Proyecto Fin de Carrera Ingeniería...

207
Equation Chapter 1 Section 1 Proyecto Fin de Carrera Ingeniería Industrial Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos de conversión de potencia. Autor: Francisco Díaz Toril Tutores: Antonio de la Villa Jaén Dan El Andrés Montoya Andrade Dep. Ingeniería Eléctrica Escuela Técnica Superior de Ingeniería Universidad de Sevilla Sevilla, 2015

Transcript of Proyecto Fin de Carrera Ingeniería...

Page 1: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Equation Chapter 1 Section 1

Proyecto Fin de Carrera

Ingeniería Industrial

Generación undimotriz mediante absorbedores

puntuales con sistemas hidráulicos

de conversión de potencia.

Autor: Francisco Díaz Toril

Tutores: Antonio de la Villa Jaén

Dan El Andrés Montoya Andrade

Dep. Ingeniería Eléctrica

Escuela Técnica Superior de Ingeniería

Universidad de Sevilla

Sevilla, 2015

Page 2: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera
Page 3: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

iii

Proyecto Fin de Carrera

Ingeniería Industrial

Generación undimotriz mediante absorbedores

puntuales con sistemas hidráulicos

de conversión de potencia.

Autor:

Francisco Díaz Toril

Tutores:

Antonio de la Villa Jaén

Profesor Titular de la Universidad de Sevilla

Dan El Andrés Montoya Andrade

Profesor Asociado de la Universidad Central de Venezuela

Departamento de Ingeniería Eléctrica

Escuela Técnica Superior de Ingeniería

Universidad de Sevilla

Sevilla, 2015

Page 4: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera
Page 5: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

v

Proyecto Fin de Carrera: Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos de conversión de potencia.

Autor: Francisco Díaz Toril

Tutores: Antonio de la Villa Jaén

Dan El Andrés Montoya Andrade

El tribunal nombrado para juzgar el Proyecto arriba indicado, compuesto por los siguientes miembros:

Presidente:

Vocales:

Secretario:

Acuerdan otorgarle la calificación de:

Sevilla, 2013

Page 6: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

El Secretario del Tribunal

Page 7: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

vii

A mi familia

A mis maestros

Page 8: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera
Page 9: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

ix

Agradecimientos

En primer lugar, quiero expresar mi gratitud y admiración a mi familia. En particular, a mis padres, Juan Bautista

y Ana, que con su trabajo y esfuerzo han hecho posible que reciba una educación universitaria, durante la cual no han dejado de apoyarme en ningún momento. A mi hermana, Petra, la cual ha sido fuente de motivación para

crecer como persona y como profesional; a mi cuñado, David, y al pequeño de la casa, mi sobrino David. Por

último, a mi abuela María, una mujer que ha sabido transmitir a sus hijos y nietos la mejor educación para

afrontar la vida con entereza y dignidad.

Sin ellos, creo que el trabajo que tienen en sus manos no hubiera visto la luz; gracias a sus incansables muestras

de amor, apoyo y el cariño que más de una vez he necesitado a los largo de estos años. Por todo ello, GRACIAS.

Tampoco puedo olvidar a mi abuelo Francisco, él me dio mi nombre, me enseñó a leer y a realizar mis primeras sumas y restas. Como sucede muchas veces en la vida, lo importante es saber sumar y restar en el momento

adecuado. Hoy me gustaría que estuvieras leyendo este trabajo, pero te fuiste antes de que fuera posible. Allí

donde estés, muchas gracias por enseñarme tantas cosas buenas en esta vida, abuelo.

Por otra parte, quiero dar las gracias a Antonio y Dan El, mis tutores del proyecto. En primer lugar, quisiera

agradecerles haberme permitido realizar este proyecto a distancia, mediante el intercambio de innumerables

correos, videoconferencias y tutorías presenciales. Además, han tenido el excepcional detalle de prestarme

muchas horas de su tiempo para responder a mis dudas, aconsejarme y ayudarme para que este proyecto sea una realidad. Gracias a ellos he descubierto el campo de la energía undimotriz, el cual era desconocido para mí hasta

que inicié este trabajo. Por todo, GRACIAS.

También me gustaría agradecer a aquellos profesores de escuela primaria e instituto que se cruzaron en mi camino para hacerme crecer como persona. Especial mención para Enrique Arauzo Miguel, quién me enseñó

Física y me alumbró en la difícil tarea de escoger esta hermosa carrera universitaria.

Durante estos años he compartido mis horas de estudio con grandes compañeros y amigos, los cuales también

me han ayudado dentro y fuera de las clases. A todos ellos, GRACIAS.

Por último, es importante remarcar que gran parte de los conocimientos que se muestran en este proyecto los he

adquirido en esta ilustre Escuela de Ingenieros. Por ello, mi agradecimiento para cada uno de los profesores que

forman la Escuela Técnica Superior de Ingeniería de Sevilla.

Francisco Díaz Toril

Sevilla, 2015

Page 10: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera
Page 11: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

xi

Resumen

Este proyecto aborda una parte de uno de los temas que más preocupan al ser humano en la actualidad: la balanza

entre el desarrollo sostenible y el consumo de energía. Este hecho ha llevado a la sociedad a considerar la

importancia del fomento de nuevas fuentes de generación de energía, como son las energías renovables, y a la

mejora de la eficiencia de los procesos de generación existentes. En este sentido, en Europa se ha aprobado el paquete 20/20/20, el cual incide sobre los conceptos de reducción de emisiones contaminantes en un 20%, ahorro

energético del 20% y alcance de una cuota de producción de renovables del 20%.

La energía undimotriz, o también llamada energía de las olas, ofrece una gran oportunidad para que dicha cuota sea alcanzada y superada con creces debido a su potencial energético. Sin embargo, su desarrollo no ha alcanzado

plenamente la fase comercial por el hecho de que existen diversas tecnologías, de las cuales ninguna se ha

postulado como óptima.

En este proyecto se describe la energía undimotriz, desde el recurso en sí hasta su caracterización y la tecnología disponible. Una vez se conocen las bases sobre las que se asienta esta fuente de energía, se contruye un modelo

con el software Matlab-Simulink. En dicho modelo se representa la interacción del oleaje con un dispositivo

puntual absorbedor conectado a un PTO hidráulico, que mueve el rotor de un generador síncrono que alimenta, a su vez, a una red eléctrica.

Durante el proceso de modelado, el cual se realiza de forma secuencial, se exponen diversas simulaciones que

ayudan a entender el comportamiento de los sistemas involucrados. Además, se proponen dos configuraciones de PTO hidráulico, las cuales son revisadas en el análisis de potencia. Dicho análisis nos demuestra que el uso

de válvulas direccionales mejora la eficiencia del PTO, en primera instancia, y la eficiencia global del sistema

de conversión electro-mecánica.

Por último, se aportan ideas para la continuidad de este trabajo, con objeto de generar posibles ideas para la realización de otros proyectos fin de carrera dentro de este ámbito.

Page 12: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera
Page 13: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

xiii

Abstract

This project addresses a portion of one of the issues that most concern to men today: the balance between

sustainable development and energy demand. This fact has compelled society to consider the importance of

developing new sources of power generation such as renewable energy, and improving of existing generation processes efficiency. In this sense, Europe has approved the 20/20/20 series of measures, which affect the

concepts of reducing emissions by 20%, saving energy 20% and reach a renewable production quota of 20%.

Wave energy offers a great opportunity for that quota is reached and far exceeded due to its energy potential. However, his development has not fully reached the commercial stage by the fact that there are some

technologies, none of which has been postulated as optimal.

This project describes the wave energy from the resource itself to its characterization and available technology.

Once the foundations on which this energy source sits is known, a model is constructed with Matlab-Simulink software. In this model, the interaction of the wave absorber is represented by a point enabled device connected

to a hydraulic PTO which moves the rotor of a synchronous generator which feeds, in turn, to a power grid.

During the modeling process, which is sequential, various simulations are exposed to help understand the behavior of the systems involved. Furthermore, two hydraulic PTO configurations, which are reviewed in the

proposed power analysis. This analysis shows that the use of directional valves PTO improves efficiency in the

first instance, and the overall efficiency of the electro-mechanical conversion.

Finally, ideas for the continuation of this work are provided in order to generate possible ideas for the realization

of other final projects in this area.

Page 14: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera
Page 15: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

xv

Índice

Agradecimientos ix

Resumen xi

Abstract xiii

Índice xv

Índice de Tablas xviii

Índice de Figuras xx

Notación xxvi

1 Introducción 1

2 Energía Undimotriz: descripción y perspectivas. 3 2.1 Descripción 4

2.1.1 Coste y eficiencia 7 2.2 Perspectivas. 9

2.2.1 La energía undimotriz en el mundo 9 2.3 La energía undimotriz en España 10 2.4 Impacto Ambiental 13

3 Tecnología Actual: Dispositivos de captación de energía undimotriz. 15 3.1 Clasificación 16

3.1.1 Métodos de conversión 19 3.2 Columna de agua oscilante 21

3.2.1 Turbina Wells 25 3.3 Rebosamiento 26

3.3.1 TAPCHAN 26 3.3.2 Seawave Slot-Cone Generator 26 3.3.3 Wave Dragon 27

3.4 Sistemas de cuerpo oscilante. 28 3.4.1 Pelamis 28 3.4.2 Boya simple 29 3.4.1 Dispositivos de cabeceo 36

3.5 Centros de ensayo de dispositivos 38 3.6 Conclusiones 39

4 Teoría de la ola 41 4.1 Definición 42

4.1.1 Clasificación de las olas 42 4.1.2 Características de las olas 43

4.2 Fenómenos asociados a la propagación del oleaje 45 4.2.1 Refracción 45 4.2.2 Reflexión 46 4.2.3 Difracción 46 4.2.4 Rotura de la ola 47

Page 16: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

4.3 Teorías de la Ola 48 4.3.1 Oleaje regular 48 4.3.2 Oleaje irregular 52

4.4 Sistema hidrodinámico. 54 4.4.1 Fuerza del fluido 54 4.4.2 Fuerza externa 55 4.4.3 Modelo en Matlab 57

5 Power Take Off: modelado y simulaciones 59 5.1 Cilindro hidráulico. 60

5.1.1 Dimensionamiento 60 5.1.2 Modelo de Matlab. 63

5.2 Acumulador. 64 5.2.1 Dimensionamiento 65 5.2.2 Modelo de Matlab. 66

5.3 Válvula antirretorno. 68 5.3.1 Dimensionamiento 69 5.3.2 Modelo de Matlab 71

5.4 Válvula de control direccional 73 5.4.1 Dimensionamiento 74 5.4.2 Modelo de Matlab 74

5.5 Motor hidráulico. 75 5.5.1 Dimensionamiento 76 5.5.2 Modelo de Matlab 77

5.6 Reservorio de fluido 78 5.6.1 Dimensionamiento 79 5.6.2 Modelo de Matlab 79

5.7 Bomba hidráulica 80 5.8 Símbolos y figuras de Matlab - Simulink. 81 5.9 Power Take off: modelo del circuito hidráulico. 85

5.9.1 Circuito hidráulico básico 85 5.9.2 Circuito hidráulico con puente rectificador tipo 1 87 5.9.3 Circuito hidráulico con puente rectificador tipo 2 88

5.10 Simulaciones 91 5.10.1 Circuito hidráulico básico 91 5.10.2 Circuito hidráulico con puente rectificador tipo 1 94 5.10.3 Circuito hidráulico con puente rectificador tipo 2 97

6 Sistema Eléctrico: Modelado y Simulación 101 6.1 Generador síncrono. 102

6.1.1 Funcionamiento 102 6.1.2 Circuito equivalente de un generador síncrono 104 6.1.3 Potencia y par en los generadores síncronos 107 6.1.4 Teoría de polos salientes de las máquinas síncronas 108 6.1.5 Pérdidas en el generador síncrono. 108 6.1.6 Modelo de Matlab 110 6.1.7 Dimensionamiento del generador síncrono 111

6.2 Transformador trifásico. 112 6.2.1 Funcionamiento 112 6.2.2 Dimensionamiento 113 6.2.3 Pérdidas en el transformador. 115

6.3 Cargas eléctricas. 116 6.3.1 Modelado de cargas 116 6.3.2 Modelo de Matlab 116

6.4 Símbolos y figuras de Matlab - Simulink. 117

Page 17: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

xvii

6.5 Modelo del sistema eléctrico. 118 6.5.1 Modelo eléctrico conectado a red aislada. 119 6.5.2 Modelo eléctrico conectado a red de potencia infinita 124

7 Sistema Conversor de Energía Undimotriz: Modelado y simulación 133 7.1 Desarrollo del modelo 134

7.1.1 Interacción entre el modelo hidrodinámico y el modelo hidráulico 134 7.1.2 Interacción entre el modelo hidráulico y el modelo del sistema eléctrico 135 7.1.3 Modelo completo 136

7.2 Simulaciones del modelo 140 7.2.1 Modelo Puente tipo 1 141 7.2.2 Modelo Puente tipo 2 146 7.2.3 Conclusiones 151

8 Análisis de pérdidas en el sistema 153 8.1 Potencia medida 154

8.1.1 Modelo Puente tipo 1 157 8.1.2 Modelo Puente tipo 2 159

8.2 Conclusiones 161 8.2.1 Modelo tipo 1 161 8.2.2 Modelo tipo 2 164

9 Futuras Líneas de Trabajo 169 9.1 Futuras líneas de trabajo 169

Referencias 171

Page 18: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

ÍNDICE DE TABLAS

Tabla 2–1 Proyectos de energía marina desarrollados en España. 10

Tabla 2–2 Tarifa para la generación a partir de la energía marina. 11

Tabla 2–3 Energía media anual bruta por fachadas y profundidades indefinidas, 100, 50 y 20 m

de profundidad (TWh/año). 11

Tabla 2–4 Energía media anual neta por fachadas y profundidades (TWh/año). 12

Tabla 2–5 . Impacto medioambiental de los dispositivos de energía undimotriz. Fuente: [14]. 13

Tabla 3–1 Datos técnicos de los modelos de OPT. Fuente: [12]. 30

Tabla 3–2 Centros de ensayos para dispositivos de energía undimotriz. 38

Tabla 4–1 Descripción de variables para cálculo de altura de ola. 45

Tabla 4–2 Descripción de variables para cálculo de altura de rotura de la ola. 47

Tabla 4–3 Parámetros de la ola de Ayri. 49

Tabla 4–4 Expresiones de la ola de Ayri. 50

Tabla 4–5 Parámetros característicos de la descripción estadístico-geométrica. 52

Tabla 5–1 Condiciones nominales de trabajo y dimensiones geométricas del pistón. 61

Tabla 5–2 Valor de las variables del vástago. 62

Tabla 5–3 Parámetros del cilindro hidráulico. 64

Tabla 5–4 Parámetros de diseño del acumulador. 65

Tabla 5–5 Parámetros del acumulador. 67

Tabla 5–6 Parámetros del sistema y coeficientes de capacidad. 71

Tabla 5–7 Parámetros del sistema y coeficientes de capacidad. 74

Tabla 5–8 Parámetros de la válvula de control direccional. 74

Tabla 5–9 Variables de diseño del motor hidráulico. 76

Tabla 5–10 Parámetros del motor hidráulico. 78

Tabla 5–11 Parámetros del reservorio de fluido. 80

Tabla 5–12 Parámetros de la bomba hidráulica. 80

Tabla 5–13 Figuras del sistema hidráulico. Fuente: [13]. 81

Tabla 5–14 Figuras del sistema hidráulico (Continuación). Fuente: [13]. 82

Tabla 5–15 Relación entre variables. 82

Tabla 5–16 Parámetros de la velocidad de la boya. 91

Tabla 6–1 Parámetros del generador síncrono. 111

Tabla 6–2 Parámetros del transformador trifásico de 2 devanados. 113

Tabla 6–3 Parámetros del transformador trifásico de 2 devanados. 113

Tabla 6–4 Parámetros del transformador trifásico de 2 devanados. 114

Tabla 6–5 Parámetros de la carga eléctrica de compensación. 116

Page 19: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

xix

Tabla 6–6 Parámetros de la carga eléctrica. 116

Tabla 6–7 Figuras del sistema eléctrico. Fuente: [7]. 117

Tabla 6–8 Datos de la red de potencia infinita. 124

Tabla 7–1 Bloques de los modelos de conexión entre sistemas. Fuente [1]. 134

Tabla 8–1 Balance de potencias en el régimen permanente. 161

Tabla 8–2 Balance de potencias en el régimen permanente. 163

Tabla 8–3 Pérdidas en generador y transformador. 164

Tabla 8–4 Balance de potencias en el régimen permanente. 165

Tabla 8–5 Balance de potencias en el régimen permanente. 166

Tabla 8–6 Pérdidas en generador y transformador. 166

Page 20: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

ÍNDICE DE FIGURAS

Figura 2-1. Vientos en el mundo. Fuente: [3]. 4

Figura 2-2. Movimiento de la ola. Fuente: [4]. 5

Figura 2-3.Proceso de formación de la ola. Fuente: [7]. 5

Figura 2-4. Potencia media anual por metro de frente de ola. Fuente: [6]. 6

Figura 2-5. Velocidad del viento en el mundo. Arriba en Enero, abajo en Julio. Fuente: [5]. 6

Figura 2-6. Niveles de potencia de energía undimotriz en kW/m de frente de ola. Fuente: [8]. 7

Figura 2-7. Grado de utilización de distintas fuentes de energía. Fuente: [12]. 8

Figura 2-8. Diagrama de pérdidas durante el proceso de generación de energía eléctrica

a partir de energía undimotriz. Fuente: [13]. 8

Figura 2-9. Fondos de la Comisión Europea para proyectos de investigación de energía undimotriz.

Fuente: [14]. 10

Figura 3-1. Representación de algunas de las tecnologías disponibles. Fuente: [5]. 16

Figura 3-2. Clasificación de las tecnologías de conversión existentes. Fuente: elaboración

propia según [4]. 17

Figura 3-3. Clasificación según la localización. Fuente: [6]. 18

Figura 3-4. Clasificación según la orientación y geometría. Fuente: [6]. 19

Figura 3-5.Dispositvos de conversión de energía undimotriz. Fuente: [29]. 20

Figura 3-6. Esquema gráfico del sistema de columna de agua oscilante. Fuente: [7]. 21

Figura 3-7. Imagen virtual 3D del sistema de agua oscilante. Fuente: [8]. 21

Figura 3-8. Imagen de la central de Mutriku. Fuente: [20]. 22

Figura 3-9. Recreación virtual del OWC instalado por Energetech. Fuente: [2]. 22

Figura 3-10. Recreación virtual del OWC instalado por Energetech. Fuente: [21] 23

Figura 3-11.Vista del corte lateral de un OWC flotante. Fuente: [4]. 23

Figura 3-12. Recreación virtual del Sistema OSPREY. Fuente: [22]. 24

Figura 3-13. Recreación virtual del Sistema The Mighty Whale. Fuente: [22]. 24

Figura 3-14. Recreación virtual del Sistema WOSP. Fuente: [22]. 24

Figura 3-15. Funcionamiento de la turbina Wells. Fuente: [23]. 25

Figura 3-16. Turbina Wells con álabes guía. Fuente: [4]. 25

Figura 3-17. Sistema TAPCHAN. Fuente: [3]. 26

Figura 3-18.Recreación virtual del sistema Seawave Slot-Cone Generator. Fuente: [30]. 27

Figura 3-19. Vista en planta del sistema Wave Dragon. Fuente: [4]. 27

Figura 3-20. Corte trasversal de la estructura del sistema Wave Dragon. Fuente: [24]. 27

Figura 3-21. Detalle de la turbina Kaplan empleada en este sistema. Fuente: [24]. 27

Figura 3-22. Vista de perfil y planta del sistema Pelamis. Fuente: [9]. 28

Page 21: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

xxi

Figura 3-23. Vista interior de una de las secciones del sistema Pelamis. Fuente: [10]. 28

Figura 3-24. El sistema Pelamis en mar abierto. Fuente: [11]. 29

Figura 3-25. Vista de alzado y planta del McCabe Wave Pump. Fuente: [4]. 29

Figura 3-26. Vista de perfil del sistema OPT. Fuente: [12]. 30

Figura 3-27. Esquema de los componentes de sistema APC-PISYS. Fuente: [6]. 31

Figura 3-28.Esquema virtual del interior del sistema Aquabouy. Fuente: [13]. 32

Figura 3-29. Representación virtual 3D del sistema FO3. Fuente: [14]. 32

Figura 3-30. Imagen de la planta de Pécem. Fuente: [25]. 33

Figura 3-31. Imagen del dispositivo OYSTER. Fuente: [16]. 33

Figura 3-32. Representación virtual del sistema WaveRoller. Fuente: [17]. 34

Figura 3-33. Representación de una instalación undimotriz del sistema Laglee. Fuente: [18]. 34

Figura 3-34. Representación virtual del sistema BioWave. Fuente: [19]. 35

Figura 3-35. Representación gráfica del interior del sistema AWS. Fuente: [4]. 35

Figura 3-36. Prototipo construido del sistema AWS. Fuente: [27]. 36

Figura 3-37.Recreación virtual del dispositivo Duck. Fuente: [4]. 36

Figura 3-38. Imagen del Searev durante las pruebas de laboratorio. Fuente: [28]. 37

Figura 3-39. Vista interna del dispositivo Searev. Fuente: [28]. 37

Figura 4-1. Energía de la ola en función del agente creador y frecuencia. Fuente: [2]. 42

Figura 4-2.Movimiento de las partículas de agua en una ola. Fuente: [3]. 43

Figura 4-3.Movimiento de las partículas de agua en una ola en función de la distancia

al lecho marino. Fuente: [2]. 44

Figura 4-4.Refracción de un tren de olas. Fuente: [2]. 45

Figura 4-5.Reflexión de las olas. Fuente: [2]. 46

Figura 4-6.Difracción de las olas al encontrar un saliente marino. Fuente: [2]. 46

Figura 4-7.Ruptura de una ola. Fuente: [5]. 47

Figura 4-8. Diagrama de Le Méhauté. Fuente: [2]. 48

Figura 4-9. Perfil de la ola de Ayri. Fuente: [2]. 49

Figura 4-10. Perfil de la ola de Ayri. Fuente: [2]. 49

Figura 4-11. Perfil de la ola de Stokes. Fuente: [2]. 51

Figura 4-12.Ecuaciones de la teoría de Stokes de 2º orden. Fuente: [2]. 51

Figura 4-13.Parámetros del criterio de paso ascendente. Fuente: [2]. 52

Figura 4-14. Esquema del circuito empleado para medir la fuerza del PTO. 56

Figura 4-15. Conjunto de bloques del sistema hidrodinámico. 57

Figura 4-16.Respuesta de la posición, velocidad y aceleración ante la fuerza del PTO. 58

Figura 4-17. Detalle del régimen permanente en el sistema de extracción. 58

Figura 5-1. Fuerzas que actúan sobre el cilindro. Fuente: [2]. 61

Figura 5-2.Tabla de selección del diámetro del vástago para la máxima fuerza de empuje

con factor de seguridad 3,5. Fuente: [2]. 62

Figura 5-3. Tipos de acumuladores. Fuente: [5]. 65

Page 22: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Figura 5-4. Ecuaciones utilizadas en el diseño del acumulador. Fuente: [5]. 66

Figura 5-5. Vista interior válvula antirretorno. Fuente: [15]. 68

Figura 5-6. Característica de la válvula antirretorno (izda.), y del diodo (dcha.). Fuente: [13] y [18]. 68

Figura 5-7. Comparativa de coeficientes de flujo. Fuente: [9]. 70

Figura 5-8. Valores de coeficientes Cv, Kv y Cd para diferentes tipos de válvulas. Fuente: [9]. 70

Figura 5-9. Descripción de la válvula de control direccional. Fuente: [6]. 73

Figura 5-10. Motor hidráulico de paletas. Fuente: [Sapiensman.com, 2015]. 75

Figura 5-11. Motor hidráulico de engranajes. Fuente: [Sapiensman.com, 2015]. 75

Figura 5-12. Motor hidráulico de pistón axial. Fuente:[Directindustry.es, 2015]. 76

Figura 5-13. Motor hidráulico de pistón radial. Fuente: [kpn.nl] y [kpn-eu-com]. 76

Figura 5-14. Detalle de los componentes del tanque de reserva de fluido. Fuente: [2]. 79

Figura 5-15. Configuración del reservorio de fluido dentro de un circuito hidráulico. Fuente: [16]. 79

Figura 5-16. Circuito eléctrico. 83

Figura 5-17. Circuito mecánico. 83

Figura 5-18. Circuito hidráulico. 84

Figura 5-19. Distintos usos de la fuente ideal de par: izqda.) motor, dcha.) carga. Fuente: [14]. 84

Figura 5-20. Modelo del circuito hidráulico básico. 86

Figura 5-21. Circuito hidráulico con puente rectificador tipo 1. 86

Figura 5-22. Puente rectificador de diodos o de Graetz. Fuente: [Wikipedia, 2015]. 87

Figura 5-23. Puente de válvulas antirretorno. 87

Figura 5-24. Configuración del puente de válvulas de control direccional. 88

Figura 5-25. Circuito hidráulico con puente rectificador tipo 2. 89

Figura 5-26. Configuración del puente de válvulas de control direccional. 89

Figura 5-27. Gráficas de la evolución de las variables del pistón. 91

Figura 5-28. Par medido sobre el eje de la bomba. 92

Figura 5-29. Velocidad medida sobre el eje de la bomba. 92

Figura 5-30. Potencias medidas en diferentes partes del circuito hidráulico. 93

Figura 5-31. Evolución de las variables del pistón. 94

Figura 5-32. Variables hidráulicas medidas en el circuito. 95

Figura 5-33. Par medido sobre el eje del motor hidráulico. 95

Figura 5-34. Velocidad medida sobre el eje de la bomba. 96

Figura 5-35. Potencias medidas en el circuito hidráulico tipo 1. 96

Figura 5-36. Evolución de las variables del pistón. 97

Figura 5-37. Variables hidráulicas medidas en el circuito. 98

Figura 5-38. Velocidad medida sobre el eje del motor hidráulico. 98

Figura 5-39. Par medido sobre el eje del motor hidráulico. 99

Figura 5-40. Potencias medidas en el circuito hidráulico tipo 2. 99

Figura 6-1. Circuito equivalente para las 3 fases del generador síncrono. Fuente: [4]. 105

Figura 6-2.Diagrama fasorial del generador síncrono. Fuente: [4]. 105

Page 23: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

xxiii

Figura 6-3. Diagrama fasorial para factor de potencia unitario. Fuente: [4]. 106

Figura 6-4. Diagrama fasorial para factor de potencia en retraso. Fuente: [4]. 106

Figura 6-5. Diagrama fasorial para factor de potencia en adelanto. Fuente: [4]. 106

Figura 6-6. Detalle del devanado amortiguador. Fuente: [1]. 107

Figura 6-7.Diagrama fasorial del generador síncrono de polos salientes. Fuente: [4]. 108

Figura 6-8.Balance de potencias en el generador síncrono. Fuente: [4]. 109

Figura 6-9. Circuito equivalente del generador síncrono en ejes d y q. Fuente: [7]. 110

Figura 6-10. Circuito equivalente del transformador durante el funcionamiento en vacío. Fuente: [8]. 112

Figura 6-11. Esquema de conexión del transformador en carga. Fuente: [9]. 112

Figura 6-12.Circuito equivalente exacto del transformador. Fuente: [1]. 114

Figura 6-13.Tensiones e intensidades en bornas del generador para tensión de excitación de 22.7 V. 119

Figura 6-14.Tensiones e intensidades en bornas del generador para tensión de excitación de 47.3 V. 120

Figura 6-15. Variables del generador para las dos tensiones de excitación. 120

Figura 6-16. Balance de potencia en el modelo eléctrico. 121

Figura 6-17. Tensión e intensidad en bornas del generador para una velocidad de giro de 100 rad/s. 122

Figura 6-18. Variables del generador para las dos velocidades de giro. 123

Figura 6-19.Balance de potencias para dos velocidades de giro. 123

Figura 6-20. Tensión e intensidad en bornas del generador para una tensión de excitación de 22.7V. 125

Figura 6-21. Tensión e intensidad en bornas del generador para una tensión de excitación de 47.3V. 125

Figura 6-22. Variables del generador para las dos tensiones de excitación. 126

Figura 6-23. Balance de potencia en el modelo eléctrico. 126

Figura 6-24. Tensiones e intensidades cuando la potencia mecánica es 6868.2 W. 127

Figura 6-25. Tensiones e intensidades cuando la potencia mecánica es 8000 W. 127

Figura 6-26. Variables del generador para las dos potencias mecánicas. 128

Figura 6-27. Balance de potencias al variar la potencia mecánica. 129

Figura 6-28. Modelo en Matlab del circuito eléctrico conectado a red aislada. 131

Figura 6-29. Modelo en Matlab del circuito eléctrico conectado a red de potencia infinita. 132

Figura 7-1. Esquema de conexión entre el sistema hidrodinámico y el sistema hidráulico. 135

Figura 7-2. Esquema de conexión entre el motor hidráulico y el generador eléctrico. 135

Figura 7-3. Esquema de acoplamiento entre máquinas rotatorias. 136

Figura 7-4. Esquema de conexión de los sistemas del modelo completo. 136

Figura 7-5. Sensores de medida sobre el terminal mecánico del cilindro. 137

Figura 7-6. Sensores de medida entre el cilindro y el puente de válvulas. 137

Figura 7-7. Sensores de medida en el eje mecánico. 138

Figura 7-8. Sensores de medida en el sistema eléctrico. 138

Figura 7-9. Bloque de cálculo del modelo completo. 139

Figura 7-10. Detalle de la configuración de una central eólica y otra undimotriz. Fuentes: [3] y [4]. 140

Figura 7-11. Respuesta de las variables del pistón en el modelo puente tipo 1. 141

Figura 7-12. Respuesta de las variables del pistón en el régimen permanente. 142

Page 24: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Figura 7-13. Evolución de la velocidad en el eje de unión motor-generador. 143

Figura 7-14. Evolución del par en el eje de unión motor-generador y en el generador síncrono. 143

Figura 7-15. Detalle del rizado del par medido en el eje y el par del generador. 144

Figura 7-16. Respuesta de las variables eléctricas en generador y secundario transformador. 145

Figura 7-17. Respuesta de las variables eléctrica en el régimen permanente. 145

Figura 7-18. Respuesta de las variables del pistón en el modelo puente tipo 2. 146

Figura 7-19. Respuesta de las variables del pistón en el régimen permanente. 147

Figura 7-20. Evolución de la velocidad en el eje de unión motor-generador. 147

Figura 7-21. Detalle del rizado de la velocidad en el eje de unión motor-generador. 148

Figura 7-22. Evolución del par en el eje de unión motor-generador y en el generador síncrono. 148

Figura 7-23. Detalle del rizado del par en el eje de unión motor-generador y generador síncrono. 149

Figura 7-24. Evolución del par en el eje de unión motor-generador. 150

Figura 7-25. Evolución del par en el eje de unión motor-generador. 150

Figura 8-1. Disposición de los instrumentos de medida. 156

Figura 8-2. Potencia instantánea en diferentes puntos del modelo completo tipo 1. 157

Figura 8-3. Detalle del rizado en las potencias medidas del modelo completo tipo 1. 158

Figura 8-4. Potencia media medida en el modelo tipo 1. 158

Figura 8-5. Potencia instantánea en diferentes puntos del modelo completo tipo 2. 159

Figura 8-6 Detalle del rizado en las potencias medidas del modelo completo tipo 2. 159

Figura 8-7. Potencia instantánea medida en varias etapas en el régimen permanente. 160

Figura 8-8. Potencia instantánea medida en varias etapas en el régimen permanente. 160

Figura 8-9. Balance de potencias en el régimen permanente. 162

Figura 8-10. Rendimiento y pérdidas en el modelo tipo 1. 163

Figura 8-11. Balance de potencias en el régimen permanente. 164

Figura 8-12. Rendimiento y pérdidas en el modelo tipo 2. 165

Figura 8-13. Comparativa de rendimientos. 167

Page 25: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

xxv

Page 26: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Notación

Capítulo 5

𝐴𝐴 Área del pistón en el lado cuya salida del fluido es denotada por A.

𝐹𝑒𝑥𝑡 Fuerza que ejerce la boya sobre el pistón.

𝐴𝑡 Área de la cabeza del pistón.

𝐷𝑝 Diámetro del pistón.

𝑃𝑐 Carga de pandeo de Euler.

𝐼 Momento de inercia.

𝐹𝑚𝑎𝑥 Fuerza máxima.

𝑠𝑓 Factor de seguridad.

𝑝𝑡 Presión de trabajo.

𝑝 Presión relativa entre los puntos A y B.

𝑝𝐴 Presión absoluta en el cilindro en el lado cuya salida del fluido es denotada

por A.

𝑞𝐴 Caudal en el cilindro en el lado cuya salida del fluido es denotada por A.

𝑣 Velocidad absoluta del pistón.

𝑣𝑅 Velocidad absoluta del terminal R del pistón.

𝑣𝐶 Velocidad absoluta del terminal C del pistón.

𝑥 Posición del pistón.

𝑥𝐸 Longitud de la carrera de extensión desde la posición inicial.

𝑥𝑅 Longitud de la carrera de retroceso desde la posición inicial.

𝑥0 Posición inicial del pistón.

𝐹𝑐 Fuerza de rozamiento por contacto entre el pistón y las paredes del cilindro.

𝑆 Carrera del pistón.

𝑞 Caudal que circula a través del motor hidráulico.

𝜔 Velocidad de giro del motor hidráulico.

𝑝 Presión relativa en el motor hidráulico.

𝑞𝑙𝑒𝑎𝑘 Caudal de fuga.

𝑢𝑛𝑜𝑚 Viscosidad cinemática del fluido.

𝜌 Densidad del fluido.

𝜂𝑚𝑒𝑐ℎ Rendimiento mecánico.

𝜂𝑡𝑜𝑡𝑎𝑙 Rendimiento total.

𝜂𝑣 Rendimiento volumétrico.

𝐷 Desplazamiento del motor hidráulico (m3/rad).

𝑘𝑙𝑒𝑎𝑘 Constante de fuga.

𝑘𝐻𝑃 Coeficiente de Hagen-Poiseuille.

𝑉𝐹 Volumen de fluido en el acumulador.

Page 27: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

xxvii

𝑉𝑝𝑟 Volumen inicial de fluido en el acumulador.

𝑝𝑝𝑟 Presión de precarga en el acumulador.

𝑝𝑎 Presión atmosférica.

𝑉𝐴 Capacidad del acumulador.

𝑝𝑐𝑟 Presión crítica.

𝑝𝑙𝑜𝑠𝑠 Pérdida de presión en conductos.

𝐾 Coeficiente de pérdida de presión.

𝐶𝐷 Coeficiente de descarga.

𝐷𝐻 Diámetro instantáneo del orificio de la válvula antirretorno.

𝐴𝑚𝑎𝑥 Área máxima de apertura.

𝐴𝑙𝑒𝑎𝑘 Área de fuga.

𝑝𝑐𝑟𝑎𝑐𝑘 Presión de apertura de la válvula.

𝑅𝑒 Número de Reynolds.

Capítulo 6

𝑓𝑒 Frecuencia eléctrica (Hz).

𝑛𝑚 Velocidad mecánica de giro del rotor del generador (r.p.m).

𝜔𝑚 Velocidad mecánica de giro del rotor del generador (rad/s).

𝜏𝑎𝑝 Par mecánico aplicado sobre el rotor del generador síncrono (Nm).

𝜏𝑖𝑛𝑑 Par inducido en el generador (Nm).

𝑁𝑝𝑝 Número de pares de polos del generador síncrono.

𝐸𝑒𝑠𝑡𝑎𝑡 Caída de tensión en los arrollamientos del estátor debido a la reacción de

inducido. (V)

𝑉𝑡 Tensión en terminales o bornas del estátor (V).

𝑅𝐴 Resistencia estatórica del generador síncrono (ohm).

𝑋𝐴 Reactancia de la autoinductancia del bobinado estatórico (ohm).

𝑋𝑆 Reactancia síncrona (ohm).

𝑃𝑒𝑛𝑡 Potencia mecánica suministrada al generador síncrono (W).

𝑃𝑠𝑎𝑙 Potencia eléctrica generada (W).

𝑉𝐿 Tensión de línea en terminales del generador síncrono (V).

𝐼𝐿 Intensidad de línea en terminales del generador síncrono (V).

cos (𝜃) Factor de potencia debido al desfase entre la tensión e intensidad de fase

en terminales del generador síncrono.

𝛿 Ángulo de carga del generador síncrono.

𝐼𝑑 Corriente por el estátor en el eje d (A).

𝐼𝑞 Corriente por el estátor en el eje q (A).

𝑋𝑑 Reactancia síncrona directa del generador (ohm).

𝑋𝑞 Reactancia síncrona en cuadratura del generador (ohm).

𝑉1 Tensión en el primario del transformador (V).

𝐼1 Intensidad en el primario del transformador (A).

𝑅1 Resistencia del devanado primario del transformador (ohm).

𝑋1 Reactancia del devanado primario del transformador (ohm).

𝑍1 Impedancia del devanado primario del transformador (ohm).

𝑉𝑑 Tensión en el estátor en el eje d (V).

Page 28: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

𝑉𝑞 Tensión en el estátor en el eje q (V).

𝑅𝑠 Resistencia del devanado estatórico del generador síncrono (ohm).

𝐿𝑑 Inductancia de dispersión del devanado estatórico del generador síncrono

en eje d (H).

𝐿𝑞 Inductancia de dispersión del devanado estatórico del generador síncrono

en eje q (H).

𝐿𝑚𝑑 Inductancia de magnetización del generador síncrono en eje d (H).

𝐿𝑚𝑞 Inductancia de magnetización del generador síncrono en eje q (H).

𝜑𝑑 Flujo mutuo en eje d.

𝜑𝑞 Flujo mutuo en eje q.

𝑉𝑓𝑑′ Tensión de excitación en el rotor en eje d referida al estátor (V).

𝑅𝑓𝑑′ Resistencia del devanado rotórico referida al estátor del generador

síncrono en el eje d (ohm).

𝐿𝑓𝑑′ Inductancia de dispersión del devanado rotorico del generador síncrono

en eje d (H).

𝑖𝑓𝑑′ Intensidad de excitación que atraviesa el devanado rotórico referida al

estátor en eje d (A).

𝜑𝑓𝑑′ Flujo creado por el devanado rotórico referido al estátor en eje d.

𝑉𝑘𝑑′ Tensión de excitación en el devanado amortiguador en eje d referida al

estátor (V).

𝑅𝑘𝑑′ Resistencia del devanado amortiguador referida al estátor del generador

síncrono en el eje d (ohm).

𝐿𝑘𝑑′ Inductancia de dispersión del devanado amortiguador del generador

síncrono en eje d (H).

𝑖𝑘𝑑′ Intensidad de excitación que atraviesa el devanado amortiguador referida

al estátor en eje d (A).

𝜑𝑘𝑑′ Flujo creado por el devanado amortiguador referido al estátor en eje d.

𝑉𝑘𝑞1′ Tensión de excitación en el devanado amortiguador en eje q referida al

estátor (V).

𝑅𝑘𝑞1′ Resistencia del devanado amortiguador referida al estátor del generador

síncrono en el eje q (ohm).

𝐿𝑘𝑞1′ Inductancia de dispersión del devanado amortiguador del generador

síncrono en eje q (H).

𝑖𝑘𝑞1′ Intensidad de excitación que atraviesa el devanado amortiguador referida

al estátor en eje q (A).

𝜑𝑘𝑞1′ Flujo creado por el devanado amortiguador referido al estátor en eje q.

𝑉𝑘𝑞2′ Tensión de excitación en el devanado amortiguador en eje q referida al

estátor (V).

𝑅𝑘𝑞2′ Resistencia del devanado amortiguador referida al estátor del generador

síncrono en el eje q (ohm).

𝐿𝑘𝑞2′ Inductancia de dispersión del devanado amortiguador del generador

síncrono en eje q (H).

𝑖𝑘𝑞2′ Intensidad de excitación que atraviesa el devanado amortiguador referida

al estátor en eje q (A).

𝜑𝑘𝑞2′ Flujo creado por el devanado amortiguador referido al estátor en eje q.

Page 29: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

xxix

𝑉2′ Tensión en el secundario del transformador, referida al primario del

transformador (V).

𝐼2′ Intensidad en el secundario del transformador, referida al primario del

transformador (A).

𝑅2′ Resistencia del devanado secundario del transformador, referida al

primario del transformador (ohm).

𝑋2′ Reactancia del devanado secundario del transformador, referida al

primario del transformador (ohm).

𝑍2′ Impedancia del devanado secundario del transformador, referida al

primario del transformador (ohm).

𝐼𝑜 Intensidad de vacío del transformador (A).

𝑅𝐹𝑒 Resistencia por efecto Joule en el núcleo del transformador (ohm).

𝑋𝑢 Reactancia del devanado primario del transformador (ohm).

𝑍𝑚 Impedancia equivalente de la rama de magnetización del transformador (ohm).

Capítulo 8

𝑃𝑐𝑎𝑝 Potencia capturada por el cilindro hidráulico (W).

𝑃𝑐𝑖𝑙𝑖𝑛𝑑𝑟𝑜 Potencia hidráulica en terminales del cilindro hidráulico (w9.

𝑃𝑚𝑜𝑡𝑜𝑟 ℎ𝑖𝑑𝑟á𝑢𝑙𝑖𝑐𝑜 Potencia hidráulica en terminales del motor hidráulico (W).

𝑃𝑒𝑗𝑒 𝑚𝑒𝑐á𝑛𝑖𝑐𝑜 Potencia mecánica en el eje mecánico (W).

𝑃𝑔𝑒𝑛𝑒𝑟𝑎𝑑𝑜𝑟 Potencia activa generada (W).

𝑃𝑐𝑎𝑟𝑔𝑎 Potencia activa consumida por la carga (W).

𝑉𝑎𝑔 Tensión fase-tierra de la fase a medida en el generador (V).

𝐼𝑎𝑔 Intensidad fase-tierra de la fase a medida en el generador (A).

𝑉𝑎𝑐 Tensión fase-tierra de la fase a medida en la carga (V).

𝐼𝑎𝑐 Intensidad fase-tierra de la fase a medida en la carga (A).

η Rendimiento.

Page 30: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera
Page 31: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

1

1 INTRODUCCIÓN

l trabajo que se presenta a continuación está formado por varias partes cuya base reside en el concepto de

energía undimotriz. Esta energía es por definición aquella que el hombre puede obtener del movimiento de las olas. Su desarrollo, aún joven, lleva un intenso recorrido con el objetivo de alcanzar una tecnología

capaz de obtener dicho recurso y convertirlo de forma óptima en energía eléctrica al servicio de la sociedad.

El objetivo del presente trabajo es desarrollar un modelo en Matlab-Simulink con el cual poder simular la interacción de las olas con un sistema de captación, tipo absorbedor puntual, conectado a un sistema hidráulico.

Dicho sistema proporciona energía mecánica a un generador síncrono que vierte la energía eléctrica sobre la red.

Por otra parte, se persigue evaluar las pérdidas que se producen en dicho sistema, ya que esto permite conocer el potencial en términos energéticos del sistema de captación propuesto.

En este trabajo, se ha intentado realizar una descripción de dicha fuente de energía, abarcando desde la

descripción en sí de la formación de las olas hasta los dispositivos disponibles actualmente para su captación.

En este sentido, en el capítulo 2 y 3 se desarrollan estos términos, dando una idea general del concepto de energía undimotriz, las perspectivas actuales, el desarrollo en los diferentes países que se han interesado por esta fuente

de energía y los dispositivos que actualmente se encuentran disponibles para su captación, a la vez que se

describen las características de estos. Además, se aporta información sobre el desarrollo de la tecnología asociada a esa fuente de energía en diferentes países, así como una estimación del coste de generación y el

posible impacto ambiental.

A continuación, en el capítulo 4, se explican diversas teorías utilizadas para el estudio y modelado de las olas. Además, se realiza una descripción del primer modelo que se utiliza en este trabajo: el sistema hidrodinámico,

desarrollado en [1]. Dicho modelo, describe la interacción entre la ola y la boya.

Los capítulos 5 y 6 se dedican a la descripción de los elementos que conforman el sistema de conversión de

energía undimotriz, esto es, el sistema hidráulico, el sistema eléctrico respectivamente. En ellos, se establecen los parámetros que definen los modelos construidos en el software de simulación de Matlab-Simulink.

Para ello, se realiza el mismo esquema descriptivo, esto es, se presentan cada uno de los elementos que

componen los modelos, a la vez que se indican los parámetros propios de estos. A continuación, se realiza el ensamblaje de los distintos elementos con objeto de obtener modelos más complejos. Estos se someten a una

serie de excitaciones que prueban su comportamiento y ayudan a una mejor compresión de los mismos.

A partir de ambos modelos, en el capítulo 7, se construye un modelo completo, es decir, un modelo donde

intervienen el sistema hidrodinámico, hidráulico y eléctrico. Aquí, se describe la forma en la que interaccionan dichos sistemas y cómo esto debe ser modelado en el programa de simulación. Todo ello, acompañado de

simulaciones donde se explican los resultados obtenidos.

Una vez se ha construido el modelo que representa el convertidor de energía undimotriz, se procede a evaluar las pérdidas en el capítulo 8. Dicha evaluación se realiza mediante la medición de la potencia en distintas partes

del sistema, obteniendo con ello un balance de potencia. Este análisis sirve para seleccionar aquel sistema de

conversión con PTO hidráulico que mejor se comporta desde el punto de vista de la eficiencia.

E

Es preferible obtener una respuesta razonablemente aproximada pero rápida

que le indique si el diseño funciona o no, que invertir más tiempo y obtener el

mismo resultado sólo que con más decimales

- Robert L. Norton-

Page 32: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Introducción

2

Por último, se reúnen las principales conclusiones obtenidas a partir de este trabajo y, en el capítulo 9, se

proponen otras vías de trabajo que pueden servir de continuación a este proyecto.

En los apartados de Notación y Referencias se encuentran la descripción de las variables utilizadas para la

formulación matemática de los modelos y las fuentes de información utilizadas para la elaboración de este proyecto.

Page 33: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

3

3

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

2 ENERGÍA UNDIMOTRIZ: DESCRIPCIÓN Y PERSPECTIVAS.

l hombre lleva siglos preguntándose cómo extraer la energía contenida en los mares. Esta energía

genera el movimiento del agua, produciendo olas, mareas y corrientes. A pesar de esto, se tiene

constancia de tratados sobre los molinos de todo tipo (mareal, fluvial, de viento), utilizados para

molienda de grano o para las labores agrícolas. Sin embargo, la aparición del petróleo y la consiguiente obtención de energía a partir de este, hicieron que se abandonara el interés por las energías del agua.

No fue hasta los años 70, coincidiendo con la primera crisis de petróleo, cuando comenzaron a

desarrollarse los primeros prototipos para aprovechamiento de energía undimotriz técnicamente viables, aunque su estudio comenzó hace 200 años. Barrufet ya estudió el diseño de una planta

undimotriz para su instalación en Barcelona a finales del S. XIX.

Las principales energías renovables actuales, solar y eólica, presentan dos problemas: su rentabilidad

y su capacidad de generar energía en los momentos que es necesario. Sin embargo, la energía marina

no tiene este problema, es decir, se puede predecir con mucha antelación el momento y la intensidad

de las mareas y corrientes. Además, al ser el agua más densa que el aire, los equipos necesarios para

generar energía a partir de los mares, muchas veces similares a los utilizados en energía eólica,

obtienen mayor cantidad de energía. Esto implica que la amortización de la inversión realizada en

dichos equipos se realizará antes que en otras fuentes de energía renovable, según [9].

Nuestros antepasados ya conocían estas propiedades y las utilizaron ampliamente en las zonas

costeras. En las costas españolas y portuguesas se encuentran restos de molinos, entre Faro y Cádiz

llegaron a funcionar 70 molinos mareales. En Londres, desde 1521 hasta 1822, funcionó de forma

ininterrumpida una gran aceña movida por la energía de las mareas que se empleaba para abastecer de

agua al centro de la ciudad.

Además, esta fuente de energía tiene dos grandes virtudes:

- Producción de la energía allí donde se consume, esto implica menores pérdidas por transporte

y mayor eficiencia de la red. - Generación de energía totalmente renovable.

Se estima que el potencial energético puede llegar a los 2 TW [8], lo que representa 1/5 de la demanda

mundial actual de potencia; siendo España (en concreto la cornisa noroeste) y Portugal lugares

privilegiados. Además, toda la costa atlántica es factible para el aprovechamiento de este tipo de energía. Por otra parte, España posee una gran tradición naval, lo que implica una gran oportunidad

para el desarrollo de prototipos de captación undimotriz. Esto podría aliviar parcialmente los

problemas económicos asociados a este sector durante los últimos años, según [9].

E

"El agua es la fuerza motriz de toda la naturaleza"

- Leonardo da Vinci -

Page 34: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Energía Undimotriz: descripción y perspectivas.

4

2.1 Descripción

La energía undimotriz es la energía que contienen las olas en su movimiento. Esta energía está

compuesta por energía cinética y potencial ya que, durante el movimiento, la masa de agua sufre un

cambio de altura y velocidad. El movimiento de las olas se genera debido al rozamiento del aire con

el agua. Los flujos de aire en la Tierra se producen a su vez por los gradientes de presión debidos a las diferencias térmicas entre las distintas zonas del planeta. Dicho calentamiento se produce debido a la

radiación del sol sobre la Tierra. Debido a la rotación de la Tierra sobre su eje, el viento se curva por

efecto coriolis. En el hemisferio norte, el viento se curva hacia la derecha; en cambio, en el hemisferio sur, el viento se curva hacia la izquierda. Este proceso lo podemos ver con detalle en la figura 2.1.

Figura 2-1. Vientos en el mundo. Fuente: [3].

En otras palabras, se puede concluir que la energía undimotriz es un subproducto de la energía solar,

que tiene lugar por medio de fenómenos naturales. La cantidad de energía transferida y, por ende, el

tamaño de las olas resultantes depende de la velocidad del viento (intensidad o fuerza), del tiempo durante el que sopla el viento (persistencia), y de la extensión de las aguas sobre las que sopla en la

misma dirección y con la misma intensidad (lo que en el mundo de los marinos se conoce como fetch),

[1]. Según [6], la energía solar incidente sobre la superficie del mar es de 350 W/m2 (constante solar), de la cual solo se transmite a la ola hasta 1 W/m2. Sin embargo, las olas pueden atravesar océanos con

una densidad media de energía de 100 kW/m (potencia por unidad de frente de ola). También

encontramos otros autores, como [8], que estiman en 100 W/m2 la constante solar sobre la superficie oceánica y en 1000 kW/m la densidad de potencia de la ola. Además, se debe tener en cuenta que la

ola pierde energía conforme avanza hacia la costa, debido a la fricción de las partículas de agua con la

superficie terrestre en costas de baja profundidad, ver figura 2.2.

Page 35: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

5

5

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

Figura 2-2. Movimiento de la ola. Fuente: [4].

En las áreas de generación y alrededores, las olas producidas durante las tormentas dan lugar a un mar

complejo, irregular; pero estas olas seguirán viajando en la dirección de su formación incluso aunque

desaparezca el viento. En aguas profundas el oleaje pierde energía muy lentamente, por lo que pueden

viajar lejos de las zonas de tormenta con una mínima pérdida de energía, en forma de olas regulares y suaves (mar de fondo o marejada) que pueden persistir a gran distancia del lugar en que se originaron.

Figura 2-3.Proceso de formación de la ola. Fuente: [7].

Por consiguiente, las costas expuestas a la dirección de los vientos dominantes con largos fetches

tienden a tener los oleajes más energéticos, como ocurre en las costas occidentales americanas (tanto

en el norte como en el sur), y en Europa, África de Sur, Australia o Nueva Zelanda.

Como se aprecia en la figura 2.4, la potencia media anual por metro de frente de ola tiene un reparto

desigual en la Tierra. Los mayores valores de potencia se ubican en las latitudes comprendidas entre

los 40 y 60º en ambos hemisferios. Esta figura fue generada a partir del estudio realizado durante 10 años por ECMWF y corregida por OCEANOR.

Page 36: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Energía Undimotriz: descripción y perspectivas.

6

Figura 2-4. Potencia media anual por metro de frente de ola. Fuente: [6].

Como se ha comentado anteriormente, la energía undimotriz está directamente relacionada con los flujos de vientos y, a su vez, con la energía eólica. En la figura 2.5, se presenta un mapa de velocidad

del viento en el mundo elaborado por la NASA. En concreto, se definen dichas velocidades para el

mes de Enero y Julio, lo que aporta información acerca de las diferencias existentes causadas por

motivos estacionales.

Figura 2-5. Velocidad del viento en el mundo. Arriba en Enero, abajo en Julio. Fuente: [5].

Page 37: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

7

7

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

Si se compara la figura 2.5 y 2.4, la primera conclusión que se puede extraer es que allí donde se

producen las mayores velocidades del viento, también se producen las mayores potencias por unidad

de frente de ola. Por tanto, se puede establecer que aquellos lugares adecuados para la instalación de aerogeneradores offshore, serán también zonas ideales para la instalación de dispositivos de captación

de energía undimotriz. Siendo esto una oportunidad para mejorar el coste de esta tecnología de cara a

su explotación comercial, [10].

La caracterización de la ola y los dispositivos actualmente en desarrollo se tratarán más adelante en los capítulos 3 y 4. En la figura 2.6 se observa una figura con los datos de cantidad de potencia extraíble

de las olas en todo el mundo.

Figura 2-6. Niveles de potencia de energía undimotriz en kW/m de frente de ola. Fuente: [8].

2.1.1 Coste y eficiencia

Es importante tener en cuenta el grado de utilización de cada fuente de energía, esto es, la energía

producida entre las horas disponibles al año para la generación. En la figura 2.7 se muestra un gráfico que analiza este factor para diferentes fuentes de energía. Como se puede apreciar, la energía

undimotriz puede llegar a valores similares a los que presenta la energía hidráulica. Además, supera

de forma importante a otras fuentes de energía renovable como la solar o la eólica.

Page 38: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Energía Undimotriz: descripción y perspectivas.

8

Figura 2-7. Grado de utilización de distintas fuentes de energía. Fuente: [12].

El coste asociado a la generación de energía undimotriz ha disminuido de forma importante por los avances en la tecnología de los dispositivos de conversión undimotriz. En concreto, los costes han

bajado desde los 0.15 €/kWh hasta los 0.075 €/kWh, según [8]. En España, se estima, según [13], un

coste de generación de 0.07 €/kWh para el periodo 2021-2030, donde se situaría la fase de consolidación de la tecnología asociada a esta energía.

Por otra parte, es importante conocer o tener una estimación fiable de la potencia eléctrica técnica y

comercialmente extraíble de las olas. En la figura 2.8, se muestra un gráfico con los rendimientos asociados a cada etapa de conversión de energía, desde la captación de la ola hasta su evacuación a la

red eléctrica.

Figura 2-8. Diagrama de pérdidas durante el proceso de generación de energía eléctrica a partir de

energía undimotriz. Fuente: [13].

Page 39: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

9

9

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

Como se puede apreciar, el rendimiento completo estaría en el entorno del 21 %. También es notable

que no toda aquella energía disponible (Incident Wave Power) es capturada por el dispositivo lo que

implica unas pérdidas del 15%. Además es en la etapa de conversión de dicha energía (Wave Power in Device Direction – Captured Power) donde se producen las mayores pérdidas de todo el sistema.

El nivel de estas pérdidas estará asociado al método de conversión que se utilice, es decir, sistemas

hidráulicos, mecánicos, etc.

2.2 Perspectivas.

La energía de las olas se postula como una energía renovable en alza, ya que representa ventajas muy interesantes, pero también algunos inconvenientes.

Ventajas:

- Energía muy extendida (múltiples ubicaciones). - Capacidad de predicción mayor que la energía eólica.

- Poca interferencia ambiental.

- Buena correlación entre recurso y demanda (el 37% de la población mundial vive a 90 km de

la costa). - Intensidad media de la energía.

Solar: 100-200 W/m2.

Eólica 400-600 W/m2.

Olas 2-3 kW/m2.

Inconvenientes:

- Condiciones severas del mar (temporales). - Coste de la instalación.

- Energía en fase de desarrollo a nivel mundial. Ninguna tecnología se ha impuesto al resto

debido a irregularidades en la amplitud, fase y dirección de las olas. Los generadores estándar

existentes en el mercado tiene una velocidad de giro de 1500 rpm, mientras que la frecuencia de oscilación de las olas es del orden de 100 veces menor.

2.2.1 La energía undimotriz en el mundo

El interés por la energía undimotriz dentro de las administraciones públicas y los centros de

investigación está asociado íntimamente con la disponibilidad del recurso y la facilidad para su extracción. Es por esta razón, por la cual el desarrollo de la tecnología asociada a la energía undimotriz

se ha producido de forma diferente a lo largo del mundo.

2.2.1.1 Europa

Inicialmente, el desarrollo de tecnologías asociadas a la energía undimotriz ha tenido lugar en países

con grandes recursos disponibles, como son: Dinamarca, Irlanda, Noruega, Portugal, Suecia y Reino Unido. En estos, se han desarrollado tanto dispositivos de conversión (Oscilating Water Column,

Salter Duck, etc.) como centros de testeo de dichos dispositivos (Pico de Azores, Escocia). Además

se ha creado un conocimiento e interés investigador alrededor de este campo de la investigación en

energías renovables.

Recientemente, otros países como Bélgica, Finlandia, Francia, Alemania, Grecia, Italia, Holanda y

España han mostrado su interés por este tipo de energía. En concreto, se han propuesto nuevos

dispositivos de captación undimotriz, se han desarrollado modelos hidrodinámicos (Escuela Central

Page 40: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Energía Undimotriz: descripción y perspectivas.

10

de Nantes) y se han realizado estudios sobre el potencial de la energía undimotriz, según [14]. Todos estos esfuerzos para desarrollar tecnologías de conversión undimotriz han sido apoyados por fondos

de la Comisión Europea desde 1992. En la figura 2.9, se muestra un gráfico sobre dichos fondos

aportados.

Figura 2-9. Fondos de la Comisión Europea para proyectos de investigación de energía undimotriz.

Fuente: [14].

2.3 La energía undimotriz en España

El sector de la energía undimotriz en España se encuentra en una fase inicial-media de desarrollo

tecnológico. La evolución actual se basa en proyectos de innovación, muchos de los cuales corren a

cargo de empresas privadas en cooperación con universidades, según [11]. España cuenta con recursos cercanos a 40 GW, de los que 16 son viables comercialmente para su explotación, según [11].

Algunos de los proyectos que se han desarrollado en España se encuentran en la tabla 2.1.

Tabla 2–1 Proyectos de energía marina desarrollados en España.

Uno de los objetivos del Plan Nacional de Energías Renovables 2011-2020 es alcanzar una potencia

total instalada de 100 MW (producción de 220 GWh) en 2020, según [11].

A partir de diversos estudios realizados por entidades públicas y privadas, se deduce que la costa norte

de España presenta unas condiciones excelentes para la explotación de la energía undimotriz, siendo

Galicia la región que ofrece los mayores recursos y potencial. Según dichos estudios, la energía

undimotriz podría ser comercialmente competitiva, comparada con otras fuentes tradicionales, en 2026. Dicha reducción de costes se deberá al uso de economías de escala y desarrollos de ingeniería.

Además, España es pionera en la instauración de una tarifa de alimentación para la generación de

electricidad a partir de la energía marina, según [11].

Proyecto Descripción Potencia Inversión Localización

Mutriku 1ª Instalación comercial conectada a la red en España 296 kW 2.3M€ Motrico, País Vasco

Abencis Seapower Prototipo tipo boya - - Gerona, Cataluña

OCEANTECSistema para explotación de energía unidmotriz

dirigido por Iberdrola y Tecnalia

BIMEP Centro de pruebas en mar abierto País Vasco

SWEP Satoña Wave Energy Project 1.4 MW 8 M€ Santoña, Cantabria

OCEANLÍDER

Investigación y desarrollo de distintas tecnologías de

generación de energía a partir del océano.

Colaboración entre 20 compañias y 25 centros de

investigación.

30 M€

Page 41: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

11

11

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

Tabla 2–2 Tarifa para la generación a partir de la energía marina.

El Instituto de Hidráulica Ambiental IH de Cantabria ha realizado un estudio para calcular la energía

media anual bruta en las diferentes Comunidades Autónomas de España. Este estudio se basa en mediciones de potencia para diferentes profundidades mediante sistemas de medición de tipo boya.

En la tabla 2.3, se pueden ver los datos obtenidos tras el estudio. Los resultados ponen de manifiesto

que Galicia, Asturias, Cantabria, País Vasco y Canarias son las comunidades con mayor recurso.

Tabla 2–3 Energía media anual bruta por fachadas y profundidades indefinidas, 100, 50 y 20 m de

profundidad (TWh/año).

Page 42: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Energía Undimotriz: descripción y perspectivas.

12

Por otro lado, este mismo estudio [2] aporta información sobre la energía media anual neta por comunidad autónoma, es decir, toma la información contenida en la tabla 2.3 y le aplica una serie de

coeficientes reductores para tener en cuenta las posibles pérdidas en la conversión de energía

undimotriz en energía eléctrica:

- Reducción por conflictos de uso k1=0.8

- Reducción por parada de la planta en calma y en temporales k2=0.8

- Reducción por la eficiencia hidrodinámica k3=0.4

- Reducción por eficiencia mecánico-eléctrica: o Turbulencias k4=0.9

o Eficiencia turbina de aire k4=0.6

o Eficiencia OWC k4=0.54 o Sistema hidráulico k4=0.54

- Reducción por la eficiencia en el acondicionamiento de la salida eléctrica k5=0.9

- Reducción por consumos propios de la planta k6=0.95 - Reducción por eficiencia del transporte a tierra y transformación para conexión a la red

k7=0.9

Tabla 2–4 Energía media anual neta por fachadas y profundidades (TWh/año).

Page 43: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

13

13

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

Por lo tanto, si tenemos en cuenta estos coeficientes, la eficiencia o rendimiento total sería la calculada en la siguiente ecuación:

𝜼 = 𝑘1 · 𝑘2 · 𝑘3 · 𝑘4 · 𝑘5 · 𝑘6 · 𝑘7 = 0.8 · 0.8 · 0.4 · 0.8 · 0.9 · 0.95 · 0.9 = 𝟎.𝟏𝟔

Si se aplica este coeficiente a los datos de la tabla 2.3, se obtiene la energía media anual neta por fachada y profundidad en TWh/año para las diferentes Comunidades Autónomas. Esta información

queda reflejada en la tabla 2.4.

2.4 Impacto Ambiental

Toda actividad ligada a la generación de energía produce un impacto en el medio que rodea a los puntos donde se produce dicha energía. En el caso de la energía undimotriz también se produce un

impacto sobre el medio marino que rodea a los dispositivos instalados para la generación de

electricidad. Es cierto que dicho impacto tiene un coste económico, que también se debe tener en

cuenta como coste de generación. Sin embargo, los estudios existentes sobre este tipo de energía todavía son insuficientes y algo alejados de la realidad, ya que no se dispone aún de plantas de

generación instaladas. Esta situación impide la evaluación acertada del impacto ambiental de esta

fuente de energía. Sin embargo, diversos autores [8], [6] y [14] citan varios efectos que puede afectar al medio ambiente. En la tabla 2.5, se refleja el nivel de impacto según la localización de los

dispositivos de captación undimotriz y los efectos que pueden producir.

Tabla 2–5 . Impacto medioambiental de los dispositivos de energía undimotriz. Fuente: [14].

Entre las principales causas destaca el efecto “rompeolas” que tienen los dispositivos para conversión de energía undimotriz. Este hecho supone, a priori, un efecto positivo ya que disminuye la erosión

sobre la costa. Sin embargo, este cambio en el movimiento natural de las olas afecta al transporte de

alimento para los peces (p.e. el transporte de larvas), lo cual puede afectar a la flora y fauna del mar.

Además, otro de los aspectos destacables es el hecho de la gran superficie de mar que cubren algunos

dispositivos; esto impide que la luz llegue al fondo marino, lo que afecta también a la vida de la flora

marina. Por otro lado, también se debe tener en cuenta la posible contaminación del agua debido a las fugas de los fluidos de trabajo (aceite) en los sistemas hidráulicos.

Por último, el ruido producido por los elementos que componen los sistemas de extracción de energía

undimotriz (sistemas hidráulicos, turbinas, generadores eléctricos) puede afectar a los sistemas de

orientación de algunos mamíferos como delfines y ballenas, según [6].

En conclusión, uno de los retos a los que se enfrenta esta fuente de energía es la caracterización del

impacto ambiental de los dispositivos de extracción. Por ello, se hace necesario disponer de estudios

sobre el mismo y de una legislación que estipule los requisitos necesarios a considerar en este tipo de instalaciones de cara a su explotación comercial.

Page 44: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Energía Undimotriz: descripción y perspectivas.

14

Page 45: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

15

15

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

3 TECNOLOGÍA ACTUAL: DISPOSITIVOS DE

CAPTACIÓN DE ENERGÍA UNDIMOTRIZ.

ara obtener la energía que contienen las olas, es necesario disponer de dispositivos capaces de capturar dicha energía mediante procesos con alta eficiencia, coste de inversión y explotación

competitivo y cuyo impacto en el medio ambiente sea bajo. Como se ha comentado en el capítulo

anterior, el interés por la energía undimotriz por parte del hombre se remonta varios siglos atrás.

Es a partir de finales del siglo XVIII cuando empiezan a aparecer los primeros dispositivos, siendo en

los años 70’ cuando este interés llega a ser importante dentro del mundo académico e investigador.

Durante el siglo XX y parte del XXI se han desarrollado prototipos que se encuentran actualmente en fase precomercial. Estos prototipos demuestran que el potencial de la energía undimotriz es alto y el

coste podría llegar a ser tan competitivo como la energía solar o eólica

En este capítulo se pretende dar una visión general de la tecnología disponible actualmente. Los

dispositivos que se describirán se encuentran en diferentes fases de desarrollo, es decir, algunos se encuentran en fase de ensayos y estudio por parte de diferentes grupos de investigación, y otros ya

están siendo explotados comercialmente por empresas privadas o mediante colaboración público-

privada.

En primer lugar, se realizará una clasificación siguiendo diferentes enfoques. A continuación, se

realizará un análisis de los métodos de conversión que llevan a cabo dichos dispositivos; ya que,

aunque tienen diferente configuración, algunos dispositivos comparten el mismo principio de

funcionamiento. Posteriormente, se describirán de forma detallada los dispositivos que se han mencionado durante el capítulo. Finalmente, se realizará un resumen de todo el capítulo en el apartado

de conclusiones.

P

Grandes descubrimientos y mejoras implican

invariablemente la cooperación de muchas mentes.

- Alexander Graham Bell -

Page 46: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Tecnología Actual: Dispositivos de captación de energía undimotriz.

16

3.1 Clasificación

Los dispositivos desarrollados para la conversión de energía undimotriz poseen diversas configuraciones. Estos han sido concebidos siguiendo diferentes principios de captación,

aprovechando las distintas tecnologías existentes y las ubicaciones disponibles. En la figura 3.1 se

pueden apreciar algunas de las posibilidades y configuraciones que nos ofrece esta energía. Los convertidores de olas pueden ser clasificados de distintos modos; en este caso se clasificarán según su

configuración, su localización y su geometría u orientación.

Figura 3-1. Representación de algunas de las tecnologías disponibles. Fuente: [5].

Clasificación según su configuración:

En la figura 3.2, se encuentra un esquema con las diferentes opciones en función de su

configuración. Existen 3 grandes grupos:

- Columna de agua oscilante: la captación de energía se produce por el movimiento que

infunde la ola sobre un flujo de aire almacenado en una cámara y que mueve una turbina.

- Cuerpos oscilantes: capturan el movimiento de la ola para accionar dispositivos mecánicos

o hidromecánicos que generan el movimiento que se transmite al generador eléctrico.

- Rebosamiento: en este caso, se transforma la energía cinética de la ola en energía potencial

mediante el almacenamiento de agua en tanques. Después dicha energía es turbinada para

generar un movimiento de rotación que se transmite al generador hidráulico.

Page 47: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

17

17

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

Figura 3-2. Clasificación de las tecnologías de conversión existentes. Fuente: elaboración

propia según [4].

Clasificación según su localización:

En este caso, la clasificación hace referencia a la distancia con respecto a la costa para la que se han diseñado estos dispositivos y la forma de anclarse o soportarse.

- Fijos al lecho marino (generalmente en aguas poco profundas).

- Flotantes (típicamente en aguas profundas).

- Conectado mediante cables al lecho marino (aguas de profundidad intermedia).

- En la costa (onshore).

Columna de agua oscilante

Estrutura fija

Aislado: Pico, LIMPET

En rompeolas: Sakata, Mutriku

Estrutura flotanteMighty Whale, Ocean

Energy, Superboy, Oceanlinx

Cuerpos oscilantes

Estrutura flotante

Translación: Aquaboy, IPS Buoy, FO3,

Wavebob, PowerBuoy

Rotación: Pelamis, PS Frog, SEAREV.

Sumergidos

Translación: AWS

Rotación: WaveRoller, Oyster.

Rebosamiento

Estructura fija

Costeros: TAPCHAN.

En rompeolas: SSG

Estructura flotante: Wave Dragon

Page 48: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Tecnología Actual: Dispositivos de captación de energía undimotriz.

18

- Cerca de la costa (nearshore) 37-70 m.

- Lejos de la costa (offshore) >70 m.

Los tipos de localización están ligados unos con respecto a otros. Por ejemplo, existen dispositivos flotantes que pueden estar cerca de la costa o alejados de ella. En la figura 3.3 se hace un resumen

de las distintas combinaciones que podemos tener en lo que a localización se refiere.

Figura 3-3. Clasificación según la localización. Fuente: [6].

Clasificación según su geometría u orientación:

En este caso, la configuración hace referencia a la disposición del dispositivo con respecto a la

dirección de avance de la ola. Este tipo de clasificación proporciona una idea sobre la forma en la

que interactúa el dispositivo con la ola, es decir, cómo se produce el contacto de la ola con el dispositivo. En la figura 3.4 se observa un esquema de las distintas posibilidades.

- Terminador

o Tienen su eje principal paralelo al frente incidente de la ola. Se sitúan en la superficie del agua y son capaces de capturar la energía que contiene cada ola.

- Atenuador

o Tienen su eje principal perpendicular al frente de la ola incidente. Suelen se estructuras alargadas, ocupan un gran espacio y están menos expuestas al daño.

Requieren menos espacio en la dirección del frente de la ola con respecto a los

sistemas de tipo terminador.

- Absorbedor puntual

o Trabajan debido al empuje de las olas, pero su tamaño es pequeño en comparación con la longitud del frente de ola. Se encuentra en la superficie del mar o sumergidas.

Pueden funcionar de forma aislada o conjunta mediante una unión entre boyas con

estructuras sumergidas.

Page 49: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

19

19

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

Figura 3-4. Clasificación según la orientación y geometría. Fuente: [6].

3.1.1 Métodos de conversión

La conversión de la energía que contienen las olas se puede realizar a través de múltiples dispositivos

como se ha visto en la sección anterior. Sin embargo, muchos de ellos aprovechan métodos similares

para la conversión de energía undimotriz en energía eléctrica.

Este proceso se puede realizar, fundamentalmente, por medio de tres métodos de conversión electro-

mecánica:

- Flujo de aire: el ascenso y descenso de las olas dentro de una cámara de aire, empuja dicha masa de aire a través de una turbina tipo Wells. Ejemplos de este método de conversión son:

OWC.

- Flujo de agua: el agua de las olas es almacenada en un reservorio ser turbinado posteriormente por diferencia de altura, es decir, se transforma la energía potencial en energía

mecánica. Este flujo acciona una turbina Pelton en una fase posterior. Ejemplos de este tipo

de dispositivos son: OYSTER, Wave Dragon, TAPCHAN.

- Movimiento relativo entre cuerpos:

o Circuito hidráulico: el movimiento oscilatorio de la ola provoca un movimiento de un dispositivo mecánico que lo transforma en presión sobre un fluido. Este flujo

acciona un motor hidráulico en una fase posterior. Ejemplos de este tipo de

dispositivos son: boya simple, PS FROG, Pelamis.

o Transmisión mecánica.

o Generador lineal: el movimiento relativo entre la parte móvil y la parte fija del generador lineal, por acción del oleaje, induce una corriente eléctrica. Ejemplos de

este método son: AWS.

Page 50: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Tecnología Actual: Dispositivos de captación de energía undimotriz.

20

Como se puede deducir, todos ellos tienen como objetivo último la generación de movimiento en dispositivos mecánicos o hidráulicos que están conectados a un generador eléctrico o alternador, con

el que se transforma la energía mecánica en energía eléctrica. Este representa la última etapa dentro

del proceso de conversión.

En la figura 3.5 se puede visualizar un esquema con los distintos métodos de conversión que se han

comentado anteriormente.

Figura 3-5.Dispositvos de conversión de energía undimotriz. Fuente: [29].

Page 51: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

21

21

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

3.2 Columna de agua oscilante

La Queen’s University de Belfast lleva trabajando en el desarrollo de convertidores de columna de agua oscilante desde 1985, con el objetivo de ser instalados en Escocia. Este convertidor se basa en

una cámara de hormigón, abierta por debajo del nivel del mar, ubicado en una zanja en la costa del

mar. Este dispositivo aloja aire en su interior, el cual se comprime y expande por efecto de las olas incidentes que hacen que suba o baje el nivel de agua dentro de la cámara. Este efecto sirve para mover

una turbina tipo Wells, explicada con más detalle en la sección 3.3.1, conectada a su vez a un generador

eléctrico. Esta turbina tiene la ventajosa característica de mantener el sentido de giro sea cual sea la dirección del flujo, es decir, durante la compresión y expansión del aire de la cámara, la turbina se

mantienen girando en el mismo sentido.

Para llevar a cabo su construcción, primero se escava una zanja en una zona próxima a los acantilados.

Después se construye la cámara de hormigón y por último se elimina la pared de roca. En la figura 3.7 se puede ver con más detalle.

La potencia de este dispositivo oscila entre los 60-500 kW. Este dispositivo ha sido construido en

Noruega (Toftestallen, 1985), Japón (Sakata, 1990), India (Vizhinjam, 1990), Portugal (Pico, Azores, 1999), Reino Unido (Isla de Islay, Escocia, 2000), según [4].

Figura 3-6. Esquema gráfico del sistema de columna de agua oscilante. Fuente: [7].

Figura 3-7. Imagen virtual 3D del sistema de agua oscilante. Fuente: [8].

En Mutriku, España, se encuentra la primera planta comercial de generación undimotriz con esta

tecnología. Fue construida en 2008 por Voith Siemens Hydro Tolosa y consta de 16 turbinas Wells

con una potencia total de 296 kW y una capacidad para producir 970 MWh al año, según [20]. En la figura 3.8 se puede ver la central durante una de la fase de construcción.

Page 52: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Tecnología Actual: Dispositivos de captación de energía undimotriz.

22

Figura 3-8. Imagen de la central de Mutriku. Fuente: [20].

A partir de este esquema inicial, se han desarrollado otras variantes que intentan mejorar el

rendimiento de esta instalación:

La empresa australiana Energetech Australia Pty, actualmente Oceanlinx, desarrolló un dispositivo desplazado ciertos metros de la costa. Este usa como novedad, una turbina con pich variable y una

pared parabólica que concentra la energía de las olas hacia el colector del OWC. Se utiliza en puertos

o rompeolas donde existe cierta profundidad. Ya se ha construido en Port Kembla, New South Wales, con una potencia instalada de 500 kW.

Figura 3-9. Recreación virtual del OWC instalado por Energetech. Fuente: [2].

GreenWAVE

Este dispositivo se trata de una estructura de hormigón que se apoya sobre el lecho marino. Ha sido

desarrollado por la empresa Oceanlinx y puede llegar a extraer hasta 1 MW de las olas. Se ubica cerca de la costa, en aguas con unos 10-15 m de profundidad. Puede ser utilizado tanto para producción de

energía eléctrica como para desalinización. En la figura 3.10, se puede ver una recreación del prototipo

a escala real.

Page 53: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

23

23

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

Figura 3-10. Recreación virtual del OWC instalado por Energetech. Fuente: [21]

OWC flotantes

Este tipo de OWC fue el primer prototipo probado en el mundo, en concreto en Japón en los años 60

y 70 por Yoshio Masuda, llamado BBDB (Backward Bent Duct Buoy). En él, el colector es curvado en dirección hacia el frente de la ola. Esto supone una gran ventaja en términos de pérdidas con

respecto a la versión OWC fija. Su uso y estudio ha sido realizado en numerosos países como Japón,

China, Dinamarca, Corea e Irlanda. En este último, se está desarrollando una versión para su implementación en océanos profundos. Por otra lado, la empresa Wavegen (actualmente Voith) está

planeando la construcción de WOSP, un dispositivo que combina un OWC con los aerogeneradores;

de esta forma se puede aprovechar tanto la energía undimotriz como la eólica con una potencia de 3500 kW, ver figura 3.11.

Figura 3-11.Vista del corte lateral de un OWC flotante. Fuente: [4].

El OSPREY, acrónimo de Ocean Swell Powered Renewable Energy, ha sido diseñado para operar a

15 m de profundidad y 1 km de la costa. Puede llegar a generar hasta 2 MW, en la figura 3.12 se

puede ver un detalle del mismo.

Page 54: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Tecnología Actual: Dispositivos de captación de energía undimotriz.

24

Figura 3-12. Recreación virtual del Sistema OSPREY. Fuente: [22].

The Mighty Whale, es un prototipo de 120 kW con tecnología OWC. Opera en profundidades de

hasta 40 m y 1.5 km de la costa de la ciudad de Nansei, en Japón.

Figura 3-13. Recreación virtual del Sistema The Mighty Whale. Fuente: [22].

El sistema WOSP, Wind and Ocean Swell Power, es un dispositivo que integra la captación de energía

eólica y undimotriz. Se trata de una plataforma flotante sobre la que apoya un aerogenerador y un

sistema OWC; llegando a generar hasta 3.5 MW si la ubicación así lo permite.

Figura 3-14. Recreación virtual del Sistema WOSP. Fuente: [22].

Page 55: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

25

25

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

3.2.1 Turbina Wells

Es una turbina de aire de baja presión, cuya principal característica reside en su movimiento de

rotación continuo independiente de la dirección del flujo que la atraviesa. En otras palabras, la turbina gira en el mismo sentido sea cual sea el sentido de circulación del flujo de aire que la atraviesa, ver

figura 3.15. Fue desarrollada en 1970 por el profesor Alan Arthur Wells de la Queen’s University de

Belfast para la aplicación en sistemas de columna de agua oscilante, evitando así el uso de válvulas de rectificación de flujo de aire.

Figura 3-15. Funcionamiento de la turbina Wells. Fuente: [23].

Su rendimiento es bajo debido al alto coeficiente de resistencia que poseen sus álabes. Una versión

mejorada de esta incluye álabes guía a ambos lados del rotor, los cuales mejoran la eficiencia de la misma (ver figura 3.16). Los valores usuales de rendimiento oscilan entre 0.4 a 0.7.

Figura 3-16. Turbina Wells con álabes guía. Fuente: [4].

Page 56: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Tecnología Actual: Dispositivos de captación de energía undimotriz.

26

3.3 Rebosamiento

3.3.1 TAPCHAN

TAPCHAN, TAPered CHANnel en inglés, es un dispositivo con un esquema simple. La conversión de energía se basa en el siguiente proceso: la ola incide sobre un colector ascendente (de unos 40 m

de ancho) que almacena el agua en un tanque o reservorio. Las dimensiones del tanque son 10 m de

alto (7 m sobre el nivel del mar), 170 m de largo. Su ubicación ideal es cerca de acantilados, ya que proporcionan la altura y profundidad necesarias para turbinar el agua en turbinas Kaplan en la etapa

final. En definitiva, con este dispositivo convertimos la energía cinética del agua, en energía potencial.

El primer prototipo fue construido en una pequeña isla de Noruega por la empresa Norwave. Este dispositivo genera una potencia eléctrica de 350 kW que se suministra en la red de electricidad

noruega.

Entre sus ventajas destacan su bajo coste de mantenimiento, su alta fiabilidad y la posibilidad de

utilización de turbinas Kaplan, tecnología ampliamente desarrollada y conocida. Sin embargo, este dispositivo no puede ser utilizado en todo el mundo, ya que los posibles emplazamientos requieren de

una serie de características como son:

- Un alto y regular oleaje. - Aguas profundas cerca de la costa.

- Bajo nivel de mareas.

- Fácil construcción de los reservorios.

Figura 3-17. Sistema TAPCHAN. Fuente: [3].

3.3.2 Seawave Slot-Cone Generator

Este dispositivo se basa en la utilización del rebosamiento del agua de las olas que inciden en una

estructura de características similares al OCW fijo, pero en este caso existen 3 aperturas sobre la cara que da al mar. Dichas aperturas dan acceso a unos reservorios comunicados por turbinas, uno encima

del otro. De este modo, el reservorio ubicado más abajo aprovecha el agua ya turbinada en los dos

reservorios superiores. Al estar cerca de la costa, los costes de mantenimiento son bajos y la fiabilidad es alta.

En Diciembre de 2005, la empresa WAVEenergy AS comenzó la construcción de un prototipo en la

isla de Kvitsoy, Noruega. Dicho dispositivo generará 19 kW/m de frente de ola.

Page 57: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

27

27

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

Figura 3-18.Recreación virtual del sistema Seawave Slot-Cone Generator. Fuente: [30].

3.3.3 Wave Dragon

Wave Dragon es un dispositivo flotante convertidor de energía mediante rebosamiento. La primera

unidad fue instalada en Nissum Bredning, Dinamarca. Dicho dispositivo se compone de unos

reflectores que focalizan la energía de la ola hacia una rampa. Después, el agua es almacenada en un reservorio o tanque para su posterior turbinación.

Figura 3-19. Vista en planta del sistema Wave Dragon. Fuente: [4].

Entre sus ventajas destacan la utilización de la tecnología offshore y turbina hidráulica, prototipo a escala real en fase de pruebas. Sin embargo, los costes de mantenimiento son elevados debido al

ambiente al que están expuestas este tipo de estructuras.

Figura 3-20. Corte trasversal de la estructura del sistema Wave Dragon. Fuente: [24].

Para la turbinación del agua se utilizan turbinas tipo Kaplan, una turbina ampliamente conocida y

estudiada. Ver figura 3.21.

Figura 3-21. Detalle de la turbina Kaplan empleada en este sistema. Fuente: [24].

Page 58: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Tecnología Actual: Dispositivos de captación de energía undimotriz.

28

3.4 Sistemas de cuerpo oscilante.

3.4.1 Pelamis

Este dispositivo se compone de cuatro cilindros unidos por medio de juntas móviles, también conocido

como serpiente de mar. Se dispone en dirección de avance de la ola, siendo un dispositivo de tipo

“atenuador”. Este aprovecha el movimiento de la ola, que produce un movimiento relativo entre los cilindros del mismo.

Figura 3-22. Vista de perfil y planta del sistema Pelamis. Fuente: [9].

Dicho movimiento relativo acciona unos cilindros internos que mueven el fluido a través de un circuito hidráulico. La circulación del fluido acciona un motor hidráulico que genera una potencia mecánica

que se transmite al generador eléctrico. En la figura 3.23 puede verse con más detalle las diferentes

partes de las que se compone cada cilindro internamente.

Figura 3-23. Vista interior de una de las secciones del sistema Pelamis. Fuente: [10].

Este dispositivo ha sido objeto de estudio durante varias décadas, durante las cuales se han desarrollado modelos teóricos y numéricos, por lo que se tiene un gran conocimiento de su comportamiento a escala

real. El primer prototipo a escala real se probó en Escocia en 2004, con una potencia de 750 kW, 120

m de largo y 3.5 m de diámetro.

Page 59: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

29

29

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

Actualmente se encuentra en fase de comercialización; en Aquadoura se encuentra una granja de serpientes del mar.

Figura 3-24. El sistema Pelamis en mar abierto. Fuente: [11].

Existe otro dispositivo, llamado McCabe Wave Pump, que posee una gran similitud conceptual con

respecto al Pelamis. La captación de energía se produce por el movimiento relativo entre las aletas y

el cuerpo central. En la figura 3.25 se puede ver con más detalle.

Figura 3-25. Vista de alzado y planta del McCabe Wave Pump. Fuente: [4].

3.4.2 Boya simple

En esta sección se tratarán aquellos dispositivos que utilizan una boya para capturar la energía de la

ola. Como podrá observarse, existen diferentes configuraciones que aprovechan los diferentes

sistemas de conversión disponible, es decir, motores hidráulicos, turbinas, etc.

Page 60: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Tecnología Actual: Dispositivos de captación de energía undimotriz.

30

OPT

Este dispositivo es del tipo absorbedor puntual de oscilación vertical. En este caso, el dispositivo se

compone de 2 partes fundamentalmente, por un lado la boya que mueve el vástago, por otro, un pilote

de acero en cuyo interior se aloja el cilindro sobre que se mueve el vástago. El extremo del piloto se une a una placa pesada que da estabilidad al conjunto. El esquema del mismo se puede ver en la figura

3.26.

Figura 3-26. Vista de perfil del sistema OPT. Fuente: [12].

Dicho cilindro reposa sobre una placa que da estabilidad a la estructura. Ha sido desarrollado por la compañía Ocean Power. Se han desarrollado 2 versiones del mismo: una de pequeña potencia,

denominada APB-30, y otra de gran potencia denominada PB40. Las características de ambas

variantes se pueden ver en la tabla 3.1.

Tabla 3–1 Datos técnicos de los modelos de OPT. Fuente: [12].

Page 61: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

31

31

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

APC-PISYS

Este sistema es un innovador concepto de convertidor de energía undimotriz, basado en la múltiple

captación de la energía potencial, cinética y presión presentes en las olas del mar.

Ha sido patentado y desarrollado por la empresa

PYPO Systems dentro del Plan Nacional de

Investigación Científica, Desarrollo e Innovación

Tecnológica 2008-2011 de la Secretaría de Estado de Investigación, según [6]. Ver figura

3.27.

Se compone de 3 boyas: una boya en superficie (color amarillo), otra sumergida de volumen

variable (roja) y otra de posicionamiento (verde).

La boya de superficie y la sumergida de volumen variable son las que captan la energía de la ola.

Por otra parte, la boya de posicionamiento

mantiene constante la distancia al fondo marino

mediante su unión con una plataforma de anclaje y amarre al fondo marino. Dentro de esta boya se

encuentran alojados los sistemas de control,

generación y medición de la potencia.

Se han ensayado prototipos a escala 1:5 en las

Islas Canarias, con una potencia comprendida

entre 100 y 150 kW.

Figura 3-27. Esquema de los componentes de sistema APC-PISYS. Fuente: [6].

Aquabouy

El movimiento ascendente y descendente de la boya, es transmitido a un pistón al que se unen dos mangueras flexibles que funcionan como bombas de agua. Las mangueras impulsan el agua a presión

por un tubo hacia un acumulador situado en la parte superior del sistema. En el interior de la boya se

aloja una turbina Pelton que acciona un generador y produce electricidad. Fue desarrollado inicialmente por la empresa Aquaenergy, que después fue adquirida por Finavera Renewables Ocean

Energy. En el año 2003 probó un prototipo en la Bahía de Makah (US). Este prototipo tenía un

diámetro de 6 m y longitud de 30 m. Se ubica en una profundidad mayor de 50 m y produce una potencia de 250 kW, según [1].

Page 62: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Tecnología Actual: Dispositivos de captación de energía undimotriz.

32

Figura 3-28.Esquema virtual del interior del sistema Aquabouy. Fuente: [13].

Su diseño está basado en la boya IPS, inventada por Sven A. Noren y desarrollada inicialmente es

Suecia. Consistía en una boya que movía un pistón alojado dentro de un cilindro totalmente sumergido en el agua y abierto por ambos extremos. Un prototipo a escala 1:2 fue ensayado en 1980. [4].

FO3 – Fred Olsen (Buldra)

Se trata de una plataforma flotante ligera y estable de fibra de vidrio reforzado (GRP) que monta un

número variable de boyas. La extracción de la energía se realiza mediante un sistema hidráulico compuesto por cilindros y motores hidráulicos. Se ha desplegado un prototipo en Karnoy (Noruega)

y otro en Wave Hub (Reino Unido); el cual dispone de 21 boyas con una potencia de hasta 2,5 MW,

con unas dimensiones de 33x33x25 metros (W x L x H) y peso de 315 toneladas.

Figura 3-29. Representación virtual 3D del sistema FO3. Fuente: [14].

Page 63: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

33

33

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

Coppe Subsea Technology

Esta tecnología ha sido desarrollada en Brasil por el Laboratorio de Tecnología Submarina Coppe. El

desarrollo de esta ha culminado con la construcción de una planta de 50 kW en el Puerto de Pecem, a 60 kilómetros de Fortaleza. El dispositivo, se compone de una plataforma que flota sobre el mar y que

está conectada a tierra mediante una viga. Dicha viga se apoya al suelo mediante una unión con

cilindros hidráulicos. Estos son accionados por el movimiento que causan las olas sobre la estructura

viga-boya. Los cilindros transmiten la presión al flujo de agua que será turbinado en una etapa posterior.

Figura 3-30. Imagen de la planta de Pécem. Fuente: [25].

OYSTER

Se trata de un dispositivo oscilador anclado a la superficie marina. Se ubica en zonas con una

profundidad comprendida entre los 10 a 15 metros y a medio kilómetro de la costa. Su movimiento

oscilatorio se utiliza, mediante un sistema hidráulico, para bombear agua a alta presión hasta la costa.

Allí, dicho fluido se hace pasar por un motor hidráulico que mueve un eje conectado a un generador

eléctrico. El último prototipo fabricado tiene una potencia de 800 kW, ubicado en el Centro Europeo

de Energías Marinas en Orkney, Escocia. En la figura 3.31 se puede visualizar una imagen del mismo.

Ha sido desarrollado por la empresa Aquamarine Power y se encuentra actualmente en fase de pruebas

en Escocia, E.E.U.U. e Irlanda. [15]

Figura 3-31. Imagen del dispositivo OYSTER. Fuente: [16].

Page 64: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Tecnología Actual: Dispositivos de captación de energía undimotriz.

34

WaveRoller

Este dispositivo ha sido desarrollado por la empresa AW-Energy Oy en Peniche, Portugal. Se trata de

un módulo anclado a la superficie marina, sobre el que se sitúan tres placas que oscilan con el

movimiento de las olas. Dicho movimiento, acciona un cilindro hidráulico conectado a un sistema

hidráulico que convierte dicha energía en energía mecánica para mover un alternador. El sistema

electro-hidráulico-mecánico se ubica dentro del módulo, evitando estar en contacto con el mar, según

[26].

Tiene un rango de potencia de 500 a 1000 kW, dependiendo del recurso existente. Se ubica en

profundidades de entre 8 a 20 metros y en una distancia a la costa de entre 0.3 a 2 km.

En 2012 fueron instaladas 3 unidades de 100kW en Peniche, las cuáles suministran energía a la red

eléctrica de Portugal. Dichos dispositivos se encuentran en fase de pruebas para un futuro desarrollo

comercial.

Figura 3-32. Representación virtual del sistema WaveRoller. Fuente: [17].

Langlee Wave Power,

Otro dispositivo similar al OYSTER es el dispositivo llamado Robusto, ver figura 3.33. Este dispositivo tiene el mismo principio de funcionamiento que OYSTER, pero trabaja de forma semi-

sumergida, lo que implica un gran ahorro en coste de inversión según [18]. Tiene una potencia nominal

de 132 kW y unas dimensiones de 15x30 metros.

Actualmente está siendo fabricado por la empresa noruega Langle Wave Power en las Islas Canarias.

Figura 3-33. Representación de una instalación undimotriz del sistema Laglee. Fuente: [18].

Page 65: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

35

35

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

BioWave

Otro sistema oscilatorio, llamado BioWave, que trabaja anclado a la superficie marina y desarrollado

por la empresa australiana BioPower Systems. Actualmente se encuentra en fase de pruebas mediante

un prototipo de 250 kW, ubicado a 30 metros de profundidad y conectado a la red eléctrica de Australia.

Figura 3-34. Representación virtual del sistema BioWave. Fuente: [19].

Archimedes Wave Swing (AWS)

Este dispositivo se encuentra sumergido; está formado por dos cilindros, uno fijado al suelo marino y

otro que actúa como un flotador moviéndose verticalmente por efecto de las olas (principio de Arquímedes). El movimiento oscilatorio se aprovecha directamente para producir energía eléctrica

mediante un generador lineal. En la figura 3.35, se puede visualizar un esquema de las partes que

componen dicho dispositivo.

Figura 3-35. Representación gráfica del interior del sistema AWS. Fuente: [4].

Page 66: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Tecnología Actual: Dispositivos de captación de energía undimotriz.

36

Fue ensayado en 2004 en Viana do Castelo, Portugal. El prototipo tenía un diámetro de 9,5 m y se

situaba a 43 m de profundidad. La potencia máxima es 250 kW por unidad y de 2 MW en la planta

piloto. Dicha planta piloto fue conectada a la red eléctrica. En la figura 3.36, se muestra el prototipo fabricado para los ensayos.

Figura 3-36. Prototipo construido del sistema AWS. Fuente: [27].

3.4.1 Dispositivos de cabeceo

Duck

Fue creado y desarrollado por el profesor Stephen Salter de la Universidad de Edimburgo en 1970. Se trata de un dispositivo con dos cuerpos móviles. Este dispositivo se une a otros creando una cadena

que se opone al frente de la ola. Intenta aprovechar el movimiento orbital de las partículas de la ola.

Este dispositivo es teóricamente uno de los más eficientes de los que se han construido; sin embargo, no se ha llegado a desarrollar a gran escala. Uno de los inconvenientes que presenta es la dificultad

para la extracción de energía eléctrica desde el dispositivo.

Figura 3-37.Recreación virtual del dispositivo Duck. Fuente: [4].

Page 67: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

37

37

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

Searev, Système Electrique Autonome de Récupération de l’Energie des Vagues

Es un dispositivo desarrollado por la escuela Central de Nantes, Francia. Se trata de un dispositivo

flotante con un sistema hidráulico y una rueda de metal, que actúa como un péndulo. Tiene unas dimensiones de 15 m de alto, 25 de largo y pesa 100 tn, la mitad de las cuáles se deben a la rueda

metálica. Dicha rueda, de 9 metros de diámetro, funciona como un péndulo. Durante su movimiento

acciona 2 cilindros que se encuentran conectados a ella.

Figura 3-38. Imagen del Searev durante las pruebas de laboratorio. Fuente: [28].

Está diseñado para trabajar a 15 km de la costa y en profundidades de entre 30 a 50 m. El dispositivo

a escala real produce la potencia suficiente para abastecer a 200 hogares.

La conversión de la energía mecánica del cabeceo se realiza por medio de un sistema hidráulico

compuesto por cilindros, acumuladores y motores hidráulicos. Este sistema es el que se ha visto en otros dispositivos como las boyas simples, etc. En la figura 3.39 se puede ver en detalle dicho

esquema.

Figura 3-39. Vista interna del dispositivo Searev. Fuente: [28].

Page 68: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Tecnología Actual: Dispositivos de captación de energía undimotriz.

38

3.5 Centros de ensayo de dispositivos

En la tabla 3.2, se realiza un resumen de los centros de ensayo existentes en el mundo para realizar diferentes ensayos sobre los dispositivos. Según Flowave y PLOCAN.

Tabla 3–2 Centros de ensayos para dispositivos de energía undimotriz.

Centro Localización Características

European Marine Energy Centre

(EMEC)

Islas Orkney, Escocia, Reino Unido 4 amarres x 2,2 MW

Subestación propia

Test de captadores

Wave-Hub Cornwall, Gales, Reino Unido 4 amarres x 5 MW

4 transformadores submarinos

Diseñada para arrays de WEC’s.

Área de mar a más de 10 millas de la costa

FlowWave Ocean Energy Research

Facility

Edinburgh, Reino Unido Tanque cilíndrico para simulación de olas y corrientes en cualquier condición.

Superficie de 200 m2

Laboratorio de Tecnología

Submarina Coppe

Rio de Janeiro, Brasil

Biscay Marine Energy Platform

(BIMEP)

País Vasco, España Subestación en tierra

4 amarres x 5 MW

Centro de investigación y recogida de datos.

Profundidad entre 50 y 90 m.

Plataforma Oceánica de Canarias

(PLOCAN)

Gran Canaria, Islas Canarias, España

Page 69: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

39

39

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

3.6 Conclusiones

Como se puede deducir a partir de la lectura de este capítulo, se dispone de múltiples tecnologías para la conversión de energía undimotriz en energía eléctrica. Se puede concluir que los sistemas basados

en la tecnología de columna de agua, como aquellos basados en conversión hidráulica son los que

concentran mayor número de dispositivos y con un nivel más alto de desarrollo. Algunos ya en fase de explotación comercial como las centrales de Mutriku, en España, o de Aquadoura, en Portugal. Es

cierto que muchos de estos dispositivos han sido desarrollados bajo la colaboración Público-Privada,

siendo en Escocia donde mayor éxito ha tenido este tipo de iniciativa empresarial.

El empleo de componentes ya conocidos como las turbinas Pelton, Kaplan y los elementos hidráulicos

implica un abaratamiento del coste de la energía eléctrica producida con convertidores undimotrices.

Por otra parte, esta energía ha propiciado el desarrollo de nuevas tecnologías que podrían ser aplicados

en otras aplicaciones, como es el caso de la turbina Wells.

Es cierto que todavía no se ha impuesto ningún dispositivo para la generación de esta energía. Sin

embargo, desde la opinión del autor de estas líneas, es posible combinar 3 o 4 dispositivos para

adaptarse a las distintas ubicaciones de captación de energía de las olas, es decir, en la costa, cerca de la costa y en alta mar.

En este capítulo también queda patente el interés mundial de aquellos países con acceso al mar. Se

puede concluir que Reino Unido y Portugal son los países que lideran la investigación y el desarrollo de sistemas de captación de energía undimotriz. Sin embargo, otros como Australia, España, Japón y

E.E.U.U. también se están posicionando para el desarrollo de tecnologías asociadas a este tipo de

energía.

Page 70: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Tecnología Actual: Dispositivos de captación de energía undimotriz.

40

Page 71: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

41

41

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

4 TEORÍA DE LA OLA

ara poder capturar la energía de las olas, se deben conocer los mecanismos físicos que las generan. Desde el punto de vista científico, el oleaje es uno de los mecanismos más importantes

de transferencia de energía entre la atmósfera y el océano. Su estudio y compresión comprende

tanto a la meteorología como a los estudios climáticos. Además, como se ha mencionado al inicio, el conocimiento de la dinámica del oleaje y sus mecanismos de propagación son claves para el desarrollo

de los dispositivos de captación de energía undimotriz, ya que la interacción entre ambos debe ser bien

conocida para poder ser modelada adecuadamente. Desde el punto de vista práctico, el conocimiento

del oleaje se emplea en disciplinas como la ingeniería naval y civil para el diseño de diques, buques, estructuras en alta mar, gestión costera, etc.

Las ecuaciones básicas de la dinámica del oleaje se conocen, en su mayoría, desde el s. XIX; sin

embargo, no es hasta la segunda mitad del s. XX y a lo largo de esa segunda mitad del siglo pasado, cuando se obtuvieron resultados teóricos y prácticos capaces de caracterizar el oleaje de forma

adecuada, según [1]. En la actualidad, dicho conocimiento se utiliza para la predicción de oleaje o la

optimización en el diseño de estructuras marinas. Sin embargo, quedan todavía problemas por resolver que conllevan la aplicación de física y matemáticas no lineales. Concretamente, las investigaciones se

basan en la ruptura del oleaje, los mecanismos hidrodinámicos de propagación del oleaje, el

agrupamiento del oleaje y las olas gigantes.

En este capítulo, se pretende realizar una síntesis de las teorías existentes. En primer lugar, se define el concepto de oleaje, se describen los mecanismos de formación del oleaje y su clasificación. A

continuación, se comentan los efectos asociados a la propagación de las olas. Por último, se muestran

las teorías existentes para el modelado del oleaje regular e irregular.

Además, en el último apartado, se presenta el modelo del sistema hidrodinámico que se utilizará para

el modelo completo en capítulos posteriores. Dicho modelo es una adaptación del que ha sido

desarrollado en [6]. A su vez, se muestran algunas simulaciones realizadas sobre el mismo a partir de unas entradas determinadas.

P

Necesito del mar porque me enseña / no sé si aprendo música o conciencia / no sé si es ola sola o ser profundo / o sólo ronca voz o deslumbrante / suposición de peces y navíos.

- Pablo Neruda -

Page 72: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Teoría de la ola

42

4.1 Definición

Las olas se pueden definir como una oscilación periódica de la superficie del agua, tanto de mares y océanos, a causa de distintos agentes como el viento, las fuerzas de atracción gravitacional de la luna

y el sol, maremotos, tormentas, etc.

El término “oleaje” designa un fenómeno físico muy concreto, como son las oscilaciones de la elevación de la superficie del mar generadas por el viento y que no tienen nada que ver con otros

fenómenos ondulatorios oceánicos, como las mareas, las ondas internas (fenómenos subsuperficiales

oscilatorios entre dos masas de agua marina con diferente densidad), los tsunamis (generados por actividad sísmica), etc.

En la figura 4.1 se puede observar la energía contenida en las olas en función del agente que la origina

y de la frecuencia de su movimiento.

Figura 4-1. Energía de la ola en función del agente creador y frecuencia. Fuente: [2].

El viento es el responsable de la generación de las olas más comunes y con mayor contenido de energía. Como se vio en el capítulo anterior, el viento es un fenómeno que consiste en el

desplazamiento de masas de aire debido a las diferencias de presión en la Tierra. Estas se producen

por las variaciones térmicas ocasionadas por la desigual radiación solar sobre la superficie de la Tierra.

Por tanto, podemos concluir que la generación de las olas es el producto de la conversión de energía

solar en energía undimotriz o del oleaje.

4.1.1 Clasificación de las olas

Las olas pueden ser clasificadas atendiendo a distintos criterios, es decir, según la profundidad relativa

al lecho marino, tipo de onda que generan, etc. A continuación se presenta un listado con las

clasificaciones más usuales.

Profundidad al lecho marino:

- Olas en aguas profundas: se dice de aquellas olas que se desarrollan en una profundidad relativa (h/λ) mayor de 1/2.

- Olas en aguas intermedias 1/20 < h/λ < 1/2.

- Olas en aguas poco profundas h/λ < 1/20.

Page 73: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

43

43

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

Se entiende por profundidad relativa, h/λ, la relación que existe entre la distancia al fondo marino, desde el nivel medio del agua, y la longitud de la ola, es decir, la distancia entre frentes o crestas

sucesivas de una ola.

Tipo de onda:

- Ondas estacionarias: se caracterizan por tener puntos nodales, de movimiento nulo, y puntos

ventrales, donde el desplazamiento es máximo.

- Ondas transitorias o progresivas: es aquella ola que varía en el tiempo y en el espacio. Se

pueden formar tanto en superficie como en el seno de la masa oceánica. Ejemplo de este tipo de olas son las olas solitarias y aquellas creadas por los tsunamis.

Periodo de duración

a) Olas de periodo largo, 5 min < t < 24 h. b) Olas de gravedad, 1 < t < 30 seg.

c) Olas capilares, t < 1 seg.

Fuerza perturbadora, es decir, aquella fuerza o fenómeno físico que las genera:

- Viento.

- Terremotos y tormentas.

- Sol, Luna.

4.1.2 Características de las olas

El movimiento de las olas es de translación; sin embargo, las partículas del agua se mueven en trayectorias elípticas circulares, como se puede apreciar en la figura 4.2. En definitiva, una ola

representa un flujo o movimiento de energía desde su origen hasta su ruptura, por lo que no se puede

hablar de flujo de agua.

En aguas profundas (ver sección anterior), las partículas de las olas describen un movimiento casi

circular ya que la distancia al lecho marino es suficiente para no afectar al mismo. En la ecuación 4.1,

se expone el radio orbital en función de la profundidad, siendo r0 el radio de la órbita superior.

Figura 4-2.Movimiento de las partículas de agua en una ola. Fuente: [3].

Page 74: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Teoría de la ola

44

𝑟 = 𝑟0 · 𝑒−−2·𝜋𝜆

·ℎ

(4–1)

Si la ola se propaga en aguas intermedias, las órbitas sufren un proceso de aplastamiento,

convirtiéndose en movimientos elipsoidales. En el caso de aguas poco profundas, dicha oscilación será puramente longitudinal.

Figura 4-3.Movimiento de las partículas de agua en una ola en función de la distancia al lecho

marino. Fuente: [2].

Por otra parte, el tamaño que alcanzan las olas depende de tres factores:

- La intensidad, es decir, la velocidad de acción del viento contra la superficie del agua.

- La duración, esto es, tiempo durante el cual el viento sopla contra la superficie del agua.

- El alcance. Longitud (denominada fetch en la literatura inglesa) rectilínea máxima de una

gran masa de agua superficial de mares u océanos que es uniformemente afectada en dirección

y fuerza del viento, generando a su vez un determinado tipo de oleaje. Se mide de forma

paralela a la dirección del viento y se expresa millas náuticas, grados de latitud o kilómetros.

Page 75: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

45

45

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

4.2 Fenómenos asociados a la propagación del oleaje

4.2.1 Refracción

Se define como el cambio de altura y dirección de propagación del frente de olas al acercarse a zonas

de menor profundidad. Está relacionado con la variación de velocidad, que está a su vez relacionada con la variación de profundidad.

Figura 4-4.Refracción de un tren de olas. Fuente: [2].

Este fenómeno sigue la ley de Snell, que para batimetría recta y paralela queda según la ecuación 4.2.

𝑠𝑒𝑛𝛽

𝑠𝑒𝑛𝛽0=𝐶

𝐶0=𝜆

𝜆0

(4–2)

Considerando la variación de velocidad del frente de ola y la variación de incidencia, se obtiene la altura de ola según la ecuación 4.4.

𝐻 = 𝐾𝑆 · 𝐾𝑅 · 𝐻0 (4–3)

Así mismo, en la tabla 4.1, se definen las variables de la ecuación 4.2 y 4.4. Al mismo tiempo, quedan

se establece el cálculo para obtener las constantes mencionadas.

Tabla 4–1 Descripción de variables para cálculo de altura de ola.

Variable Descripción Cálculo

𝛽 Ángulo comprendido entre el frente de la ola y la curva de nivel de fondo en la zona de estudio

𝛽0 Ángulo comprendido entre el frente de la ola y la

curva de nivel en la profundidad h=landa/2

𝐾𝑆 Coeficiente para aguas poco profundas

= √𝐶𝑔0

𝐶𝑔

𝐾𝑅 Coeficiente de refracción

= √𝑐𝑜𝑠𝛽0𝑐𝑜𝑠𝛽

𝐻0 Altura de la ola en aguas profundas

𝐻 Altura de la ola en aguas poco profundas

𝐶𝑔0 Velocidad de grupo en aguas profundas

𝐶𝑔 Velocidad de grupo en aguas poco profundas

Page 76: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Teoría de la ola

46

4.2.2 Reflexión

Este fenómeno se produce cuando la ola choca contra un obstáculo o barrera vertical, la ola se refleja

con poca pérdida de energía. Si el tren de olas que incide sobre el obstáculo es regular, ambas ondas (incidente y reflejada) al sumarse provocan que el movimiento horizontal quede anulado; sin embargo,

el movimiento vertical queda amplificado hasta el doble, es decir, las olas alcanzan el doble de altura.

En la figura 4.5 se puede ver cómo se produce el efecto de la reflexión de las olas.

Figura 4-5.Reflexión de las olas. Fuente: [2].

4.2.3 Difracción

Este fenómeno consiste en la dispersión de la energía del tren de olas a sotavento de una barrera, con

lo que se generan pequeños trenes de olas secundarios en que se disminuye la altura mientras que la

velocidad y la longitud de onda no se modifican.

Esta altura quede definida por el ángulo del oleaje incidente con respecto de la barra, la longitud de la barrera, la profundidad del agua y la situación del punto, en la zona de difracción. En la figura 4.6 se

observa cómo se produce dicho fenómeno.

Figura 4-6.Difracción de las olas al encontrar un saliente marino. Fuente: [2].

Page 77: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

47

47

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

4.2.4 Rotura de la ola

Es un proceso que tiene lugar cuando la altura de la ola alcanza un valor crítico, generalmente por la

acción del lecho marino, a partir del cual tienen lugar una serie de proceso que producen la pérdida de energía en la misma.

Figura 4-7.Ruptura de una ola. Fuente: [5].

Le Méhauté (1976) definió la rotura de la ola como un proceso que tiene lugar cuando se presenta una

de las siguientes condiciones:

- La velocidad de las partículas de la cresta sobrepasa la celeridad de la onda.

- La presión de la superficie libre, dada por la ecuación de Bernoulli, es incompatible con la

presión atmosférica.

- La aceleración de las partículas en la cresta tiende a separarlas de la superficie de la masa de agua.

- La superficie libre se pone vertical.

Conocer la altura de rotura de una ola es importante para el diseño de estructuras situadas en zonas de poca profundidad, ya que nos proporciona la altura máxima que alcanzará la ola. Diversos autores han

tratado de obtener una fórmula para el cálculo de la misma [2], pero se puede asegurar que aquella

propuesta por Sunamura en 1980, reflejada en la ecuación 4.4, es la que presenta menor error, 12%.

𝐻𝑅ℎ𝑅

= 1.1 · 𝑚16 · (

𝐻0𝐿0)−112

(4–4)

Posteriormente, se obtuvo otra expresión mediante el uso de herramientas de análisis multivariante,

con un error del 9%. Esta expresión y la descripción de las variables se encuentran en la ecuación 4.5 y la tabla 4.2.

𝐻𝑅ℎ𝑅

= 1.005 · 𝑚0.158 · (𝐻0𝐿0)−0.131

(4–5)

Tabla 4–2 Descripción de variables para cálculo de altura de rotura de la ola.

Variable Descripción

𝐻𝑅 Altura a partir de la cual la ola rompe

ℎ𝑅 Profundidad del mar en la zona de rotura

𝑚 Pendiente del lecho marino

𝐻0 Altura de la ola en aguas profundas

𝐿0 Longitud de la ola en aguas profundas

Page 78: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Teoría de la ola

48

4.3 Teorías de la Ola

4.3.1 Oleaje regular

Cuando se habla de oleaje regular se hace referencia a aquellas olas cuyos parámetros característicos

de un mismo punto se mantienen constantes en el tiempo. Esta regularidad puede ser modelada de

forma lineal o no lineal, según las siguientes teorías:

- Teoría lineal de ondas o teoría de Ayri: descripción lineal del oleaje.

- Teoría de Stokes 2º orden, onda solitaria o cnoidal: descripción no lineal del oleaje.

Según [2], la teoría lineal o de Ayri (también conocida como teoría de Stokes de primer orden) es la

más adecuada para estudiar el comportamiento del mar en aguas profundas, ya que las olas

superficiales tienen una altura muy pequeña en comparación con su longitud por lo que su movimiento

es aproximadamente sinusoidal. Sin embargo, en aguas poco profundas se recomienda el uso de la teoría de Stokes de 2º orden, ya que las olas se ven afectadas por el efecto del fondo y dejan de ser

sinusoidales, deformándose y volviéndose asimétricas.

En la figura 4.8, se me muestra el ábaco de Méhauté (1976), en el cual se representa las áreas de validez de las diferentes teorías del oleaje. En este se relacionan los parámetros de altura de la ola y

profundidad con el cuadrado del período por la gravedad, obteniéndose un punto en el gráfico que

indica la teoría descriptiva que se adapta mejor a las características de la ola.

Figura 4-8. Diagrama de Le Méhauté. Fuente: [2].

Además, existe un parámetro adimensional que se utiliza para decidir, en aguas poco profundas, si se

aplica la teoría de Stokes o la teoría cnoidal. Este parámetro se denomina número de Ursell y se calcula

según la siguiente ecuación:

𝑈𝑟 =𝐻 · 𝜆2

ℎ3

Se aplicará la teoría de Stokes si Ur < 21.6. En caso contrario, se aplicará la teoría Cnoidal.

Page 79: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

49

49

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

4.3.1.1 Teoría de Ayri

Esta teoría es el resultado de la simplificación del análisis de la propagación de una ola en un fluido. En dicha teoría, el perfil de la ola es simétrico y viene descrito por una función coseno, mostrada en

la figura 4.9. Los parámetros que definen esta onda se detallan en la tabla 4.4.

Figura 4-9. Perfil de la ola de Ayri. Fuente: [2].

Esta ola está formada por una suma de varias olas superpuestas, con características propias (velocidad,

período, altura y dirección). Por ello, se debe distinguir entre la velocidad de una ola individual, denominada celeridad (C), y la velocidad del conjunto de olas, denominada velocidad de grupo, Cg.

Figura 4-10. Perfil de la ola de Ayri. Fuente: [2].

Tabla 4–3 Parámetros de la ola de Ayri.

Variable Descripción

𝐻𝑅 Altura a partir de la cual la ola rompe

ℎ𝑅 Profundidad del mar en la zona de rotura

𝑚 Pendiente del lecho marino

𝐻0 Altura de la ola en aguas profundas

𝐿0 Longitud de la ola en aguas profundas

Page 80: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Teoría de la ola

50

Las expresiones que definen el oleaje según la teoría de Ayri son las detalladas en la tabla 4.4.

Tabla 4–4 Expresiones de la ola de Ayri.

Finalmente, la energía cinética y potencial de la ola se calculan, según [2], como se muestra en las

ecuaciones 4.6 y 4.7 respectivamente.

𝐸𝑝 =𝜌 · 𝑔 · 𝐻2

16 (4–6)

𝐸𝑐 =𝜌 · 𝑔2 · 𝐻2

16·𝑘

𝑤2· 𝑡𝑎𝑛𝑔ℎ(𝑘ℎ) =

𝜌 · 𝑔 · 𝐻2

16

(4–7)

Por lo que la energía que transporta la ola, por metro de frente de ola, será la suma de la energía cinética

más potencial, según la ecuación 4.8:

𝐸 =𝜌 · 𝑔 · 𝐻2

8

(4–8)

Así mismo, la potencia por unidad de frente de ola se expresa en la ecuación 4.9:

𝑃 =𝜌 · 𝑔 · 𝐻2

8· 𝐶𝑔

(4–9)

Page 81: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

51

51

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

4.3.1.2 Teoría no lineal de Stokes de 2º orden

Esta teoría realiza una aproximación más detallada del perfil de la ola mediante la adición de un segundo término a la serie. El perfil que define la teoría de Stokes, detallado en la figura 4.11, es un

perfil con crestas más altas y delgadas, senos más planos y anchos. De esta forma el perfil se aproxima

a la forma de la ola en aguas intermedias y poco profundas.

Figura 4-11. Perfil de la ola de Stokes. Fuente: [2].

Al igual que en el caso anterior, esta ola está compuesta por una suma de varias olas superpuestas. Por ello, hablaremos de celeridad y velocidad de grupo, para un grupo de olas. En la tabla 4.12, se

encuentran las expresiones que definen el oleaje regular según la teoría de segundo orden.

Figura 4-12.Ecuaciones de la teoría de Stokes de 2º orden. Fuente: [2].

Por último, en las ecuaciones 4.10 y 4.11, se calcula la energía y potencia contenida en la ola, por metro de frente de ola.

𝐸 =𝜌 · 𝑔 · 𝐻2

16· [1 +

9

64·

𝐻2

(2 · 𝜋𝜆)4

· ℎ6] (4–10)

𝑃 = 𝐶𝑔 ·𝜌 · 𝑔 · 𝐻2

16· [1 +

9

64·

𝐻2

(2 · 𝜋𝜆)4

· ℎ6]

(4–11)

Page 82: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Teoría de la ola

52

4.3.2 Oleaje irregular

El oleaje real es un fenómeno aleatorio, función del espacio y tiempo, por lo que la descripción del

mismo está muy lejos de parecerse a la descripción realizada en la sección anterior para el oleaje

regular. Esto se debe a que las variables no se mantienen constantes en el tiempo.

Es por ello que, para la evaluación del potencial energético, se trabaja con registros de corta duración,

1 hora, denominados estados del mar, que tienen suficiente duración como para dar fiabilidad

estadística.

4.3.2.1 Descripción Estadístico-Geométrica

Este modelo caracteriza el comportamiento del oleaje según parámetros estadísticos, que se obtienen

de un registro, en olas individuales que pueden ser distinguidas según el criterio de paso ascendente por cero. El inconveniente es que establece una distribución discreta de las frecuencias. Este criterio

define una ola como el comportamiento del mar que queda registrado entre dos fases sucesivas de

ascenso de la superficie por encima de un nivel medio del mar predeterminado. De esta manera se registra para cada ola su altura Hi y su periodo Ti.

Figura 4-13.Parámetros del criterio de paso ascendente. Fuente: [2].

A partir de los datos registrados en cada estado de mar, se obtiene N valores de altura y período con

los que se pueden obtener los parámetros reflejados en la tabla 4.5.

Tabla 4–5 Parámetros característicos de la descripción estadístico-geométrica.

A partir de estos parámetros, se construye un perfil de la superficie de cada una de las olas siguiendo

el mismo procedimiento que el realizado en la teoría lineal de la ola o teoría de Ayri. Para un registro

de N olas, por medio de la serie de Fourier, el perfil de la onda total se calcula como se ve en la

ecuación 4.12.

Page 83: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

53

53

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

𝜂𝑁(𝑡) =∑𝑎𝑖 · cos (𝑘𝑖 · 𝑥 − 𝑤𝑖 · 𝑡)

𝑁

𝑖=1

(4–12)

4.3.2.2 Descripción Espectral

Esta caracterización del oleaje describe el comportamiento del oleaje como una señal compleja que

puede modelarse por su espectro de energía o función de densidad, con el objetivo de trabajar con toda

la información y obtener resultados lo más cercanos a la realidad.

Existen varios modelos espectrales, llamados según el nombre de su autor, que viene a ser una función de densidad espectral generada a partir de la predicción de un determinado estado de mar, con lo que

presenta una determinada situación meteorológica e hidrodinámica. Entre ellos, se distinguen los

siguientes:

- Espectro de Pierson Moscowitz (1964): fue desarrollado a partir de los estudios realizados en

el mar del Norte, con el fin de representar estados del mar, generados por el viento,

completamente desarrollados. El alcance de la duración se considera infinito.

𝑃 = 0.549 · 𝐻𝑠2 · 𝑇𝑧 (4–13)

- Espectro de ISSC (1964): es una pequeña modificación del espectro de Bretchneider.

𝑃 = 0.595 · 𝐻𝑠2 · 𝑇𝑧 (4–14)

- Espectro de Bretchneider-Mitsuyasu (1970): es el resultado de la propuesta realizada por

Bretchneider donde las alturas y los periodos siguen una distribución de Rayleight. Posteriormente Mitsuyasu hizo un ajuste de coeficientes para representar un estado de mar de

alcance limitado.

𝑃 = 0.441 · 𝐻𝑠2 · 𝑇𝑧 (4–15)

- Espectro de Jonswap (1973): este espectro se caracteriza por presentar picos agudos de olas

desarrolladas en un alcance limitado, bajo la acción de fuertes vientos.

𝑃 = 0.458 · 𝐻𝑠2 · 𝑇𝑧 (4–16)

Page 84: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Teoría de la ola

54

4.4 Sistema hidrodinámico.

El sistema hidrodinámico que se ha utilizado en este trabajo fue desarrollado en [6]. Este sistema trata de modelar la interacción de un cuerpo rígido flotante con el fluido y con el resto de fuerzas externas

que actúan sobre el mismo, es decir, el peso, el sistema limitador y el PTO. En este apartado se

describen dichas fuerzas y se aportan los parámetros del mismo.

Para ello, se asume que las fuerzas operan dentro del régimen de difracción y se toma la teoría lineal

como aquella más adecuada para una descripción preliminar. Se asume que el cuerpo solo se mueve

en dirección vertical, siendo m la masa de la boya y x(t) el desplazamiento variante en el tiempo. Por tanto, la ecuación de movimiento del cuerpo puede ser expresada según la ecuación 4.17.

La boya es una esfera semisumergida de radio 2.5 m y masa m=32725 kg. La densidad del agua se

asume de valor ρ=1000 kg/m3, la aceleración de la gravedad g=9.81 m/s2 y el periodo de oscilación es T0=6 s.

4.4.1 Fuerza del fluido

La fuerza que ejerce el fluido está compuesta por 3 componentes: la fuerza de excitación, radiación e

hidrostática. Las fuerzas de excitación y radiación están directamente relacionadas con la respuesta

ante el movimiento del oleaje incidente. Por otra parte, la fuerza hidrostática es independiente de las

olas.

4.4.1.1 Fuerza de excitación

La fuerza de excitación, también denominada scattering, es la fuerza que el cuerpo experimentaría si

se mantiene fijo en su posición promedio. Esta fuerza se compone de dos partes: una dependiente de

las olas incidentes y la otra de las olas difractadas.

La primera componente se obtiene mediante la integración directa de la presión de las olas incidentes

sobre la superficie húmeda del cuerpo. La segunda componente suele ser despreciada debido a que su

orden de magnitud es inferior al de la ola incidente. Entonces, la fuerza de excitación se representa como una función lineal de la elevación de la ola η(t). La relación entre la elevación de la ola y la

fuerza de excitación se representa, según [6], en el dominio del tiempo y de la frecuencia en la ecuación

4.19.

𝑓𝑒(𝑡) = 𝜔(𝑡) ∗ 𝜂(𝑡), 𝐹𝑒(𝜔) = 𝑊(𝜔)𝜂(𝜔) (4–19)

La matriz 𝑊(𝜔) está compuesta por los coeficientes de excitación, que se obtienen mediante el

programa comercial Wamit®. El cálculo de dichos coeficientes se expone de forma detallada en [6].

En concreto, el ajuste de dichos coeficientes mediante un sistema lineal de quinto orden nos da la siguiente función de transferencia:

𝑊(𝑠) = −42470𝑠4 + 227000𝑠3 + 1900000𝑠2 + 4900000𝑠 + 13890000

𝑠5 − 1.6𝑠4 + 3𝑠3 + 17𝑠2 − 25.3𝑠 − 72.4

(4–20)

𝑚(𝑡) = 𝑓𝑓𝑙𝑢𝑖𝑑𝑜(𝑡) + 𝑓𝑒𝑥𝑡𝑒𝑟𝑛𝑎(𝑡) (4–17)

𝑓𝑓𝑙𝑢𝑖𝑑𝑜(𝑡) = 𝑓𝑒(𝑡) + 𝑓𝑟(𝑡) + 𝑓ℎ(𝑡) (4–18)

Page 85: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

55

55

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

4.4.1.2 Fuerza de radiación

La fuerza de radiación corresponde a la fuerza que experimenta el cuerpo por su propio movimiento oscilatorio en la ausencia de un campo de ola incidente. Dicha fuerza es proporcional a la amplitud

del desplazamiento en la teoría lineal de las olas. Es una práctica común considerar dos componentes

en esta fuerza: una en fase con la aceleración del cuerpo que depende del coeficiente hidrodinámico masa añadida Ma(w); otra, en fase con la velocidad del cuerpo dependiente de la resistencia de

radiación o coeficiente de amortiguamiento Rr(w). Para esta boya, la masa infinita, m∞=15535 kg.

Las expresiones en el dominio del tiempo y de la frecuencia se pueden ver en las expresiones 4.21 y

4.22.

𝑓𝑟(𝑡) = −𝑘(𝑡) ∗ (𝑡) − 𝑚∞(𝑡) = −∫ 𝑘(𝑡 − 𝜏)(𝜏)𝑑𝜏 −𝑚∞𝑡

−∞

(𝑡) (4–21)

𝐹𝑟(𝜔) = −(𝑅𝑟(𝜔) + 𝑖𝜔𝑀𝑎(𝜔))𝑉(𝜔) (4–22)

4.4.1.3 Fuerza hidrostática

El principio de Arquímedes establece que el fluido ejerce sobre una boya una fuerza igual al peso del

fluido desplazado. En el equilibrio, el peso de la boya es contrarrestado por el peso del fluido

desplazado:

𝑚𝑔 = 𝜌𝑉𝑔 (4–23)

Al moverse el cuerpo de la posición de equilibrio, la fuerza de restauración hidrostática, considerando

la teoría lineal de la ola |𝑥(𝑡)| << 𝑅, se calcula según la ecuación 4.24.

𝑓ℎ(𝑡) = −𝜌𝑔𝜋𝑅2𝑥(𝑡) (4–24)

4.4.2 Fuerza externa

Las fuerzas externas son el resto de fuerzas que actúan en este sistema. En este trabajo, se consideran la fuerza del resorte que une el sistema de anclaje al sistema oscilante, la fuerza del sistema extractor

de potencia y la fuerza del sistema limitador de la excursión máxima.

4.4.2.1 Fuerza de restauración del resorte

Esta es la fuerza de restauración del resorte que une el anclaje al sistema oscilante. En los absorbedores

puntuales se suele representar de forma proporcional al desplazamiento. La constante ks es la constante

de elasticidad del resorte o tensor. El valor dicha constante es 𝑘𝑠=6.2 kN/m.

𝑓𝑠(𝑡) = −𝑘𝑠𝑥(𝑡) (4–26)

𝑓𝑒𝑥𝑡𝑒𝑟𝑛𝑎(𝑡) = 𝑓𝑠(𝑡) + 𝑓𝑃𝑇𝑂(𝑡) + 𝑓𝑙𝑖𝑚 (4–25)

Page 86: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Teoría de la ola

56

4.4.2.2 Fuerza de restauración del Sistema extractor de Potencia

La fuerza de restauración del sistema es la fuerza que opone el pistón a ser desplazado, es decir, la fuerza debida al rozamiento por contacto de las paredes del cilindro con el pistón y la presión que

realiza el fluido sobre la superficie del pistón. El modo de obtención de esta fuerza difiere en este

trabajo con respecto al original, [6], ya que en este caso dicha fuerza se mide sobre el sistema

hidráulico mediante un sensor de fuerza y después se transmite al sistema hidrodinámico como una entrada. En la figura 4.14 se observa un detalle de la estructura del mismo.

Figura 4-14. Esquema del circuito empleado para medir la fuerza del PTO.

4.4.2.3 Fuerza del Sistema Limitador de la Excursión Máxima

Esta fuerza representa la interacción del modelo resorte-amortiguador que limita la excusión máxima

del vástago. En la ecuación 4.27, encontramos una expresión de la misma.

𝑓𝑙𝑖𝑚(𝑡) = −𝑠𝑖𝑔𝑛𝑜(𝑥(𝑡)) · 𝑘lim(|𝑥(𝑡)| − 𝑥𝑙𝑖𝑚)𝑢(|𝑥(𝑡)| − 𝑥𝑙𝑖𝑚) − 𝑟𝑙𝑖𝑚(𝑡)𝑢(|𝑥(𝑡)| − 𝑥𝑙𝑖𝑚) (4–27)

Donde signo (.) devuelve el signo del argumento, u (.) es la función escalón unitario, xlim es el límite

en la excursión máxima en ambos sentidos desde la posición de equilibrio, klim es la constante del resorte limitador t rlim es la constante del amortiguador limitador.

Page 87: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

57

57

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

4.4.3 Modelo en Matlab

El modelo en Matlab está compuesto por un bloque tipo “Generated S- Function” que posee entradas de variables como la fuerza de excitación, la posición máxima de desplazamiento (impuesta por el

sistema limitador), la fuerza del PTO (medida sobre el modelo hidráulico). A su vez, dicho bloque

calcula la posición, velocidad y aceleración del sistema boya-vástago-pistón.

Figura 4-15. Conjunto de bloques del sistema hidrodinámico.

4.4.3.1 Simulación

En la figura 4.16 se muestra la respuesta del modelo hidrodinámico en términos de posición, velocidad

y aceleración de la boya ante una entrada que representa la fuerza del PTO (Power Take off). En ella

se muestra tanto la parte transitoria como el régimen permanente. Como se puede apreciar, la fuerza del PTO es una función sinusoidal constante de 10 kN y 1 rad/s de frecuencia. Por otra parte, la

respuesta en términos de posición, velocidad y aceleración es una función sinusoidal creciente en

módulo hasta alcanzar el régimen permanente.

Además, en la figura 4.17 se exponen los últimos instantes de la simulación con objeto de observar

detalladamente la forma de onda, amplitud y periodo de las ondas asociadas a las variables

representadas.

Page 88: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Teoría de la ola

58

Figura 4-16.Respuesta de la posición, velocidad y aceleración ante la fuerza del PTO.

Figura 4-17. Detalle del régimen permanente en el sistema de extracción.

0 100 200 300 400 500 600 700 800 900 1000-1

-0.5

0

0.5

1x 10

4

tiempo (s)

Fuerz

a (

N)

Fuerza del PTO

0 100 200 300 400 500 600 700 800 900 1000-1

-0.5

0

0.5

1

tiempo (s)

Despla

zam

iento

(m)

Desplazamiento de la boya

0 100 200 300 400 500 600 700 800 900 1000-1

-0.5

0

0.5

1

tiempo (s)

Velo

cid

ad (

m/s

)

Velocidad de la boya

0 100 200 300 400 500 600 700 800 900 1000-1

-0.5

0

0.5

1

tiempo (s)

Acele

ració

n (

m/s

2)

Aceleración de la boyan

940 950 960 970 980 990

-5000

0

5000

10000

tiempo (s)

Fuerz

a (

N)

Fuerza del PTO

940 950 960 970 980 990 1000

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

tiempo (s)

Despla

zam

iento

(m)

Desplazamiento de la boya

940 950 960 970 980 990 1000

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

tiempo (s)

Velo

cid

ad (

m/s

)

Velocidad de la boya

940 950 960 970 980 990 1000

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

tiempo (s)

Acele

ració

n (

m/s

2)

Aceleración de la boya

Page 89: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

59

59

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

5 POWER TAKE OFF: MODELADO Y SIMULACIONES

n este capítulo se pretende realizar una descripción detallada de los distintos elementos que

componen el sistema hidráulico. En primer lugar, se describirán los elementos hidráulicos y

definirán las ecuaciones que modelan cada uno de los dispositivos empleados para construir el

sistema. Después, se dimensionará cada uno de los dispositivos que conforman el sistema hidráulico para unas condiciones de trabajo establecidas a priori. Una vez conocidos en profundidad cada uno de

estos elementos, se construirá el sistema que extraerá energía de las olas para convertirla en energía

mecánica, sistema conocido en la literatura inglesa como Power Take Off (PTO). Durante este proceso, se realiza el tratamiento de una excitación sinusoidal sobre la boya para conseguir un par y

velocidad constantes a la salida del motor hidráulico. Por lo tanto, el objetivo del sistema hidráulico

es doble: por un lado, la conversión de la energía del oleaje en energía mecánica; por otro lado, convertir una señal sinusoidal en una señal constante rectificada.

Los sistemas de potencia fluida o potencia hidráulica han sido utilizados, como los entendemos hoy

en día, desde hace más de 100 años. Sus aplicaciones abarcan amplios campos como son la minería,

la construcción, los ferrocarriles, las instalaciones militares e industrias de fabricación metálica (fresadoras, rectificadoras, etc.). Su desarrollo tuvo un importante avance a partir de 1950, cuando se

integraron las cualidades de los sistemas de electrónica dentro de los sistemas de potencia fluida. Esto

ha permitido la mejora de la eficiencia y el control de dichos sistemas.

La hidráulica utiliza los fluidos hidráulicos como medios de presión para mover pistones, motores o

cualquier otro dispositivo de movimiento. Entre sus grandes ventajas está la gran potencia transmitida

con pequeños componentes, posicionamiento preciso, arranque con cargas pesadas, movimientos lineales independientes de la carga, ya que los líquidos son casi incomprensibles. Además, pueden

emplearse válvulas de control, tienen un buen control y poseen una disipación favorable de calor.

Entre sus desventajas figura la posible contaminación del ambiente, riesgo de incendio y accidentes

en el caso de fuga de aceite, sensibilidad a la suciedad, peligro presente debido a las excesivas presiones y dependencia de la temperatura que afectan a la viscosidad del fluido.

Como se ha mencionado anteriormente, los sistemas hidráulicos deben de complementarse con los

eléctricos y electrónicos mediante dispositivos tales como válvulas solenoides hasta PLC.

E

Por ejemplo, se hacen dos aberturas en la pared de un recipiente que está lleno con agua y cerrado

en todos lados, siendo una de estas aberturas cien veces más grande que la otra. Ambas aberturas están provistas con un pistón que en esto ajusta de forma precisa. Si un hombre desplaza el pistón

más pequeño, él gana la fuerza de cien hombres.

- Blaise Pascal, 1646 -

Page 90: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Power Take Off: modelado y simulaciones

60

5.1 Cilindro hidráulico.

Un cilindro hidráulico es un dispositivo que trasmite la fuerza que se aplica sobre el pistón al fluido que contiene en su interior, en este caso aceite, o viceversa. En concreto, se utilizará un cilindro

hidráulico de movimiento lineal, en el que ante la aplicación de una fuerza genera un desplazamiento

en el sentido de aplicación de la misma. Aquellos equipos de investigación involucrados en el desarrollo de sistemas hidráulico para PTO, han utilizado cilindros de diversos tipos, ver [11] y [12].

En este trabajo se propone el uso del cilindro de doble efecto, en el cuál la fuerza aplicada por el pistón

es transmitida al fluido en los dos sentidos durante el desplazamiento del mismo.

Es importante hacer notar que la aplicación que se le dará al circuito es la opuesta a la que se trata en

la literatura sobre sistemas hidráulicos, ya que en dichos sistemas, la presión del fluido es la entrada

del sistema. Por ello, es capital conocer las condiciones de trabajo del mismo, en concreto en lo que

se refiere a dimensiones del vástago, área del pistón y carrera. Para realizar dicho diseño, es necesario establecer tres variables:

- La fuerza que va a incidir sobre el vástago del cilindro.

- El máximo desplazamiento lineal previsto durante el movimiento. - El tiempo necesario para completar el desplazamiento de la carga.

5.1.1 Dimensionamiento

Al dimensionar un actuador lineal se debe conocer la fuerza o carga, la primera de las variables de

diseño. De esta fuerza, parte será transmitida al fluido, parte se perderá debido a la fricción y parte se

perderá en las contrapresiones y la inercia.

En nuestro caso, se considerará que la fuerza nominal a la que estará sometido el cilindro será de 30 kN, considerando la masa de la boya y la aceleración máxima de esta cuando no está conectada al

PTO. Además, se siguen las recomendaciones realizadas en [10].

5.1.1.1 Área del pistón

Para el cálculo del área del pistón es importante conocer la presión de trabajo y la fuerza aplicada,

según [2]:

𝐹𝑒𝑥𝑡 = 𝑝𝑡 · 𝐴𝑡 = 𝑝𝑡 ·𝜋

4· 𝐷𝑝

2 (5–1)

De donde se obtienen como primera aproximación del diámetro del pistón:

𝐷𝑝 = √4 · 𝐹𝑒𝑥𝑡𝜋 · 𝑝𝑡

(5–2)

Las condiciones nominales de trabajo supuestas y las dimensiones geométricas del pistón son las

reflejadas en la tabla 5.1.

Page 91: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

61

61

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

Tabla 5–1 Condiciones nominales de trabajo y dimensiones geométricas del pistón.

Variable Valor nominal

𝐹𝑒𝑥𝑡 30 kN

𝑝𝑡 1.5·105 Pa

Área cabeza pistón 0.2 m2

𝐷𝑝 0.5 m

5.1.1.2 Carrera

Para que el pistón se desplace en cierto sentido – extensión o retroceso – es necesario inundar una de

las cámaras del cilindro con la potencia fluida. El otro lado del pistón debe desalojar el volumen de fluido contenido dentro del cuerpo cilíndrico. La fuerza neta que desarrolla un actuador lineal está

limitada por la presión que opone el fluido expulsado de la cámara cilíndrica. El pistón debe hacer

trabajo para expulsar al fluido pues debe vencer la presión que se opone a su desplazamiento, la llamada contrapresión del fluido expulsado. Como resultado, un actuador lineal desarrolla cierta fuerza

neta en cada uno de sus dos movimientos, extensión y retroceso, que depende de dos presiones y dos

superficies.

Para seleccionar la carrera se han estudiado las alturas medias que pueden llegar a alcanzar las olas.

Se estima que una carrera de 3 m es suficiente para el aprovechamiento íntegro de todas aquellas olas

con una altura máxima de 1.5 metros, sin que se produzcan importantes impactos sobre los topes del

pistón.

5.1.1.3 Vástago

Una vez conocidas tanto el área del pistón como su carrera, se pueden determinar las dimensiones del vástago. El diámetro del vástago debe ser elegido dentro de la oferta de diámetros estandarizados

existentes en el mercado. Se debe tener en cuenta los esfuerzos aplicados para que no aparezca una

deformación excesiva. Entonces, además de resistente, el vástago debe de ser suficientemente rígido. En la figura 5.1 se puede ver con detalle los factores que afectan a la deformación del vástago.

El pandeo o deformación del vástago depende de al menos cinco factores:

- La fuerza axial que actúa sobre el vástago. - La existencia de cargas laterales o carga excéntrica.

- El peso del vástago.

- La carrera desarrollada por el actuador.

- El montaje del actuador.

Figura 5-1. Fuerzas que actúan sobre el cilindro. Fuente: [2].

Page 92: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Power Take Off: modelado y simulaciones

62

La deformación elástica de una columna sujeta a pandeo se puede describir con el modelo conocido como carga de pandeo de Euler, según [2]. A partir de dicho modelo, se puede calcular la carga crítica

que producirá pandeo en la columna, Pc, también conocida como carga de pandeo de Euler, ver

ecuación 5.3. Dicha ecuación depende del módulo de elasticidad del material E, en nuestro caso acero; del segundo momento de inercia de la sección transversal de la columna I (ver ecuación 5.4) y de la

longitud equivalente L. La longitud equivalente depende de la sujeción existente entre el vástago y el

cilindro. El valor de estas variables se encuentra en la tabla 5.2; dichos valores están basados en la

información de la tabla 5.1 y la experiencia desarrollada por los fabricantes y reflejada en la figura 5.2.

𝑃𝑐 =𝜋2 · 𝐸 · 𝐼

𝐿2= 2543 𝑘𝑁 (5–3)

𝐼 =𝜋 · 𝑑4

64 (5–4)

Tabla 5–2 Valor de las variables del vástago.

Variable Descripción Valor nominal

𝐸 Módulo de elasticidad 2·1011 Pa

𝐼 Segundo momento de inercia 7.85·10-5 m2

𝐿 Longitud del vástago 4 m

𝑑 Diámetro del vástago 0.2 m

𝑠𝑓 Coeficiente de seguridad estructural 3.5

Figura 5-2.Tabla de selección del diámetro del vástago para la máxima fuerza de empuje

con factor de seguridad 3,5. Fuente: [2].

Page 93: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

63

63

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

Esta carga de pandeo calculada es reducida mediante la aplicación de un coeficiente de seguridad

empleado por los fabricantes de cilindros, según se recomienda en [2], aplicando la ecuación 5.5 de la

que se obtiene el valor de la fuerza máxima de empuje.

𝐹𝑚𝑎𝑥 =𝑃𝑐𝑠𝑓= 726 𝑘𝑁

(5–5)

5.1.2 Modelo de Matlab.

Las ecuaciones utilizadas para definir el cilindro hidráulico modelan el mismo como un amortiguador

ideal; este tipo de modelado nos permite mejorar el comportamiento numérico del sistema hidráulico que posteriormente se simulará. Es importante tener en cuenta las hipótesis realizadas para su

caracterización:

- La compresibilidad del fluido, la fricción y las fugas del fluido se consideran despreciables. - El choque del pistón contra las paredes del cilindro tiene lugar de forma inelástica, con lo que

se eliminan posibles oscilaciones al final de la carrera.

El balance de fuerzas sobre el pistón se modela en la ecuación 5.6. (la expresión para la fuerza de

contacto se puede ver en la ecuación 5.10), los caudales que circulan a través del cilindro se establecen con las ecuaciones 5.7 y 5.8, y tanto la posición como la velocidad del pistón se calculan a partir de

las ecuaciones 5.9 y 5.11. (Ver anexo de notación).

𝐹 = 𝐴𝐴 · 𝑝𝐴 − 𝐴𝐵 · 𝑝𝐵 − 𝐹𝑐

(5–6)

𝑞𝐴 = 𝐴𝐴 · 𝑣 (5–7)

𝑞𝐵 = 𝐴𝐵 · 𝑣 (5–8)

𝑣 =𝑑𝑥

𝑑𝑡 ; 𝑣 = 𝑣𝑅 − 𝑣𝐶

(5–9)

𝐹𝑐

(𝑥 − 𝑥𝐸) · 𝑘𝑝 · 𝑣 ; 𝑥 > 𝑥𝐸 , 𝑣 > 0

(𝑥 − 𝑥𝑅) · 𝑘𝑝 · 𝑣 ; 𝑥 < 𝑥𝑅 , 𝑣 < 0

0 ; 𝑒𝑛 𝑜𝑡𝑟𝑜 𝑐𝑎𝑠𝑜

(5–10)

𝑥𝐸 = 𝑆 − 𝑥0 (5–11)

𝑥𝑅 = −𝑥0

La fuerza de contacto 𝐹𝑐, es la fuerza que se produce si el pistón, durante su desplazamiento, choca sobre las paredes del cilindro que se encuentran al final de cada carrera. Se adoptará el cálculo con xE

o xR para valores positivos o negativos de desplazamiento, respectivamente, con respecto a la posición

inicial x0.

Page 94: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Power Take Off: modelado y simulaciones

64

5.1.2.1 Parámetros

Una vez realizado el dimensionamiento de los parámetros que definen el circuito hidráulico, a través

de la experiencia y los resultados obtenidos en las simulaciones con los modelos, los parámetros para

el modelo de Matlab quedan establecidos según se pueden ver en la tabla 5.3:

Tabla 5–3 Parámetros del cilindro hidráulico.

Variable Valor nominal

Área tapa pistón A 0.2 m2

Área cabeza pistón B 0.16 m2

Carrera pistón 3 m

Posición inicial 1.5 m

Coeficiente de penetración 1·106 s·N/m2

5.2 Acumulador.

El acumulador hidráulico sirve para almacenar y liberar la presión del fluido ante una demanda de

presión del sistema o bien para compensar fugas, o para mantener el circuito hidráulico en carga durante un tiempo determinado con objeto de proporcionar una presión hidráulica suficiente en el caso

de fallo del sistema. Existen diferentes tipos de acumuladores según la configuración interna de estos,

entre ellos:

- Tipo membrana o vejiga: utilizan la interacción con un gas inerte (nitrógeno) y el fluido

hidráulico, separados por una barrera que puede ser flexible (vejiga) o una membrana.

Disponen de una válvula de bloqueo, que mantiene la presión en el interior del acumulador cuando termina el proceso de llenado. Se utiliza para altas velocidades de toma, altas

frecuencias de carga y descarga. Tiene poco mantenimiento.

- Tipo muelle-pistón: está formado por un pistón dentro de un cilindro y un muelle que almacena la energía del fluido al comprimirlo durante el llenado (circuito empleado en el

freno de un automóvil). Su principal ventaja es que no se producen fugas de ningún gas; por

el contrario, no se aconseja su uso en aplicaciones de altas presiones o grandes volúmenes.

- Tipo gas-pistón: se trata de un pistón flotante que separa el gas del líquido de trabajo; su

configuración y operación es similar al tipo membrana

- Tipo peso: la principal ventaja que presenta este tipo de acumulador es que no se producen

pérdidas de presión durante la carga, es decir, la energía se conserva en su totalidad. Su principal desventaja es que ocupan gran tamaño y son muy pesados.

- Sin separador: este tipo de acumulador se basa en la interacción gas – fluido sin barreras entre ambos. Actualmente está en desuso este tipo de acumulador.

En la figura 5.3. se pueden ver las diferentes configuraciones y los símbolos utilizados para su

representación según norma ISO [6] y [7].

Page 95: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

65

65

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

Figura 5-3. Tipos de acumuladores. Fuente: [5].

El acumulador tiene la ventaja de reducir el caudal del fluido hidráulico de la bomba, y por lo tanto la

potencia instalada, de amortiguar los cambios de presión, de reducir el nivel sonoro de operación y de

absorber los cambios de volumen por variaciones de temperatura en el circuito o recuperación de energía. Por ello, se utilizará en el proceso de rectificado para manterner presión y caudal constantes.

5.2.1 Dimensionamiento

En este trabajo, se utiliza un acumulador de tipo membrana ya que, como se ha visto, requiere poco

mantenimiento y admite altas frecuencias de carga y descarga. Para el dimensionamiento del

acumulador se siguen las pautas que indican tanto los fabricantes [3] y [4], como la bibliografía

especializada sobre el tema [5]. Además, se toman en cuenta las conclusiones extraídas del análisis de sensibilidad que se ha realizado para optimizar el diseño. En primer lugar, se necesita conocer las

presiones máxima y mínima de trabajo, el ciclo de trabajo de la bomba y el tiempo de trabajo del

acumulador. Con estos datos se puede determinar la presión de precarga del nitrógeno y el volumen del acumulador.

Siguiendo las instrucciones de cálculo reflejas en la figura 5.4 recomendados por [5], se obtienen los

parámetros reflejados en la tabla 5.4.

Tabla 5–4 Parámetros de diseño del acumulador.

Variable Valor nominal

V1 1.31 m3

P2 1·104 Pa

P3 1·105 Pa

LR 0.158·60 =9.48 m3/min

TM 0.1 min

Page 96: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Power Take Off: modelado y simulaciones

66

Figura 5-4. Ecuaciones utilizadas en el diseño del acumulador. Fuente: [5].

5.2.2 Modelo de Matlab.

MATLAB utiliza las leyes de la Química y Termodinámica de gases, así como la Mecánica de Fluidos para modelar el comportamiento de las variables del fluido como son el caudal, volumen y presión en

el interior del mismo.

El caudal que circula hacia el acumulador viene definido por la ecuación 5.12 como una variación con respecto al tiempo del volumen de fluido que almacena en su interior.

𝑞 =𝑑𝑉𝐹𝑑𝑡

El volumen del fluido contenido en el acumulador varía de acuerdo a la variación del gas inerte; este

a su vez depende de las leyes de Charles, Gay-Lussac y Boyle-Mariotte de los gases ideales. Según

la ecuación de estado que definen estas leyes el volumen del fluido será:

(5–12)

𝑉𝐹 =

𝑘𝑠 · (𝑝 + 𝑝𝑎) ; 𝑝 ≤ 𝑝𝑐𝑟

𝑉𝑝𝑟 · (𝑝𝑝𝑟 + 𝑝𝑎

𝑝 + 𝑝𝑎)

1𝑘+ 𝑉𝐴 · (1 − (

𝑝𝑝𝑟 + 𝑝𝑎

𝑝 + 𝑝𝑎)

1𝑘) ; 𝑝 > 𝑝𝑐𝑟

(5–13)

Así mismo, el volumen ocupado por el gas inerte del acumulador, en nuestro caso nitrógeno, viene

definido según la expresión 5.14, basada también en las leyes de los gases ideales:

𝑉𝑝𝑟 = 𝑘𝑠 · (𝑝𝑝𝑟 + 𝑝𝑎)

(5–14)

V1= 1,31 m3

P2= 10000,00 Pa

P3= 100000,00 Pa

LR= 9,48 m3/min

TM= 0,10 min

a= P3/P2= 10,00

f= 1-1/a= 0,90

Vx= TM·LR= 0,95 m3

V1= Vx/f= 1,31 m3

Volumen del acumulador

Información necesaria:

Resolución:

Presíon mínima para asegurar las necesidades del circuito

Presión máxima permitida o disponible

Ciclo de tiempo necesario del acumuador

Tiempo de suministro de presión al circuito

Ratio de mínima a máxima presión

Volumen de aceite a suministrar por el acumulador

Volumen del acumulador

Page 97: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

67

67

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

5.2.2.1 Parámetros

Una vez se ha analizado cómo se dimensiona el acumulador según el procedimiento expresado en la

figura 5.4, el cual proporciona un primer valor de diseño, y con la ayuda de las simulaciones realizadas

en Matlab-Simulink, los parámetros que definen el acumulador quedan definidos como se puede ver en la tabla 5.5.

El acumulador es definido en Matlab por una serie de variables termodinámicas como son la capacidad

(volumen total del acumulador), la presión de precarga (la presión inicial que ejerce el gas inerte sobre la superficie de separación), el volumen inicial (volumen inicial de fluido hidráulico de trabajo dentro

del acumulador), así como el coeficiente de dilatación adiabático y el coeficiente de deformación

estructural.

Tabla 5–5 Parámetros del acumulador.

Variable Valor nominal

Capacidad 3 m3

Presión de precarga 10 Pa

Coeficiente de dilatación adiabático 1.4

Volumen inicial 0 m3

Deformación estructural 1·10-13 m3/Pa

Page 98: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Power Take Off: modelado y simulaciones

68

5.3 Válvula antirretorno.

La válvula antirretorno se utiliza, junto con otros dispositivos en paralelo, para controlar la potencia fluida. De esta forma el dispositivo de control se convierte en un elemento unidireccional.

La válvula antirretorno cuenta exclusivamente con dos puertos, a través de los cuales entra o sale el

caudal fluido. En el interior de la válvula existe un tapón, el cual obstruye o libera el paso a través del cuerpo de la válvula (en función de las fuerzas que se manifiesten sobre él). Este tapón puede ser una

esfera que se mueve fácilmente dentro de la válvula, pero permanece colocada contra los bordes de

un orificio mediante un resorte débil. En otras ocasiones el tapón tiene forma de cono truncado, el cual está articulado en su extremo superior y cuelga de la bisagra que lo sostiene.

Si la presión pA es mayor en magnitud a la presión pB las fuerzas de presión sobre el tapón vencen la

oposición del débil resorte; entonces las válvula permite el paso del caudal, pues el tapón se retira del

orificio de paso. Al contrario la válvula se cerrará. Ver figura 5.5.

Figura 5-5. Vista interior válvula antirretorno. Fuente: [15].

La característica que define las válvulas antirretorno que se utilizarán en los modelos se pueden ver en

la figura 5.6. El funcionamiento de una válvula antirretorno es similar al de los diodos de los circuitos

electrónicos, es decir, ante una caída de presión positiva, tensión directa en diodos, se producirá la apertura de la válvula, lo que producirá la circulación de flujo, intensidad eléctrica en diodos. En el

caso contrario, caída de presión negativa, se producirá el corte de flujo al igual que sucede con los

diodos cuando se les somete a una tensión inversa. Se puede ver la característica de ambos dispositivos en la figura 5.6.

Figura 5-6. Característica de la válvula antirretorno (izda.), y del diodo (dcha.). Fuente: [13] y [18].

Page 99: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

69

69

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

5.3.1 Dimensionamiento

Para el dimensionado de las válvulas se deben conocer los parámetros que utilizan los fabricantes para distinguir los diferentes modelos y tamaños. Es cierto que a lo largo de la historia de los sistemas

hidráulicos, se han utilizado diferentes métodos para caracterizar la talla o tamaño de una válvula.

La capacidad, talla o tamaño de una válvula se define como el caudal que puede fluir a través de ella, produciendo una caída de presión preestablecida, conocida y limitada para unas condiciones

nominales del sistema. Un tipo de válvula puede estar constituida por cinco o más tallas diferentes.

Como hemos mencionado anteriormente, han existido diferentes formas de definir la capacidad de

una válvula. Inicialmente, se definían por medio del tamaño nominal de los puertos (procedimiento poco fiable y en desuso). Posteriormente, surgió el coeficiente de capacidad de caudal, Cv, introducido

por la empresa Masoneilan en 1944, originalmente para el flujo de líquidos. Este coeficiente no era

fiable en el caso de fluidos compresibles como los gases, por lo que la industria no estaba de acuerdo en su uso. Más tarde, en 1969, L. Driskell propuso las ecuaciones necesarias para la determinación de

CV con flujos de fluido compresible [2]. Con esto, quedó establecido el coeficiente de capacidad de

caudal como el parámetro estándar para la selección de válvulas. Este coeficiente se mide en unidades inglesas (gpm), aunque otros autores hablan del coeficiente en unidades métricas y lo denominan

factor de caudal, representado por KV (m3/min).

Existen excepciones al uso de dicho coeficiente, en las válvulas de descarga de fluido a la atmósfera

se utiliza un coeficiente adimensional denominado coeficiente de descarga Cd. Este parámetro es utilizado por Matlab para la definición de todas sus válvulas.

La ecuación 5.15 define el coeficiente de capacidad de flujo, utilizado fundamentalmente en América.

A continuación la ecuación 5.16 define el factor de caudal, usado comúnmente en Europa y Asia. La relación entre ambos se encuentra en la ecuación 5.18 y el significado de las variables se encuentra en

el anexo de notación. En la ecuación 5.18, se puede ver la expresión matemática que sirve para el

cálculo del coeficiente de descarga.

𝐶𝑣 = 𝑞 · √𝑆𝐺

∆𝑝 (gpm/psi)

(5–15)

𝐾𝑣 = 𝑞 · √𝑆𝐺

∆𝑝 (m3/h·bar)

(5–16)

𝐾𝑣 = 0.865 · 𝐶𝑣 (5–17)

𝐶𝑑 =𝑚

𝐴𝑣𝑎𝑙·√2·𝜌·∆𝑝

(adim) (5–18)

En la figura 5.7 se muestra una comparativa entre los diferentes coeficientes para diferentes tamaños

de puertos de las válvulas tipo balón de Jamesbury, elaborado por [9].

Page 100: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Power Take Off: modelado y simulaciones

70

Figura 5-7. Comparativa de coeficientes de flujo. Fuente: [9].

En la figura 5.8 se pueden ver una serie de valores de Cv, Kv y Cd (C) asociados a diferentes tipos de

válvulas, elaborado por [9]. Los valores usados en este trabajo dependen de las variables del sistema.

Estos valores se presentan en la tabla 5.6, en consecuencia se obtienen unos coeficientes de capacidad, flujo y descarga reflejados en la misma tabla.

Tipo de válvula

Coeficiente de Caudal (válvula toda abierta)

C

[-]

Cv [gpm] [psi]

Kv [m³/h] [bar]

Referencia

Válvula Annular ÷ ÷ ÷ -

Válvula de Bola 4.7 5100 4370 Jamesbury series 9000 full bore

6" dn

Válvula de Mariposa ÷ ÷ ÷ -

Válvula de Diafragma (Weir) 0.64 690 597 ITT Dia-Flo Plastic Lined 6" dn

Válvula de Diafragma

(Straightway)

1.3 1400 1211 ITT Dia-Flo Plastic Lined 6" dn

Válvula de Compuerta 2.67 2484 2873 FNW valve class 150 6" dn

Válvula de Globo ÷ ÷ ÷ -

Válvula de Cono Fijo 0.86 3700 3200 Henry Platt 12" dn

Válvula de Aguja ÷ ÷ ÷ -

Válvula tipo "macho" ÷ ÷ ÷ -

Válvula tipo Pinch ÷ ÷ ÷ -

Válvula de retención Duck-Bill 1.0 4300 3700 EVR CPF/CPO 300mm dn

Válvula Esférica ÷ ÷ ÷ -

Válvula de retención Tilting disc 0.93 1160 1003 Val-matic 6" dn

Figura 5-8. Valores de coeficientes Cv, Kv y Cd para diferentes tipos de válvulas. Fuente: [9].

Page 101: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

71

71

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

Tomando las condiciones nominales de trabajo de las válvulas antirretorno, reflejadas en el lado

izquierdo de la tabla 5.6, e introduciéndolas en las ecuaciones 5.15, 5.16 y 5.18 (descritas

anteriormente), se obtienen los coeficientes de capacidad de flujo. El valor calculado de estos queda reflejado en la tabla 5.6.

Tabla 5–6 Parámetros del sistema y coeficientes de capacidad.

Variable Valor nominal Constantes Valor

q 0.158 m3/s CV 7724.83 gpm/psi

Aval 14·10-3 m2 KV 6613.93 m3/h·bar

∆p 600 Pa Cd 9.37

ρ 827.8 kg/m3

130.79 kg/s

SG 0.8278

5.3.2 Modelo de Matlab

El bloque modelo que utiliza Matlab para simular el comportamiento de la válvula antirretorno se basa

en una serie de ecuaciones que se explican a continuación.

El caudal que circula a través de la válvula se modela según las ecuaciones de la Mecánica de Fluidos

para régimen laminar y turbulento. El parámetro que nos define el régimen en el que trabaja el fluido

es el número de Reynolds como puede observarse en la ecuación 5.19.

𝑞 =

𝐶𝐷 · 𝐴 · √

2

𝜌· |𝑝| · 𝑠𝑖𝑔𝑛(𝑝) ; 𝑅𝑒 > 𝑅𝑒𝑐𝑟

2 · 𝐶𝐷 · 𝐴 · 𝐷𝐻𝑢 · 𝜌

· 𝑝 ; 𝑅𝑒 < 𝑅𝑒𝑐𝑟

El área que presenta la válvula varía según la presión relativa entre los extremos de la misma. Esta

característica la podemos ver en la figura 5.6, cuya recta tiene una pendiente k, basada en la evolución de la presión relativa.

(5–19)

𝐴(𝑝) =

𝐴𝑙𝑒𝑎𝑘 ; 𝑝 ≤ 𝑝𝑐𝑟𝑎𝑐𝑘 𝐴𝑙𝑒𝑎𝑘 + 𝑘 · (𝑝 − 𝑝𝑐𝑟𝑎𝑐𝑘) ; 𝑝𝑐𝑟𝑎𝑐𝑘 ≤ 𝑝 ≤ 𝑝𝑐𝑟

𝐴𝑚𝑎𝑥 ; 𝑝 ≥ 𝑝𝑚𝑎𝑥

(5–20)

𝑝 = 𝑝𝐴 − 𝑝𝐵

(5–21)

𝑘 =𝐴𝑚𝑎𝑥 − 𝐴𝑙𝑒𝑎𝑘 𝑝𝐴 − 𝑝𝐵

(5–22)

Page 102: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Power Take Off: modelado y simulaciones

72

Al variar el área de paso de la válvula durante el proceso, también varía el diámetro de paso de la

misma según la ecuación 5.23. El número de Reynolds y el coeficiente de descarga se calculan mediante las ecuaciones 5.24 y 5.25.

𝐷𝐻 = √4 · 𝐴(𝑝)

𝜋

(5–23)

𝑅𝑒 =𝑞 · 𝐷𝐻𝐴(𝑝) · 𝑢

(5–24)

𝐶𝐷𝐿 = (𝐶𝐷

√𝑅𝑒𝑐𝑟)

2

(5–25)

Page 103: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

73

73

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

5.4 Válvula de control direccional

Las válvulas de control direccional permiten elegir el camino a través del cual avanza el fluido. En este trabajo, se utilizarán como puente rectificador para la presión y el caudal. Cuando la válvula de

control direccional adopta cierta posición de trabajo, da por resultado que la potencia fluida se

conduzca por una ruta determinada o que se detenga su paso.

Los símbolos usados para representar las válvulas de control direccional se pueden ver en detalle en

las normas ISO [6] y [7].

El cuerpo de la válvula de control direccional está construido con acero al carbono, aluminio, bronce o algún otro metal. El cuerpo de la válvula tiene varios orificios, a través de los cuales puede entrar o

salir el flujo de líquido o de aire comprimido. Dentro del cuerpo se sitúa el conmutador de émbolos,

una pieza móvil que se desliza para tomar dos o tres posiciones de trabajo diferentes. Se puede

desplazar de forma manual o automática. El fluido entra y sale del cuerpo de la válvula a través de sus puertos o vías. La denominación utilizada en las válvulas establece tanto los puertos o vías como las

posibles posiciones de trabajo, esto es:

- n/m: la primera cifra, n, indica el número de puertos de los que dispone la válvula. El segundo, m, informa sobre las diferentes posiciones de trabajo posibles. Además, en los símbolos de la

válvula también se hace alusión a dichas posiciones, ver figura 5.9.

Figura 5-9. Descripción de la válvula de control direccional. Fuente: [6].

En este trabajo, se utilizarán 4 válvulas tipo 2/2, es decir, una válvula de control direccional con 2

puertos (A y B) y 2 posiciones posibles (abierta y cerrada). Esta es una de las válvulas de control

direccional más sencillas que existen; su función se basa en establecer o suspender el suministro de

potencia hacia el sistema. Mediante un resorte se puede colocar al conmutador en una posición establecida de antemano. Se hablará de una válvula normalmente abierta o normalmente cerrada si se

permite o se impide el paso de flujo, dependiendo de la posición que toma el resorte en su condición

por defecto.

Page 104: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Power Take Off: modelado y simulaciones

74

5.4.1 Dimensionamiento

Siguiendo el mismo procedimiento realizado en el apartado 5.3, se calculan los coeficientes de capacidad de flujo para las válvulas de control direccional, a partir de las condiciones nominales

detalladas en la parte izquierda de la tabla 5.7. Así mismo, en la parte derecha de dicha tabla se

adjuntan los valores calculados de los coeficientes de capacidad.

Tabla 5–7 Parámetros del sistema y coeficientes de capacidad.

Variable Valor nominal Constantes Valor

q 0.158 m3/s CV 7724.83 gpm/psi

Aval 14·10-3 m2 KV 6613.93 m3/h·bar

∆p 600 Pa Cd 9.37

ρ 827.8 kg/m3

130.79 kg/s

SG 0.8278

5.4.2 Modelo de Matlab

Para el modelado en Matlab de las válvulas de control direccional, se deben ajustar los parámetros del

dimensionado a los datos que nos pide el bloque modelo de SimHydraulics. En concreto, se debe adaptar el coeficiente de flujo al coeficiente de descarga. Como su nombre indica, este parámetro se

utiliza fundamentalmente en válvulas de descarga, pero Matlab extiende su uso a todo tipo de válvulas

para modelar las pérdidas que se producen al pasar un caudal determinado a través de un área

establecida.

5.4.2.1 Parámetros

Los parámetros que definen las válvulas de control direccional se han obtenido a partir de la

experiencia desarrollada con las válvulas antirretorno y con ajustes realizados tras realizarse las

simulaciones.

Tabla 5–8 Parámetros de la válvula de control direccional.

Variable Valor nominal

Área de paso máxima 0.014 m2

Apertura máxima 0.13 m

Coeficiente de flujo de descarga 9.37

Apertura inicial 0 m

Número de Reynolds crítico 31712

Área de fuga 1·10-12

Page 105: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

75

75

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

5.5 Motor hidráulico.

El motor hidráulico recibe el caudal presurizado que ha sido desplazado por el sistema de potencia precedente. Esta potencia se convierte en energía mecánica, manifestada como un eje que gira –

continua o intermitentemente – para transmitir un par torsor sobre la carga y moverla con cierta

velocidad angular. El desplazamiento del motor – el volumen interior que se puede inundar con el líquido presurizado – establece las dimensiones básicas de este tipo de máquinas. Su funcionamiento

se basa en un desbalance de fuerzas de presión sobre la superficie móvil, que tiene como resultado la

rotación de su eje. Por ello se denominan dispositivos de desplazamiento positivo. Dentro de estos sistemas se encuentran motores hidráulicos con velocidades que abarcan desde 0,5 rpm hasta 10.000

rpm y el par que proporcionan va desde 1 Nm (baja velocidad) hasta 20.000 Nm (alta velocidad) según

[1]. Además, tienen la característica de mantener constante la velocidad angular, siempre que el caudal

sea constante, independientemente de la presión de trabajo. Dependiendo de la superficie móvil del motor hidráulico, se pueden clasificar como:

- Motor de paletas: son los más conocidos, aunque presentan alto porcentaje de deslizamiento

y fugas internas de fluido durante su funcionamiento a bajas velocidades. No son aconsejables para su uso en sistemas de alta presión. Ver figura 5.10.

Figura 5-10. Motor hidráulico de paletas. Fuente: [Sapiensman.com, 2015].

- Motor de engranajes: son los más baratos pero generan mayor ruido. Se pueden utilizar por

igual tanto en bajas como altas velocidades, aunque al igual que el motor de paletas su

rendimiento decae durante las velocidades bajas. Este problema se ha solucionado en la actualidad con el uso de motores gerotor, que incluyen engranajes de diferente número de

dientes.

Figura 5-11. Motor hidráulico de engranajes. Fuente: [Sapiensman.com, 2015].

Page 106: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Power Take Off: modelado y simulaciones

76

- Motor de pistón axial o radial: consta de pistones dispuestos a lo largo de su eje, en el caso

del axial, mientras que en la versión radial estos se disponen de forma radial a la generación

de energía. Son aconsejables para aplicaciones que requieren un par alto, velocidades bajas y alta presión. Ver figuras 5.12 y 5.13.

Figura 5-12. Motor hidráulico de pistón axial. Fuente:[Directindustry.es, 2015].

Figura 5-13. Motor hidráulico de pistón radial. Fuente: [kpn.nl] y [kpn-eu-com].

5.5.1 Dimensionamiento

Se utilizará un motor hidráulico de pistón axial, ya que según [17] es el más apropiado para este tipo

de aplicaciones y se ha utilizado con anterioridad por la Universidad de Edimburgo. Para calcular las

características del motor, necesitamos conocer la presión nominal del sistema, el desplazamiento deseado, el par nominal y la velocidad angular nominal o de operación, la temperatura y viscosidad

del fluido durante la operación del sistema como podemos ver en la tabla 5.9. Dichas variables han

sido obtenidas a partir de las variables de trabajo del cilindro hidráulico y tomando en cuenta la experiencia que nos proporcionan diversos autores en la bibliografía [1], [2], [5] y [8].

Tabla 5–9 Variables de diseño del motor hidráulico.

Variable Valor nominal

Presión del sistema 1·105 Pa

Caudal 0.158 m3/s

Par 52 Nm

Velocidad angular 157 rad/seg

Viscosidad del fluido 47.5133 mm2/seg

Page 107: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

77

77

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

Algunas de las recomendaciones efectuadas por [1] han sido tomadas en consideración para seleccionar el motor hidráulico, entre ellas:

- El rendimiento del motor hidráulico es prácticamente constante en velocidades medias y altas;

al aproximarse a zonas de funcionamiento de velocidades bajas, el rendimiento disminuye sensiblemente.

- Presiones bajas de trabajo implican importantes pérdidas de rotación, que dan lugar a

rendimientos más bajos. Así mismo, la disminución del desplazamiento también trae consigo

una disminución del rendimiento global. - Se recomienda que la viscosidad del fluido se encuentre en el rango de los 30 a 50 mm2/seg

(llegando a permitir 18 mm2/seg en casos de par reducido máxima potencia).

5.5.2 Modelo de Matlab

Las ecuaciones que se utilizarán para modelar el motor hidráulico son las que se pueden ver a

continuación. En primer lugar, tenemos el caudal que pasa a través del motor hidráulico en 5.26, 5.28 y 5.29. El caudal de las fugas, las cuales afectan al rendimiento volumétrico, se calcula mediante la

ecuación 5.30. El par que genera el motor hidráulico viene dado por 5.27. Por último, en la ecuación

5.31 se define la expresión para el cálculo del rendimiento mecánico del motor hidráulico.

𝑞 = 𝐷 · 𝜔 − 𝑘𝑙𝑒𝑎𝑘 · 𝑝

(5–26)

𝑇 = 𝐷 · 𝑝 · 𝜂𝑚𝑒𝑐ℎ (5–27)

𝑘𝑙𝑒𝑎𝑘 =𝑘𝐻𝑃𝑢 · 𝜌

(5–28)

𝑞 =𝐷 · 𝜔𝑛𝑜𝑚 · (1 − 𝜂𝑣) · 𝑢𝑛𝑜𝑚 · 𝜌

𝑝𝑛𝑜𝑚

(5–29)

𝑞𝑙𝑒𝑎𝑘 = 𝐷 · 𝜔𝑛𝑜𝑚 · (1 − 𝜂𝑣)

(5–30)

𝜂𝑚𝑒𝑐ℎ =𝜂𝑡𝑜𝑡𝑎𝑙𝜂𝑣

(5–31)

𝑝 = 𝑝𝐴 − 𝑝𝐵 (5–32)

Page 108: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Power Take Off: modelado y simulaciones

78

5.5.2.1 Parámetros

Los parámetros que caracterizan el motor hidráulico han sido obtenidos a partir de la experiencia desarrollada por los fabricantes de los mismos y reflejada en [2], a la vez que se ha tomado en cuenta

los datos extraídos durante las simulaciones de los modelos durante este trabajo. Los parámetros se

pueden ver detalladamente en la tabla 5.10.

Tabla 5–10 Parámetros del motor hidráulico.

Variable Valor nominal

Desplazamiento 0.0007 m3/rad

Rendimiento volumétrico 0.92

Rendimiento total 0.9

Presión nominal 1·105 Pa

Velocidad angular nominal 157 rad/s

Viscosidad cinemática nominal 47.5133 cSt

Inercia 1.50 kg·m2

5.6 Reservorio de fluido

El reservorio de fluido o tanque de reserva del líquido se utiliza para almacenar el fluido que necesitan

los sistemas hidráulicos. Una selección inadecuada de la capacidad del reservorio puede influir negativamente en la eficiencia del sistema hidráulico. El tanque de reserva del líquido también tiene

otras funciones importantes, como son:

- Refrigeración del líquido mediante el aire ambiental. - Se realiza la precipitación de la contaminación del líquido gracias al tiempo de residencia del

mismo en el tanque.

- Permite que las burbujas de aire se desprendan a la superficie del líquido, evitando potenciales problemas de cavitación en el motor hidráulico.

- Supone un espacio de remanso para la succión de la bomba.

- Proporciona un espacio para que el fluido se expanda debido a los cambios de temperatura.

En el interior del tanque de reserva podemos encontrar diferentes elementos, entre ellos: líneas de retorno y drenaje que evitan la formación de burbujas; una mampara vertical que separa la zona de

retorno del líquido de la zona de remanso para la succión de la bomba, a su vez, obliga al fluido a

realizar un recorrido más largo. Esto implica mayor tiempo residencia, lo que favorece la sedimentación de los contaminantes y la liberación de las burbujas de aire. Podemos verlo con más

detalle en la figura 5.14.

Page 109: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

79

79

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

Figura 5-14. Detalle de los componentes del tanque de reserva de fluido. Fuente: [2].

5.6.1 Dimensionamiento

Para el dimensionamiento se debe seguir una regla empírica destacada en múltiples libros de la bibliografía [1] y [5], según la cual la capacidad del tanque debe de ser entre dos y tres veces el

volumen de fluido desplazado por la bomba en un minuto. Incluso, hay autores que recomiendan

extender esta regla a cinco veces. Se basa en la idea de que el tanque debe de transferir la mayor parte del calor que contiene el fluido. Una solución eficiente a esta incertidumbre de capacidad (2-5 veces)

es utilizar un intercambiador de calor previo al reservorio; con esto, se puede asegurar que con dos

veces se permanece dentro del lado de la seguridad. Esto tiene importantes ahorros económicos y de

espacio, lo cual es muy valorado actualmente en el diseño de sistemas. Ver figura 5.15.

Figura 5-15. Configuración del reservorio de fluido dentro de un circuito hidráulico. Fuente: [16].

5.6.2 Modelo de Matlab

La relación existente entre el caudal que circula hacia el reservorio y la caída de presión entre la entrada

y la salida del mismo se modelan atendiendo a la ecuación 5.33. Dicha ecuación tiene en cuenta las

pérdidas por fricción en los conductos ( 𝑝𝑙𝑜𝑠𝑠 ) y demás elementos del reservorio por medio del

coeficiente k. Todas las variables quedan definidas en el anexo de notación.

𝑞 =1

√𝐾· 𝐴𝑝√

2

𝜌· 𝑝𝑙𝑜𝑠𝑠

(5–33)

Page 110: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Power Take Off: modelado y simulaciones

80

5.6.2.1 Parámetros

Inicialmente, se tomaron como parámetros del reservorio aquellos que tiene por defecto el bloque

reservorio de Matlab-Simulink. Posteriormente, tras realizar una serie de simulaciones, se ajustó el valor del nivel de presurización del mismo. Todos ellos se reflejan en la tabla 5.11.

Tabla 5–11 Parámetros del reservorio de fluido.

Variable Descripción Valor nominal

Ppr Presión en el reservorio de fluido 1·105 Pa

V Volumen inicial de fluido 2 m3

K Coeficiente de pérdida de presión 1

dp Diámetro del conducto de retorno 0.02 mm

5.7 Bomba hidráulica

La bomba hidráulica sirve para impulsar fluido a una presión y caudal determinados. El

funcionamiento de este dispositivo se debe a la potencia mecánica que recibe a través de su eje mecánico, que convierte en potencia fluida.

En este trabajo no se ha realizado un estudio al detalle de la misma, por lo que se ha empleado un

modelo estándar de bomba hidráulica de desplazamiento fijo disponible en la librería de Simulink-Matlab. El objetivo de incluir este elemento en el modelo hidráulico es la de simular una carga

resistente, la cual debe ser accionada por el motor hidráulico del PTO. En la tabla 5.12, se reflejan los

parámetros utilizados para caracterizar la bomba en dicho modelo.

Tabla 5–12 Parámetros de la bomba hidráulica.

Variable Valor nominal

Desplazamiento 0.0002 m3/rad

Rendimiento volumétrico 0.92

Rendimiento total 0.8

Presión nominal 3·105 Pa

Velocidad angular nominal 80 rad/s

Viscosidad cinemática nominal 47.5133 cSt

Page 111: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

81

81

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

5.8 Símbolos y figuras de Matlab - Simulink.

Es importante conocer y distinguir los diferentes símbolos que se utilizarán en Matlab para representar los dispositivos que se han analizado en los apartados anteriores. Además, aquí se representan otros

símbolos de bloques auxiliares, necesarios para la construcción y el modelado del circuito hidráulico.

En la tabla 5.13 y 5.14 podemos encontrar una relación de todos ellos.

Tabla 5–13 Figuras del sistema hidráulico. Fuente: [13].

Cilindro hidráulico

Conversor señal –

magnitud física

Motor hidráulico Conversor magnitud

física – señal

Acumulador

Referencia hidráulica

Válvula antirretorno

Fuente:ideal de fuerza

Válvula de control

direccional

Fuente:ideal de par

Orificio de área fija

Muelle ideal

Reservorio de fluido

Sensor de fuerza

Caudalímetro

Sensor de par

Medidor de presión

Bomba de desplazamiento fijo

Page 112: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Power Take Off: modelado y simulaciones

82

Tabla 5–14 Figuras del sistema hidráulico (Continuación). Fuente: [13].

Referencia mecánica de

translación

Referencia mecánica de

rotación

Solver para sistemas

hidráulico y mecánicos

Sensor de velocidad

lineal

Fluido del sistema

Sensor de velocidad

angular

Subsistema

Resorte ideal

Además de conocer la simbología utilizada por Matlab para representar los distintos elementos

hidráulicos y mecánicos, es importante entender la filosofía de modelado para usar dichos bloques de

forma adecuada. El modelado de objetos de la librería SimScape ofrece bloques para sistemas

mecánicos, hidráulicos, térmicos, electrónicos y eléctricos. Estos poseen ciertas similitudes en la caracterización de las variables y su modelado. En concreto, se puede decir que todas las variables

hidráulicas o mecánicas tienen un equivalente en los sistemas eléctricos, es decir, la forma de medir o

modelar ciertas variables es similar en circuitos hidráulicos, mecánicos o eléctricos.

En la tabla 5.15 se pueden ver las analogías entre variables hidráulicas o mecánicas y eléctricas. Esta

puede servir como primer paso para entender la configuración de los modelos que se irán viendo en

los siguientes apartados.

Tabla 5–15 Relación entre variables.

Variable Símbolo Variable equivalente

Caudal q

Intensidad Par T

Fuerza F

Presión p

Tensión Velocidad lineal v

Velocidad angular ω

En las figura 5.16 se puede ver cómo se realizaría la medición de intensidad y tensión en un circuito

eléctrico. Como se sabe, el amperímetro (Current Sensor) se utiliza en serie con el elemento cuya

intensidad se desea medir; en cambio, el voltímetro (Voltage Sensor), se utiliza en paralelo. Siguiendo

ese esquema conocido, se puede medir cualquier magnitud en circuitos mecánicos o hidráulicos.

En la figura 5.18 se puede ver el circuito hidráulico, en el cual la medición de caudal se realiza en serie

Page 113: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

83

83

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

y la de presión en paralelo. Así mismo, en los circuitos mecánicos se medirá la velocidad en paralelo, con los sensores de velocidad, y la fuerza en serie. Ver figuras 5.16, 5.17 y 5.18.

En la figura 5.16, se representa un circuito eléctrico simple donde se pone de manifiesto la ley de Ohm,

esto es, sobre una resistencia circulará una intensidad dada por la tensión en bornas de la fuente de tensión alterna. Se dispone de un amperímetro y de voltímetro para medir la tensión e intensidad que

circula sobre la resistencia.

Figura 5-16. Circuito eléctrico.

En la figura 5.17 se presenta un circuito mecánico que modela la actuación de una fuerza sobre un

sistema compuesto por un amortiguador y un muelle ideal. Dicha fuerza es una onda sinusoidal que

actúa directamente sobre ambos elementos. Tanto la fuerza como la velocidad y desplazamiento de amortiguador y del muelle, se miden mediante sensores de velocidad y fuerza. Además, es necesario

proveer al modelo con un “solver” para que la simulación se pueda llevar a cabo.

Figura 5-17. Circuito mecánico.

En la figura 5.18 se presenta un circuito formado por una fuente de flujo constante y un orificio sobre

el que se produce una caída de presión. Además, se dispone de un caudalímetro y un medidor de presión para conocer el caudal y presión que se producen en dicho orificio. Para poder ejecutar este

modelo, es necesario disponer de dos bloques auxiliares: el bloque “Solver” para resolver el sistema

Page 114: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Power Take Off: modelado y simulaciones

84

y el “Custom Hydraulic Fluid” que permite establecer el tipo y características del fluido que circula por el sistema.

Figura 5-18. Circuito hidráulico.

Tanto en los circuitos mecánicos como hidráulicos se pueden encontrar fuentes de par, fuerza,

velocidad ideal en un caso, o flujo y presión ideal en otro. Estas fuentes ideales funcionan de la misma

forma que las fuentes ideales de tensión e intensidad de los circuitos eléctricos. Estas fuentes pueden ceder o absorber potencia dependiendo de cómo se realicen las conexiones.

En la figura 5.19, se puede ver un ejemplo del uso de fuentes de par acopladas a un generador. En un

caso funciona como fuente generadora de par (motor ideal) y otras como consumidora de par (carga

giratoria). Por lo tanto, teniendo presente las relaciones vistas en la tabla 5.15 se puede construir cualquier circuito mecánico o hidráulico por analogía eléctrica.

Figura 5-19. Distintos usos de la fuente ideal de par: izqda.) motor, dcha.) carga. Fuente: [14].

En ambos modelos, la fuente de par ideal “Ideal Torque Source” tiene la misión de simular un par motor (figura 5.19 izquierda) o resistente (figura 5.19 derecha). Para ello, se utilizan otros bloques con

el objetivo de suministrar o absorber una potencia mecánica determinada (en este caso 1 kW) mediante

la realimentación de la velocidad angular medida en el eje. Para que los esquemas que se presentan en la figura 5.19 funcionen de forma correcta, es necesario asegurar que la velocidad angular sea mayor

que cero para evitar indeterminaciones durante la simulación. Esto se realiza estableciendo unas

condiciones iniciales determinadas o mediante el uso de bloques auxiliares que proporcionen una

entrada constante distinta de cero durante los instantes iniciales de la simulación.

Page 115: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

85

85

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

5.9 Power Take off: modelo del circuito hidráulico.

El PTO o Power Take Off es el sistema de extracción de energía de los convertidores de energía de las olas o WEC; en este caso, se intercepta la energía de la ola y se transmite al fluido mediante el

actuador lineal (cilindro hidráulico). Después, esa energía es convertida en energía mecánica gracias

a la interacción entre el fluido de trabajo (aceite) y el motor hidráulico. Una vez realizada esta conversión, la energía está disponible para su aprovechamiento tanto en dispositivos mecánicos como

eléctricos.

Para el modelado del circuito hidráulico-mecánico se ha utilizado el software de cálculo MATLAB y su herramienta para modelado, Simulink. En primer lugar, se ha elaborado un circuito hidráulico

básico, el cual pretende dar una idea clara al lector de cómo se realiza la conversión de la energía de

la ola en energía mecánica a través del fluido de trabajo. Para ello, se acompaña el modelo con la

respuesta de algunas variables del sistema, con el objetivo de conocer el comportamiento del sistema hidráulico ante la fuente de excitación, el oleaje. Después, se realizan modificaciones sobre el mismo

mediante la inclusión de nuevos elementos con el objetivo de rectificar las magnitudes hidráulicas.

Finalmente, se realiza el acoplamiento con otro sistema mecánico – hidráulico que sirve como carga resistiva a nuestro PTO.

5.9.1 Circuito hidráulico básico

El circuito hidráulico básico se compone de los siguientes dispositivos:

- Actuador lineal o cilindro hidráulico.

- Motor hidráulico. - Caudalímetro y medidor de presión diferencial.

- Fuente ideal de velocidad.

- Bomba de desplazamiento fijo. - Reservorio hidráulico.

El circuito hidráulico se puede descomponer en tres partes. Una parte mecánica compuesta por una fuente de velocidad, sensores de medida de velocidad y fuerza y el cilindro hidráulico. Esta parte se

encarga de modelar la conexión entre la boya y el sistema hidráulico. La boya se desplaza con una

velocidad determinada por su interacción con el oleaje. Dicho desplazamiento se modela mediante la

fuente de velocidad, que al igual que una fuente de tensión, genera una velocidad según se le indique sobre el puerto S. Esta fuente es necesario que tenga un punto de referencia (velocidad cero), el cual

se representa mediante la referencia mecánica de translación. A continuación, el bloque de sensores

mide la fuerza que se aplica sobre el pistón y la velocidad a la que se mueve el mismo.

En la etapa siguiente, se encuentran conexiones físicas entre el cilindro, un bloque intermedio de

sensores de caudal y presión y el motor hidráulico. Esas conexiones físicas son tuberías ideales, que

sirven para conectar los distintos dispositivos hidráulicos.

Después, el motor hidráulico se une a la bomba hidráulica de desplazamiento fijo mediante otra conexión física, es decir, un eje ideal, el cual transmite el par y la velocidad desde el motor a la bomba.

Por último, se encuentra otro circuito hidráulico en el cual el fluido es movido entre la bomba y el

reservorio de fluido. El objetivo de este circuito es modelar una carga resistente sobre el eje del motor hidráulico. La configuración que se ha descrito se puede ver en la figura 5.20.

El cilindro hidráulico se acompaña de un resorte ideal en paralelo cuya constante de elasticidad es

𝑘𝑚=10.1 kN/m. Dicho resorte se utiliza para simular el comportamiento elástico de un amortiguador

real y aproximar más a la realidad el comportamiento del cilindro.

Page 116: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Power Take Off: modelado y simulaciones

86

Figura 5-20. Modelo del circuito hidráulico básico.

Figura 5-21. Circuito hidráulico con puente rectificador tipo 1.

Page 117: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

87

87

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

5.9.2 Circuito hidráulico con puente rectificador tipo 1

Este circuito parte de la configuración del circuito analizada en el apartado 5.9.1. , añadiendo un

circuito rectificador para rectificar la presión y el caudal que llegan al motor hidráulico. Dentro del bloque llamado “Puente de válvulas antirretorno” se encuentra el circuito mencionado anteriormente,

el cual se describe con más detalle en el apartado 5.9.2.1. A continuación se encuentra el acumulador,

encargado de mantener la presión constante en los terminales del motor hidráulico. Este se acopla a través de un eje mecánico con una bomba de desplazamiento fijo que mueve el fluido contenido en un

reservorio. El circuito hidráulico completo se puede observar en la figura 5.21.

5.9.2.1 Puente rectificador de válvulas antirretorno.

En el puente de válvulas antirretorno se realiza la rectificación de las variables hidráulicas, es decir,

convertimos una señal sinusoidal en una señal positiva (ver figura 5.22). Su función es la misma que

la realizada por un puente de diodos en un circuito eléctrico, ver figura 5.21. Si comparamos la figura 5.22 y la figura 5.23 se puede ver que existen similitudes constructivas, en las cuales cada válvula

antirretorno, en paralelo con el orificio de presión constante, realiza la misma función que el diodo del

puente rectificador.

Figura 5-22. Puente rectificador de diodos o de Graetz. Fuente: [Wikipedia, 2015].

Como se ha mencionado en diversos apartados, la válvula antirretorno puede trabajar en paralelo con

un orificio de sección fija para la regulación de caudal, según [2]. La razón de esto es que, cuando las

presiones se igualan en ambos terminales, la válvula se cierra y el pistón sigue empujando el fluido en la misma dirección. Para evitar golpes de ariete sobre la válvula y paradas instantáneas del pistón, se

utiliza este orificio - conducto con cierta caída de presión – que frena el fluido y por ende, el

movimiento del pistón de forma más suave mediante una pérdida de presión. En el caso en que existe una caída de presión positiva entre los terminales de la válvula de retención, el fluido circulará por

esta. Esto se debe a que la válvula ofrece, en ese momento, menor resistencia al paso de fluido con

respecto al orificio de sección fija.

Figura 5-23. Puente de válvulas antirretorno.

Page 118: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Power Take Off: modelado y simulaciones

88

5.9.3 Circuito hidráulico con puente rectificador tipo 2

En esta sección, se ha sustituido el puente de válvulas antirretorno por un puente de válvulas de control

direccional. El objetivo es el mismo, rectificar una señal oscilatoria y convertirla en una señal constante o aproximadamente contante a pesar del rizado. Se ha decidido incorporar esta opción por tener una

capacidad mayor de captación de energía undimotriz, ya que se producen menor cantidad de pérdidas

en la etapa de rectificación. El circuito hidráulico con puente rectificador tipo 2 puede verse en la figura 5.25.

5.9.3.1 Puente rectificador de válvulas de control direccional.

En este puente se realiza la misma función que la descrita para el puente rectificador tipo 1. En este

caso, la rectificación de presión y flujo se realiza mediante el uso de válvulas de control direccional.

Estas son accionadas mediante un sistema de control de válvulas, subsistema de la figura 5.26, que recibe la señal de la velocidad que le proporciona el bloque hidrodinámico, y acciona las válvulas 6 y

5 o 4 y 7 dependiendo si la velocidad es positiva o negativa.

La lógica de control que se utiliza para activar la apertura de las válvulas direccionales es la reflejada en la figura 5.24. Como se puede apreciar, los bloques “Switch” son los que analizan la entrada de

velocidad y actúan como un bloque condicional para cerrar o abrir completamente (ver señales tipo

escalón) las válvulas conectadas a los mismos.

Físicamente se podría asociar a un conjunto relé-interruptor automático, en el cual la función de

evaluación de la entrada corresponde al relé y la ejecución material de apertura o cierre al interruptor

automático.

Figura 5-24. Configuración del puente de válvulas de control direccional.

Page 119: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

89

89

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

Figura 5-25. Circuito hidráulico con puente rectificador tipo 2.

Figura 5-26. Configuración del puente de válvulas de control direccional.

Page 120: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera
Page 121: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

91

91

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

5.10 Simulaciones

A continuación se presenta la evolución de cada una de las variables medidas sobre los diferentes circuitos modelados. Con ello, se pretende ilustrar mejor cómo funciona cada uno de los modelos

construidos hasta el momento. En primer lugar, se presenta el circuito hidráulico básico, es decir, un

circuito que no dispone de puente de válvulas. Después, se analiza el caso en el que fluido recorre el puente de válvulas, ya sean antirretorno o de control direccional. En todos los casos, como ya se ha

visto en el apartado anterior, el motor hidráulico permanece conectado a una bomba de impulsión de

fluido que modela la carga sobre el eje.

5.10.1 Circuito hidráulico básico

En la figura 5.27 se observa la evolución de las variables ante la excitación de la boya mediante un

oleaje regular sinusoidal. Este oleaje se modela mediante una fuente de velocidad ideal con forma de onda sinusoidal y características descritas en la tabla 5.16. El circuito modelado en este caso es aquel

descrito en el apartado 5.9.1.

Tabla 5–16 Parámetros de la velocidad de la boya.

Variable Valor nominal

Amplitud 0.72

Frecuencia 1 rad/s

Como se puede observar, la evolución de las variables mecánicas del pistón (fuerza, posición y

potencia instantánea) son, al igual que la velocidad, de carácter sinusoidal. Especial mención para la

onda resultante de la potencia instantánea del pistón o potencia capturada por el cilindro. Se observan

en esta dos tipos de picos máximos de potencia que está relacionados con el movimiento de extensión y retroceso donde el área de presión varía.

Figura 5-27. Gráficas de la evolución de las variables del pistón.

0 10 20 30 40 50 60 70 80 90 100-1.5

-1

-0.5

0

0.5

1

1.5x 10

5

tiempo (s)

Fuerz

a (

N)

Fuerza aplicada sobre el pistón

0 10 20 30 40 50 60 70 80 90 100-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

tiempo (s)

Velo

cid

ad(m

/s)

Velocidad del Pistón

0 10 20 30 40 50 60 70 80 90 1000

0.5

1

1.5

tiempo (s)

Posic

ión(m

)

Posición del Pistón

0 10 20 30 40 50 60 70 80 90 100-2

0

2

4

6

8

10x 10

4

tiempo (s)

Pote

ncia

(W)

Potencia Pistón

Page 122: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Power Take Off: modelado y simulaciones

92

Por lo tanto, las variables mecánico-fluidas, caudal y presión, del fluido mantienen una evolución

periódica alterna que afecta directamente al movimiento del motor hidráulico.

Así mismo, las medidas de par y velocidad angular obtenidas en el eje del motor hidráulico serán también sinusoidales, ver figuras 5.28 y 5.29. Este comportamiento es el que se pretende evitar por

medio del puente de válvulas, es decir, se intentará rectificar el caudal que atraviesa el motor hidráulico

con objeto de obtener un par y velocidad angular constantes.

Figura 5-28. Par medido sobre el eje de la bomba.

A su vez, se ve como el motor hidráulico trabaja en condiciones próximas a las nominales en términos

de velocidad angular ante la velocidad del conjunto boya-vástago-pistón.

Figura 5-29. Velocidad medida sobre el eje de la bomba.

En la figura 5.30, se muestra una vista general de la evolución de la potencia medida en las distintas etapas del circuito hidráulico.

0 10 20 30 40 50 60 70 80 90 100-400

-300

-200

-100

0

100

200

300

400

tiempo (s)

Par(

Nm

)

Par

Par motor hidráulico

0 10 20 30 40 50 60 70 80 90 100-150

-100

-50

0

50

100

150

tiempo (s)

Velo

cid

ad(r

ad/s

)

Velocidad de giro del eje

Medida en Eje

Page 123: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

93

93

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

La potencia del oleaje capturada por el pistón es transmitida prácticamente de forma íntegra al motor hidráulico. Esto se produce porque se asume en el modelo que las pérdidas en los conductos por los

que circula el fluido, son insignificantes; ya sea por la corta longitud de los mismos o por la nula

rugosidad de los conductos. Además, no existe otro tipo de elementos donde se produzcan pérdidas de presión como válvulas, orificios, etc.

Sin embargo, si se produce una pérdida de potencia en el paso del fluido a través del motor hidráulico

debido a las fugas de fluido, pérdidas mecánicas y la fricción del fluido con las paredes del mismo.

Es aquí donde intervienen los rendimientos total y volumétrico que sedefinieron en el modelo del motor hidráulico.

Figura 5-30. Potencias medidas en diferentes partes del circuito hidráulico.

0 10 20 30 40 50 60 70 80 90 100-2

0

2

4

6

8

10x 10

4

tiempo (s)

Pote

ncia

(W)

Potencia Motor hidráulico

0 10 20 30 40 50 60 70 80 90 100-1

0

1

2

3

4

5

6x 10

4

tiempo (s)

Pote

ncia

(W)

Potencia Eje

0 10 20 30 40 50 60 70 80 90 100-2

0

2

4

6

8

10x 10

4

tiempo (s)

Pote

ncia

(W)

Potencia Pistón

Page 124: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Power Take Off: modelado y simulaciones

94

5.10.2 Circuito hidráulico con puente rectificador tipo 1

En este apartado se van a analizar los resultados obtenidos a partir de las simulaciones realizadas sobre

el modelo del circuito hidráulico detallado en la sección 5.9.2. En la figura 5.31 se puede observar la evolución de las variables mecánicas del pistón ante una excitación sinusoidal.

Al igual que en la sección anterior, dicho modelo se somete a una excitación mediante una fuente ideal

de velocidad con las características reflejadas en la tabla 5.16.

Figura 5-31. Evolución de las variables del pistón.

Como se observa, la fuerza que la boya ejerce sobre el pistón evoluciona desde el régimen transitorio al permanente, donde el sistema se estabiliza. En este caso, la onda resultante de la fuerza que ejerce

el fluido sobre el pistón (de igual módulo y dirección contraria a la fuerza aplicada por la boya sobre

el pistón) tiene un comportamiento oscilatorio cuya forma de onda se ve afectada por la apertura y cierre del puente de válvulas; es por esta razón, dicha forma de onda particular. Por otra parte, la

velocidad y posición del pistón mantienen su comportamiento oscilatorio sinusoidal durante todo el

proceso de simulación.

Es importante remarcar que la potencia del pistón representada en la figura 5.31 corresponde al valor medio de la potencia instantánea capturada por el cilindro. Esto permite comparar de forma más

adecuada dicha potencia con el resto de potencias que se miden en otras partes del circuito hidráulico.

Se puede afirmar que en los primeros instantes el pistón es quién impone la presión en el sistema a la vez que se produce el llenado del acumulador. Durante esta fase, comienza el rectificado del flujo por

la actuación conjunta del puente de válvulas, que rectifica el flujo, y el acumulador, que limita el rizado

de dicho flujo y de la presión resultante. Este efecto queda patente en la figura 5.32, donde se representan las presiones y caudales medidos antes y después del puente de válvulas antirretorno, o lo

que es lo mismo, en terminales del cilindro y del motor hidráulico.

Este hecho es la principal, y más importante, diferencia con respecto al circuito básico que se comenta

en la sección anterior; ya que se está dirigiendo el flujo de fluido hidráulico de forma que se pueda generar una potencia de valor constante mediante un par y velocidad constantes o aproximadamente

constantes.

0 10 20 30 40 50 60 70 80 90 100-4

-2

0

2

4

6

8x 10

4

tiempo (s)

Fuerz

a (

N)

Fuerza aplicada sobre el pistón

0 10 20 30 40 50 60 70 80 90 100-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

tiempo (s)

Velo

cid

ad(m

/s)

Velocidad del Pistón

0 10 20 30 40 50 60 70 80 90 100-0.5

0

0.5

1

1.5

tiempo (s)

Posic

ión(m

)

Posición del Pistón

0 10 20 30 40 50 60 70 80 90 100-0.5

0

0.5

1

1.5

2

2.5x 10

4

tiempo (s)

Pote

ncia

(W)

Potencia Pistón

Page 125: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

95

95

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

Figura 5-32. Variables hidráulicas medidas en el circuito.

Como se puede observar en las figuras 5.33 y 5.34, existe un cierto rizado en la señal de la velocidad

y par durante el régimen permanente. Dicho rizado se puede suavizar aumentando la capacidad del

acumulador, pero esto implica aumentar el tiempo de llenado y, por ende, aumentar el tiempo que dura el régimen transitorio. Existen otras soluciones para disminuir dicho rizado que pueden ser aplicadas

en etapas posteriores, al mismo tiempo que se reduce el régimen transitorio.

Figura 5-33. Par medido sobre el eje del motor hidráulico.

10 20 30 40 50 60 70 80 90

0.5

1

1.5

2

2.5

x 105

tiempo (s)

Pre

sió

n(P

a)

Presión en terminales del motor hidráulico

10 20 30 40 50 60 70 80 90 100

0.01

0.02

0.03

0.04

0.05

0.06

0.07

tiempo (s)

Caudal(m

3/s

)

Caudal que atraviesa el motor hidráulico

0 10 20 30 40 50 60 70 80 90 100-3

-2

-1

0

1

2

3x 10

5

tiempo (s)

Pre

sió

n(P

a)

Presión terminales cilindro hidráulico

0 10 20 30 40 50 60 70 80 90 100-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

tiempo (s)

Caudal(m

3/s

)

Caudal que atraviesa el cilindro hidráulico

10 20 30 40 50 60 70 80 90 100

20

40

60

80

100

120

140

160

180

200

tiempo (s)

Par(

Nm

)

Par

Par motor hidráulico

Page 126: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Power Take Off: modelado y simulaciones

96

Figura 5-34. Velocidad medida sobre el eje de la bomba.

Finalmente, se aporta una gráfica comparativa de las potencias medidas en distintos puntos del

sistema. El objetivo de la misma es detectar, en una observación preliminar, donde se producen las

pérdidas más importantes del sistema. Para dicha representación se han utilizado la potencia media capturada por el cilindro hidráulico, la potencia fluida instantánea en terminales del motor hidráulico

y la potencia mecánica en el eje que conecta este con la bomba hidráulica.

Como se observa, es la etapa de rectificación donde se producen las pérdidas de mayor importancia.

Además, las pérdidas internas del motor hidráulico explican la divergencia entre la potencia fluida en terminales del motor hidráulico y la potencia en el eje. En conclusión, el rendimiento del circuito

hidráulico se establece en el entorno del 66%.

Figura 5-35. Potencias medidas en el circuito hidráulico tipo 1.

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

tiempo (s)

Velo

cid

ad(r

ad/s

)

Velocidad de giro del eje

Medida en Eje

10 20 30 40 50 60 70 80 90 1000

0.5

1

1.5

2

x 104

tiempo (s)

Pote

ncia

(W)

Potencias

Motor hidráulico

Eje

Pistón

Page 127: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

97

97

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

5.10.3 Circuito hidráulico con puente rectificador tipo 2

En esta sección se analizan los resultados obtenidos a partir de las simulaciones realizadas sobre el circuito descrito en la sección 5.9.3. A continuación, se muestra un análisis similar al realizado con los

otros circuitos.

En la figura 5.36 se representa la evolución de las variables del cilindro hidráulico, las cuales tienen

un comportamiento similar al descrito en la sección anterior. La excitación a la que se ve sometido

este circuito posee las mismas características que las ya descritas en los dos casos tratados

anteriormente.

Figura 5-36. Evolución de las variables del pistón.

En este caso, es importante fijarse en la conservación de presión que tiene lugar durante la etapa de rectificado en el puente de válvulas, ver figura 5.37. En otras palabras, las pérdidas de presión que se

producen en el puente de válvulas direccionales son menores con respecto a las medidas en el puente

de válvulas antirretorno.

0 10 20 30 40 50 60 70 80 90 100-6

-4

-2

0

2

4

6x 10

4

tiempo (s)

Fuerz

a (

N)

Fuerza aplicada sobre el pistón

0 10 20 30 40 50 60 70 80 90 100-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

tiempo (s)

Velo

cid

ad(m

/s)

Velocidad del Pistón

0 10 20 30 40 50 60 70 80 90 100-0.5

0

0.5

1

1.5

tiempo (s)

Posic

ión(m

)

Posición del Pistón

0 10 20 30 40 50 60 70 80 90 100-0.5

0

0.5

1

1.5

2

2.5x 10

4

tiempo (s)

Pote

ncia

(W)

Potencia Pistón

Page 128: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Power Take Off: modelado y simulaciones

98

Figura 5-37. Variables hidráulicas medidas en el circuito.

Este hecho, se debe al control realizado sobre la apertura y cierre de dichas válvulas, el cual se basa en la evolución de la velocidad del pistón. Dicho control facilita el flujo según el movimiento del

pistón, rompiendo la dependencia de dicha apertura con la diferencia de presión entre terminales de la

válvula (como sucede en el puente de válvulas antirretorno).

Al igual que en la sección precedente, se adjunta las figuras 5.38 y 5.39 donde queda patente que la

etapa de rectificación ha cumplido su objetivo. Al igual que en caso anterior, la onda de velocidad y

par en el régimen permanente contienen cierto rizado que puede ser tratado en etapas posteriores.

Figura 5-38. Velocidad medida sobre el eje del motor hidráulico.

10 20 30 40 50 60 70 80 90 100

0.5

1

1.5

2

2.5

x 105

tiempo (s)

Pre

sió

n(P

a)

Presión en terminales del motor hidráulico

10 20 30 40 50 60 70 80 90

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

tiempo (s)

Caudal(m

3/s

)

Caudal que atraviesa el motor hidráulico

0 10 20 30 40 50 60 70 80 90 100-3

-2

-1

0

1

2

3x 10

5

tiempo (s)

Pre

sió

n(P

a)

Presión terminales cilindro hidráulico

0 10 20 30 40 50 60 70 80 90 100-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

tiempo (s)

Caudal(m

3/s

)

Caudal que atraviesa el cilindro hidráulico

10 20 30 40 50 60 70 80 900

10

20

30

40

50

60

70

80

90

tiempo (s)

Velo

cid

ad(r

ad/s

)

Velocidad

Medida en Eje

Page 129: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

99

99

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

Figura 5-39. Par medido sobre el eje del motor hidráulico.

La figura 5.40, donde se representan las potencias medidas en diferentes puntos del circuito hidráulico, proporciona una visión clara de la reducción de pérdidas en la etapa de rectificación como se mencionó

anteriormente. En este caso, las pérdidas se producen fundamentalmente en la conversión de la

potencia fluida en potencia mecánica. En este caso, se tiene un rendimiento del 71% en el circuito hidráulico de conversión, es decir, la relación entre la potencia suministrada al cilindro hidráulico y la

potencia mecánica medida en el eje de rotación del motor hidráulico.

Figura 5-40. Potencias medidas en el circuito hidráulico tipo 2.

10 20 30 40 50 60 70 80 900

20

40

60

80

100

120

140

160

180

tiempo (s)

Par(

Nm

)

Par

Par motor hidráulico

10 20 30 40 50 60 70 80 90

0.5

1

1.5

2

x 104

tiempo (s)

Pote

ncia

(W)

Potencias

Motor hidráulico

Eje

Pistón

Page 130: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Power Take Off: modelado y simulaciones

100

Page 131: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

101

101

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

6 SISTEMA ELÉCTRICO: MODELADO Y SIMULACIÓN

os sistemas eléctricos son uno de los pilares sobre los que se fundamenta el desarrollo actual del

mundo en el que vivimos. La generación de energía eléctrica se realiza con generadores síncronos, de inducción o de imanes permanentes y transformadores; la industria y diversos medios de

transporte utilizan motores eléctricos para su funcionamiento; y por ende la electricidad llega a los

consumidores finales a través de líneas eléctricas y transformadores de distribución.

La entrada en la red de energía procedente de fuentes renovables plantea un nuevo reto a los sistemas eléctricos, debido a su variabilidad y periodicidad en casos como la eólica o solar. En el caso de la

energía undimotriz, los sistemas eléctricos deben estar configurados para trabajar en situaciones

adversas como el mar y la abrasión del medio (ambiente salino), incluso llegando a tener que trabajar en las profundidades del lecho marino. Esto ha supuesto a su vez el desarrollo de la electrónica de

potencia como respaldo en el uso de los sistemas eléctricos de potencia.

En definitiva, el mundo en el que vivimos está rodeado y conectado gracias a estos sistemas; sistemas

que mueven el mundo y lo hacen avanzar.

En este trabajo, se van a utilizar los sistemas eléctricos para la generación. En primer lugar se convierte

la energía mecánica proporcionada por el motor hidráulico en energía eléctrica a través del generador

síncrono. Una vez realizada esta etapa, se adapta la tensión mediante un transformador para su posterior rectificación o transporte hasta los centros de consumo. Es importante recordar que este tipo

de instalaciones se encuentran en el mar, lo cual dificulta la evacuación de la energía desde el punto

de generación. Por ello, la etapa de conversión de tensión y posterior transporte es vital para la eficiencia global del sistema generador.

Inicialmente, se van a explicar los distintos elementos que forman el sistema eléctrico de este trabajo,

a la vez que se describen cómo se modelan en Matlab. Después se construirá un modelo para simular

la red eléctrica del sistema y se observará cómo se comporta ante diferentes cargas y entradas. Por último, se explica cómo funciona el sistema eléctrico construido mediante la realización de

simulaciones ante distintas excitaciones y modos de funcionamiento.

L

A lo largo del espacio hay energía, y es una mera cuestión de tiempo hasta que los hombres tengan

éxito en sus mecanismos vinculados al aprovechamiento de esa energía

- Nikola Tesla -

Page 132: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Sistema Eléctrico: Modelado y Simulación

102

6.1 Generador síncrono.

Los generadores síncronos o alternadores son máquinas síncronas que se utilizan para convertir potencia mecánica en potencia eléctrica de corriente alterna (c.a.). En un generador síncrono se

produce un campo magnético en el rotor, ya sea mediante el diseño de éste como un imán permanente

o mediante la aplicación de una corriente continua (c.d.) a su devanado para crear un electroimán.

El rotor de un generador síncrono es en esencia un electroimán grande. Los polos magnéticos del rotor

pueden ser tanto salientes como cilíndricos. Por lo normal, los rotores de polos cilíndricos se utilizan

para rotores de dos o cuatro polos, mientras que los rotores de polos salientes normalmente se usan para rotores con cuatro o más polos.

Existen dos formas de suministrar la potencia de c.d. al rotor:

- Anillos rozantes y escobillas.

- Fuente de potencia de c.d. montada directamente sobre el eje del generador síncrono.

Los alternadores son por definición síncronos, lo que quiere decir que la frecuencia eléctrica se

produce y entrelaza con la tasa mecánica de rotación del generador. La ecuación 6.1. relaciona la

velocidad de rotación del rotor con la frecuencia eléctrica resultante.

𝑓𝑒 =(𝑛𝑚 · 𝑁𝑝𝑝)

60

(6–1)

6.1.1 Funcionamiento

6.1.1.1 Funcionamiento en vacío

Inicialmente, el generador síncrono funciona en vacío, esto es, se alimenta el devanado rotórico por

medio de una fuente de excitación y se hace girar el rotor, dejando el devanado estatórico sin conectar.

Cuando comienza a girar el rotor a velocidad n, se inducen f.e.m.s. en los arrollamientos de las tres

fases del estator, que van desfasadas en el tiempo 120º, que corresponden a la separación espacial (en grados eléctricos) existente entre las bobinas del estator.

Una característica importante del funcionamiento en vacío de la máquina síncrona, la constituye la

curva Eo frente a Ie, que expresa la f.e.m., en vacío, en bornes de la máquina la carga en función de la corriente de excitación.

6.1.1.2 Funcionamiento en carga

Si se conecta una carga en el inducido (estator), con una determinada corriente de excitación, la

corriente comienza a circular por el devanado estatórico. De esta forma, se obtiene una tensión en

bornes de la máquina inferior al valor que presentaba en vacío. Dicha reducción se produce por una f.m.m. que reacciona con la del inductor modificando el flujo en el entrehierro de la máquina. Además

se producen otras caídas de tensión debidas a la resistencia del devanado estatórico (que normalmente

se suele despreciar) y la reactancia del inducido, que se debe al flujo de dispersión del estátor que no

interacciona con el flujo del rotor.

Page 133: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

103

103

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

6.1.1.2.1 Funcionamiento en una red aislada

El comportamiento de un generador síncrono bajo carga varía fuertemente dependiendo del factor de

potencia de la carga y si el generador funciona solo o en paralelo con otros alternadores. Si el generador

se conecta a una red aislada o de potencia finita, las variables que rigen el comportamiento del generador se verán afectadas de la siguiente forma:

- La frecuencia depende enteramente de la velocidad del motor primario que mueve la máquina

síncrona (en nuestro caso, el motor hidráulico).

- El factor de potencia (f.d.p.) del generador es el f.d.p. de la carga. - La tensión de salida depende de:

o La velocidad de giro (f.e.m. depende de la frecuencia y del flujo).

o De la corriente de excitación. o De la corriente de inducido, es decir, de la carga a la que está conectado el generador.

o Del f.d.p. de la carga.

Cuando la carga demanda más potencia, el generador reduce su velocidad, es entonces cuando se hace necesario disponer de unos controles que actúen sobre el alternador. En concreto, disponemos de dos

posibles controles:

a) Sistema de regulación de tensión del alternador: controla la corriente de excitación y se

utiliza para controlar la tensión en bornas del estator.

b) Sistema de regulación de velocidad del motor primario: que se utiliza para controlar la

frecuencia. En este caso, dicha regulación se puede realizar mediante un motor hidráulico de desplazamiento variable.

6.1.1.2.2 Funcionamiento en una red de potencia infinita.

Cuando conectamos un alternador o generador síncrono a una red de potencia infinita (Scc= ∞), es

decir, una red formada por un gran número de generadores en paralelo y un gran número de cargas, el

comportamiento del generador síncrono varía de forma importante con respecto al funcionamiento en una red aislada. Esto implica que la variación de frecuencia o tensión uno de los generadores de dicha

red no afecta a dicha red por ser de potencia infinita, en otras palabras, la tensión y frecuencia del

sistema viene impuesta por la red.

Además, esto afecta a los controles de tensión y velocidad que se han visto en el epígrafe anterior, es

decir:

a) Sistema de regulación de tensión del alternador: controla la corriente de excitación y se

utiliza para controlar la potencia reactiva que cede o absorbe la máquina. Dicho control no afecta a la potencia activa que cede o absorbe el generador.

b) Sistema de regulación de velocidad del motor primario: que se utiliza para controlar la potencia activa. Esto se ve reflejado físicamente como una modificación en el ángulo de

carga, esto es, el ángulo que forma la f.e.m. Eo con la tensión en bornas del estator.

Page 134: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Sistema Eléctrico: Modelado y Simulación

104

6.1.2 Circuito equivalente de un generador síncrono

El voltaje interno que se genera y produce en una fase del generador síncrono, denominada EA, no es el voltaje que se presenta en las terminales del generador. Sin embargo, si el generador está trabajando

en vacío, ambas tensiones serán iguales.

La diferencia entre ambos voltajes se origina a causa de los siguientes factores:

- La distorsión del campo magnético del entrehierro debida a la corriente que fluye en el estator,

llamada reacción de inducido.

- La autoinductancia de las bobinas del inducido (o armadura). - La resistencia de las bobinas del inducido.

- El efecto de la forma del rotor de polos salientes.

Si se añade una carga a los terminales del generador, la corriente fluye. Esta corriente crea un campo magnético en el estátor (Best) que distorsiona el campo magnético original en el rotor (Br) y por ende

altera el voltaje resultante en los terminales del generador. Este efecto se denomina reacción de

inducido.

El ángulo entre Br y Best se denomina ángulo interno o ángulo de par de la máquina. Este es

proporcional a la cantidad de potencia que suministra el generador, como se demostrará en la siguiente

sección. Por lo tanto el voltaje asociado a la reacción de inducido se puede expresar como:

𝐸𝑒𝑠𝑡𝑎𝑡 = −𝑗 · 𝑋 · 𝐼𝐴 (6–2)

Por otra parte, las bobinas del devanado estatórico presentan una autoinductancia y una resistencia. Si

se denomina RA a la resistencia estatórica y XA a la reactancia de la autoinductancia del bobinado

estatórico, la tensión en los terminales del generador será la siguiente:

𝑉𝑡 = 𝐸𝐴 − 𝑗 · 𝑋 · 𝐼𝐴 − 𝑗 · 𝑋𝐴 · 𝐼𝐴 − 𝑅𝐴 · 𝐼𝐴 (6–3)

Si agrupamos las reactancias en un mismo término, denominado reactancia síncrona, la ecuación 6.3

quedará como se muestra a continuación:

𝑉𝑡 = 𝐸𝐴 − 𝑗 · 𝑋𝑆 · 𝐼𝐴 − 𝑅𝐴 · 𝐼𝐴 (6–4)

Una vez se conoce cómo se modela tanto el rotor como el estator, es posible dibujar el circuito

equivalente de un generador síncrono trifásico, ver figura 6.1.

Page 135: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

105

105

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

Figura 6-1. Circuito equivalente para las 3 fases del generador síncrono. Fuente: [4].

Diagrama fasorial

Es interesante analizar el diagrama fasorial del generador síncrono por las conclusiones que aporta

para conocer el comportamiento del mismo ante diferentes cargas.

Figura 6-2.Diagrama fasorial del generador síncrono. Fuente: [4].

Inicialmente, se presenta el caso en el que el generador síncrono alimenta a una carga resistiva. Este

se tomará como el caso base para comparar con los siguientes casos. En la figura 6.3 se representa el

diagrama fasorial del generador síncrono cuando alimenta a una carga puramente resistiva, es decir,

el desfase entre la tensión entre terminales y la intensidad es 0º.

Page 136: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Sistema Eléctrico: Modelado y Simulación

106

Figura 6-3. Diagrama fasorial para factor de potencia unitario. Fuente: [4].

Por otra parte, se considera en la figura 6.4 el caso en el que se alimenta una carga puramente inductiva, esto es, la intensidad retrasada con respecto a la tensión. Se observa que para la mantener la misma

tensión en terminales que en el caso anterior, es necesario suministrar una tensión EA mayor. Por lo

tanto, se requiere mayor corriente de campo para obtener el mismo voltaje en los terminales del

generador, ya que la velocidad de giro del rotor debe de permanecer constante para mantener la frecuencia constante.

Figura 6-4. Diagrama fasorial para factor de potencia en retraso. Fuente: [4].

Finalmente, en la figura 6.5 se puede ver el diagrama fasorial asociado a las cargas con factor de carga

en adelanto (cargas capacitivas). En este caso, la intensidad de campo necesaria para mantener la

tensión en terminales es menor que la necesaria para el primer caso.

Figura 6-5. Diagrama fasorial para factor de potencia en adelanto. Fuente: [4].

Page 137: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

107

107

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

Devanados amortiguadores

Los devanados amortiguadores se incorporan a las máquinas síncronas de polos salientes para mejorar

sus características dinámicas. Son en esencia devanados en forma de jaula de ardilla que se alojan en

ranuras situadas sobre las cabezas de los polos inductores. El efecto de estos devanados es nulo en régimen permanente, pues giran a la velocidad de sincronismo, según [2].

Figura 6-6. Detalle del devanado amortiguador. Fuente: [1].

Su importancia se pone de manifiesto en aquellos regímenes de funcionamiento en los que, o bien el rotor gira a velocidades instantáneas diferentes de la de sincronismo, o bien el flujo en el entrehierro

varía en magnitud. Tanto en un caso como en otro las corrientes en los devanados amortiguadores

tienden a oponerse a la causa que las ha producido. El resultado es un par de amortiguación en el primer caso, en sentido siempre opuesto al movimiento relativo del rotor respecto del campo

magnético, y un aumento de la corriente de cortocircuito en el segundo, al hacer que el flujo se

mantenga en sus niveles iniciales en los primeros instantes, según [2].

6.1.3 Potencia y par en los generadores síncronos

En esta sección se verán las pérdidas que se producen en el generador síncrono y que afectan a la

potencia producida por el generador. Dichas pérdidas ocasionan una diferencia entre el valor de entrada de potencia al generador y el valor de la potencia de salida.

En primer lugar, es importante remarcar que cualquier sistema que suministre potencia al generador

síncrono debe de tener la cualidad de mantener la frecuencia constante, ya que si no se da tal situación la frecuencia eléctrica se verá afectada y por ende las ondas de tensión e intensidad; creando cierta

inestabilidad en el sistema, según [4].

En primer lugar, la potencia de entrada al generador síncrono se puede calcular como se ve en la ecuación 6.5.

𝑃𝑒𝑛𝑡 = 𝜏𝑎𝑝 · 𝜔𝑚 (6–5)

A continuación, se producen una serie de pérdidas detallas en la sección 6.1.5, debidas a la fricción y

rozamiento en el aire, la resistencia de los conductores y las pérdidas en el hierro.

Finalmente, la potencia eléctrica útil disponible para alimentar a las cargas se calcula según la ecuación

6.6:

𝑃𝑠𝑎𝑙 = √3 · 𝑉𝐿 · 𝐼𝐿 · 𝑐𝑜𝑠𝜃 (6–6)

Page 138: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Sistema Eléctrico: Modelado y Simulación

108

6.1.4 Teoría de polos salientes de las máquinas síncronas

Las ecuaciones que se han presentado hasta ahora corresponden a un generador síncrono de rotor liso

o cilíndrico. En este trabajo se va a utilizar un generador síncrono de polos salientes, pero para entender cómo funciona un generador síncrono es aconsejable comenzar con la teoría mencionada. Para adaptar

dichos conceptos se debe utilizar la teoría de polos salientes. Esta teoría parte de la premisa del hecho

de que es más fácil establecer un campo magnético en ciertas direcciones que en otras.

El cambio fundamental de esta teoría es la descripción que hace de la reacción de inducido, ya que

considera que existen direcciones preferentes para establecer el flujo. En la realidad es más fácil

producir un campo magnético en la dirección del rotor que uno en la dirección perpendicular al rotor.

Por lo tanto, se separa la fuerza magnetomotriz del estátor en sus componentes paralelas y perpendiculares al eje del rotor.

𝑉𝑡 = 𝐸𝐴 − 𝑗 · 𝑋𝑑 · 𝐼𝑑 − 𝑗 · 𝑋𝑞 · 𝐼𝑞 − 𝑅𝐴 · 𝐼𝐴 (6–7)

Si se realiza el diagrama fasorial del generador síncrono, este queda como se puede ver en la figura

6.7.

Figura 6-7.Diagrama fasorial del generador síncrono de polos salientes. Fuente: [4].

A partir del diagrama fasorial se pueden obtener las expresiones para el cálculo de la potencia y par eléctrico, según las ecuaciones 6.8 y 6.9.

𝑃 = 3 · 𝑉𝑡 · 𝐼𝑑 · 𝑠𝑒𝑛𝛿 + 3 · 𝑉𝑡 · 𝐼𝑞 · 𝑐𝑜𝑠𝛿 (6–8)

𝜏𝑖𝑛𝑑 =3 · 𝑉𝑡 · 𝐸𝐴𝜔𝑚 · 𝑋𝑑

· 𝑠𝑒𝑛𝛿 +3 · 𝑉𝑡 · 𝐸𝐴2 · 𝜔𝑚

·𝑋𝑑 − 𝑋𝑞

𝑋𝑑 · 𝑋𝑞· 𝑠𝑒𝑛𝛿

(6–9)

6.1.5 Pérdidas en el generador síncrono.

Para poder realizar el análisis de pérdidas que se verá en el capítulo 8 es importante conocer cómo se producen y calculan las pérdidas de potencia en el generador eléctrico. En la figura 6.8, se puede ver

como existe un proceso de pérdida de potencia desde la entrada a la salida del generador. En concreto,

las pérdidas que se consideran en este trabajo son las siguientes, según [1]:

Page 139: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

109

109

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

Figura 6-8.Balance de potencias en el generador síncrono. Fuente: [4].

- Pérdidas en el hierro. o Foucault: al alimentar las bobinas con corriente alterna se inducen unas corrientes

parásitas en el paquete magnético del transformador. Estas pérdidas pueden originar

grandes pérdidas de potencia, con el consiguiente calentamiento de los núcleos. Para evitarlas, el hierro empleado en los circuitos magnéticos suele estar laminado, en

forma de chapas magnéticas de pequeño espesor. Para el cálculo de dichas pérdidas

se emplea la ecuación 6.10.

𝑃𝐻 = 𝑘𝐻 · 𝑓𝑒 · 𝑉 · 𝐵𝑚𝛼 (6–10)

o Histéresis: debidas al ciclo de histéresis que presenta el material ferromagnético del

núcleo. Su valor se puede obtener mediante la ecuación 6.11.

𝑃𝐻 = 𝑘𝑓 · 𝑓𝑒2 · 𝐵𝑚

2 · 𝑎2 · 𝜎 · 𝑉 (6–11)

- Pérdidas en el cobre.

o Pérdidas Joule: se deben a la resistencia eléctrica que presentan los conductores

eléctricos, dando lugar a una pérdida en forma de calor por efecto de Joule. Se

calculan según la ecuación 6.12.

𝑃𝐽𝑜𝑢𝑙𝑒 = 3 · 𝑅 · 𝐼𝐹2 (6–12)

- Pérdidas mecánicas.

o Se deben a los rozamientos con los cojinetes, a la fricción de las partes móviles y a

la ventilación. Las pérdidas por rozamiento y fricción son directamente proporcionales a la velocidad, mientras que las pérdidas por ventilación se

consideran proporcionales a la 3ª potencia de la velocidad, según [1]. En la ecuación

6.13 se presenta la forma de calcularlas, con los coeficientes A y B a determinar a

partir de ensayos.

𝑃𝑚𝑒𝑐 = 𝐴 · ωm + 𝐵 · ωm3 (6–13)

Page 140: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Sistema Eléctrico: Modelado y Simulación

110

6.1.6 Modelo de Matlab

Las ecuaciones que rigen el modelado del generador síncrono en Matlab se presentan a continuación,

éstas se obtienen de la proyección de las ecuaciones en ejes q y d que se han visto en los apartados anteriores. La Transformación de Park permite expresar las magnitudes trifásicas en un sistema de

referencia ortogonal y giratorio (móvil). También es conocida como transformación dq o síncrona.

Park permite ver magnitudes trifásicas que varían sinusoidalmente en el tiempo, como constantes, siempre y cuando la frecuencia de la señal coincida con la frecuencia de giro de los ejes de referencia

dq. Además, es más fácil trabajar con valores de magnitudes constantes que con variaciones

sinusoidales. De acuerdo con [3], las ecuaciones que modelan los circuitos equivalentes de la figura

6.9, se reflejan en las expresiones 6.14 a 6.19. Las variables quedan definidas en el apartado de notación del presente trabajo.

Figura 6-9. Circuito equivalente del generador síncrono en ejes d y q. Fuente: [7].

𝑉𝑑 = 𝑅𝑠 · 𝑖𝑑 +𝑑𝜑𝑑𝑑𝑡

− 𝜔𝑅 · 𝜑𝑞 (6–14)

𝜑𝑑 = 𝐿𝑑 · 𝑖𝑑 + 𝐿𝑚𝑑 · (𝑖𝑓𝑑′ + 𝑖𝑘𝑑

′ )

𝑉𝑞 = 𝑅𝑠 · 𝑖𝑞 +𝑑𝜑𝑞

𝑑𝑡+ 𝜔𝑅 · 𝜑𝑑

(6–15)

𝜑𝑞 = 𝐿𝑞 · 𝑖𝑞 + 𝐿𝑚𝑞 · 𝑖𝑘𝑑′

𝑉𝑓𝑑′ = 𝑅𝑓𝑑

′ · 𝑖𝑓𝑑′ +

𝑑𝜑𝑓𝑑′

𝑑𝑡

(6–16)

𝜑𝑓𝑑′ = 𝐿𝑓𝑑

′ · 𝑖𝑓𝑑′ + 𝐿𝑚𝑑 · (𝑖𝑑 + 𝑖𝑘𝑑

′ )

𝑉𝑘𝑑′ = 𝑅𝑘𝑑

′ · 𝑖𝑘𝑑′ +

𝑑𝜑𝑘𝑑′

𝑑𝑡

(6–17)

𝜑𝑘𝑑′ = 𝐿𝑘𝑑

′ · 𝑖𝑘𝑑′ + 𝐿𝑚𝑑 · (𝑖𝑑 + 𝑖𝑓𝑑

′ )

𝑉𝑘𝑞1′ = 𝑅𝑘𝑞1

′ · 𝑖𝑘𝑞1′ +

𝑑𝜑𝑘𝑞1′

𝑑𝑡

(6–18)

𝜑𝑘𝑞1′ = 𝐿𝑘𝑞1

′ · 𝑖𝑘𝑞1′ + 𝐿𝑚𝑞 · 𝑖𝑞

Page 141: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

111

111

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

𝑉𝑘𝑞2′ = 𝑅𝑘𝑞2

′ · 𝑖𝑘𝑞2′ +

𝑑𝜑𝑘𝑞2′

𝑑𝑡

(6–19)

𝜑𝑘𝑞2′ = 𝐿𝑘𝑞2

′ · 𝑖𝑘𝑞2′ + 𝐿𝑚𝑞 · 𝑖𝑞

6.1.7 Dimensionamiento del generador síncrono

Para el dimensionamiento de los parámetros del generador síncrono se dispone de dos métodos: ajuste

manual de parámetros, es decir, se introducen manualmente cada uno de los parámetros del generador;

o bien, se selecciona uno estándar. Para ello, Matlab dispone de una librería con los parámetros de

generador síncrono para varias potencias, frecuencia y tensiones de estator. Para este proyecto, se ha

seleccionado un generador síncrono de dicha librería con los parámetros de la tabla 6.1.

Tabla 6–1 Parámetros del generador síncrono.

Variable Valor nominal

Potencia nominal 8100 VA

Tensión nominal 400 Vrms

Frecuencia 50 Hz

Resistencia estatórica 1.62 Ω

Inductancia propia 4.527·10-3 H

Inductancia mutua d 0.1086 H

Inductancia mutua q 0.05175 H

Resistencia rotórica 1.208 Ω

Inductancia rotórica 0.01132 H

Resistencia amortiguadora d 3.142 Ω

Inductancia amortiguadora d 7.334·10-3 H

Resistencia amortiguadora q 4.772 Ω

Inductancia amortiguadora q 0.01015 H

Par de polos 2

El hecho de tener un generador síncrono con dicha potencia se debe a que en el proceso de modelado se ha considerado que este puede ser el más apropiado para absorber los distintos picos que se puedan

producir por la variación del oleaje. De esta forma se evita una sobrecarga del mismo que puede

derivar en calentamientos excesivos de la máquina y deterioro de la misma.

Page 142: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Sistema Eléctrico: Modelado y Simulación

112

6.2 Transformador trifásico.

Los transformadores son aparatos que se utilizan en las redes eléctricas como elementos que convierten un sistema de tensiones dado –monofásico o trifásico- en otro sistema de la misma

frecuencia y de diferente valor eficaz. Sabiendo que esta conversión se efectúa con rendimientos muy

próximos a la unidad (es decir, sin apenas pérdidas de energía), las potencias de entrada y salida serán prácticamente iguales, lo cual quiere decir que para una determinada potencia transformada las

intensidades en los sistemas de alta y baja tensión son inversamente proporcionales a las tensiones

asignadas en cada lado.

Se suelen utilizar altas tensiones (220 y 400 kV) en generación y transporte, con el objetivo de reducir

pérdidas y ahorrar en coste de materiales del conductor. Para el reparto y distribución se encuentran

tensiones medias y bajas que disminuyen progresivamente hasta los usos domésticos (66 – 0.4 kV).

6.2.1 Funcionamiento

6.2.1.1 Funcionamiento en vacío

El funcionamiento en vacío se produce cuando uno de los arrollamientos (por ejemplo, el primario)

está conectado a una fuente de tensión y el otro arrollamiento se deja abierto, es decir, sin ninguna

carga conectada al mismo. Como podemos ver en la figura 6.10, este sería el circuito equivalente del mismo.

Figura 6-10. Circuito equivalente del transformador durante el funcionamiento en vacío. Fuente: [8].

6.2.1.2 Funcionamiento en carga

Si al transformador se le conecta una carga entre los bornes que estaban en vacío, circulará una corriente que irá desfasada cierto ángulo respecto a la tensión en bornes.

Figura 6-11. Esquema de conexión del transformador en carga. Fuente: [9].

Page 143: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

113

113

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

6.2.2 Dimensionamiento

Para el dimensionamiento de los parámetros del transformador, se toman como datos de partida los

requerimientos de [6] en cuanto a pérdidas en vacío y carga para transformadores de 15 kVA.

Tras esto, se asume que el transformador de este proyecto, de 8.1 kVA, mantiene el mismo nivel de

pérdidas en vacío y las pérdidas en carga se obtienen al aplicar el factor de carga C=8.1/15 a las

pérdidas en carga para el transformador de 15 kVA.

Como valor de impedancia de cortocircuito, [6] recomienda un valor de 2 a 4% para transformadores

con potencia menor o igual de 15 kVA. Se asume un valor de 4% para el valor de la impedancia de

cortocircuito de nuestro transformador.

A partir de estos datos, se calculan los parámetros del circuito equivalente que se puede ver en la tabla 6.3 para introducirlos después en las simulaciones de Matlab.

Los datos de potencia y pérdidas del transformador de referencia se pueden ver en la tabla 6.2; a

continuación, en la tabla 6.3 se reflejan los datos para el transformador que se utilizará en los modelos.

Tabla 6–2 Parámetros del transformador trifásico de 2 devanados.

Variable Valor nominal

Potencia nominal 15000 VA

Pérdidas en vacío 80 W

Pérdidas en carga 310 W

Frecuencia 50 Hz

Tabla 6–3 Parámetros del transformador trifásico de 2 devanados.

Variable Valor nominal

Potencia nominal 8100 VA

Pérdidas en vacío 80 W

Pérdidas en carga 90.4 W

Frecuencia 50 Hz

A partir de la tabla 6.3, se obtienen los valores para las impedancias del estator, rotor y rama de

magnetización. Estos valores quedan reflejados en la tabla 6.4.

Page 144: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Sistema Eléctrico: Modelado y Simulación

114

Tabla 6–4 Parámetros del transformador trifásico de 2 devanados.

Variable Valor nominal

Conexión Ygy

Potencia nominal 8100 VA

Tensión nominal 1 400 Vrms

Tensión nominal 2 13800 Vrms

Frecuencia 50 Hz

Resistencia devanado 1 0.1102 Ω

Inductancia devanado 1 0.0012 H

Resistencia devanado 2 131.19 Ω

Inductancia devanado 2 1.4373 H

Resistencia de magnetización 2000 Ω

Inductancia de magnetización 3.61539 H

6.2.2.1 Ecuaciones del modelo en Matlab

Las ecuaciones que definen el circuito de la figura 6.12 se obtienen tras la aplicación de las leyes de Kirchhoff en las dos mallas existentes y el nodo.

𝑉1 = 𝑍1 · 𝐼1 + 𝑍2′ · 𝐼2

′ + 𝑉2′ (6–20)

𝑉1 = 𝑍1 · 𝐼1 + 𝑍𝑚 · 𝐼𝑜 (6–21)

𝑍1 = 𝑅1 + 𝑗 · 𝑋1 (6–22)

Además, si agrupamos las impedancias en paralelo de la rama de magnetización, obtenemos una

impedancia de la rama de magnetización que se muestra en la ecuación 6.23.

𝑍𝑚 =𝑅𝑓𝑒 · 𝑋𝑢

𝑅𝑓𝑒 + 𝑋𝑢 (6–23)

Figura 6-12.Circuito equivalente exacto del transformador. Fuente: [1].

Page 145: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

115

115

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

6.2.3 Pérdidas en el transformador.

Para poder realizar el análisis de pérdidas que se verá en el capítulo 8 es importante conocer cómo se

producen y calculan las pérdidas de potencia en el transformador. En concreto, las pérdidas que se

consideran en este trabajo son las siguientes, según [1]:

- Pérdidas en el hierro.

o Foucault: al alimentar las bobinas con corriente alterna se inducen unas corrientes parásitas en el paquete magnético del transformador. Estas pérdidas pueden originar

grandes pérdidas de potencia, con el consiguiente calentamiento de los núcleos. Para

evitarlas, el hierro empleado en los circuitos magnéticos suele estar laminado, en forma de chapas magnéticas de pequeño espesor. Para el cálculo de dichas pérdidas

se emplea la ecuación 6.24.

𝑃𝐻 = 𝑘𝐻 · 𝑓𝑒 · 𝑉 · 𝐵𝑚𝛼 (6–24)

o Histéresis: debidas al ciclo de histéresis que presenta el material ferromagnético del

núcleo. Su valor se puede obtener mediante la ecuación 6.25.

𝑃𝐻 = 𝑘𝑓 · 𝑓𝑒2 · 𝐵𝑚

2 · 𝑎2 · 𝜎 · 𝑉 (6–25)

- Pérdidas en el cobre.

o Pérdidas Joule: se deben a la resistencia eléctrica que presentan los conductores

eléctricos, dando lugar a una pérdida en forma de calor por efecto de Joule. Se

calculan según la ecuación 6.26.

𝑃𝐽𝑜𝑢𝑙𝑒 = 3 · 𝑅 · 𝐼𝐹2 (6–26)

Page 146: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Sistema Eléctrico: Modelado y Simulación

116

6.3 Cargas eléctricas.

6.3.1 Modelado de cargas

El modelo de cargas se basa en la premisa de impedancia constante, es decir, el valor de la potencia puede variar en función de la tensión a la que esté sometida la carga. Se supone que se está alimentando

a cargas estáticas, es decir, independientes de la frecuencia.

6.3.2 Modelo de Matlab

Para modelar las cargas en Matlab, se utiliza un bloque llamado “Three-Phase Series RLC Load”. Este

bloque caracteriza la carga como se ha mencionado anteriormente, es decir, se asume que una carga es una impedancia constante. Para ello, es necesario establecer la frecuencia nominal, tensión nominal

y potencia activa o reactiva que consume la carga. A partir de estos datos, el bloque calcula la

impedancia como se puede ver en la ecuación 6.27 y 6.28.

𝑃𝑐 = 3 ∗𝑈2

𝑅 (6–27)

𝑄𝑐 = −3 ∗𝑈2

𝑋 (6–28)

6.3.2.1 Parámetros

Se dispone de dos cargas en el circuito eléctrico con una potencia total igual a la potencia del generador

y el transformador. En las tablas 6.5 y 6.6 se detallan los parámetros de las mismas.

El hecho de situar una carga entre el generador síncrono y el transformador se debe a la forma en las

que están modelados ambos. Estos componentes se caracterizan en Matlab como dos fuentes de

intensidad, por ello debe colocarse una carga intermedia de compensación que evite que ambas fuentes

estén en serie.

Tabla 6–5 Parámetros de la carga eléctrica de compensación.

Tabla 6–6 Parámetros de la carga eléctrica.

Variable Valor nominal

Tensión nominal 13800 Vrms

Frecuencia 50 Hz

Potencia Activa 6000 W

Potencia Reactiva 0

Variable Valor nominal

Tensión nominal 400 Vrms

Frecuencia 50 Hz

Potencia Activa 1500 W

Potencia Reactiva 0

Page 147: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

117

117

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

6.4 Símbolos y figuras de Matlab - Simulink.

En la tabla 6.7. se establece una lista con los bloques utilizados en los modelos eléctricos de red aislada y potencia infinita. Además se acompaña de una pequeña descripción que los identifica de forma

completa.

Tabla 6–7 Figuras del sistema eléctrico. Fuente: [7].

Generador síncrono

Conversor señal

– magnitud física

Transformador

trifásico de 2

devanados

Conversor

magnitud física –

señal

Medidor de tensión

e intensidad

Fuente de tensión

para modelar red

de potencia infinita.

Carga eléctrica

Medidor de

potencia

instantánea activa y reactiva

Solver para

modelos de

sistemas eléctricos

Ganancia

regulable durante simulación

(Slider Gain)

Page 148: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Sistema Eléctrico: Modelado y Simulación

118

6.5 Modelo del sistema eléctrico.

En este apartado se presentan los resultados de las simulaciones realizadas con los modelos eléctricos construidos con los dispositivos descritos hasta ahora. En primer lugar, se analiza el modelo eléctrico

que caracteriza la red aislada; a continuación, se encuentra el modelo para la red de potencia infinita.

Para tal fin, se han construido dos modelos en Matlab que analizan las dos situaciones descritas

previamente. En la figura 6.28 se encuentra el circuito eléctrico donde el generador síncrono se

encuentra conectado a la red aislada. Este circuito se caracteriza por disponer de un generador síncrono cuyas dos entradas son la velocidad de giro y la tensión de excitación. Como salidas, se obtienen las

medidas electro-mecánicas (del puerto “m”) y las tres conexiones eléctricas del generador, es decir,

las tres fases del estator. A continuación se establece una carga con una potencia aproximada del 10%

de la del generador síncrono. Dicha carga se dispone entre el generador y el transformador por el hecho de estar modelados internamente ambos elementos como fuentes de intensidad. Después de dicho

nodo, se encuentra el transformador elevador de tensión cuyo secundario está conectado a una segunda

carga.

Por otra parte, es necesario mencionar que en dicho circuito aparecen otros bloques auxiliares cuya

misión es la medida, representación o tratamiento de las señales y variables del circuito eléctrico. En

concreto, se encuentra un bloque de medida de tensión e intensidad simple, es decir, dichos bloques llevan integrados un voltímetro entre fases y un amperímetro en serie. Además, se dispone de bloques

de cálculo de potencia activa y reactiva instantánea en las cargas.

Para simular la segunda situación, es decir, un generador síncrono conectado a una red de potencia infinita, se presenta el modelo de la figura 6.29. Este modelo está compuesto por los mismos bloques

que los descritos para el modelo anterior, pero lleva acoplada una fuente de tensión ideal en el

secundario del transformador. Ésta se encarga de modelar la red de potencia infinita ya que es este bloque el que impone la tensión y frecuencia al resto de elementos del circuito. Se decide mantener la

carga en paralelo con esta fuente de tensión para que dicho modelo sea una evolución del primer

sistema, es decir, que no introduzca cambios importantes en la configuración del modelo y así hacerlos

a ambos más comparables.

Por último, es importante definir las hipótesis sobre las que se apoya este modelo para evitar errores

de interpretación en los resultados de las simulaciones. En este sentido, se asume que el generador síncrono y el transformador se encuentran suficientemente cerca para que la caída de tensión entre

ambos sea despreciable; además no se ha integrado un bloque que modele la impedancia de dicha

conexión. Además, se contempla que el transformador no trabaja en régimen de saturación en ninguna de las situaciones propuestas.

Page 149: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

119

119

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

6.5.1 Modelo eléctrico conectado a red aislada.

A continuación, se analiza la respuesta de las variables eléctricas del modelo eléctrico ante diferentes entradas en el generador síncrono. Dicho alternador permanece conectado en todo momento a una red

aislada o de potencia finita compuesta por 1 transformador trifásico 400/13800 V. Toda esta red se

puede ver al detalle en la figura 6.25.

6.5.1.1 Variación de tensión de excitación

En este caso, se analiza la respuesta de la tensión del estátor al variar la tensión de excitación. En concreto, se han realizado dos simulaciones para valores de tensión de excitación de 22.7 V y 47.3 V.

En concreto, en la figura 6.13 se exponen los resultados de la simulación para una tensión de excitación

de 22.7 V. Por otra parte, en la figura 6.14 se muestran los resultados para el caso de excitación con

47.3 V. Como se observa en ambas figuras , al aumentar la tensión de excitación aumenta la tensión e intensidad en el estátor. Dicha respuesta no tiene un comportamiento lineal, pero en ambas respuestas

la frecuencia de la onda permanece invariable.

Figura 6-13.Tensiones e intensidades en bornas del generador para tensión de excitación de 22.7 V.

Tanto las tensiones como las intensidades medidas son fase-tierra. Estas se exponen para las tres fases

siguiendo el código de colores marcado en la leyenda. El valor de intensidad alcanzado depende fundamentalmente de la impedancia equivalente a la red que está concetado el generador, esto es, la

impedancia del transformador y las cargas eléctricas.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

-300

-200

-100

0

100

200

300

400

tiempo (s)

Magnitud (

V)

o (

A)

Tensión e intensidad en el generador

Va

Vb

Vc

Ia

Ib

Ic

Page 150: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Sistema Eléctrico: Modelado y Simulación

120

Figura 6-14.Tensiones e intensidades en bornas del generador para tensión de excitación de 47.3 V.

Al mismo tiempo, resulta interesante observar la evolución de las variables internas del generador como la potencia eléctrica interna, el par eléctrico, el ángulo de par y la velocidad de giro, todas ellas

representadas en las gráficas de la figura 6.15.

La primera conclusión que se extrae es, como ya se vio en la parte descriptiva, al variar la tensión de

excitación manteniendo la velocidad de giro constante, el generador produce mayor potencia activa debido al aumento de la tensión en bornas del estator.

Por otra parte, el ángulo de par permanece constante. Esto se debe al hecho de que el aumento de la

tensión de excitación y de la tensión en bornas del generador se produce mediante el incremento en módulo de los dos vectores de tensión (ver diagrama fasorial figura 6.2), a la vez que se mantiene el

desfase angular entre ambos vectores.

Figura 6-15. Variables del generador para las dos tensiones de excitación.

0.05 0.1 0.15 0.2 0.25 0.3 0.35

-600

-400

-200

0

200

400

600

tiempo (s)

Magnitud (

V)

o (

A)

Tensión e intensidad en el generador

Va

Vb

Vc

Ia

Ib

Ic

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50

1

2

3

4x 10

4

tiempo (s)

Pote

ncia

(W)

Potencia Generador

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5-50

0

50

100

150

200

250

tiempo (s)

Par(

Nm

)

Par eléctrico

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50

20

40

60

80

100

tiempo (s)

delta

Ángulo de carga

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5155

155.5

156

156.5

157

157.5

tiempo (s)

velo

cid

ad (

rad/s

)

Velocidad de giro del rotor

Tensión Excitación 22.1 V

Tensión Excitación 47.3 V

Page 151: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

121

121

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

A continuación se puede ver el balance de potencia, es decir, la potencia producida y consumida tanto

activa como reactiva por los distintos elementos del modelo eléctrico. Las cargas, al ser puramente

resistivas, consumen potencia activa; es por ello que la cantidad de energía reactiva producida será destinada en su mayor parte a la inducción del núcleo magnético del transformador.

Figura 6-16. Balance de potencia en el modelo eléctrico.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5-1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

tiempo (s)

Pote

ncia

(W)

Balance de potencias

Cargas

Interna Generador

Generador bornas estator

Reactiva bornas estator

Page 152: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Sistema Eléctrico: Modelado y Simulación

122

6.5.1.2 Variación de velocidad de giro

En esta sección, se analiza el efecto sobre las variables eléctricas al variar la velocidad de giro del rotor

del generador síncrono. Al igual que en el apartado anterior, se realizan dos simulaciones para velocidades de 156.0184 rad/s y 100 rad/s. En primer lugar, sobre la figura 6.17 se puede ver el doble

efecto (al comparar esta con la figura 6.13) que tiene la disminución de velocidad sobre la tensión en

el estator: disminuye la tensión del estátor y la frecuencia de la onda resultante. Esto se debe a que la tensión que se induce en los devanados estatóricos depende tanto en módulo como en fase de la

velocidad de giro del rotor. Las tensiones e intensidades medidas son fase-tierra o también

denominadas simples.

Figura 6-17. Tensión e intensidad en bornas del generador para una velocidad de giro de 100 rad/s.

Por otra parte, en la figura 6.18 se dispone de una representación de la respuesta de las variables

electromecánicas ante la variación de la velocidad angular mecánica. La primera variable que se ve

afectada por el cambio de velocidad es la potencia activa, la cual disminuye, ya que están directamente relacionadas. Por otra parte, se produce la disminución del ángulo de carga ya que al cambiar el lugar

geométrico de potencia activa constante, se produce un cambio en el desfase entre la tensión del

entrehierro y la tensión del estator.

En este caso, la diminución de velocidad también afecta a la potencia reactiva que cede el generador ya que, aunque el ángulo de carga disminuye, la tensión en el entrehierro disminuye por lo que se

produce una disminución de la potencia reactiva cedida a la red.

Finalmente, en la figura 6.19, se presenta un gráfico donde se puede ver cómo varían las potencias activa y reactiva del sistema ante la variación de la velocidad de giro del rotor.

0.05 0.1 0.15 0.2 0.25 0.3 0.35

-250

-200

-150

-100

-50

0

50

100

150

200

250

tiempo (s)

Magnitud (

V)

o (

A)

Tensión e intensidad en el generador

Va

Vb

Vc

Ia

Ib

Ic

Page 153: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

123

123

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

Figura 6-18. Variables del generador para las dos velocidades de giro.

Figura 6-19.Balance de potencias para dos velocidades de giro.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50

2000

4000

6000

8000

10000

tiempo (s)

Pote

ncia

(W)

Potencia Generador

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5-10

0

10

20

30

40

50

60

tiempo (s)

Par(

Nm

)

Par eléctrico

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50

20

40

60

80

100

tiempo (s)

delta

Ángulo de carga

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5100

110

120

130

140

150

160

tiempo (s)

velo

cid

ad (

rad/s

)

Velocidad de giro del rotor

Vel. giro 156.0184 rad/s

Vel. giro 100 rad/s

0 5 10 15 20 25 30 35 40 45 50-1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

tiempo (s)

Pote

ncia

(W)

Balance de potencias

Cargas

Interna Generador

Generador bornas estator

Reactiva bornas estator

Page 154: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Sistema Eléctrico: Modelado y Simulación

124

6.5.2 Modelo eléctrico conectado a red de potencia infinita

En este apartado se analiza la respuesta del modelo eléctrico en el que el generador alimenta a una red de potencia infinita mediante un transformador. Al igual que en el apartado anterior, se realizan

simulaciones mediante variación de tensión de excitación y se explican los resultados obtenidos.

Por otra parte, en este caso al ser la red quién impone la frecuencia eléctrica y por ende la velocidad de giro del alternador, se realizan simulaciones variando la potencia mecánica que recibe el generador

eléctrico y se analiza la respuesta obtenida de las variables eléctricas. En la tabla 6.8. se muestran los

datos de la fuente ideal de tensión utilizada para modelar la red de potencia infinita.

Tabla 6–8 Datos de la red de potencia infinita.

Variable Valor nominal

Tensión fase-fase rms 13800 V

Ángulo de la fase A 0º

Frecuencia 50 Hz

Conexión interna Yg

Resistencia de la fuente 0 Ω

Inductancia de la fuente 0 H

6.5.2.1 Variación de tensión de excitación

Siguiendo el procedimiento realizado en apartados anteriores, se han realizado dos simulaciones para

dos valores de tensión de excitación: 22.70 y 47.3 V. Como se observa en las figuras 6.20 y 6.21 las tensiones en el estátor permanecen prácticamente iguales a 330 V. Esto se debe a la red de potencia

infinita impone los valores de tensión y frecuencia, como se ha mencionado en los primeros apartados

del capítulo. La evolución de la intensidad varía de forma importante ya que al aumentar la tensión de excitación se produce un incremento de la potencia reactiva generada como se demuestra a

continuación.

0.05 0.1 0.15 0.2 0.25 0.3 0.35

-300

-200

-100

0

100

200

300

tiempo (s)

Magnitud (

V)

o (

A)

Tensión e intensidad en el generador

Va

Vb

Vc

Ia

Ib

Ic

Page 155: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

125

125

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

Figura 6-20. Tensión e intensidad en bornas del generador para una tensión de excitación de 22.7V.

Figura 6-21. Tensión e intensidad en bornas del generador para una tensión de excitación de 47.3V.

En la figura 6.22, se muestran las variables electro-mecánicas más representativas del generador síncrono ante la excitación de las dos tensiones mencionadas anteriormente.

La primera conclusión que se puede extraer de esta simulación es el hecho de que el aumento de la

tensión de excitación produce una respuesta transitoria menos estable y con mayores oscilaciones. Por otra parte, el nivel de potencia activa permanece constante ya que ni la velocidad de giro y par

mecánico han variado. Sin embargo, el ángulo de carga se desplaza unos 20º, esto se debe a que el

aumento de la tensión de excitación no produce un aumento de la tensión en el estátor (por estar impuesta por la red de potencia infinita); si se toma el diagrama fasorial de la figura 6.2 como

referencia, al mismo tiempo que se mantiene la potencia mecánica constante, este hecho produce

claramente un descenso del ángulo de carga.

0.05 0.1 0.15 0.2 0.25 0.3 0.35

-300

-200

-100

0

100

200

300

tiempo (s)

Magnitud (

V)

o (

A)

Tensión e intensidad en el generador

Va

Vb

Vc

Ia

Ib

Ic

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5-0.5

0

0.5

1

1.5

2

2.5x 10

4

tiempo (s)

Pote

ncia

(W)

Potencia Generador

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5-50

0

50

100

150

tiempo (s)

Par(

Nm

)

Par eléctrico

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5-20

-10

0

10

20

30

40

50

tiempo (s)

delta

Ángulo de carga

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5150

155

160

165

170

tiempo (s)

velo

cid

ad (

rad/s

)

Velocidad de giro del rotor

Tensión Excitación 22.7

Tensión Excitación 47.3

Page 156: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Sistema Eléctrico: Modelado y Simulación

126

Figura 6-22. Variables del generador para las dos tensiones de excitación.

Como se ha comentado anteriormente, el aumento de la tensión de excitación produce, desde el punto de visto de la transferencia de potencia, un incremento de la potencia reactiva suministrada a la red.

En la figura 6.23 queda reflejado claramente este hecho, donde la línea azul representa la potencia

reactiva que cede el generador a la red de potencia infinita.

El resto de potencias activas medidas en distintos puntos del modelo permanecen constantes al ser la potencia mecánica, que mueve el rotor del generador, constante.

Figura 6-23. Balance de potencia en el modelo eléctrico.

6.5.2.2 Variación de Potencia mecánica

En esta sección, se analiza la respuesta del modelo eléctrico ante la variación de la potencia mecánica

suministrada al generador, manteniendo la tensión de excitación en 22.7 V. Se presentan los resultados obtenidos tras la medición de tensión e intensidad fase-tierra para una potencia mecánica de 6868.2 y

8000 W, detallados en la figura 6.24 y 6.25.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1-4

-3

-2

-1

0

1

2

3x 10

4

tiempo (s)

Pote

ncia

(W)

Balance de potencias

Cargas

Interna Generador

Generador bornas estator

Reactiva bornas estator

Page 157: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

127

127

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

Figura 6-24. Tensiones e intensidades cuando la potencia mecánica es 6868.2 W.

Figura 6-25. Tensiones e intensidades cuando la potencia mecánica es 8000 W.

Como se puede apreciar en la figura 6.25, las tensiones en el estátor permanecen constantes en módulo

y frecuencia al ser la red de potencia infinita la que impone tanto la tensión como la frecuencia. Sin

embargo, la intensidad del estátor aumenta su componente real al incrementarse la potencia activa que cede el generador a la red.

0.05 0.1 0.15 0.2 0.25 0.3 0.35

-300

-200

-100

0

100

200

300

tiempo (s)

Magnitud (

V)

o (

A)

Tensión e intensidad en el generador

Va

Vb

Vc

Ia

Ib

Ic

0 0.05 0.1 0.15 0.2 0.25 0.3

-300

-200

-100

0

100

200

300

400

tiempo (s)

Magnitud (

V)

o (

A)

Tensión e intensidad en el generador

Va

Vb

Vc

Ia

Ib

Ic

Page 158: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Sistema Eléctrico: Modelado y Simulación

128

Figura 6-26. Variables del generador para las dos potencias mecánicas.

En la figura 6.26, se exponen las respuestas de las variables electro-mecánicas del generador síncrono

para los dos valores de potencia mencionados con anterioridad. La potencia activa y el par eléctrico

interno aumentan como consecuencia del aumento de la potencia mecánica.

Por otra parte, el ángulo de carga experimenta un aumento de unos 10º debido al aumento de la caída de

tensión en la impedancia interna del generador síncrono como consecuencia del aumento de potencia activa

(a su vez, supone el incremento en módulo de la intensidad estatórica).

Es interesante observar la evolución del balance de potencias durante estas dos situaciones. En la figura

6.27, se muestra dicha evolución donde se observa como las potencias activas aumentan por el incremento

de la potencia mecánica (6868.2 a 8000 W); sin embargo, la potencia reactiva entregada por el generador

síncrono a la red disminuye prácticamente a la mitad. Este hecho, se debe a varios factores, en concreto, el

aumento del ángulo de carga, a la vez que se mantienen constantes la tensión de excitación y la tensión del

estator, hacen que la potencia reactiva deba disminuir para que esta situación sea posible. Como ya se ha

comentado en otras secciones, la mejor forma de entender esta situación es tomar el diagrama de la figura

6.2. y realizar los cambios sobre el mismo. Así se divisan claramente los cambios en las variables del

generador eléctrico.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5-0.5

0

0.5

1

1.5

2

2.5x 10

4

tiempo (s)

Pote

ncia

(W)

Potencia Generador

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5-50

0

50

100

150

tiempo (s)

Par(

Nm

)

Par eléctrico

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5-20

-10

0

10

20

30

40

50

tiempo (s)

delta

Ángulo de carga

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5150

155

160

165

170

tiempo (s)

velo

cid

ad (

rad/s

)

Velocidad de giro del rotor

Pot. mecánica 6868.2 W

Pot. mecánica 8000 W

Page 159: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

129

129

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

Figura 6-27. Balance de potencias al variar la potencia mecánica.

0 5 10 15 20

1000

2000

3000

4000

5000

6000

7000

8000

9000

tiempo (s)

Pote

ncia

(W)

Balance de potencias

Cargas

Interna Generador

Generador bornas estator

Reactiva bornas estator

Page 160: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera
Page 161: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

131

6.5.2.3 Modelo eléctrico conectado a red aislada.

Figura 6-28. Modelo en Matlab del circuito eléctrico conectado a red aislada.

Page 162: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Sistema Eléctrico: Modelado y Simulación

132

132

6.5.2.4 Modelo eléctrico conectado a red de potencia infinita.

Figura 6-29. Modelo en Matlab del circuito eléctrico conectado a red de potencia infinita.

Page 163: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

133

133

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

7 SISTEMA CONVERSOR DE ENERGÍA

UNDIMOTRIZ: MODELADO Y SIMULACIÓN

os modelos que se han construido en los capítulos anteriores han servido para caracterizar los

diferentes sistemas que intervienen en la extracción de la energía del oleaje, esto es, el sistema hidrodinámico, el sistema hidráulico y el sistema eléctrico. Hasta ahora, ha sido posible contemplar

cómo trabajan los diferentes modelos de forma aislada ante diferentes cargas y excitaciones.

En este capítulo se pretende ensamblar dichos modelos con el fin de que trabajen de forma conjunta y se obtenga el modelo completo de todo el proceso de captación de energía undimotriz. En primer

lugar, el modelo del sistema hidrodinámico, a continuación, el sistema hidráulico y, posteriormente,

se produce la conversión en energía eléctrica mediante el sistema eléctrico.

Para ello, es necesario explicar previamente cómo se realizan los acoplamientos entre los diferentes

sistemas y cómo se modela dicha interacción dentro de Simulink – Matlab. Dicho acoplamiento tiene

lugar mediante el uso de subsistemas simples que permiten un correcto funcionamiento entre los

distintos sistemas.

En concreto, se van a desarrollar dos modelos completos relacionados con las dos variantes de sistemas

hidráulicos propuestos en el capítulo 5, es decir, un modelo cuyo sistema hidráulico tiene válvulas

antirretorno y otro que dispone de un puente de válvulas direccionales.

Por último, se exponen los resultados de las simulaciones; al mismo tiempo, se comentan con el

objetivo de comprender los datos obtenidos a partir del funcionamiento del modelo completo.

Una vez conocido el funcionamiento y las variables que identifican a los diferentes sistemas, los

modelos desarrollados son utilizados posteriormente para realizar un análisis preliminar del balance de potencia en todo el sistema, a la vez que se calculan las pérdidas que se producen en los distintos

elementos que componen estos modelos.

L

Nuestras mayores tonterías pueden ser muy sabias

- Leonardo Da Vinci -

Page 164: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Sistema Conversor de Energía Undimotriz: Modelado y simulación

134

134

7.1 Desarrollo del modelo

Para que la interacción entre los distintos modelos sea correcta, se deben realizar ciertos cambios

mediante la adición de nuevos bloques que modelen de forma adecuada dicha interacción.

En este apartado, se describen los diferentes bloques empleados para realizar el modelado de la

interacción entre los diferentes sistemas principales. En la tabla 7.1 se reflejan los bloques de Matlab-

Simulink empleados para dicho modelado.

Es importante conocer los puertos de conexión de las fuentes ideales de velocidad y par. Ambos

bloques se componen de tres puertos en común, esto es, puerto S, C y R. El puerto S se utiliza para

transmitir al bloque la velocidad o par que se desean aplicar sobre el bloque. El puerto R y C son

puertos físicos de referencia, siendo R el puerto positivo y C el puerto negativo (pensar en el símil eléctrico de una fuente de tensión con terminal positivo y negativo). Por ejemplo, si el puerto C de la

fuente ideal de velocidad se conecta a la referencia mecánica de translación (velocidad cero), la

velocidad en el puerto R será aquella dada en S, esto es, tenemos una velocidad absoluta. Por lo tanto la salida de este bloque es v=vR-vC. Con dicha configuración, la fuente ideal de velocidad aporta

velocidad al sistema, en términos eléctricos, “genera potencia”. Si se realiza la conexión en forma

inversa, es decir, el puerto R a la referencia mecánica de translación y C al sistema, la fuente ideal de velocidad absorberá velocidad, o mejor dicho, absorbe potencia ya que actúa como un elemento

pasivo.

En el caso de la fuente de par ideal, el funcionamiento es similar, pero se utiliza la referencia mecánica

de rotación.

Tabla 7–1 Bloques de los modelos de conexión entre sistemas. Fuente [1].

Fuente ideal de

velocidad

Conversor señal –

magnitud física

Fuente ideal de par

Conversor magnitud física – señal

Referencia mecánica de translación

Referencia mecánica de rotación

7.1.1 Interacción entre el modelo hidrodinámico y el modelo hidráulico

La interacción entre el modelo hidrodinámico e hidráulico se realiza a través del sistema de la figura 7.1. Dicho sistema consiste en una fuente ideal de velocidad mecánica, es decir, una fuente que recibe

como entradas la velocidad y aceleración del bloque hidrodinámico y la transmite al cilindro

hidráulico. Ambas señales son necesarias para que el solver pueda funcionar de forma adecuada. Estas se convierten en señales físicas a través del bloque “Simulink-PS Converter”, el cual las procesa de

forma que la fuente ideal de velocidad comprenda qué variables se le transmiten para su

funcionamiento. Para entender este sistema mejor, se puede hacer una analogía eléctrica. En este caso,

la fuente de velocidad es la fuente de tensión en un sistema eléctrico y el cilindro representa la carga eléctrica. Por ello, para imponer una velocidad determinada sobre el cilindro, se debe conectar la fuente

de velocidad entre los terminales mecánicos del cilindro.

Page 165: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

135

135

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

Figura 7-1. Esquema de conexión entre el sistema hidrodinámico y el sistema hidráulico.

7.1.2 Interacción entre el modelo hidráulico y el modelo del sistema eléctrico

El sistema hidráulico convierte la energía de la ola en potencia mecánica. Esta se traduce en un par y velocidad de giro en el eje determinados. Dichas variables oscilarán en función de la carga a la cual se

conecte el puerto físico del motor hidráulico.

A su vez, el generador síncrono necesita como entradas la velocidad de giro y la tensión de alimentación al rotor. Dicho generador será la carga que se acoplará al eje del motor hidráulico. Esta

carga se modela mediante una fuente de par que absorbe el par eléctrico que produce el generador

síncrono. Esta fuente de par se conecta con el puerto R a referencia mecánica (tierra). Además, para dar al eje la inercia asociada a dicha conexión, se implementa un bloque llamado “Inertia” que modela

la masa que gira en el eje mecánico. Ver figura 7.1. El sensor de velocidad, mide sobre el eje la

velocidad angular del mismo y la transmite al puerto w del generador síncrono.

Figura 7-2. Esquema de conexión entre el motor hidráulico y el generador eléctrico.

El bloque del generador síncrono ofrece la posibilidad de obtener diversas medidas, entre ellas el par

eléctrico. Esta medida sirve para indicarle al bloque que representa la fuente ideal de par, cual debe

Page 166: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Sistema Conversor de Energía Undimotriz: Modelado y simulación

136

136

ser el valor del mismo. Al mismo tiempo, se ha de considerar la inercia del rotor del motor hidráulico

y del generador síncrono. Esta viene modelada por el bloque de inercia que se puede ver en la figura 7.2.

Para entender mejor el proceso que se está llevando a cabo, se puede ver la figura 7.3. En la cual,

según [2], se nos indica cómo conectar dos máquinas rotatorias. En el caso de que hubiera una caja de engranajes para aumentar o reducir la velocidad del eje, se debe considerar los parámetros KW y KT,

que están directamente relacionados con la relación de transmisión de la caja de engranajes.

Figura 7-3. Esquema de acoplamiento entre máquinas rotatorias.

7.1.3 Modelo completo

El modelo completo se compone de varios subsistemas que corresponden a cada uno de los modelos

construidos durante los capítulos 4,5 y 6. En la figura 7.4 se puede ver el modelo completo, el cual se

divide en tres partes fundamentalmente:

- Subsistema hidrodinámico. - Subsistema hidráulico.

- Subsistema mecánico – eléctrico.

Figura 7-4. Esquema de conexión de los sistemas del modelo completo.

Page 167: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

137

137

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

7.1.3.1 Subsistemas de medida

Para realizar las medidas de las variables que definen cada uno de los sistemas listados anteriormente,

se han utilizado una serie de sensores y subsistemas que se describen a continuación.

En primer lugar, se tiene un bloque de medida de la fuerza que realiza la boya sobre el pistón y velocidad del conjunto boya-vástago-pitón. Esta configuración se refleja en la figura 7.5.

Figura 7-5. Sensores de medida sobre el terminal mecánico del cilindro.

A continuación se tiene una medida de presión y caudal en los terminales del cilindro hidráulico con

una disposición tal y como se muestra en la figura 7.6. Se compone de dos caudalímetros y dos

medidores de presión ya que el caudal que recorre las dos cámaras del cilindro es diferentes debido a la diferencia en las áreas de la cabeza y la tapa del pistón. Las medidas que se obtienen en este punto

sirven para el cálculo de la potencia en terminales del cilindro o “Potencia Cilindro” como se verá en

el capítulo 8.

Figura 7-6. Sensores de medida entre el cilindro y el puente de válvulas.

Page 168: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Sistema Conversor de Energía Undimotriz: Modelado y simulación

138

138

Otro bloque similar se utiliza tras la etapa de rectificación, en los terminales del motor hidráulico. Con

dicha medida se calculará posteriormente la potencia fluida que alimenta al motor hidráulico y que se identifica como “Potencia Motor Hidráulico” en el capítulo 8.

Después, se dispone un bloque de medida en el eje que une el motor hidráulico con el generador

síncrono. Este bloque mide el par, la velocidad y el ángulo girado (nº de vueltas) en dicho eje. Ver figura 7.7.

Figura 7-7. Sensores de medida en el eje mecánico.

Finalmente, en el sistema eléctrico, tanto en el generador como en las dos cargas representadas en el

modelo, se disponen bloques de medida de tensión, intensidad y potencia activa para evaluar las

variables de esta etapa. Con dichos sensores, se consigue tener información del estado de las distintas etapas del mismo para todo instante de tiempo. Además, se utilizarán dichas variables para el cálculo

de la potencia activa generada por el alternador y consumida en las cargas eléctricas. Ver figura 7.8.

Figura 7-8. Sensores de medida en el sistema eléctrico.

Existen otros bloques de cálculo y tratamiento de las variables medidas. En concreto, se dispone de

un bloque que recibe la información de las medidas de aquellas variables relevantes de los sistemas y

calcula la potencia en las diferentes etapas del modelo completo. En la figura 7.9 se puede ver con

Page 169: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

139

139

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

más detalle este bloque de cálculo. Dichos cálculos se guardan en variables definidas y se exportan al

espacio de trabajo de Matlab para su posterior tratamiento y representación con las funciones que se pueden ver en el apartado de simulaciones.

Figura 7-9. Bloque de cálculo del modelo completo.

Page 170: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Sistema Conversor de Energía Undimotriz: Modelado y simulación

140

140

7.2 Simulaciones del modelo

A continuación, se presenta el resultado de las simulaciones sobre el modelo completo, es decir, cómo

reacciona el sistema convertidor de energía ante una excitación concreta para alimentar a una carga eléctrica. En definitiva, se muestra cómo se comportan las variables de nuestro sistema desde el lugar

de la generación a los centros de consumo.

En la figura 7.10, se puede ver el proceso en el caso de una central eólica, la cual aprovecha la energía del viento para generar electricidad, y en el caso que se está analizando en este trabajo, es decir, una

central undimotriz. Se ve en dicha figura como, sea cual sea el dispositivo de captación de la energía

de la ola, las fases sucesivas a la conversión electromecánica son similares. Esto es, se dispone de un

transformador de potencia que evacúa ha potencia eléctrica hacia los centros de transformación o consumo.

Figura 7-10. Detalle de la configuración de una central eólica y otra undimotriz. Fuentes: [3] y [4].

Las condiciones del oleaje a las que se ha expuesto el modelo son dadas por la interacción entre el

sistema boya-vástago-PTO y el oleaje. Esta interacción se realiza por medio del bloque hidrodinámico

y es este el que suministra las condiciones de posición, velocidad y aceleración al sistema hidráulico.

Page 171: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

141

141

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

El oleaje simulado por el sistema hidrodinámico es de tipo regular con las características detalladas en

los capítulos precedentes. Así mismo, los parámetros que definen los modelos del sistema hidráulico y eléctrico quedan definidos en los capítulos 5 y 6.

7.2.1 Modelo Puente tipo 1

El primer modelo del sistema considerado utiliza el puente rectificador, compuesto por válvulas

antirretorno, como se explicó en el capítulo 5. Los parámetros de dicho modelo hidráulico se mantienen según se especifican en el capítulo 5. Además, en este caso se considera que la red eléctrica

a la que se suministra la potencia es una red aislada, es decir, la tensión y frecuencia viene impuesta

por el generador a dicha red. De igual forma, el modelo de red aislada utilizado es aquel descrito en el capítulo 6.

En la figura 7.11, se puede ver cómo evolucionan las distintas variables asociadas al pistón. La fuerza

aplicada sobre el pistón se aproxima a los valores de diseño, por lo que quedan justificados dichos valores y se asume que el vástago del cilindro soporta los esfuerzos que se produzcan sobre él.

Por otra parte, en la gráfica de la posición del pistón se aprecia claramente cómo la longitud de la

carrera también está justificada. Si se produjera un impacto entre el pistón y el final de la carrera, el

pistón se pararía hasta que la fuerza cambiara de sentido. Esto evitaría el aprovechamiento óptimo de la energía de la ola por la disipación de energía en el impacto.

Figura 7-11. Respuesta de las variables del pistón en el modelo puente tipo 1.

En la figura 7.12, se aportan las gráficas que muestran el régimen permanente de las variables del pistón. En el comportamiento de la fuerza aplicada sobre el pistón se vuelve a apreciar, como en el

capítulo 5, que su evolución corresponde a una onda alterna no sinusoidal que responde a los efectos

de la apertura y cierre de las válvulas por la presión del sistema. Así mismo, la respuesta en velocidad

del pistón está también afectada en cierta forma por el funcionamiento del puente de válvulas.

0 100 200 300 400 500 600 700 800 900 1000-3

-2

-1

0

1

2

3x 10

4

tiempo (s)

Fuerz

a (

N)

Fuerza aplicada sobre el pistón

0 100 200 300 400 500 600 700 800 900 1000-1

-0.5

0

0.5

1

tiempo (s)

Velo

cid

ad(m

/s)

Velocidad del Pistón

0 100 200 300 400 500 600 700 800 900 1000-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

tiempo (s)

Posic

ión(m

)

Posición del Pistón

0 100 200 300 400 500 600 700 800 900 10000

2000

4000

6000

8000

10000

tiempo (s)

Pote

ncia

(W)

Potencia Pistón

Page 172: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Sistema Conversor de Energía Undimotriz: Modelado y simulación

142

142

Su onda tiende a ser una sinusoide perfecta, pero se dejan notar las variaciones cuando la velocidad se

acerca a cero, es decir, cuando se produce el cambio de rama de circulación en el puente de válvulas.

Además, se aprecia que la potencia capturada en el régimen permanente se aproxima al entorno de los

8700 W. Luego, se puede concluir que esta es la potencia que captura nuestro sistema gracias a la

interacción de la boya con el oleaje.

Figura 7-12. Respuesta de las variables del pistón en el régimen permanente.

De los sensores de velocidad angular y par instalados en el eje que conecta el motor hidráulico con el

generador hidráulico, obtenemos las siguientes gráficas. En la figura 7.13, se muestra la evolución de la velocidad de giro del eje que conecta el motor hidráulico con el generador síncrono. Se observa

cierto rizado a pesar de la inclusión del acumulador en el sistema hidráulico para suavizar dicho rizado.

La velocidad angular se estabiliza en el entorno de los 93 rad/s a partir de 900 segundos de simulación.

840 860 880 900 920 940 960 980 1000-3

-2

-1

0

1

2

3x 10

4

tiempo (s)

Fuerz

a (

N)

Fuerza aplicada sobre el pistón

900 910 920 930 940 950 960 970 980 990 1000

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

tiempo (s)

Velo

cid

ad(m

/s)

Velocidad del Pistón

900 910 920 930 940 950 960 970 980 990 1000

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

tiempo (s)

Posic

ión(m

)

Posición del Pistón

900 910 920 930 940 950 960 970 980 990

1000

2000

3000

4000

5000

6000

7000

8000

9000

tiempo (s)

Pote

ncia

(W)

Potencia Pistón

Page 173: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

143

143

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

Figura 7-13. Evolución de la velocidad en el eje de unión motor-generador.

En el caso del par, se han realizado medidas de par tanto en el eje, que reporta el par mecánico, como

el par eléctrico del generador síncrono. En la figura 7.14, se pueden observar ambas medidas, de las

que destaca el fuerte rizado del par mecánico con respecto al par eléctrico, es decir, las variaciones en la potencia mecánica transmitida afectan de forma importante a la variación de par del eje mecánico,

no siendo tan importante en el generador eléctrico. Ambos pares tienden a estabilizar su señal en el

entorno de los 74 Nm a partir de los 850 segundos de simulación.

Figura 7-14. Evolución del par en el eje de unión motor-generador y en el generador síncrono.

100 200 300 400 500 600 700 800 9000

10

20

30

40

50

60

70

80

90

tiempo (s)

Velo

cid

ad(r

ad/s

)Velocidad

Medida en Eje

Medida en el generador

100 200 300 400 500 600 700 800 9000

10

20

30

40

50

60

70

tiempo (s)

Par(

Nm

)

Par

Par motor hidráulico

Par eléctrico

Page 174: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Sistema Conversor de Energía Undimotriz: Modelado y simulación

144

144

En la figura 7.15, se aprecia en detalle el rizado que se comentaba anteriormente. En el caso del par

mecánico las variaciones son del orden de ±5 Nm; en cambio, en el par eléctrico se observan que las variaciones de par son del entorno de ±0.5 Nm con respecto al valor del régimen permanente.

Figura 7-15. Detalle del rizado del par medido en el eje y el par del generador.

Por último, se presenta la respuesta de las variables más significativas del sistema eléctrico. En concreto, la tensión máxima de línea o compuesta en bornas del generador (que a su vez corresponde

con la tensión en el primario del transformador), la tensión máxima de línea o compuesta en los

terminales del secundario (que a su vez coincide con la tensión de la carga 2). Además se aportan las

intensidades de línea para ambos puntos de conexión. Ver figura 7.16.

Como se puede apreciar la envolvente de la evolución de las variables eléctricas se asemeja a la

evolución de la velocidad del pistón o de la velocidad angular del eje mecánico, es decir, dichas

variables hidráulico-mecánicas están en directa relación con las variables eléctricas.

860 880 900 920 940 960 98060

62

64

66

68

70

72

74

76

78

tiempo (s)

Par(

Nm

)

Par

Par motor hidráulico

Par eléctrico

Page 175: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

145

145

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

Figura 7-16. Respuesta de las variables eléctricas en generador y secundario transformador.

Las ondas de tensión e intensidad se representan con mayor detalle en la figura 7.17. En estas, se

presentan las 3 fases del circuito. Se observa que la frecuencia es del entorno de 25 Hz, lo que es debido a la velocidad a la que está girando el rotor y el hecho de que este disponga de 2 pares de polos.

Esto implica, que será necesario la inclusión de una etapa posterior de electrónica de potencia para

adecuar la frecuencia y tensión a los valores estándar, es decir, 420 V y 50 Hz.

Figura 7-17. Respuesta de las variables eléctrica en el régimen permanente.

0 100 200 300 400 500 600 700 800 900 1000-500

0

500

tiempo (s)

Tensió

n (

V)

Tensión en bornas del generador

0 100 200 300 400 500 600 700 800 900 1000-2

-1.5

-1

-0.5

0

0.5

1

1.5

2x 10

4

tiempo (s)

Tensió

n (

V)

Tensión en el secundario del transformador

0 100 200 300 400 500 600 700 800 900 1000-15

-10

-5

0

5

10

15

tiempo (s)

Inte

nsid

ad (

A)

Intensidad en bornas del generador

0 100 200 300 400 500 600 700 800 900 1000-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

tiempo (s)

Inte

nsid

ad (

A)

Intensidad en el secundario del transformador

999.6 999.65 999.7 999.75 999.8 999.85 999.9 999.95-500

0

500

tiempo (s)

Tensió

n (

V)

Tensión en bornas del generador

999.65 999.7 999.75 999.8 999.85 999.9-2

-1.5

-1

-0.5

0

0.5

1

1.5

x 104

tiempo (s)

Tensió

n (

V)

Tensión en el secundario del transformador

999.65 999.7 999.75 999.8 999.85 999.9 999.95

-10

-5

0

5

10

tiempo (s)

Inte

nsid

ad (

A)

Intensidad en bornas del generador

999.6 999.65 999.7 999.75 999.8 999.85 999.9 999.95 1000

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

tiempo (s)

Inte

nsid

ad (

A)

Intensidad en el secundario del transformador

Page 176: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Sistema Conversor de Energía Undimotriz: Modelado y simulación

146

146

7.2.2 Modelo Puente tipo 2

En esta sección, se analizan las respuestas obtenidas del modelo completo con un sistema hidráulico

con puente de válvulas direccionales accionadas por velocidad del pistón. De la misma forma, la red eléctrica modelada por el sistema eléctrico es una red de potencia finita.

En la figura 7.18, se muestra la evolución de las variables asociadas al pistón. En este caso, la fuerza

sobre el pistón es menor, mientras que la velocidad aumenta con respecto al caso anterior. Este hecho

afecta fundamentalmente a los esfuerzos a los que tiene que hacer frente el pistón, ya que serán menores y por tanto la estructura del cilindro soportará mejor el movimiento de oscilación de la boya.

Por otra parte, se observa que el desplazamiento máximo del pistón en cada sentido es diferente. Esto

se debe a la influencia de la presión del acumulador sobre la presión del sistema, ya que al mantener la presión también limita la excursión máxima del pistón cuando la presión aplicada sobre este es

menor que la presión que suministra el acumulador.

Figura 7-18. Respuesta de las variables del pistón en el modelo puente tipo 2.

En la figura 7.19, se pueden apreciar con más detalle las variables descritas anteriormente. La potencia

capturada por el cilindro en el régimen permanente tiende a los 8800 W; esto implica que este sistema

puede extraer mayor potencia de la ola que el modelo propuesto en la sección anterior.

Por otra parte, se observa que la respuesta de la fuerza ejercida sobre el pistón está fuertemente condicionada por la apertura y cierre del puente de válvulas (característica similar al modelo anterior).

100 200 300 400 500 600 700 800 900 1000

-2

-1

0

1

2

x 104

tiempo (s)

Fuerz

a (

N)

Fuerza aplicada sobre el pistón

0 100 200 300 400 500 600 700 800 900 1000-1

-0.5

0

0.5

1

tiempo (s)

Velo

cid

ad(m

/s)

Velocidad del Pistón

0 100 200 300 400 500 600 700 800 900 1000-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

tiempo (s)

Posic

ión(m

)

Posición del Pistón

100 200 300 400 500 600 700 800 9000

2000

4000

6000

8000

tiempo (s)

Pote

ncia

(W)

Potencia Pistón

Page 177: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

147

147

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

Figura 7-19. Respuesta de las variables del pistón en el régimen permanente.

En cuanto a las variables medidas en el eje mecánico, estas también muestran que la captación de energía en este tipo de sistema puede llegar a ser mayor. En la figura 7.20 se expone la respuesta de la

velocidad angular del eje, donde esta tiende a 102 rad/s en el régimen permanente.

Figura 7-20. Evolución de la velocidad en el eje de unión motor-generador.

En cuanto al rizado que se produce en la velocidad angular del eje mecánico, la figura 7.21 muestra

una vista ampliada de la misma para el régimen permanente. Dicho rizado tiende a ser del orden de ±1.5 rad/s con respecto a la velocidad media de la velocidad. Este tipo de oscilaciones pueden ser

reducidas mediante la adición de volantes de inercia que mantienen la velocidad estable durante más

tiempo y evitan los cambios bruscos de velocidad en el eje.

930 940 950 960 970 980 990-3

-2

-1

0

1

2

x 104

tiempo (s)

Fuerz

a (

N)

Fuerza aplicada sobre el pistón

920 930 940 950 960 970 980 990 1000

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

tiempo (s)

Velo

cid

ad(m

/s)

Velocidad del Pistón

920 930 940 950 960 970 980 990

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

tiempo (s)

Posic

ión(m

)

Posición del Pistón

910 920 930 940 950 960 970 980 990 1000

7800

8000

8200

8400

8600

8800

9000

tiempo (s)

Pote

ncia

(W)

Potencia Pistón

100 200 300 400 500 600 700 800 900 10000

20

40

60

80

100

tiempo (s)

Velo

cid

ad(r

ad/s

)

Velocidad

Medida en Eje

Medida en el generador

Page 178: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Sistema Conversor de Energía Undimotriz: Modelado y simulación

148

148

Figura 7-21. Detalle del rizado de la velocidad en el eje de unión motor-generador.

Con respecto al par mecánico, este se mantiene en un valor similar al alcanzado en el sistema anterior, es decir, 74 Nm. Al igual que en dicho caso, el par mecánico y el par eléctrico divergen de forma

importante en el rizado producido, siendo más acusado en el eje mecánico. En la figura 7.22 se da una

muestra de la evolución del par tanto para el régimen transitorio como permanente.

Figura 7-22. Evolución del par en el eje de unión motor-generador y en el generador síncrono.

920 930 940 950 960 970 980 990

100

101

102

103

104

105

tiempo (s)

Velo

cid

ad(r

ad/s

)

Velocidad

Medida en Eje

Medida en el generador

100 200 300 400 500 600 700 800 900 10000

10

20

30

40

50

60

70

tiempo (s)

Par(

Nm

)

Par

Par motor hidráulico

Par eléctrico

Page 179: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

149

149

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

Como se comentaba anteriormente, el rizado es poco importante en el caso del par eléctrico, mientras

que en el caso del par mecánico el rizado es del orden de ±4.5 Nm.

Figura 7-23. Detalle del rizado del par en el eje de unión motor-generador y generador síncrono.

En este caso, la evolución de las variables eléctricas también se ve afectada por el hecho de haber captado mayor cantidad de potencia en la etapa del sistema hidráulico. Esto se debe a que la red es de

potencia finita y por ende, tanto la tensión como frecuencia vendrán marcados por el régimen de carga

y la velocidad que se suministren al rotor del alternador. En la figura 7.24 se muestra la respuesta de la tensión de línea o compuesta e intensidad de línea medidas en bornas del generador síncrono

(primario del transformador) y en el secundario del transformador (tensión en la carga 2). Dicha

respuesta contiene una etapa transitoria, de características similares al resto de las variables mecánicas analizadas hasta ahora, estableciéndose el régimen permanente entorno a los 900 segundos de

simulación. El caso que se ha analizado corresponde a una carga puramente resistiva en ambas cargas

del modelo.

En la figura 7.25 se observa que la tensión en el generador alcanza un valor de tensión máxima de 500 V, mientras que en el secundario es de 17000 V. Los valores eficaces son 353 V y 12020 V, por

lo que el transformador está trabajando por debajo de sus condiciones nominales (400/13800 V). La

frecuencia se sitúa en los 30 Hz, con lo que también se obtiene una mejora en este parámetro con respecto al caso anterior.

900 910 920 930 940 950 96064

66

68

70

72

74

76

78

tiempo (s)

Par(

Nm

)

Par

Par motor hidráulico

Par eléctrico

Page 180: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Sistema Conversor de Energía Undimotriz: Modelado y simulación

150

150

Figura 7-24. Evolución del par en el eje de unión motor-generador.

Figura 7-25. Evolución del par en el eje de unión motor-generador.

100 200 300 400 500 600 700 800 900

-500

0

500

tiempo (s)

Tensió

n (

V)

Tensión en bornas del generador

100 200 300 400 500 600 700 800 900

-1.5

-1

-0.5

0

0.5

1

1.5

x 104

tiempo (s)

Tensió

n (

V)

Tensión en el secundario del transformador

100 200 300 400 500 600 700 800 900-15

-10

-5

0

5

10

tiempo (s)

Inte

nsid

ad (

A)

Intensidad en bornas del generador

100 200 300 400 500 600 700 800 900

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

tiempo (s)

Inte

nsid

ad (

A)

Intensidad en el secundario del transformador

990.8 990.85 990.9 990.95 991 991.05

-500

0

500

tiempo (s)

Tensió

n (

V)

Tensión en bornas del generador

990.85 990.9 990.95 991 991.05-2

-1.5

-1

-0.5

0

0.5

1

1.5

x 104

tiempo (s)

Tensió

n (

V)

Tensión en el secundario del transformador

990.8 990.85 990.9 990.95 991 991.05 991.1

-10

-5

0

5

10

15

tiempo (s)

Inte

nsid

ad (

A)

Intensidad en bornas del generador

990.85 990.9 990.95 991 991.05 991.1

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

tiempo (s)

Inte

nsid

ad (

A)

Intensidad en el secundario del transformador

Page 181: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

151

151

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

7.2.3 Conclusiones

Las conclusiones que obtenemos de las simulaciones que hemos realizado sobre los modelos

completos se detallan a continuación:

- La interacción entre los diferentes sistemas construidos se debe realizar mediante fuentes

ideales de velocidad lineal y par con realimentación entre bloques de forma que dicha

interacción sea correcta.

- Se han propuesto dos tipos de puente de rectificación, válvulas antirretorno y direccionales,

de los que se han obtenido los siguientes datos:

o El puente con válvulas direccionales funciona mediante la medida de velocidad del pistón; gracias a ello, la apertura y cierre de las mismas es independiente de la caída

de presión entre los terminales de las mismas.

o El puente de válvulas antirretorno tiene un funcionamiento más sencillo, pero su característica de funcionamiento implica mayores pérdidas a partir de los datos de

los que se dispone hasta ahora.

- Tanto la velocidad de giro del eje como el par aplicado sobre el mismo mantienen cierto rizado debido a las imperfecciones en la etapa de rectificación. Se decide mantener el tamaño

del acumulador existente para evitar aumentar el tiempo de duración de la respuesta

transitoria. Se propone el incremento de masa en el eje mediante la adición de un volante de inercia o el uso de electrónica de potencia en el sistema eléctrico.

- Las tensiones, intensidades y frecuencias obtenidas en el modelo eléctrico están establecidas por el sistema hidráulico ya que la red eléctrica es de potencia finita. Además se observa cómo

la envolvente de dichas respuestas coincide con la evolución de la velocidad aplicada sobre

el cilindro hidráulico, esto es, la velocidad de desplazamiento del sistema boya-vástago-

pistón.

Page 182: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Sistema Conversor de Energía Undimotriz: Modelado y simulación

152

152

Page 183: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

153

153

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

8 ANÁLISIS DE PÉRDIDAS EN EL SISTEMA

n este capítulo se pretende analizar las pérdidas que se producen en las distintas partes del modelo

completo desarrollado a lo largo de los capítulos 5, 6 y 7. En concreto, se expone el resultado de

los cálculos de potencia y pérdidas, a partir de las variables medidas en diferentes partes del sistema.

En primer lugar, se describen los modelos empleados para el análisis y las zonas donde se ha realizado

la medición de las variables mecánicas, eléctricas e hidráulicas. A continuación, se muestran y

comentan las expresiones utilizadas para el cálculo de la potencia y rendimiento.

Una vez se ha realizado este proceso, se procede a la simulación de los modelos desarrollados. Se

muestran las gráficas que contienen la información sobre la evolución de la potencia medida en

diferentes partes y se comentan los resultados obtenidos.

Después, se analizan los resultados de potencia y rendimiento de los dispositivos hidráulicos y eléctricos que intervienen en la conversión de energía durante el régimen permanente. De este análisis,

se proponen posibles acciones de mejora que podrán tomarse en cuenta para el desarrollo de este tipo

de sistemas en laboratorio. Además, se justifica el valor de algunos rendimientos que pueden suscitar cierta discusión. Al mismo tiempo, se identifican las principales fuentes de pérdida de potencia en los

distintos sistemas.

Antes de finalizar, se procede a realizar un resumen con las conclusiones extraídas de este análisis a partir de los resultados expuestos mediante tablas y gráficas. Además, se establece aquel sistema que

puede ser más aconsejable para la conversión de la energía captada de la ola. Esto no implica que el

dispositivo primario de captación, una boya, sea mejorable en términos de configuración

hidrodinámica, ya que no es el campo de estudio de este trabajo.

E

En general, cuando se soluciona un problema nuevo, es conveniente desarrollar primero un modelo

simplificado para obtener una idea general de la solución. A continuación se desarrolla un modelo matemático más completo y se usa para un análisis con más pormenores.

- Katsuhiko Ogata-

Page 184: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Análisis de pérdidas en el sistema

154

154

8.1 Potencia medida

Para conocer la eficiencia del modelo construido, es necesario realizar medidas en diferentes puntos

del modelo. En concreto, se mide la potencia en las siguientes etapas del sistema:

- Antes del cilindro, para conocer la potencia de entrada al sistema.

- Después del cilindro, para medir la potencia transmitida al fluido hidráulico de trabajo.

- Tras el puente de válvulas y antes del motor hidráulico. Esta medida, junto con la anterior, se utiliza para conocer las pérdidas que se producen en el puente de válvulas.

- En el eje de rotación, que une el motor hidráulico con el generador eléctrico.

- En bornas del generador eléctrico, con objeto de medir la potencia activa generada por el

alternador. - En el primario y secundario del transformador eléctrico.

- En los terminales de unión hacia las cargas eléctricas.

El modelo sobre el que se realizarán las medidas se refleja en la figura 8.1. En este caso, se trata de un sistema compuesto por un modelo hidráulico con dos variantes, puente de válvulas antirretorno y

direccionales; además, se incluye el modelo eléctrico en el supuesto de que la conexión se realice a

una red aislada.

Las expresiones empleadas para el cálculo de la potencia en cada uno de los puntos listados

anteriormente, son desarrolladas en las ecuaciones 8.1 a 8.6. En la ecuación 8.1, se expresa el valor de

la potencia capturada, calculada a partir de los valores de fuerza y velocidad del pistón medidas sobre

el cilindro.

𝑃𝑐𝑎𝑝 = 𝐹𝑒𝑥𝑡 · 𝑣 (8–1)

En el caso del cálculo de la potencia en terminales del cilindro, se ha de tener en cuenta que el caudal en ambos terminales (A y B) es diferente debido a la diferencia en las áreas de la cabeza y tapa del

pistón. Además, es importante resaltar que debido al modelo del cilindro (se desprecian las pérdidas

por fricción), la potencia en terminales del cilindro será similar a la potencia capturada.

𝑃𝑐𝑖𝑙𝑖𝑛𝑑𝑟𝑜 = 𝑃𝐴 · 𝑞𝐴 − 𝑃𝐵 · 𝑞𝐵 (8–2)

En la ecuación 8.3, se postula la definición para el cálculo de la potencia que se extrae del motor

hidráulico. Dicha ecuación de cálculo se puede expresar tanto en variables fluidas como mecánicas. A1 y B1 hacen referencia a los terminales hidráulicos del motor hidráulico.

𝑃𝑚𝑜𝑡𝑜𝑟 ℎ𝑖𝑑𝑟á𝑢𝑙𝑖𝑐𝑜 = 𝑞𝐴1 · (𝑃𝐴1 − 𝑃𝐵1) (8–3)

Para calcular la potencia mecánica en el eje, se utiliza la ecuación 8.4, que toma los valores de la

medida de par y velocidad de giro en el eje mecánico.

𝑃𝑒𝑗𝑒 𝑚𝑒𝑐á𝑛𝑖𝑐𝑜 = 𝑇𝑒𝑗𝑒 · 𝜔𝑚 (8–4)

En la parte del sistema eléctrico se toman medidas de tensión simple o de fase e intensidad de fase para calcular la potencia activa en los distintos puntos de la red. En las ecuaciones 8.5 y 8.6 se reflejan

las tensiones utilizadas para el cálculo de potencia activa en las distintas partes del sistema eléctrico.

Los subíndices g y c hacen referencia al generador y a la carga donde se realiza la medida.

Page 185: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

155

155

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

𝑃𝑔𝑒𝑛𝑒𝑟𝑎𝑑𝑜𝑟 = 𝑉𝑎𝑔 · 𝐼𝑎𝑔 + 𝑉𝑏𝑔 · 𝐼𝑏𝑔 + 𝑉𝑐𝑔 · 𝐼𝑐𝑔 (8–5)

𝑃𝑐𝑎𝑟𝑔𝑎 = 𝑉𝑎𝑐 · 𝐼𝑎𝑐 + 𝑉𝑏𝑐 · 𝐼𝑏𝑐 + 𝑉𝑐𝑐 · 𝐼𝑐𝑐 (8–6)

Los valores obtenidos a partir de las mediciones son valores instantáneos de potencia. Estos valores deben ser tratados para poder ser interpretados de forma adecuada. Para ello, se emplea el concepto

de valor medio de una onda; el valor medio de una onda es por definición aquel expresado en la

ecuación 8.7, siendo T el periodo de duración de un ciclo de la onda. En este caso, el valor de T es 6 segundos. El valor de este se debe al periodo del oleaje regular considerado en el capítulo 4.

𝑃𝑚𝑒𝑑𝑖𝑎 =1

𝑇∫ 𝑃(𝑡)𝑑𝑡𝑇

0

(8–7)

Para determinar con detalle las pérdidas producidas por efecto Joule y por pérdidas en hierro e histéresis, se toman los valores de intensidad eficaz medidos sobre el modelo y los valores de las

resistencias que se definieron para los elementos eléctricos en el capítulo 6. Con toda esta información

y el uso de las ecuaciones 8.8 y 8.9 se procede a la obtención de las mencionadas pérdidas.

𝑃𝐽𝑜𝑢𝑙𝑒 = 3 · 𝑅𝐶𝑢 · 𝐼2 (8–8)

𝑃𝐻𝑖𝑒𝑟𝑟𝑜+𝐻𝑖𝑠𝑡é𝑟𝑒𝑠𝑖𝑠 = 3 · 𝑅𝑚𝑎𝑔_𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡𝑒 · 𝐼𝑚𝑎𝑔2 (8–9)

Por último, se adjuntan las expresiones utilizadas para el cálculo de la eficiencia tanto en elementos

individuales como en sistemas de elementos. Dichas expresiones se detallan en las ecuaciones 8.10 a

8.15., donde las potencias utilizadas provienen de las expresiones presentadas al inicio de este

apartado y a las cuales se les ha aplicado el concepto de potencia media.

𝜂𝐶𝑖𝑙𝑖𝑛𝑑𝑟𝑜 =𝑃𝑐𝑎𝑝

𝑃𝑐𝑖𝑙𝑖𝑛𝑑𝑟𝑜

(8–10)

𝜂𝑀𝑜𝑡𝑜𝑟 ℎ𝑖𝑑𝑟á𝑢𝑙𝑖𝑐𝑜 =𝑃𝑒𝑗𝑒 𝑚𝑒𝑐á𝑛𝑖𝑐𝑜

𝑃𝑚𝑜𝑡𝑜𝑟 ℎ𝑖𝑑𝑟á𝑢𝑙𝑖𝑐𝑜

(8–11)

𝜂𝐺𝑒𝑛𝑒𝑟𝑎𝑑𝑜𝑟 𝑠í𝑛𝑐𝑟𝑜𝑛𝑜 =𝑃𝑔𝑒𝑛𝑒𝑟𝑎𝑑𝑜𝑟

𝑃𝑒𝑗𝑒 𝑚𝑒𝑐á𝑛𝑖𝑐𝑜

(8–12)

𝜂𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑑𝑜𝑟 =𝑃𝐶𝑎𝑟𝑔𝑎 2

𝑃𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑑𝑜𝑟

(8–13)

𝜂𝑆𝑖𝑠𝑡𝑒𝑚𝑎 ℎ𝑖𝑑𝑟á𝑢𝑙𝑖𝑐𝑜 =𝑃𝑒𝑗𝑒 𝑚𝑒𝑐á𝑛𝑖𝑐𝑜

𝑃𝑐𝑎𝑝

(8–14)

𝜂𝑆𝑖𝑠𝑡𝑒𝑚𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑜 =𝑃𝐶𝑎𝑟𝑔𝑎𝑠 𝑒𝑙é𝑐𝑡𝑟𝑖𝑐𝑎𝑠

𝑃𝑐𝑎𝑝

(8–15)

Page 186: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Análisis de pérdidas en el sistema

156

156

Figura 8-1. Disposición de los instrumentos de medida.

Potencia capturada y

Potencia en el cilindro

Potencia

Motor Hidráulico

Potencia en el

eje mecánico

Potencia en el

generador síncrono

Potencia en las

cargas eléctricas

Page 187: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

157

8.1.1 Modelo Puente tipo 1

A continuación se presentan una serie de gráficas donde se expone la evolución de las medidas de

potencia realizadas en los puntos más representativos de los señalados al comienzo de este apartado. En este caso, las cargas eléctricas son puramente resistivas, es decir, solamente absorben potencia

activa. Sin embargo, habrá cierto consumo de potencia reactiva debido a la necesaria magnetización

del transformador del modelo.

En concreto, en la figura 8.2 se pueden ver la potencia media capturada por el cilindro hidráulico, la potencia fluida instantánea que llega al motor hidráulico, la potencia mecánica instantánea que se

transmite del motor hidráulico al generador eléctrico y la potencia eléctrica instantánea generada. En

la gráfica con el título “Potencia Generador”, se representa tanto la potencia eléctrica generada (en azul), como la potencia eléctrica consumida por las cargas (en verde). Como se puede observar, todas

las potencias medidas tienen una evolución similar, caracterizadas por un régimen permanente de unos

900 segundos al que prosigue el régimen permanente donde queda patente el efecto del rizado que se ha comentado en los capítulos precedentes.

Figura 8-2. Potencia instantánea en diferentes puntos del modelo completo tipo 1.

Así mismo, en la figura 8.3, se aporta una gráfica donde se detalla el efecto del rizado en el régimen

permanente. Dicho rizado de las ondas está asociado a la imperfecta etapa de rectificación en el puente

de válvulas antirretorno.

0 100 200 300 400 500 600 700 800 900 1000-2000

0

2000

4000

6000

8000

tiempo (s)

Pote

ncia

(W)

Potencia Motor hidráulico

0 100 200 300 400 500 600 700 800 900 1000-2000

0

2000

4000

6000

8000

tiempo (s)

Pote

ncia

(W)

Potencia Eje

0 100 200 300 400 500 600 700 800 900 1000-1000

0

1000

2000

3000

4000

5000

6000

7000

tiempo (s)

Pote

ncia

(W)

Potencia Generador

0 100 200 300 400 500 600 700 800 900 10000

2000

4000

6000

8000

10000

tiempo (s)

Pote

ncia

(W)

Potencia Pistón

Page 188: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Análisis de pérdidas en el sistema

158

158

Figura 8-3. Detalle del rizado en las potencias medidas del modelo completo tipo 1.

Este efecto es suavizado mediante el uso de la masa de inercia que conecta el motor hidráulico con el

generador eléctrico. Esa masa se corresponde con la propia masa del eje mecánico y del rotor del

generador síncrono. Como queda patente, dicha masa amortigua los cambios bruscos de la velocidad

de giro del eje mecánico, lo que implica que la potencia eléctrica generada se vea afectada en menor proporción por las oscilaciones de la señal de velocidad.

Figura 8-4. Potencia media medida en el modelo tipo 1.

910 920 930 940 950 960 970 980 990

6000

6500

7000

7500

8000

8500

tiempo (s)

Pote

ncia

(W)

Potencias

Motor hidráulico

Eje

Generador

Pistón

100 200 300 400 500 600 700 800 9000

1000

2000

3000

4000

5000

6000

7000

8000

tiempo (s)

Pote

ncia

(W)

Potencias

Pistón

Cilindro

Motor hidráulico

Eje

Generador

Estator

Transformador

Carga 2

Cargas Eléctricas

Page 189: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

159

159

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

8.1.2 Modelo Puente tipo 2

Al igual que en la sección anterior, se muestran a continuación los resultados obtenidos para el modelo

tipo 2. En la figura 8.5 se muestra la evolución de las potencia medidas en las mismas etapas que ya se comentó en la sección anterior. El comportamiento de las mismas es similar al ya observado en el

modelo anterior, pero se detecta un mayor rizado en la respuesta de la potencia medida en el motor

hidráulico.

Figura 8-5. Potencia instantánea en diferentes puntos del modelo completo tipo 2.

Para observar el rizado producido durante el régimen permanente, se representa en la figura 8.6 una muestra del mismo. En concreto, se observa como el rizado de la onda de potencia del generador

síncrono es el más suave, lo que implica un mejor comportamiento del sistema eléctrico en su

funcionamiento y más concretamente en el suministro de potencia eléctrica a las cargas finales.

Figura 8-6 Detalle del rizado en las potencias medidas del modelo completo tipo 2.

100 200 300 400 500 600 700 800 900 10000

2000

4000

6000

8000

tiempo (s)

Pote

ncia

(W)

Potencia Motor hidráulico

100 200 300 400 500 600 700 800 900

0

2000

4000

6000

8000

tiempo (s)

Pote

ncia

(W)

Potencia Eje

100 200 300 400 500 600 700 800 900

1000

2000

3000

4000

5000

6000

7000

tiempo (s)

Pote

ncia

(W)

Potencia Generador

100 200 300 400 500 600 700 800 900 10000

2000

4000

6000

8000

tiempo (s)

Pote

ncia

(W)

Potencia Pistón

900 910 920 930 940 950 960 970 980 9905000

5500

6000

6500

7000

7500

8000

8500

9000

9500

tiempo (s)

Pote

ncia

(W)

Potencias

Motor hidráulico

Eje

Generador

Pistón

Page 190: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Análisis de pérdidas en el sistema

160

160

En la figura 8.7, se exponen los resultados de los cálculos de la potencia medida en las etapas

especificadas en el apartado 8.1. Como queda reflejado, todas ellas comparten un régimen transitorio de 900 segundos de duración al que prosigue el régimen permanente. Un detalle de dicho régimen

permanente se ha representado en la figura 8.8, con objeto de mejorar la lectura de los datos que ofrece

dicha representación.

Figura 8-7. Potencia instantánea medida en varias etapas en el régimen permanente.

Figura 8-8. Potencia instantánea medida en varias etapas en el régimen permanente.

100 200 300 400 500 600 700 800 900 10000

1000

2000

3000

4000

5000

6000

7000

8000

tiempo (s)

Pote

ncia

(W)

Potencias

Pistón

Cilindro

Motor hidráulico

Eje

Generador

Estator

Transformador

Carga 2

Cargas Eléctricas

910 920 930 940 950 960 970 980

5500

6000

6500

7000

7500

8000

8500

tiempo (s)

Pote

ncia

(W)

Potencias

Pistón

Cilindro

Motor hidráulico

Eje

Generador

Estator

Transformador

Carga 2

Cargas Eléctricas

Page 191: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

161

161

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

8.2 Conclusiones

En este apartado se muestran los resultados del balance de potencia en distintas partes del modelo

completo, obtenidas a partir de las variables analizadas en el capítulo 7 y mediante el empleo de las fórmulas especificadas en el apartado 8.1.

8.2.1 Modelo tipo 1

En esta sección, se presentan los resultados correspondientes al modelo complete tipo 1, es decir, el modelo con puente de válvulas antirretorno. En la tabla 8.1 se exponen dichos resultados de potencia

con los valores de potencia correspondientes a los puntos especificados en la misma.

Así mismo, la figura 8.9 permite detectar de una forma rápida cómo se está produciendo la

transferencia de potencia entre los distintos sistemas involucrados en la conversión de energía undimotriz.

Tabla 8–1 Balance de potencias en el régimen permanente.

Potencia Valor (W)

Potencia capturada 8502

Potencia en los terminales del cilindro 8500

Potencia en los terminales del motor 6929

Potencia en el eje mecánico 5844

Potencia eléctrica generada 5433

Potencia eléctrica suministrada al transformador

4352

Potencia eléctrica absorbida por las cargas

5338

Como ya se adelantaba en los capítulos precedentes, el uso del puente rectificador es la primera fuente

de pérdidas en el sistema, asumiendo que las pérdidas por fricción en el cilindro son despreciables. La segunda fuente de pérdidas se halla en el motor hidráulico donde, debido a las fugas de fluido

hidráulico de trabajo (rendimiento volumétrico) y la fricción en los componentes mecánicos, se

producen pérdidas que afectan a la transmisión de potencia.

Page 192: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Análisis de pérdidas en el sistema

162

162

Figura 8-9. Balance de potencias en el régimen permanente.

Por otra parte, durante la conversión electro-mecánica también se producen ciertas pérdidas debidas a

la fricción de los componentes y a las pérdidas en forma de calor que disipan los conductores

(modelados como resistencias internamente) del generador eléctrico. De igual forma, en el transformador existe cierto desfase entre la potencia de entrada al mismo y la potencia que alimenta a

las cargas. Ello se debe a las pérdidas en carga que se traducen en una disipación de calor en los

conductores del mismo.

Para poder examinar el nivel de eficiencia en los distintos elementos, es preciso hablar en términos de

rendimiento. Por ello, en la tabla 8.2 se exponen los rendimientos calculados para diferentes

dispositivos del modelo completo. Como se observa, tanto el motor hidráulico como el sistema hidráulico en sí, se encuentran valores de rendimientos del entorno del 80% o menor. Se ha de volver

a remarcar que el rendimiento asociado al cilindro es un rendimiento ideal, ya que no se toman en

cuenta las pérdidas que se ocasionarían por pérdidas de fricción o fugas.

El rendimiento del sistema hidráulico queda afectado notablemente por la fase de rectificado, como ya se ha mencionado, lo que marca que el rendimiento de esta etapa sea del 69%.

En cuanto a los rendimientos del generador síncrono y del transformador, se observa que son valores

usuales dentro de las máquinas eléctricas, es decir, máquinas altamente eficientes. Por ello, encontramos valores cercanos a la unidad en ambos. A su vez, es importante remarcar que no se están

considerando las posibles pérdidas asociadas a las líneas eléctricas de conexión entre los distintos

elementos eléctricos, ya que se asume que las conexiones son de pequeña longitud y gran sección. Por ello, el rendimiento en el sistema eléctrico quedaría mermado.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Po

ten

cia

(W)

BALANCE DE POTENCIAS

Capturada

Cilindro

Motor hidráulico

Eje mecánico

Generador

Transformador

Cargas

Carga 2

Page 193: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

163

163

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

Tabla 8–2 Balance de potencias en el régimen permanente.

Rendimiento Valor (%)

Cilindro 100

Motor hidráulico 84

Generador eléctrico 93

Transformador 98

Sistema hidráulico 69

Sistema completo 63

Con respecto al rendimiento en el sistema completo, del 63%, se puede concluir que está afectado

principalmente por el sistema hidráulico, ya que es este el que afecta de forma más negativa a la eficiencia global del sistema. Es por ello que los esfuerzos en la mejora de este tipo de sistemas se

deben concentrar en esta etapa, ya que condiciona de forma importante el rendimiento final.

Figura 8-10. Rendimiento y pérdidas en el modelo tipo 1.

Las pérdidas que se producen en los elementos eléctricos, como el generador y transformador, pueden

ser desglosadas a su vez en pérdidas asociadas a la resistencia de los materiales según se ha visto en

el apartado 1 y que fueron explicadas en el capítulo 6.

En la tabla 8.3, se adjuntan los valores de dichas pérdidas, tanto para el generador como para el

transformador. En el caso del generador, la pérdidas en el rotor están asociadas al nivel de excitación

al que esté sometido el mismo, ya que a mayor tensión de excitación se producirán mayor cantidad de pérdidas por efecto Joule en los conductores. En este mismo sentido, las pérdidas en el hierro

producidas en el transformador están asociadas al nivel de excitación al que esté sometido el mismo.

Sin embargo, las pérdidas en el estátor del generador y en los devanados del transformador están asociadas directamente al régimen de carga, por lo que los valores proporcionados en dicha tabla

estarán directamente asociados a la cantidad de potencia mecánica que se obtenga de la conversión

hidráulica.

100%84%

93%98%

69%63%

18%2%

Rendimiento

Pérdidas Transformador Pérdidas Puente de válvulas Sistema completoSistema hidráulico Transformador GeneradorMotor hidráulico Cilindro

Page 194: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Análisis de pérdidas en el sistema

164

164

Tabla 8–3 Pérdidas en generador y transformador.

Pérdidas Valor (W)

P. Joule en el Rotor 521

P. Joule en el Estátor 423

Pérdidas en hierro + histéresis 58.9

Pérdidas Joule en el devanado primario 18.5

Pérdidas Joule en el devanado

secundario

17.9

8.2.2 Modelo tipo 2

En esta sección se analizan los resultados correspondientes al modelo tipo 2, esto es, el modelo con

válvulas direccionales. Ya se obtuvieron resultados en los capítulos precedentes que anticipaban la

información que se recopila en la tabla 8.4., representada gráficamente en la figura 8.11. En estos,

queda patente la disminución de pérdidas asociadas al puente de válvulas.

Figura 8-11. Balance de potencias en el régimen permanente.

Al igual que en la sección anterior, es importante remarcar la hipótesis sobre las que se ha realizado el

modelo para dar explicación a los resultados obtenidos. La potencia capturada y la potencia en

terminales del cilindro tienden a alcanzar el mismo valor debido a que se asumen despreciables las pérdidas por fricción en el cilindro. Por otra parte, no existen pérdidas por colisión entre el pistón y las

paredes del cilindro al ser el desplazamiento de este menor que la carrera del cilindro durante toda la

simulación. Este hecho podría cambiar si se estableciesen otras condiciones de oleaje.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Po

ten

cia

(W)

BALANCE DE POTENCIAS

Capturada

Cilindro

Motor hidráulico

Eje mecánico

Generador

Transformador

Cargas

Carga 2

Page 195: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

165

165

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

Tabla 8–4 Balance de potencias en el régimen permanente.

Potencia Valor (W)

Potencia capturada 8799

Potencia en los terminales del cilindro 8796

Potencia en los terminales del motor 8726

Potencia en el eje mecánico 7583

Potencia eléctrica generada 7000

Potencia eléctrica suministrada al

transformador

5618

Potencia eléctrica absorbida por las

cargas

6900

Además, se establece que la fricción debida a la circulación de flujo por los conductos es despreciable, lo que implica que las posibles pérdidas entre el cilindro y el motor hidráulico se deben en exclusiva

a las pérdidas en el puente de rectificación. Esto permite evaluar el potencial de dicha etapa de

rectificación, evitando así entrar en la discusión sobre el tipo ideal de conducto a considerar para este tipo de aplicaciones. De forma equivalente en el circuito eléctrico, tal como se mencionó

anteriormente, se desprecian las impedancias equivalentes de las conexiones entre el generador

síncrono, transformador y cargas eléctricas.

Con respecto a los rendimientos de este modelo, reflejados en la tabla 8.5 y representados en la figura 8.12, se aprecia una notable mejora en el rendimiento del sistema hidráulico o WEC y, a su vez, del

sistema completo. Esto se explica por la disminución en las pérdidas asociadas al puente de válvulas

direccionales, las cuales representan en este caso el 1% de la potencia del cilindro.

Figura 8-12. Rendimiento y pérdidas en el modelo tipo 2.

100%87%

92%98%

86%78%

1%2%

RendimientoPérdidas Transformador Pérdidas Puente de válvulas Sistema completo

Sistema hidráulico Transformador Generador

Motor hidráulico Cilindro

Page 196: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Análisis de pérdidas en el sistema

166

166

Tabla 8–5 Balance de potencias en el régimen permanente.

Rendimiento Valor (%)

Cilindro 100

Motor hidráulico 87

Generador eléctrico 92

Transformador 98

Sistema hidráulico 86

Sistema completo 78

Al igual que en el modelo anterior, se han realizado mediciones para obtener las pérdidas en los

elementos eléctricos del modelo. Los valores obtenidos quedan reflejados en la tabla 8.6.

Entre los aspectos a remarcar, es necesario destacar las abundantes pérdidas que se producen en el

devanado estatórico, las cuales están relacionadas con el nivel de carga al que funciona el mismo.

Además, se observan importantes pérdidas en el devanado rotórico debidas a la disipación de potencia en forma de calor por la circulación de corriente continua a través de los conductores del mismo.

Con respecto a las pérdidas en el transformador, se han medido mayores pérdidas asociadas a la rama

de magnetización en relación a las pérdidas en los devanados primario y secundario. Esto se debe a

que el transformador está trabajando por debajo de las condiciones nominales, por lo que dicha divergencia está justificada.

Tabla 8–6 Pérdidas en generador y transformador.

Pérdidas Valor (W)

P. Joule en el Rotor 517

P. Joule en el Estátor 577.4

Pérdidas en hierro + histéresis 72.2

Pérdidas Joule en el devanado primario 23.7

Pérdidas Joule en el devanado secundario

22.7

Es importante poder tener una visión clara de los resultados que se han analizados en las secciones

precedentes. Es por ello, que se adjunta la gráfica de la figura 8.13, donde se pueden visualizar

rápidamente las diferencias existentes entre ambos modelos. Como queda patente, todos los elementos eléctricos tienen un comportamiento similar en cuanto a eficiencia; sin embargo, no sucede lo mismo

con el sistema hidráulico o WEC, donde la configuración del modelo tipo 2 mejora notablemente el

rendimiento del sistema hidráulico y de sus componentes. Esto repercute de forma indiscutible en el rendimiento global del sistema. Por ello, se concluye que el sistema WEC con puente de válvulas

direccionales es el más adecuado para la etapa de rectificación de la potencia fluida dentro de la etapa

de conversión de energía hidráulica en energía mecánica.

Page 197: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

167

167

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

Figura 8-13. Comparativa de rendimientos.

100%

84%

93% 98%

69%63%

18%

2%

100% 87%

92%98%

86%78%

1%2%0%

20%

40%

60%

80%

100%

120%

Comparativa de rendimientos

Modelo Tipo 1

Modelo Tipo 2

Page 198: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Análisis de pérdidas en el sistema

168

168

Page 199: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

169

169

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

9 FUTURAS LÍNEAS DE

TRABAJO

9.1 Futuras líneas de trabajo

En este trabajo se ha realizado un modelo base que simula el comportamiento del sistema de estudio,

es decir, un sistema compuesto por el oleaje y los sistemas de captación, conversión y distribución de energía eléctrica. El siguiente paso a realizar es la optimización de los parámetros utilizados, es decir,

se deben obtener aquellos parámetros que hacen que el sistema funcione con un rendimiento máximo.

En dicho problema de optimización se pueden tener en cuenta tanto aspectos técnicos como

económicos con el objetivo de obtener un dispositivo económicamente viable. Este proceso debe ayudar a decidir si puede ser económicamente rentable continuar con este tipo de WEC (con PTO

hidráulico), o es necesario evaluar otras alternativas.

Por otra parte, puede ser interesante el estudio de los posibles tipos de control que se pueden aplicar a los sistemas que intervienen en este modelo. En concreto, se podría sustituir el motor de

desplazamiento fijo por otro de desplazamiento variable y realizar un control sobre dicho

desplazamiento en función de la velocidad del pistón del cilindro hidráulico. Esto serviría de control primario en el control de frecuencia del generador síncrono en su uso en sistemas de red de potencia

infinita. También se puede avanzar en el control de las válvulas direccionales utilizadas en algunos de

los modelos presentados en este trabajo.

A su vez, se puede combinar dicho control con la actuación sobre la tensión de excitación del generador síncrono. Ambos controles funcionando de forma simultánea simularían el comportamiento

del control de una central de generación undimotriz conectada a una red de potencia infinita.

En este trabajo también se ha modelado el sistema eléctrico correspondiente a una fuente de red de potencia infinita. La implementación de dicho sistema de forma conjunta con el resto de sistemas

estudiados es otro de los aspectos que pueden ser desarrollados a partir de este proyecto.

Tras ello, se podría construir un primer dispositivo a escala para ser ensayado en laboratorio. Este ejercicio puede servir a su vez para conocer el grado de similitud entre el modelo desarrollado y el

dispositivo real. Además, permite el ajuste de los parámetros y su evaluación a escala.

Page 200: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Futuras Líneas de Trabajo

170

170

Page 201: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

171

171

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

REFERENCIAS

Capítulo 1

[1] D. E. A. Montoya Andrade «Modelado y Control de centrales undimotrices con accionamiento

directo mediante generador lineal ante oleaje irregular», tesis doctoral, Universidad de Sevilla,

Marzo 2014.

Capítulo 2

[1] Fernanda Miguélez Pose, «La energía que viene del mar» libro, Ed. Netbiblo, 2009.

[2] Instituto de Hidráulica Ambiental IH Cantabria, «Evaluación del potencial de la energía de las olas» Estudio técnico PER 2011-2020, IDAE, 2011.

[3] Fondear S.L. « Los Aliseos» publicación web, acceso: Junio 2015.

Disponible en: http://www.fondear.org/infonautic/mar/Meteo/Alisios/Alisios.htm

[4] G. Portero « SISTEMA AZONAL: MODELADO COSTERO » publicación web, acceso: Junio 2015.

Disponible en: http://geomorfol4a.blogspot.com.es/

[5] NASA « Visible Earth. Global wind speed» publicación web, acceso: Junio 2015.

disponible en: http://visibleearth.nasa.gov/view.php?id=56893

[6] Joao Cruz, «Ocean Wave Energy. Current Status and Future Perspectives» Ed. técnica, Ed.

Springer, 2008.

[7]

UPCommons, «Anexo I. Teoría de olas» apuntes, OWC, Universidad Politécnica de Cataluña.

[8] T.W. Thorpe «An Overview of Wave Energy Technologies: Status, Performance and Costs»

informe técnico, Noviembre 1999.

[9] R. E. Romero García «Producción de energía eléctrica a partir de los mares» revista, Técnica

Industrial nº 288, pág 44-51, Agosto 2010.

[10] Varios « Proyecto Cenit OCEANLÍDER » publicación web, acceso: Junio 2015.

Disponible en: http://www.oceanlider.com

[11] INVEST Spain «Oportunidades en el sector español de la energía marina» publicación web, 2015.

[12] Universidad de Upsala «Wave Power Project - Lysekil. www.el.angstrom.uu.se /

Page 202: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Referencias

172

172

forskningsprojekt / WavePower / Pressbilder_Lysekilsprojektet.html» publicación web, 2015.

[13] A.D. Carmichael, E.E. Adams, M.A. Glusksman «Ocean Energy Technologies: The State of the

Art» informe, Massachusetts Institute of Technology, Noviembre 1986.

[14] A. Clément, P. McCullen, A. Falcao, A. Fiorentino, F. Gardner, K. Hammarlund, G. Lemonis,

T. Lewis, K. Nielsen, S. Petroncini, M.T. Pontes, P. Schild, B. Sjöström, H. C. Sørensen, T.

Thorpe «Wave energy in Europe: current status and perspectives» artículo, Renewable & Sustaible Energy Review, nº 6, pág 405-431, Febrero 2002.

[15] IDAE « Plan de Energías Renovables (PER) 2011-2020» informe, Ministerio de Industria, Turismo y Comercio, 2011.

Capítulo 3

[1] Fernanda Miguélez Pose, «La energía que viene del mar» libro, Ed. Netbiblo, 2009.

[2] Joao Cruz, «Ocean Wave Energy. Current Status and Future Perspectives» Ed. técnica, Ed.

Springer, 2008.

[3] Godfrey Boyle (Editor) «Renewable Energy: Power for a Sustainable Future. Chapter 8. » libro, Ed. Oxford University Press, 2004.

[4] Antonio F. de O. Falçao «Wave energy utilization: A review of the technologies» artículo de investigación, ELSEVIER, 2010.

[5] Angela Scheufler « Schaeffler: Zu Wasser, zu Lande und nicht in der Luft» publicación web, acceso: Junio 2015.

disponible en: http://www.developmentscout.com/interviews/erneuerbare-energien/2083-

schaeffler-zu-wasser-zu-lande-und-nicht-in-der-der-luft

[6] Pypo Systems « Ocean Wave Energy» publicación web, acceso: Junio 2015.

Disponible en: http://www.piposystems.com/EN/energiaOlas.php#clasificacion-de-los-dispositivos-en-funcion

Page 203: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

173

173

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

[7]

Alternative Energy Tutorials « Wave Energy Devices » publicación web, acceso: Junio 2015.

Disponible en: http://www.alternative-energy-tutorials.com/wave-energy/wave-energy-

devices.html

[8] Science Buddies « Wily Waves: Build an Oscillating Water Column to Extract Energy from

Ocean Waves» publicación web, acceso: Junio 2015.

Disponible en: www.sciencebuddies.org/science-fair-

projects/project_ideas/Energy_p037.shtml?from=Blog#background

[9] Wanderlustmind « World’s First Wave Farm (Portugal)» publicación web, acceso: Junio 2015.

Disponible en: wanderlustmind.com/2008/10/31/world%E2%80%99s-first-wave-farm-

portugal/

[10] Ente Vasco de la Energía « La Energía del mar » publicación web, acceso: Junio 2015.

Disponible en: www2.eve.es/web/Jovenes/Infografias/La-energia-del-mar/La-Energia-del-

mar-A.aspx

[11] Kresala « Pelamis Wave Power» publicación web, acceso: Junio 2015.

Disponible en: kresalaenergia.wordpress.com/2012/01/26/pelamis-wave-power/

[12] Ocean Power Technologies « Power Bouy» publicación web, acceso: Junio 2015.

Disponible en: www.oceanpowertechnologies.com/powerbuoy/

[13] A. Tai « Design of a Point Absorber Type wave energy conversion device» publicación web,

acceso: Junio 2015.

Disponible en: homepages.cae.wisc.edu/~chinwu/CEE514_Coastal_Engineering/ 2008_Students_web /Angus/aquabuoy.JPG

[14] Additive Manufacturing « The Fibreglass Company » publicación web, acceso: Junio 2015.

Disponible en: csmres.co.uk/cs.public.upd/article-images/wave-converter-67453.jpg

[15] Aquamarine Power « Oyster» publicación web, acceso: Junio 2015.

Disponible en: www.aquamarinepower.com

[16] The Renewable Energy Website « Oyster Wave Power» publicación web, acceso: Junio 2015.

Disponible en http://www.reuk.co.uk/Oyster-Wave-Power.htm

[17] HEMPEL « Hempel firma acuerdo a fin de asociarse con AW Energy» publicación web, acceso: Junio 2015.

Disponible en: http://www.america-latina.hempel.com/es-ar/about-hempel/news/2012/hempel-

Page 204: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Referencias

174

174

firma-acuerdo-a-fin-de-asociarse-con-aw-energy

[18] Langlee Wave Power AS « Home» publicación web, acceso: Junio 2015.

Disponible en: www.langleewavepower.com

[19] B. Coxworth « New wave of ocean energy to be trialed off the coast of Australia » publicación web, acceso: Junio 2015.

Disponible en:www.gizmag.com/biopower-biowave-kelp-wave-power/20733/

[20] Colegio de Ingenieros de Caminos, Canales y Puertos del País Vasco « Implantación de la

Central de Oleaje» publicación web, acceso: Junio 2015.

Disponible en: www.caminospaisvasco.com/Profesion/Obras/central-oleaje-mutriku/central-oleaje

[21] Oceanlinx « Greenwave» publicación web, acceso: Junio 2015.

Disponible en: www.oceanlinx.com/technology/products/greenwave

[22] Heng Zhang «Ocean Electric Energy Extraction Opportunities» tesis, Universidad de Oregón,

2003.

[23] Wikipedia, versión italiana « Turbina Wells» publicación web, acceso: Junio 2015.

Disponible en: http:// it.wikipedia.org/wiki/Turbina_Wells

[24] Wikipedia, versión inglesa « Wave Dragon» publicación web, acceso: Junio 2015.

Disponible en: http://en.wikipedia.org/wiki/Wave_Dragon

[25] Bluebird Marine Systems Ltd « Wave Energy» publicación web, acceso: Junio 2015.

Disponible en: www.bluebird-electric.net/wave_power_energy_generation.htm

[26] Aw Energy Ltd « WaveRoller» publicación web, acceso: Junio 2015.

Disponible en: aw-energy.com

[27] Murdoch University « Wave» publicación web, acceso: Junio 2015.

Disponible en: www.see.murdoch.edu.au/resources/info/Tech/wave/

[28] L'énergie des vagues « Searev» publicación web, acceso: Junio 2015.

Disponible en: http://wavepower.ek.la/searev-p539233

Page 205: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

175

175

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

[29] J. Khan, G. Bhuyan and A. Moshref « Potential Opportunities and Differences Associated with

Integration of Ocean Wave and Marine Current Energy Plants in Comparison to Wind Energy»

informe técnico , IEA-OES, 2009.

[30] M. Rodella « Energia ondomotrice» publicación web, acceso: Junio 2015.

Disponible en: http://marcorodella.mokor.net/?p=106 IEA-OES

Capítulo 4 [1] J.C. Nieto Borge, «El estudio del oleaje, su influencia en el conocimiento del clima y en las

actividades humanas relacionadas con el mar» revista online, www.madrimasd.org, acceso

Abril 2015.

[2] UPCommons, «Anexo I. Teoría de olas» apuntes, OWC, Universidad Politécnica de Cataluña.

[3] P. Fernández Díez «Energía de las olas» libro, Departamento Eléctrica y Energética,

Universidad de Cantabria.

[4] L. S. Hanson «Coastal Geology» publicación web, Departamento de Ciencias Geológicas,

Salem State College, acceso: Junio 2015.

Disponible en: www.salemstate.edu/~lhanson/gls214/gls214_waves.html

[5] J. M. Medina Villaverde «Ingeniería Marítima y costera. Unidad 01-Oscilaciones del mar»,

apuntes, Universidad Europea de Madrid, 2009.

[6] D. E. A. Montoya Andrade «Modelado y Control de centrales undimotrices con accionamiento directo mediante generador lineal ante oleaje irregular» tesis doctoral, Universidad de Sevilla,

Marzo 2014.

Capítulo 5

[1] Antonio Creus Solé, «Neumática e Hidráulica» Edición técnica, Ed. Marcombo, 2007.

[2] G. Aragón González, A. Canales Palma, A. León Galicia, «Introducción a la Potencia Fluida»

libro, Ed. Reverte, 2014.

[3] HYDAC Technology GmbH «Tecnología en acumuladores HYDAC» catálogo, 2014.

[4] Tobul Accumulator «The pressure is always on» catálogo, 2013.

[5] B. Trinkel « CHAPTER 16: Accumulators» publicación web, acceso: Junio 2015.

Disponible en: http://hydraulicspneumatics.com/other-technologies/chapter-16-

accumulators?page=1

Page 206: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

Referencias

176

176

[6] ISO 1219-1:2006 «Fluid power systems and components-Graphic symbols and circuits

diagrams. Part 1: Graphic symbols for conventional use and data-processing applications»,

norma técnica.

[7]

ISO 1219-2:1995 «Fluid power systems and components-Graphic symbols and circuits

diagrams. Part 2: Circuit diagrams», norma técnica.

[8] B. Trinkel «Fluid Power eBook - Fluid Power Basic» ebook, Ed. by R. Schneider, 2007.

[9] Valvias « Conceptos básicos » guía online, acceso: Junio 2015.

Disponible en: http://www.valvias.com/

[10] Boch Rexroth « Wave Energy Converters » catálogo en línea, acceso: Junio 2015.

Disponible en: http://www.boschrexroth.com/en/xc/industries/renewable-energies/ocean-energy-systems/applications/wave-energyconverters/

[11] Jørgen Hals, Reza Taghipour and Torgeir Moan «Dynamics of a force-compensated two-body

wave energy converter in heave with hydraulic power take-off subject to phase control», artículo

científico, 2007.

[12] Bacelli, G., Gilloteaux, J.C., and Ringwood, J. «State space model of a hydraulic power take off

unit for wave energy conversion employing bond graphs», artículo científico, 2008.

[13] The MathWorks, Inc. «SimHydraulics® User’s Guide», manual de uso, 2014.

[14] The MathWorks, Inc. «SimPowerSystems™ User’s Guide», manual de uso, 2014.

[15] Linsingen, I. von. « Fundamentos de Sistemas Hidráulicos » libro, 2008.

[16] John S. Cundiff. « Fluid Power Circuits and Controls » libro, Ed. CRC Press, 2002.

[17] Joao Cruz « Ocean Wave Energy, Current Status and Future Perspectives » libro, Ed. Springer, 2008.

[18] F. Gómez « Tutorial sobre diodos» página web, acceso: Junio 2015.

Disponible en: http:// arantxa.ii.uam.es / ~labweb /electronica/tutorialdiodo.html

Page 207: Proyecto Fin de Carrera Ingeniería Industrialbibing.us.es/proyectos/abreproy/5537/fichero/PFC_completo.pdf · de válvulas direccionales mejora la eficiencia del PTO, en primera

177

177

Generación undimotriz mediante absorbedores puntuales con sistemas hidráulicos

de conversión de potencia.

Capítulo 6

[1] J. Fraile Mora « Máquinas eléctricas » libro, 5º Ed. Mc Graw-Hill, 2003.

[2] J. Sanz Feito « Máquinas eléctricas » libro, Ed. Pearson, 2002.

[3] P.C. Krause, O. Wasynczuk, S.D. Sudhoff «Analysis of Electric Machinery and Drive Systems»

libro, IEEE. 2002.

[4] S. J. Chapman «Máquinas eléctricas» libro, 3ª Ed. Mc GrawHill, 2000.

[5] J.M. Maza Ortega, M. Burgos Payán «Máquinas eléctricas» apuntes de clase, 4º Ing. Industrial, 2013.

[6] Gerencia Regional de Distribución y Servicios «Especificación Técnica: Transformadores de

distribución convencionales para instalación aérea o apoyado a nivel de superficie » edición

técnica, Enersis-Endesa, 2009.

[7] Hydro-Québec Research Institute «SimPowerSystems 5» manual de usuario, The MathWorks,

Inc, Marzo 2010.

[8] Faraday Blog « Pruebas al vacío con un transformador» publicación web, acceso: Junio 2015.

Disponible en: http://wwmfaraday.blogspot.com.es/2010/05/pruebas-al-vacio-con-un-transformador.html

[9] Museu das Comunicações de Macau « Transformador » publicación web, acceso: Junio 2015.

Disponible en: macao.communications .museum/por/exhibition /secondfloor /moreinfo/2_4_2 _

Transformer. html

Capítulo 7

[1] The MathWorks, Inc « Ayuda de Simulink-Simscape » software, 2012.

[2] The MathWorks, Inc « Ayuda de Simulink-SimPower Systems- Synchronous Machine» software,

2012.

[3] A. Casson « First U.S. Wave Energy Set for Oregon Coast» publicación web, acceso: Junio

2015.

Disponible en: http://www.motherearthnews.com/renewable-energy/other-renewables/first-us-

wave-energy-zwfz0115zrob.aspx

[4] WikiEnergy « Parque Eólico» publicación web, acceso: Junio 2015.

Disponible en: http://wikienergy.wikispaces.com/Parque+e%C3%B3lico