Proteomics analysis: Basics and Applications

48
Proteomic Analysis: Proteomic Analysis: Basics and Applications Basics and Applications Ignasi Forné February 14, 2013

Transcript of Proteomics analysis: Basics and Applications

Page 1: Proteomics analysis: Basics and Applications

Proteomic Analysis:Proteomic Analysis: 

Basics and ApplicationsBasics and Applications

Ignasi Forné

February 14, 2013

Page 2: Proteomics analysis: Basics and Applications

Introduction

GenomicsGenomics

Page 3: Proteomics analysis: Basics and Applications

Introduction

TranscriptomicsTranscriptomics

Page 4: Proteomics analysis: Basics and Applications

Introduction

ProteomicsProteomics

Page 5: Proteomics analysis: Basics and Applications

Introduction

Genomics Transcriptomics ProteomicsGenomics Transcriptomics Proteomics

Location, Time, Interaction partners, PTMs, Dynamics, Turnover

Adapted from Hein et al, Handbook of System biology 2013

Page 6: Proteomics analysis: Basics and Applications

Proteomics: Basics

FractionationEnrichment

FractionationEnrichment

Cells/Tissue Proteins Peptides

Page 7: Proteomics analysis: Basics and Applications

Proteomics: Basics

FractionationEnrichment

FractionationEnrichment

Cells/Tissue Proteins Peptides

C18‐HPLC nESI

Mass Spectrometer (m/z)

Time

Page 8: Proteomics analysis: Basics and Applications

Proteomics: Basics

FractionationEnrichment

FractionationEnrichment

Cells/Tissue Proteins Peptides

C18‐HPLC nESI

Mass Spectrometer (m/z)

Time

Page 9: Proteomics analysis: Basics and Applications

Proteomics: Basics

FractionationEnrichment

FractionationEnrichment

Cells/Tissue Proteins Peptides

nESIC18‐HPLC

Mass Spectrometer (m/z)

Time

Page 10: Proteomics analysis: Basics and Applications

Proteomics: Basics

DDAnESIC18‐HPLCFull MS

MS2 top 1

MS2 top 2

MS2 top 3MS2 p

MS2 ....

MS2 top n-1

MS2 top nMass Spectrometer (m/z)

TimeMS

Time

Full MS

MS2 MS2 MS2 MS2

T: FTMS + p NSI Full ms [300.00-2000.00]

80

90

100472.7700

p [ ]

70

80

90

100

ce

472.7700_ _ _

F: ITMS + c NSI d w Full ms2 [email protected]

90

100575.30

428.25

top 2 top 3 top ntop 1

50

60

70

ve A

bund

ance

944.5325513.2991

769 445330

40

50

60

Rel

ativ

e A

bund

anc

473.2710

50

60

70

80

Abu

ndan

ce20

30

40

Rel

ativ 769.4453

691.3953

1046.2464472 473 474

/

0

10

20 473.7723

474.2738471.8120472.3233

10

20

30

40

Rel

ativ

e

703.36517.17

343.35242.05232.18 713.30686 31

400 600 800 1000 1200 1400 1600 1800 2000m/z

0

10 1381.78261106.55811844.3618

1537.88721306.7396 1890.9115 200 400 600 800m/z

0

0 713.30686.31873.53

Time

Page 11: Proteomics analysis: Basics and Applications

Proteomics: Basics

DDAnESIC18‐HPLCFull MS

MS2 top 1

MS2 top 2

MS2 top 3MS2 p

MS2 ....

MS2 top n-1

MS2 top nMass Spectrometer (m/z)

TimeMS

Time

Full MS

MS2 MS2 MS2 MS2

T: FTMS + p NSI Full ms [300.00-2000.00]

80

90

100472.7700 top 2 top 3 top ntop 1

F: ITMS + c NSI d w Full ms2 [email protected]

90

1001108.53

70

80

90

100

e

944.5324

50

60

70

ve A

bund

ance

944.5325513.2991

769 4453 50

60

70

80

Abu

ndan

ce

810.08

761.14

30

40

50

60

70

Rel

ativ

e A

bund

anc

945.5353

945.0824

944.2667

20

30

40

Rel

ativ 769.4453

691.3953

1046.2464 10

20

30

40

50

Rel

ativ

e A

621.24

1266.51

353.26

915.90493 13 1469 38

944 945 946 947m/z

0

10

20946.5384

9

945.7967

943.5265

400 600 800 1000 1200 1400 1600 1800 2000m/z

0

10 1381.78261106.55811844.3618

1537.88721306.7396 1890.9115

Time

500 1000 1500m/z

0

10 915.90493.13 1469.381714.74

Page 12: Proteomics analysis: Basics and Applications

Proteomics: Basics

DDAnESIC18‐HPLCFull MS

MS2 top 1

MS2 top 2

MS2 top 3MS2 p

MS2 ....

MS2 top n-1

MS2 top nMass Spectrometer (m/z)

TimeMS

Time

Full MS

MS2 MS2 MS2 MS2

T: FTMS + p NSI Full ms [300.00-2000.00]

80

90

100472.7700 top 2 top 3 top ntop 1

60

70

80

90

100

danc

e

513.2990

513.6329F: ITMS + c NSI d w Full ms2 [email protected]

90

100534.53

598.58

50

60

70

ve A

bund

ance

944.5325513.2991

769 445320

30

40

50

60

Rel

ativ

e A

bund

513.9668

50

60

70

80

Abu

ndan

ce

655 13

20

30

40

Rel

ativ 769.4453

691.3953

1046.2464

513.0 513.5 514.0 514.5m/z

0

10514.3010

514.6352512.7917513.1269

10

20

30

40

Rel

ativ

e 655.13

449.42

230.02 717.35343 04

400 600 800 1000 1200 1400 1600 1800 2000m/z

0

10 1381.78261106.55811844.3618

1537.88721306.7396 1890.9115

Time

200 400 600 800 1000m/z

0

10 343.04825.52 926.25 1050.54

Page 13: Proteomics analysis: Basics and Applications

Proteomics: Basics

DDAnESIC18‐HPLCFull MS

MS2 top 1

MS2 top 2

MS2 top 3MS2 p

MS2 ....

MS2 top n-1

MS2 top nMass Spectrometer (m/z)

TimeMS

Time

DDA Video

Page 14: Proteomics analysis: Basics and Applications

Proteomics: Basics

Peptide charge and mass

p [ ](M+2H)2+ The charge

p g

90

100472.7700 (m2-m1)/z= 0.5 z=2

[m2-m1 = 1]

70

80

ance

z=2 m= M+2H+

0

50

60

ve A

bund

a

473.2710The mass

m/z= (M+2H+)/2

20

30

40

Rel

ativ m/z= (M+2H+)/2

m/z=472.7700

H+ =1 0073

0

10

20 473.7723

474.2738471.8120472.3233

H =1.0073

M= 943 5254472 473 474

/

0

m/z

M 943.5254

Page 15: Proteomics analysis: Basics and Applications

Proteomics: Basics

_ _ __ _ _F: ITMS + c NSI d w Full ms2 [email protected]

100575.30

428.25

80

90

60

70

unda

nce

40

50

lativ

e A

bu

20

30Rel 703.36

517.17343.35242.05

0

10 232.18 713.30686.31873.53

200 400 600 800m/z

Page 16: Proteomics analysis: Basics and Applications

Proteomics: Basics

y5

danc

e

y4

y5

lative

Abun

d

y2

y3

y4

y

y7b3

b

Rel y2 y6

b2

b4b5

b6

b7

m/z

Page 17: Proteomics analysis: Basics and Applications

Proteomics: Basics

Ser Ile Val Lys

Gly Val Met Glu

y5

danc

e

y4

y5

lative

Abun

d

y2

y3

y4

y

y7b3

b

Rel y2 y6

b2

b4b5

b6

b7

m/z

Page 18: Proteomics analysis: Basics and Applications

Proteomics: Basics

Ser Ile Val Lys

Gly Val Met Glu

danc

e

Ile

Met Val

GluValGly Ser

IleValGly Ser

Met ValIleValGly Ser

lative

Abun

d

b3

bGly Ser

ValGly SerValGly Ser

MetIleValGly Ser

Rel

b2

b4b5

b6

b7

Gly

m/z

Page 19: Proteomics analysis: Basics and Applications

Proteomics: Basics

Ser Ile Val Lys

Gly Val Met Glu

Ile Met Val Glu Lys

Ser

Val

Met

Gl L

Val Glu Lys Val Ile Met Val Glu Lys

danc

e

y4

y5

Val

Glu

Val

Lys

Glu Lys Ile Met Val Glu Lys

lative

Abun

d

y2

y3

y4

y

y7

Rel y2 y6

m/z

Page 20: Proteomics analysis: Basics and Applications

Proteomics: Basics

Ser Ile Val Lys

Gly Val Met Glu

y5

danc

e

y4

y5

Ile

lative

Abun

d

y2

y3

y4

y

y7b3

b

SerVal

Met

Val

Rel y2 y6

b2

b4b5

b6

b7

MetIle

ValGluSer

m/z

Page 21: Proteomics analysis: Basics and Applications

Proteomics: Basics

DDAnESIC18‐HPLCFull MS

MS2 top 1

MS2 top 2

MS2 top 3MS2 p

MS2 ....

MS2 top n-1

MS2 top nMass Spectrometer (m/z)

TimeMS

Time

The ChargeThe Mass of the Peptide 

The Masses of the Fragments

Page 22: Proteomics analysis: Basics and Applications

Proteomics: Basics

DDAnESIC18‐HPLCFull MS

MS2 top 1

MS2 top 2

MS2 top 3MS2 p

MS2 ....

MS2 top n-1

MS2 top nMass Spectrometer (m/z)

TimeMS

Time

Peptide identification Protein identification

Rel

ativ

e Ab

unda

nce Sequence

Database Search

m/z

R Search

Score Calculation

Target-Decoy-based

FDR th h ldiPeptide to protein mapping

Adapted from Hein et al, Handbook of System biology 2013

FDR thresholdingFDR thresholding

Page 23: Proteomics analysis: Basics and Applications

Proteomics: Basics

Peptide QuantificationnESIC18‐HPLCPeptide Quantification

p [ ]

70

80

90

100

ance

472.7700

Intensity Mass Spectrometer (m/z)0

10

20

30

40

50

60

Rel

ativ

e A

bund

a

473.2710

473.7723

474.2738471.8120472.3233

Peptide 1 L Sample A

Intensity Mass Spectrometer (m/z)472 473 474

/

0

Time

m/z

Page 24: Proteomics analysis: Basics and Applications

Proteomics: Basics

Peptide QuantificationPeptide Quantification

IntensityIntensity

Peptide 1 L Sample A

Time

m/z

Page 25: Proteomics analysis: Basics and Applications

Proteomics: Basics

Peptide Quantification

Label Free(across runs)

Peptide Quantification

Intensity

( )

Peptide 1 L Sample B

Intensity

Peptide 1 L Sample A

Time

Peptide 1 H Sample Brun 2run 2

Isotopic Labelling(SILAC Dimethyl

run 1MS2 Reporter Ions

m/z

(SILAC, Dimethyl, Heavy peptides)

Page 26: Proteomics analysis: Basics and Applications

Proteomics: Basics

Ong et al, Nat Chem Biol 2005

Page 27: Proteomics analysis: Basics and Applications

Proteomics: Basics

de Godoy et al, Nature 2008

Page 28: Proteomics analysis: Basics and Applications

Proteomics: Basics

In depth analysisIn depth analysis

Michalski et al, J Proteome Res 2011Cox et al, Ann Rev Biochemistry 2011

Page 29: Proteomics analysis: Basics and Applications

Proteomics: Applications

Expression Proteomics

WT WT+KO Protein Identification 

Lys

In‐gel digestion

KO

LC‐MSMS

Quantification SILAC

PINK1 KO

Lys +8

SILAC

2

1

1.5

se

Keratin

BSA

WT > KO

0

0.5

-2 -1.5 -1 -0.5 0 0.5 1 1.5

g 10

Rat

io H

/L R

ever

s

Serie1

-1

-0.5

log

-1.5

log 10 Ratio H/L Forward

KO> WT

Schreiner et al, Mol Biol Cell 2012

Page 30: Proteomics analysis: Basics and Applications

Proteomics: Applications

Interactomics

Protein Identification 

Arg, Lys

Protein Extract 1

‐/+P

Quantification SILAC

Arg +10, Lys +8

Protein Extract 2

P

In‐gel digestion LC‐MSMS

SILACdigestion

2

Proteins2

ProteinsINTERACTORS

0 5

1

1.5

erse

Proteins confirmed in both SILAC

1 and 6

(SIL

AC 6

)

0 5

1

1.5

erse

Proteins confirmed in both SILAC

1 and 6

(SIL

AC 6

)

INTERACTORS

-0.5

0

0.5

-1.5 -1.25 -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 1.25 1.5

og 1

0 R

atio

H/L

Rev

e

Serie1

-0.5

0

0.5

-1.5 -1.25 -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 1.25 1.5

og 1

0 R

atio

H/L

Rev

e

Serie1

-1.5

-1

lo

-1.5

-1

lo

-2

log 10 Ratio H/L Forward (SILAC 1)-2

log 10 Ratio H/L Forward (SILAC 1)

Page 31: Proteomics analysis: Basics and Applications

Proteomics: Applications

PTM Analysis

GG‐K Identification 

GGUb Ligase 

QuantificationIn‐gel digestion LC‐MSMS

GG

GG

DCC complexGG

Villa et al, Mol Cell 2012

Page 32: Proteomics analysis: Basics and Applications

Proteomics: Applications

PTM Analysis

ControlP

Protein Extract 

P‐site Identification 

+ LC‐MSMSPhosphopeptide enrichment 

PIn‐solutiondigestion

P

l

Quantification Labelfree

Protein Extract  P

P

P

P

Stimulus P

Ac‐K

Identification AcProtein Extract

AcAc

Quantification 

AcExtract 

Protein Extract

In‐solutiondigestion

Ac

LC‐MSMSAcetylpeptide enrichment 

LabelfreeExtract 

Ac

Ac

Page 33: Proteomics analysis: Basics and Applications

Proteomics: Missing values

Proteome

run 1 run 2 run 3 run 4

1

Time Course

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

5

Protein

10

...

Page 34: Proteomics analysis: Basics and Applications

Proteomics

Nature Methods: Method of the Year 2012

Page 35: Proteomics analysis: Basics and Applications

Proteomics: Targeted Analysis

Proteome

run 1 run 2 run 3 run 4

Ti C

1

Time Course

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

5

Protein

10

...

Page 36: Proteomics analysis: Basics and Applications

Proteomics: Targeted Analysis

Ser Ile Val Lys

Gly Val Met Glu

y5

danc

e

y4

y5

lative

Abun

d

y2

y3

y4

y

y7b3

b

Rel y2 y6

b2

b4b5

b6

b7

m/z

Page 37: Proteomics analysis: Basics and Applications

Proteomics: Targeted Analysis

Ser Ile Val Lys

Gly Val Met Glu

Ile Met Val Glu Lys

danc

e

Val

Met

Gl L

Val Glu Lys

y4

y5

lative

Abun

d Val Glu Lys

y3

y4

Rel

m/z

Page 38: Proteomics analysis: Basics and Applications

Proteomics: Targeted Analysis

p [ ]472 7700

ce

Met

Ile

Val Glu Lys

Met Val Glu Lys

y580

90

100472.7700

ve Ab

unda

nc

Val Glu Lys

y3

y4

40

50

60

70

ve A

bund

ance

473.2710

Relat

iv

10

20

30

40

Rel

ativ

473.7723

472 3233

472 473 474/

0

10474.2738471.8120

472.3233

m/z

Picotti et al, Nat Methods 2012SRM Video

Page 39: Proteomics analysis: Basics and Applications

Proteomics: Targeted Analysis

Gallien et al, J Mass Spectrometry 2011

Page 40: Proteomics analysis: Basics and Applications

Proteomics: Targeted Analysis

Picotti et al, Cell 2009

Page 41: Proteomics analysis: Basics and Applications

Proteomics: Targeted Analysis

Picotti et al, Cell 2009

Page 42: Proteomics analysis: Basics and Applications

Structural Proteomics

Hein et al, Handbook of System biology 2013

Page 43: Proteomics analysis: Basics and Applications

Structural Proteomics

Examples

Herzog et al Science 2012

Page 44: Proteomics analysis: Basics and Applications

Summary

• MS‐based Proteomics:

• Identification

Q ifi i• Quantification

• Shotgun/DiscoveryShotgun/Discovery

• Targeted

• Structural Proteomics and Interactomics

Page 45: Proteomics analysis: Basics and Applications

Thanks!!

Prof. Axel ImhofAnd the Colleagues at the Imhof‘s and the ZfP 

(Molecular Biology Dept. Biomedical Center‐LMU)

Page 46: Proteomics analysis: Basics and Applications

Questions??

Page 47: Proteomics analysis: Basics and Applications

Proteomic Analysis:Proteomic Analysis: 

Basics and ApplicationsBasics and Applications

Ignasi Forné

February 14, 2013

Page 48: Proteomics analysis: Basics and Applications