. 79

    Power System Analysis Using PSpice

    Simulation Results(Ideal / Actual Case)

    Simulation Results(Ideal / Actual Case)

  • 7/13/2019 PSpice Applications for Power Electronics

    57/62

    Power System Division / ONYX Technologies, Inc.

    Simulation Results(Ideal / Actual Case)Simulation Results(Ideal / Actual Case)

    0

    200

    400

    600

    800

    1000

    1200

    1400

    0 50000 100000 150000 200000Fr equency

    Voltage

    V( out 1)

    V( out 2)

    Ideal

    Actual

    FIG. 80

    Power System Analysis Using PSpice

    Power Stage Design Guideline

    Power Stage Design Guideline

  • 7/13/2019 PSpice Applications for Power Electronics

    58/62

    Power System Division / ONYX Technologies, Inc.

    40.0

    60.0

    80.0

    100.0

    120.0

    140.0

    1.00 1.20 1.40 1.60 1.80 2.00

    Q

    N[turnsratio]

    Frequency response of output voltage

    0

    400

    800

    1200

    1600

    1E+3 10E+3 100E+3 1E+6

    frequency f [Hz]

    outputvoltag

    e[V]

    Parameter Description Typical Value UnitsVLrms Nominal Lamp Operating Voltage at full brightness 420 V

    ILrms Nominal Lamp Operating Current at full brightness 5 mA

    fo Minimum Operating Locked Frequency 53 kHz

    Lm Primary side Magnetizing Inductance 143 H

    Cout Output Ballasting Capacitor 100pF

    Vin Power circuit DC voltage 7 V

    Cs Input DC Decoupling Capacitor 0.8 H

    N Turns ratio of Transformer 74 none

    1. The vertual resistance of the lamp at the operating point Rout = 84.0 k

    2. The RMS value of the equivalent sinewave source voltage Vrms = 3.15 V

    3. The input impedance Rs = 4.73

    4. The impedance of the converted secondary capacitance Xcop = 48.5

    5. The parallel equivalent load resistance Rop = 17.4 6. The total parallel net capacitance Xctot = 10.6

    7. The net value of the required series inductor XLs = 11.5

    8. The impedance of the primary side magnetizing inductance XLm = 47.6

    9. The actual capacitive impedance that must be used Xcp = 10.6

    10. The parallel capacitor value Cp = 284 nF

    11. The series inductance value Ls = 34.5 H

    KA7523

    Vi

    Q1

    Q2

    C2

    C1

    L1

    C3

    R1

    T1

    N1 N2

    CCFL

    1 : 74

    234nF

    34.5uH

    0.3uF

    Program of Des ign guide line

    Control IC FIG. 81

    FIG. 82 FIG. 83

    Power System Analysis Using PSpice

    Mi d Di i C t l M th d

    Mixed Dimming Control Method

  • 7/13/2019 PSpice Applications for Power Electronics

    59/62

    Power System Division / ONYX Technologies, Inc.

    Mixed Dimming Control MethodMixed Dimming Control Method

    +

    R223k

    Vdim:1.5VIdim:66.7uA(Vref:1.31V)

    E/A

    Q26

    -

    R161.2k

    Burst DimmingOSC(COMP2)

    R210.5k

    -

    BurstCt

    Vref:1.253.65V

    1.5V

    150Hz

    DIM(Vdim:05V)

    C5

    PWMComparator

    Iref

    Q22

    R180.3k

    IS

    +

    S/S

    Q24

    Feedback

    R190.5k

    Vdim:5.0VIdim:2.4mA(Vref:3.65V)

    Q25

    Idim

    R170.3k

    Q23

    R2030k

    +

    0.1V

    Idim

    5V

    R231kQ27

    Burst Ct Frequency=150Hz

    E/AOutp

    Switching Frequency=100kHz

    OutputDrive

    Burst OSC Ct

    Main Switching Frequency=100kHz

    Analog Dimmi ng Mode

    Main Switch Operating Period

    MainCt

    MainOSCCt

    BurstOSC Ct

    Burst Dimming Mode

    Vdim

    1.5V

    Analog Dimming Area

    Burst Dimming Area

    5.0V

    Vdim

    1.4V

    Burst OSCCt

    Analog + BurstDimming Area

    Operating Area by the Dimming Voltage

    FIG. 85

    FIG. 86

    Timing Waveforms of the Control Circuit

    Functional Block Diagram of Mixed Dimming Method

    FIG. 84

    Power System Analysis Using PSpice

    Experimental Results

    Experimental Results

  • 7/13/2019 PSpice Applications for Power Electronics

    60/62

    Power System Division / ONYX Technologies, Inc.

    Experimental ResultsExperimental Results

    Soft Start

    Lamp Current

    Vin: 8V

    Lamp Current

    Vin: 20V

    FIG. 87 FIG. 88

    Power System Analysis Using PSpice

    E i t l R lt

    Experimental Results

  • 7/13/2019 PSpice Applications for Power Electronics

    61/62

    Power System Division / ONYX Technologies, Inc.

    Experimental ResultsExperimental Results

    Burst Dimming Function

    Lamp Voltage

    Output Drive

    Css

    COMP

    FIG. 89

    Power System Analysis Using PSpice

    Experimental Results

    Experimental Results

  • 7/13/2019 PSpice Applications for Power Electronics

    62/62

    Power System Division / ONYX Technologies, Inc.

    Experimental ResultsExperimental Results

    Open Lamp Regulation

    Lamp Voltage

    Output Drive

    SDP

    FIG. 90