Pseudo-Rotations Exercise 4.1 Lect. 3to4x M › markup › HPColloq...Pseudo-Vibrations Exercise 4.2...

8
Pseudo-Rotations Exercise 4.1 Estrangian plot in text Fig. 4.2 (Details on p.64 of Lect. 3to4x. See p.131, too.) has mass ratio and has nearly (but not quite) periodic path plot. (Let the pen-mass be here.) M 1 / m 2 = 49/1 m 2 =1 Changing to gives more nearly periodic paths shown below. (Seems perfect but it’s not.) (Experiment using BounceIt on web. lhttp://www.uark.edu/ua/modphys/markup/BounceItWeb.php ) M 1 = 48.37 Derive a closed formula for value of (to at least 7 figures) having exactly periodic behavior. Simplest formula should relate to tangent of a desired Estrangian rotation half-angle for mass . M 1 = 48.37.... θ /2 M 1 cosθ m 1 m 2 M and : sinθ 2 m 1 m 2 M cosθ = m 1 m 2 m 1 + m 2 = m 1 m 2 1 m 1 m 2 + 1 and : m 1 m 2 = 1 + cosθ 1 cosθ = cos 2 θ 2 sin 2 θ 2 = cot 2 θ 2 or : cot θ 2 = m 1 m 2 m 1 = tan 2 π 22 = 48.3741500787 Solution to Pseudo-Rotations Solving the mass ratio equation m 1 / m 2 Solution to Pseudo-Rotations Solving the mass ratio equation (5.10b) for in terms of angle θ: This will simplify to: θ = π /11 θ /2 = π /22 Given angle or and m2=1 predicts 1 Thursday, February 4, 2016

Transcript of Pseudo-Rotations Exercise 4.1 Lect. 3to4x M › markup › HPColloq...Pseudo-Vibrations Exercise 4.2...

  • Pseudo-RotationsExercise 4.1 Estrangian plot in text Fig. 4.2 (Details on p.64 of Lect. 3to4x. See p.131, too.) has mass ratio and has nearly (but not quite) periodic path plot. (Let the pen-mass be here.)

    M1 /m2 = 49/1m2=1

    Changing to gives more nearly periodic paths shown below. (Seems perfect but it’s not.)(Experiment using BounceIt on web. lhttp://www.uark.edu/ua/modphys/markup/BounceItWeb.php)

    M1= 48.37

    Derive a closed formula for value of (to at least 7 figures) having exactly periodic behavior. Simplest formula should relate to tangent of a desired Estrangian rotation half-angle for mass .

    M1= 48.37....

    θ/2 M1

    cosθ ≡ m1 −m2M

    ⎛⎝⎜

    ⎞⎠⎟ and : sinθ ≡

    2 m1m2M

    ⎝⎜⎞

    ⎠⎟

    cosθ = m1 −m2m1 +m2

    =

    m1m2

    −1

    m1m2

    +1 and : m1

    m2= 1+ cosθ

    1− cosθ=

    cos2 θ2

    sin2 θ2

    = cot2 θ2

    or : cotθ2= m1

    m2

    m1 = tan2 π22

    = 48.3741500787

    Solution to Pseudo-RotationsSolving the mass ratio equation (5.10b) for in terms of angle θ: Simplify to: Given angle or and m2=1 predicts

    m1 /m2Solution to Pseudo-RotationsSolving the mass ratio equation (5.10b) for in terms of angle θ:

    This will simplify to:

    θ = π /11 θ /2 = π /22Given angle or and m2=1 predicts

    1Thursday, February 4, 2016

    http://www.uark.edu/ua/modphys/markup/BounceItWeb.phphttp://www.uark.edu/ua/modphys/markup/BounceItWeb.php

  • Pseudo-VibrationsExercise 4.2 On p.50-55 of Lect. 5to6, is shown pseudo-harmonic motion of the large mass M=50kg attacked on either side by a pair of tiny masses m=0.1kg each traveling back and forth in a range of Y0=3.5m at an average speed of 20m/sec. The calculation seems to come up a period about √3 times too big for mass M. Explain what was overlooked and derive an improved formula for the period.

    2Thursday, February 4, 2016

  • F phys = m2v22

    Y= - ΔU

    ΔY implies : U=-m2v2

    2 ln Y( )

    1D-Isothermal Force Law (assume v2 is constant for all Y): F = m2v22

    Y= const.

    Y

    mm22 mm22

    (Y-x)

    mm22mm22mm22mm22mm22mm22m1mm22 mm22

    mm22mm22mm22mm22mm22mm22 mm22 mm22 mm22 mm22 m1

    (Y+x)x

    x=0YY

    “Hot““Cool“

    “Medium“ “Medium“

    x =0

    x

    Utotal(x)

    PotentialUtotal

    Ftotal(x)

    ForceFtotal

    “High pressure““Low pressure“

    “Medium pressure“ “Medium pressure“

    (a) Off center x>0: Negative restoring force

    (b) Equilibrium x=0: Balanced

    YY

    Ftotal= fY0 +x( )3

    − fY0 −x( )3

    = f 1Y03 −3xY04 +6x2

    Y05 −10x3

    Y06 +

    ⎣⎢

    ⎦⎥ − f

    1Y03 +3xY04 +6x2

    Y05 +10x3

    Y06 +

    ⎣⎢

    ⎦⎥

    (Y0 +x)-3= Y0

    -3−3xY0-4+3⋅4

    2x2Y0

    -5− 3⋅4⋅52⋅3

    x3Y0-6... (Y0 −x)

    -3= Y0-3+3xY0

    -4+3⋅42x2Y0

    -5 + 3⋅4⋅52 ⋅3

    x3Y0-6...

    (Y0 +x)n= Y0

    n+nY0n−1x + n(n-1)

    2Y0

    n−2 x2+ n(n-1)(n-2)2 ⋅3

    Y0n−3x3+ n(n-1)(n-2)(n-3)

    2 ⋅3⋅4Y0

    n−4 x4…

    Unit 1Fig. 6.2

    Example of oscillator with opposing Isothermal potentials

    Fig. 5.3Unit 1

    Two opposing 1D-Adiabatic Force Law fields

    Binomial Theorem

    F =m2 v2

    INY0( )2Y 3

    = const.Y 3

    1D-Adiabatic Force Law

    3Thursday, February 4, 2016

  • F phys = m2v22

    Y= - ΔU

    ΔY implies : U=-m2v2

    2 ln Y( )

    1D-Isothermal Force Law (assume v2 is constant for all Y): F = m2v22

    Y= const.

    Y

    mm22 mm22

    (Y-x)

    mm22mm22mm22mm22mm22mm22m1mm22 mm22

    mm22mm22mm22mm22mm22mm22 mm22 mm22 mm22 mm22 m1

    (Y+x)x

    x=0YY

    “Hot““Cool“

    “Medium“ “Medium“

    x =0

    x

    Utotal(x)

    PotentialUtotal

    Ftotal(x)

    ForceFtotal

    “High pressure““Low pressure“

    “Medium pressure“ “Medium pressure“

    (a) Off center x>0: Negative restoring force

    (b) Equilibrium x=0: Balanced

    YY

    Ftotal= fY0 +x( )3

    − fY0 −x( )3

    = f 1Y03 −3xY04 +6x2

    Y05 −10x3

    Y06 +

    ⎣⎢

    ⎦⎥ − f

    1Y03 +3xY04 +6x2

    Y05 +10x3

    Y06 +

    ⎣⎢

    ⎦⎥

    (Y0 +x)-3= Y0

    -3−3xY0-4+3⋅4

    2x2Y0

    -5− 3⋅4⋅52⋅3

    x3Y0-6... (Y0 −x)

    -3= Y0-3+3xY0

    -4+3⋅42x2Y0

    -5 + 3⋅4⋅52 ⋅3

    x3Y0-6...

    (Y0 +x)n= Y0

    n+nY0n−1x + n(n-1)

    2Y0

    n−2 x2+ n(n-1)(n-2)2 ⋅3

    Y0n−3x3+ n(n-1)(n-2)(n-3)

    2 ⋅3⋅4Y0

    n−4 x4…

    Unit 1Fig. 6.2

    Example of oscillator with opposing Isothermal potentials

    Fig. 5.3Unit 1

    Two opposing 1D-Adiabatic Force Law fields

    Binomial Theorem

    F =m2 v2

    INY0( )2Y 3

    = const.Y 3

    1D-Adiabatic Force Law

    4Thursday, February 4, 2016

  • F phys = m2v22

    Y= - ΔU

    ΔY implies : U=-m2v2

    2 ln Y( )

    1D-Isothermal Force Law (assume v2 is constant for all Y): F = m2v22

    Y= const.

    Y

    mm22 mm22

    (Y-x)

    mm22mm22mm22mm22mm22mm22m1mm22 mm22

    mm22mm22mm22mm22mm22mm22 mm22 mm22 mm22 mm22 m1

    (Y+x)x

    x=0YY

    “Hot““Cool“

    “Medium“ “Medium“

    x =0

    x

    Utotal(x)

    PotentialUtotal

    Ftotal(x)

    ForceFtotal

    “High pressure““Low pressure“

    “Medium pressure“ “Medium pressure“

    (a) Off center x>0: Negative restoring force

    (b) Equilibrium x=0: Balanced

    YY

    Ftotal= fY0 +x( )3

    − fY0 −x( )3

    = f − 3xY04 −10x3

    Y06

    ⎣⎢

    ⎦⎥ + f −

    3xY04 −10x3

    Y06 +

    ⎣⎢

    ⎦⎥ = -2 f

    3xY04 −2 f

    10x3

    Y06 − ...

    Unit 1Fig. 6.2

    Example of oscillator with opposing Isothermal potentials

    Fig. 5.3Unit 1

    Two opposing 1D-Adiabatic Force Law fields

    F =m2 v2

    INY0( )2Y 3

    = fY 3

    1D-Adiabatic Force Law

    where:

    f = m2 v2INY0( )2 = const.

    Harmonicoscillator

    term

    Anharmonicoscillatorterms...

    k=2 ⋅3 f /Y04= 2 ⋅3m2 v2

    IN( )2 /Y02.Adiabatic harmonic force constant :

    5Thursday, February 4, 2016

  • F phys = m2v22

    Y= - ΔU

    ΔY implies : U=-m2v2

    2 ln Y( )

    1D-Isothermal Force Law (assume v2 is constant for all Y): F = m2v22

    Y= const.

    Y

    mm22 mm22

    (Y-x)

    mm22mm22mm22mm22mm22mm22m1mm22 mm22

    mm22mm22mm22mm22mm22mm22 mm22 mm22 mm22 mm22 m1

    (Y+x)x

    x=0YY

    “Hot““Cool“

    “Medium“ “Medium“

    x =0

    x

    Utotal(x)

    PotentialUtotal

    Ftotal(x)

    ForceFtotal

    “High pressure““Low pressure“

    “Medium pressure“ “Medium pressure“

    (a) Off center x>0: Negative restoring force

    (b) Equilibrium x=0: Balanced

    YY

    Ftotal= fY0 +x( )3

    − fY0 −x( )3

    = f − 3xY04 −10x3

    Y06

    ⎣⎢

    ⎦⎥ + f −

    3xY04 −10x3

    Y06 +

    ⎣⎢

    ⎦⎥ = -2 f

    3xY04 −2 f

    10x3

    Y06 − ...

    Unit 1Fig. 6.2

    Example of oscillator with opposing Isothermal potentials

    Fig. 5.3Unit 1

    Two opposing 1D-Adiabatic Force Law fields

    F =m2 v2

    INY0( )2Y 3

    = const.Y 3

    1D-Adiabatic Force Law

    where:

    f = m2 v2INY0( )2 = const.

    Harmonicoscillator

    term

    Anharmonicoscillatorterms...

    k=2 ⋅3 f /Y04= 2 ⋅3m2 v2

    IN( )2 /Y02.Adiabatic harmonic force constant :

    HO frequency: ω = k

    m1= 2 ⋅3m2

    m1v2IN

    Y0=2πυ

    Adiabatic frequency is √3 times faster than isothermal frequency6Thursday, February 4, 2016

  • Unit 1Fig. 6.3

    Sample problem: Compute period given m1=50, m2=0.1=m3, v2=20, Y0=3.5

    Fig. 5.3Unit 1

    BounceIt Superball Collision Web Simulator: 1:500:1 mass ratios (Small Amplitude)

    HO frequency: ω = k

    m1= 2⋅3m2

    m1v2Y0

    =2πυ

    Adiabatic Frequency

    Adiabatic Period :τ = 1υ

    =2π m1k=2π m1

    2 ⋅3m2Y0v2Adiabatic Period is 3 times shorter :

    τ =2π m12⋅3m2

    Y0v2

    = 6.28 502⋅3⋅(0.1)

    3.520

    =10.03

    Switchm1=m3

    withm2

    to matchformula

    That’s only a little too big!

    Simulation of

    an adiabatic case

    7Thursday, February 4, 2016

    http://www.uark.edu/ua/modphys/markup/BounceItWeb.html?scenario=20811http://www.uark.edu/ua/modphys/markup/BounceItWeb.html?scenario=20811

  • Unit 1Fig. 6.3

    Simulation of

    an adiabatic case

    Sample problem: Compute period given m1=50, m2=0.1=m3, v2=20, Y0=3.5

    Fig. 5.3Unit 1

    BounceIt Superball Collision Web Simulator: 1:500:1 mass ratios (Small Amplitude)

    HO frequency: ω = k

    m1= 2⋅3m2

    m1v2Y0

    =2πυ

    Adiabatic Frequency

    Adiabatic Period :τ = 1υ

    =2π m1k=2π m1

    2 ⋅3m2Y0v2Adiabatic Period is 3 times shorter :

    τ =2π m12⋅3m2

    Y0v2

    = 6.28 502⋅3⋅(0.1)

    3.120

    =9.24

    Switchm1=m3

    withm2

    to matchformula

    That’s better!

    Perhaps we overestimatedY0 range….Let’s try Y0 =3.1

    τ =9.24

    Y0=3.1

    8Thursday, February 4, 2016

    http://www.uark.edu/ua/modphys/markup/BounceItWeb.html?scenario=20811http://www.uark.edu/ua/modphys/markup/BounceItWeb.html?scenario=20811