Protein Mass Spectrometry (Proteomics)Pathway Analysis Protein Profile Analysis ... 5GGK 8GLGK...

96
Protein Mass Spectrometry (Proteomics) Liwen Zhang Mass Spectrometry and Proteomics Facility The Ohio State University Summer Workshop

Transcript of Protein Mass Spectrometry (Proteomics)Pathway Analysis Protein Profile Analysis ... 5GGK 8GLGK...

  • Protein Mass Spectrometry(Proteomics)

    Liwen ZhangMass Spectrometry and Proteomics Facility

    The Ohio State University

    Summer Workshop

  • Proteomics:Proteome=Protein + Genomethe large-scale study of proteins, particularly their structures and functions.

    Why are proteins important:•The major elements of most cellular structures•Perform most cellular functions•Targets of drugs/toxicants

  • What Can Proteomics Do

    Protein(s) identification

    PTM Identification

    Protein CrosslinkIdentification

    Drug Binding SiteIdentification

    Pathway AnalysisProtein Profile Analysis

    Protein Interaction Analysis

  • Traditional Methods for Proteome Research

    SDS-PAGEseparates based on molecular weight and/or isoelectric point10 fmol - > 10 pmol sensitivityTracks protein expression patterns

    Protein SequencingEdman degradation or internal sequence analysis

    Immunological MethodsWestern Blots

    SDS-PAGE alone can track the appearance, disappearance or molecular weight shifts of proteins, but can not ID the protein or measure the molecular weight with any accuracy

    Edman degradation requires a large amount of protein and does not work on N-terminal blocked proteins

    Western blotting is presumptive, requires the availability of suitable antibodies and have limited confidence in the ID related to the specificity of the antibody.

  • Proteome Research by Mass Spectrometry

    Measure M.W. of the protein/peptideSequence amino acid sequence of protein/peptides

    High throughputSensitivityAccuracySpecificity

    (M+2H)+2

    M A S S Sp P E C K

    (M+2H)+2

    M A S S Sp P E C K

  • Protein Chemistry

    MassSpectrometry

    Computing (+ Bioinformatics)

    Proteomics by Mass Spectrometry

    Protein ID(s)

    PTM(s)

    Quantitation

  • Protein Chemistry

    •Sample purification

    Protein

    fractions digest

    peptides

    •Sample isolation/clean-up

  • MassSpectrometry

    All types of hardware used in proteomics

    ESI

    MALDI

    FT ICR

    Ion Trap LTQOrbitrapamaZon

    TOF UltraFlexmaXis

    Quandrupole Triple-Quad

  • Computing (+ Bioinformatics)

  • Molecular weight measurement of the protein/peptideProtein Identification/Confirmation

    Protein Identification/PTM Investigation�Global Digestion/LC-MSMS/Bioinformatics�Fractionation/Digestion/LC-MSMS/Bioinformatics

    Quantitative Proteomics�Gel-Based Technique

    –- DIGE

    �Non Gel-Based Techniques–-Isotopic Labeling Techniques:

    ITraq/SILAC/18O, 15N. 2H Labeling–-Lable Free Quantitation:

    Spectra Counting/Peak Area/EmPAI

    MALDI Imaging

    What Can Mass Spectrometry Do for Proteomics

  • Measure proteinPositives:fast experiment, observe changes in protein massNegatives:not good for protein id due to resolution & PTMs, requires clean sample

    Measure peptidesPositives:fast experiment, identify proteins & PTMsNegatives:not good for mixtures of proteins, confidence in identification not ideal

    Measure fragmentsPositives:identify protein & PTMs, high result confidence.Negatives:longer instrument time, longer database search

    TOP DOWN Peptide Fingerprinting Middle DownBottom UpMS/MS

    ENZYME

    MS/MS

  • 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000m/z0

    100

    %

    A15A16

    A17

    A18

    A19

    A20A21

    A14A13

    A12

    A11

    A10

    10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 20000mass74

    100

    %

    A

    m/z deconvolutesto16952

    (M+H)+

    (M+2H)+2

    15000100005000 m/z

    16950

    MALDI of Myoglobin

    Electrospray of Myoglobin

    GLSDGEWQQVLNVWGKVEADIAGHGQEVLIRLFTGHPETLEKFDKFKHLKTEAEMKASEDLKKHGTVVLTALGGILKKGHHEAELKPLAQSHATKHKIPIKYLEFISDAIIHVLHSKHPGDFGADAQGAMTKALELFRNDIAAKYKELGFQG

    Sequence of Myoglobin

    MW = 16951

    Molecular Weight Measurement of the Protein

  • Protein Identification by Top Down MS/MS

    m/z750730710690670650630610590570550

    c17+84

    c26+70

    c26+112

    c12+42

    c22+112

    c12+42

    c13+42

    c25+112

    c23+112

    c40+70

    c40+112

    C24+70

    c24+112

    c7+42

    c15+42

    c37+70c55+112

    c37+140

    c37+112

    c38+112

    c26+70

    c26+112

    c52+70

    c52+112

    c54+70

    c54+112

    c18+84

    z35+14

    z35+56

    z12

    c59+70c59+112

    z20

    C60+112

    m/z750730710690670650630610590570550

    c17+84

    c26+70

    c26+112

    c12+42

    c22+112

    c12+42

    c13+42

    c25+112

    c23+112

    c40+70

    c40+112

    C24+70

    c24+112

    c7+42

    c15+42

    c37+70c55+112

    c37+140

    c37+112

    c38+112

    c26+70

    c26+112

    c52+70

    c52+112

    c54+70

    c54+112

    c18+84

    z35+14

    z35+56

    z12

    c59+70c59+112

    z20

    C60+112

    1000900800700600 780770760750

    m/z

    +1Ac + 2Me

    +1 Ac+ 4Ac

    + 5Ac

    + 2Ac + 2Me

    Parents ions (750 - 770, 15+) 758.0864 15+

    754.7814 15+

    + 4Ac

    - 15+15+

    1000900800700600 780770760750

    m/z

    +1Ac + 2Me

    +1 Ac+ 4Ac

    + 5Ac

    + 2Ac + 2Me

    Parents ions (750 - 770, 15+) 758.0864 15+

    754.7814 15+

    + 4Ac

    - 15+15+

    ECD MS/MS

    m/z1000990980970960950940930920910900

    z32

    z48

    z64

    z49+14

    z9

    z65

    z49z66 z25+16

    z50

    z34

    z67

    z76

    z42

    z42+14

    z59

    z51

    z68

    z43

    z78z61 z79

    z62

    z27z75

    m/z1000990980970960950940930920910900

    z32

    z48

    z64

    z49+14

    z9

    z65

    z49z66 z25+16

    z50

    z34

    z67

    z76

    z42

    z42+14

    z59

    z51

    z68

    z43

    z78z61 z79

    z62

    z27z75

    Histone H4

  • N-AGRGK5GGK8GLGK12GGAK16RHRK20VLRDNIQGIT H4Ac Ac Ac Ac Ac

    Me Me

    Ac Ac Ac

    Known Modification

    Modification Detected

    Protein Identification by Top Down MS/MS

  • Middle Down

    Why Middle Down:simplifies the complex mixtures offered by bottom up strategieswhile avoiding the diminished performance of top down experiments

    GluC Cleavage

    GluC Cleavage GluC Cleavage

    GluC Cleavage

    GluC Cleavage GluC Cleavage GluC Cleavage

    GluC Cleavage

  • m/z Sequence 924.5149 43ISLSFTTR501050.5439 31APTVHGGAGGAR421078.6255 83LASYLEKVR911090.5375 374LLEGESEGTR3831095.5905 284QGDIHELKR2921108.6374 104ILKWHQQR1111244.5477 51SCPPPGGSWGSGR631360.7141 235EDLIKVLEDMR2451390.6995 92ALEEANMKLESR1031494.8097 410LVLCQVNEIQKHA4221584.9220 246QEYELIIKKKHR2571972.9869 64SSPLLGGNGKATMQNLNDR822277.1279 181TLDNLTIVTTDLEQEVEGMR2002673.2124 1MNSGHSFSQTPSASFHGAGGGWGRPR262790.4785 350QNNEYQVLLGIKTHLEKEITTYR3722833.5088 384EESKSSMKVSATPKIKAITQETINGR4092856.3543 322YSCKLQDMQEIISHYEEELTQLR3442870.3261 258DLDTWYKEQSAAMSQEAASPATVQSR283 3332.6315 293TFQALEIDLQTQYSTKSALENMLSETQSR321 3368.6467 152MAVDDFNLKYENEHSFKKDLEIEVEGLR179  

    Bottom Up

  • Data Analysis for Peptide Mass Mapping

    • Important data– multiple peaks– mass accuracy– confirming information

    (pI, approx. mass, organism, etc.)

    ?MS

    MS Peptide MWFound in Selected

    DatabasesNDALYFPT...SWDLTAL...

    PTDLDVSY...

    protein peptides identify

    rank

  • Cut protein into manageable pieces for the mass spectrometer to analyze.

    mass position peptide sequence

    927.486 161-167 YLYEIAR

    1050.485 588-597 EACFAVEGPK

    1282.703 361-371 HPEYAVSVLLR

    1305.708 402-412 HLVDEPQNLIK

    1439.504 360-371 RHPEYAVSVLLR

    1478.788 421-433 LGEYGFQNALIVR

    1567.735 347-359 DAFLGSFLYEYSR

    1639.931 437-451 KVPQVSTPTLVEVSR

    1667.893 469-482 MPCTEDYLSLILNR

    1823.892 508-523 RPCFSALTPDETYVPK

    2045.021 168-183 RHPYFYAPELLYYANK

    2506.243 469-489 MOXPCTEDYLSLILNRLCVLHEK

    1 MKWVTFISLL LLFSSAYSRG VFRRDTHKSE IAHRFKDLGE EHFKGLVLIA FSQYLQQCPF DEHVKLVNEL71 TEFAKTCVAD ESHAGCEKSL HTLFGDELCK VASLRETYGD MADCCEKQEP ERNECFLSHK DDSPDLPKLK141 PDPNTLCDEF KADEKKFWGK YLYEIARRHP YFYAPELLYY ANKYNGVFQE CCQAEDKGAC LLPKIETMRE211 KVLTSSARQR LRCASIQKFG ERALKAWSVA RLSQKFPKAE FVEVTKLVTD LTKVHKECCH GDLLECADDR281 ADLAKYICDN QDTISSKLKE CCDKPLLEKS HCIAEVEKDA IPENLPPLTA DFAEDKDVCK NYQEAKDAFL351 GSFLYEYSRR HPEYAVSVLL RLAKEYEATL EECCAKDDPH ACYSTVFDKL KHLVDEPQNL IKQNCDQFEK421 LGEYGFQNAL IVRYTRKVPQ VSTPTLVEVS RSLGKVGTRC CTKPESERMP CTEDYLSLIL NRLCVLHEKT491 PVSEKVTKCC TESLVNRRPC FSALTPDETY VPKAFDEKLF TFHADICTLP DTEKQIKKQT ALVELLKHKP561 KATEEQLKTV MENFVAFVDK CCAADDKEAC FAVEGPKLVV STQTALA

    Bovine Albumin

  • mass position peptide sequence

    927.486 161-167 YLYEIAR

    1050.485 588-597 EACFAVEGPK

    1283.703 361-371 HPEYAVSVLLR

    1305.708 402-412 HLVDEPQNLIK

    1439.504 360-371 RHPEYAVSVLLR

    1479.788 421-433 LGEYGFQNALIVR

    1567.735 347-359 DAFLGSFLYEYSR

    1639.931 437-451 KVPQVSTPTLVEVSR

    1667.893 469-482 MPCTEDYLSLILNR

    1823.892 508-523 RPCFSALTPDETYVPK

    2045.021 168-183 RHPYFYAPELLYYANK

    2506.243 469-489 MOXPCTEDYLSLILNRLCVLHEK

    YLY

    EIA

    R

    EAC

    FAVE

    GPK

    HP

    EYA

    VSV

    LLR

    LGE

    YG

    FQN

    ALI

    VR

    RH

    PYFY

    APEL

    LYYA

    NK

    RPC

    FSAL

    TPD

    ETYV

    PK

    Peptide Mass Mapping

  • MKWVTFISLL FLFSSAYSRG VFRRDAHKSE VAHRFKDLGE ENFKALVLIA FAQYLQQCPF EDHVKLVNEV TEFAKTCVAD ESAENCDKSL HTLFGDKLCT VATLRETYGE MADCCAKQEP ERNECFLQHK DDNPNLPRLV RPEVDVMCTA FHDNEETFLK KYLYEIARRH PYFYAPELLF FAKRYKAAFT ECCQAADKAA CLLPKLDELR DEGKASSAKQ RLKCASLQKF GERAFKAWAV ARLSQRFPKA EFAEVSKLVT DLTKVHTECC HGDLLECADD RADLAKYICE NQDSISSKLK ECCEKPLLEK SHCIAEVEND EMPADLPSLA ADFVESKDVC KNYAEAKDVF LGMFLYEYAR RHPDYSVVLL LRLAKTYETT LEKCCAAADP HECYAKVFDE FKPLVEEPQN LIKQNCELFE QLGEYKFQNA LLVRYTKKVP QVSTPTLVEV SRNLGKVGSK CCKHPEAKRM PCAEDYLSVV LNQLCVLHEK TPVSDRVTKC CTESLVNRRP CFSALEVDET YVPKEFNAET FTFHADICTL SEKERQIKKQ TALVELVKHK PKATKEQLKA VMDDFAAFVE KCCKADDKET CFAEEGKKLV AASQAALGL

    Human Albumin

    m/z Missed Cleavages Sequence

    1013.4244 0 589ETCFAEEGK5971013.5990 0 599LVAASQAALGL6091141.5194 1 589ETCFAEEGKK5981141.6939 1 598KLVAASQAALGL6091149.5759 1 25DAHKSEVAHR341149.6150 0 66LVNEVTEFAK751352.6661 1 497VTKCCTESLVNR5081352.7685 1 427FQNALLVRYTK4371623.7876 0 348DVFLGMFLYEYAR3601623.9581 1 362HPDYSVVLLLRLAK3751898.9952 1 169RHPYFYAPELLFFAK1831898.9952 1 170HPYFYAPELLFFAKR184 

    0

    MS alone CAN NOT distinguish peptides of similar molecular weight.

    post-translational modification.sequence coverage determinations difficult.the identification of more than one protein in a sample impossible.Mass accuracy requirements

  • Mixture of Peptides

    MS Analyzer

    Retention Timea b c

    m/z a

    m/z b

    m/z cCollision induced dissociation

    (CID)

    LC/MS or LC/MSMSPeptides with different m/z

  • Tandem (MS/MS) – Peptide Fragment Analysis

  • # b Seq. y #1 58.0287 G 132 171.1128 L 1362.7515 123 284.1969 L 1249.6674 114 413.2395 E 1136.5834 105 528.2664 D 1007.5408 96 641.3505 L 892.5138 87 698.3719 G 779.4298 78 861.4353 Y 722.4083 69 976.4622 D 559.3450 5

    10 1075.5306 V 444.3180 411 1174.5990 V 345.2496 312 1273.6674 V 246.1812 213 K 147.1128

    GLLEDLGYDVVVK

    CASP4_MOUSECaspase-4OS=Mus musculus

    LC/MSMS

  • MSMS Fragments and Different Fragmentation Technique

    CID: a, b and y ion, loss of H2O, NH3, side-chain PSD: a, b and y ionIRMPD: b and y ion, loss of side-chainECD: c, y and z ionsETD: c, y and z ions

    H2N C CO

    NH

    R1

    HC C

    ONH

    R2

    HC C

    ONH

    Rn-1

    HC C

    ORn

    OH…

    b1 a2 b2 c2 an-1 bn-1 cn-1

    x1 y1 z1xn-2 yn-2 zn-2xn-1 yn-1

    c1

    zn-1

    a1

  • b3b2b1

    y1y2y3

    1598

    14241295

    1166

    1052

    965852

    723

    586529

    401Q G H E L S N E E R

    Sequence Nomenclature for Mass Ladder

    b2‐b1=56Da + R2 b3‐b2=56Da + R2

    y3‐y2=56Da + R2 y2‐y1=56Da + R2

    XX

    Mass=56Da+R

  • 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400m/z

    246.00y2

    345.32y3

    444.29y4

    559.27y5

    722.22y6

    892.36y8

    1007.39y9

    1136.48y10

    1249.63y11

    779.16y7

    283.82b3

    413.06b4

    528.07b5

    641.08b6

    698.27b7

    976.45b9

    1075.51b11

    1174.68b12

    1273.72b13

    861.35b8

    99.32Val

    98.97Val

    114.98Asp

    162.95Tyr

    56.94Gly

    113.20Leu

    115.03Asp

    129.09Glu

    113.19Leu

    99.17Val

    99.06Val

    115.10Asp

    163.08Tyr

    57.19Gly

    113.01Leu

    115.01Asp

    129.24Glu

    99.04Val

    G L L E D L G Y D V V V Kb12b10 b11b7 b9b4 b5b3 b6 b8

    y4 y2y5y6y8y10 y9y11 y7 y3

  • Data Dependent Top5 Method

    Data Dependent Acquisition and Dynamic Exclusion 30143_WT_LEG #14457-14668 RT: 88.19-89.24 AV: 19 NL: 3.22E5T: FTMS + c ESI Full ms [350.00-2000.00]

    400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200m/z

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    60

    65

    70

    75

    80

    85

    90

    95

    100

    Relative Abundance

    743.89

    649.66

    997.60

    736.42

    499.30 729.64

    584.62

    758.15

    562.36 643.41 788.92

    445.12958.96

    601.571063.19

    947.46417.92 1044.181163.58538.31 668.66 876.43683.33

    991.52

    837.38480.61639.64

    912.40817.43

    1007.50

    1193.31

    508.31

    1077.51 1154.23

    724.35

    1

    32

    54

    67

    8

    MSMS

    30143_WT_LEG #14664 RT: 89.25 AV: 1 NL: 1.39E3T: ITMS + c ESI d Full ms2 [email protected] [190.00-2000.00]

    400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200m/z

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    60

    65

    70

    75

    80

    85

    90

    95

    100

    Rel

    ativ

    e A

    bund

    ance

    898.13712.51

    991.16

    962.47776.52

    918.39926.34

    878.32589.17

    638.90560.70

    869.18734.69

    525.26 693.22468.12 766.40 816.38

    850.10660.95 1019.05

    1048.37617.69

    1167.301120.23424.27454.82

    1092.28

    30143_WT_LEG #14306 RT: 87.35 AV: 1 NL: 7.47E2T: ITMS + c ESI d Full ms2 [email protected] [260.00-2000.00]

    400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200m/z

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    60

    65

    70

    75

    80

    85

    90

    95

    100

    Rel

    ativ

    e A

    bund

    ance

    907.18

    945.07624.99

    738.98 850.52950.34

    497.15722.80 767.95 1037.29898.17693.97 1167.831066.54

    963.19833.56468.92 1136.33668.46601.35 1196.351022.35 1101.94418.44 511.27 579.50

    30143_WT_LEG #14360 RT: 87.64 AV: 1 NL: 1.09E3T: ITMS + c ESI d Full ms2 [email protected] [140.00-1660.00]

    400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200m/z

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    60

    65

    70

    75

    80

    85

    90

    95

    100

    Rel

    ativ

    e A

    bund

    ance

    622.91

    679.63

    515.34

    819.15

    557.39

    510.16

    715.31651.39566.39 1001.25

    466.65574.64

    932.45

    540.92409.65 724.31501.05420.13 611.22 809.47 1019.31 1132.30737.84 1100.22793.33 873.75

    30143_WT_LEG #14467 RT: 88.20 AV: 1 NL: 4.03E3T: ITMS + c ESI d Full ms2 [email protected] [190.00-1485.00]

    400 450 500 550 600 650 700 750 800 850 900 950 1000 1050 1100 1150 1200m/z

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    60

    65

    70

    75

    80

    85

    90

    95

    100

    Rel

    ativ

    e A

    bund

    ance

    1002.30

    648.24

    761.20 824.14

    644.32

    874.36711.34

    1158.45

    1097.28727.35 984.16470.06

    442.20 598.03487.98

    693.59805.93580.22509.03 622.06

    562.69 919.63795.91 1193.021080.75868.80 967.13 1118.91424.11 1068.94

    30143_WT_LEG #14359 RT: 87.63 AV: 1 NL: 3.35E2T: ITMS + c ESI d Full ms2 [email protected] [215.00-2000.00]

    400 450 500 550 600 650 700 750 800 850 900m/z

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    60

    65

    70

    75

    80

    85

    90

    95

    100

    Rel

    ativ

    e A

    bund

    ance

    546.11

    762.93 817.42

    417.30 617.37 696.97878.39

    706.20746.46

    660.79

    711.89822.64

    842.66

    489.08 869.10

    641.63 807.75 854.16674.05 725.63

    799.31881.19566.84 599.46540.10

    580.62 886.21526.61

    432.28

    12 3

    45

    MS Cycle: 0.06SLC Peak Width >12S

    Dynamic Exclusion

    Make MSMS for the lower abundant ions possible!!

  • VFGTDMDNSR

    IFDDSDQTK

    LVNLGK

    QAEDVNLLDQMSK

    If all of these peptides belonged to anunknown protein, MS/MS couldpotentially reveal protein identity

    More Peptides IdentifiedIncrease Confidence in ID

  • Data Analysis for MS/MS Method

    ?MS/MS

    MS Peptide MWFound in Selected

    DatabasesNDALYFPT...SWDLTAL...PTDLDVSY...

    protein peptides identify

    rank

    200 400 600 800 1000 1200 1400 1600

    Rel

    ativ

    e In

    tens

    ity

    m/z

    theoretical spectra200 400 600 800 1000 1200 1400 1600

    0

    20000

    40000

    60000

    80000

    100000

    120000

    Rel

    ativ

    e In

    tens

    ity

    m/z

    compare

  • Database SearchingMascot•16 node cluster for high-speed data processing

    Protein sequences are digested and fragmented In Silico which produces an enormous peak list

    Raw MS/MS data is converted to a peak list and compared against the In Silico peak list.

    Critical point of database searching•The enzyme must work properly (no non-specific cleavage and missed cuts)•The mass accuracy limits must be set appropriately•Any modifications must be accounted for (modified cysteine)•The database must contain the protein

  • Mascot Database Search Engine

    20ppm for orbitrap1.5 Da for LTQ

    Enzyme Used

  • MASCOT Results

  • Protein Name

    Protein Mascot Mowse Score

    Protein Mol. Weight

    # of spectra matched# of peptides matched

    The Exponentially Modified Protein Abundance Index (emPAI)

    MASCOT Results

    *

    *

  • Peptide Sequence and MS/MS Information

  • Protein Name

    MASCOT Results

    *

  • Peptide Sequence and Sequence Coverage

  • MASCOT Results

  • Protein Report

  • Post-translational Modifications

    Modification Modified residue Mass Shift (Da)

    Disulphide bond formation C -2.0157Deamidation of Asn and Gln Q/N 0.9840Methylation K/R 14.0157Hydroxylation P 15.9949Oxidation of Met M 15.9949Acetylation K 42.0106Carboxyamidomethylcysteine(iodoacetamide) C 57.0215

    Phosphorylation S/T/Y 79.9663Biotinylation (amide bond to lysine) K 226.0776Nitration Y 44.9851Ubiquitination K 114.0429Oxidation of Cys C 31.9721/47.9847nitrosylation C 28.9902

  • Peptide Modifications

    • Virtually anything that shifts the mass can be determined by MS

    • Using MS/MS allows for identification of the modification AND location

    • You must have an idea of what modification you are looking for

    • First use protein stain to examine various modifications (multiplex analysis)

    • Western analysis VS MS analysis

  • 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600m/z

    712.632+y14

    753.582+b14

    276.20y2

    347.18y3

    446.27y4

    547.27y5

    618.41y6

    717.41y7 774.38

    y8

    911.36y9 1109.47

    y11

    1166.53y12

    1295.49y13

    1423.55y14

    1010.47y10

    357.19b2

    486.30b3

    543.30b4

    642.31b5

    741.36b6

    878.49b7

    935.48b8

    1034.45b9

    1206.44b11

    1305.59b12

    1376.51b13

    1505.59b14

    1105.51b10

    44X K E G V V H G V A T V A E K60

    X=C10H16N2O4 (228.1105 Da)

    Theoretical m/z 826.45432+Observed m/z 826.45732+Mass Error 3.63 ppm

    y4 y2

    b13 b14

    y5

    b12

    y6

    b10 b11

    y8y10 y9

    b7 b9

    y11y12

    b4 b5

    y13

    b3 b6 b8

    y7

    b2

    y3y14

    70.98A

    99.09V

    101.00T

    71.13A

    99.00V

    56.97G

    136.98H

    99.11V

    99.00V

    57.06G

    128.96E

    128.06K

    70.92A

    99.15V

    100.93T

    71.06A

    97.97V

    56.99G

    137.13H

    99.05V

    99.01V

    57.00G

    129.11E

    129.98E

    Mass of X=(M+H)-y14=826.4543*2-1-1423.55=228.35

  • 500 600 700 800 900 1000 1100 1200 1300 1400 1500m/z

    638.892+b8

    638.312+y9 1274.57

    y9

    738.122+b10

    794.642+b11

    795.572+y11

    960.47y7

    573.11b4

    759.32b5

    906.56b6

    1062.49b7

    1276.67b8

    1474.67b10

    186.21Trp

    97.24Phe

    155.93Arg

    214.18(103+111)C-DMPO

    198.00 (97+101)Pro-Thr

    900E E W K W F R C907(DMPO) P T L L911b4 b5 b6 b7 b8 b10 b11

    y11 y9 y7

    Theoretical m/z=859.942+Observed m/z=859.892+

    DMPO=C6H9NO (111.0684 Da)

    DMPO Adduct

  • 300 400 500 600 700 800 900 1000 1100 1200 1300 1400m/z

    1500

    317.28y3

    404.24y4

    503.32y5

    617.36y6

    718.37y7

    817.37y8

    984.39y9

    1083.45y10

    1197.51y11

    1311.59y12

    1426.56y13

    391.12b4

    505.27b5

    619.29b6

    718.37b7

    1484.46b14

    984.39b9

    1085.46b10

    1199.51b11

    1298.46b12

    1385.54b13

    886.36y9*

    1099.56y11*

    1213.70y12*

    886.36b9*

    1101.51b11*

    1200.51b12*

    1287.76b13*

    1386.63b14*

    1457.78b15*

    Ser Val Asn Thr Val

    167.02 (87+80)Ser(PO4)

    Val Asn Asn Asp

    SerValAsnThr Val

    266.02 (87+80+99)Ser(PO4)-ValValAsnAsn

    41T S S D N N V S(PO4)48 V T N V S V A K56bn*=bn-H3PO4yn*=yn-H3PO4m/z=850.542+

    802.432+M-H3PO4

    b13b13*b4 b6 b7 b15*

    b11b11*b5

    y9y9*

    y10 y3y4y5y6y8 y7

    b14b14*

    y11y11*

    y12y12*

    y13

    b10b12b12*

    b9b9*

    Phosphorylation

  • 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400m/z

    241E A F P A Y246(N2O) R Q P P E S L253b3 b4 b7 b8 b11

    y3y4y8y9y10y11

    219.15y2

    348.10y3

    445.22y4

    542.31y5

    670.43y6

    826.20y7

    1034.50y8

    1105.51y9

    1202.57y10

    1349.69y11

    675.552+y11

    348.10b3

    445.22b4

    1105.51b9

    1202.57b10

    880.42b7

    1008.45b8

    1331.59b11

    601.992+b10

    666.502+b11 709.872+

    b12

    Glu Pro Pro Gln208.3 (163+45)

    Tyr(N2O)Arg Ala Pro Phe

    GluPro ProGlnPro

    b9 b10 b12

    y2y6y7 y5

    Measured m/z = 775.612+Theoreticalm/z = 775.372+

    Nitration

  • 400 600 800 1000 1200 1400 1600 1800 2000m/z

    460.24y4

    623.30y5

    736.40y6 823.41

    y7

    910.39y8

    1023.55y9

    1151.56y10

    1280.54y11

    1431.51y121488.48

    y13

    1617.48y14

    1745.66y15

    1858.62y16

    930.162+y16

    1014.182+b19

    979.482+y17

    584.26b6

    713.38b7 770.40

    b8921.28

    b9

    1050.21b10

    1178.34b11

    1291.39b12 1378.34

    b13

    1465.42b14

    1578.48b15

    1741.58b161798.75

    b17

    1913.59b18

    873.542+y15

    E G

    150.88(103+48)C(SO3) E K I S S L Y G D

    EGEKISSLY Q L

    529V G S V L Q E G C(SO3) E K I S S L Y G D L R548y4y5y7y8y9y10y11y12y14

    b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16

    y6y13y15y17 y16

    b17 b18 b19

    150.97(103+48)C(SO3)

    Cysteine Oxidation

  • Generating Peptides containing modified residue --Different Enzymes

    Low population of modifications--Enrichment--Targeted Method

    Modification not stable--Experiment Condition (reducing reagents, enzymes)--Fresh sample

    Modification labile in MS analysis--Neutral Loss Method--Different Fragmentation Method

    Difficulties for PTMs Identification

  • Trypsin K-X and R-X

    Endoprotease Lys-C K-X except when X = P

    Endoprotease Arg-C R-X except when X = P

    Endoprotease Asp-N X-D

    Endoprotease Glu-C E-X except when X = P

    Chymotrypsin L-X, F-X, Y-X and W-X

    Cyanogen Bromide X-M

    Enzymes for Proteome Research

  • 1 MAALKLLSSG LRLGASARSS RGALHKGCVC YFSVSTRHHT KFYTDPVEAV 51 KDIPNGATLL VGGFGLCGIP ENLIGALLKT GVKDLTAVSN NAGVDNFGLG

    101 LLLRSKQIKR MISSYVGENA EFERQFLSGE LEVELTPQGT LAERIRAGGA 151 GVPAFYTSTG YGTLVQEGGS PIKYNKDGSV AIASKPREVR EFNGQHFILE 201 EAITGDFALV KAWKADRAGN VIFRKSARNF NLPMCKAAGT TVVEVEEIVD 251 IGSFAPEDIH IPKIYVHRLI KGEKYEKRIE RLSLRKEGDG KGKSGKPGGD 301 VRERIIKRAA LEFEDGMYAN LGIGIPLLAS NFISPNMTVH LQSENGVLGL 351 GPYPLKDEAD ADLINAGKET VTVLPGASFF SSDESFAMIR GGHVNLTMLG 401 AMQVSKYGDL ANWMIPGKMV KGMGGAMDLV SSSKTKVVVT MEHSAKGNAH 451 KIMEKCTLPL TGKQCVNRII TEKGVFDVDK KNGLTLIELW EGLTVDDIKK 501 STGCDFAVSP NLMPMQQIST

    Tryspin: 309AALEFEDGMYANLGIGIPLLASNFISPNMTVHLQSENGVLGLGPYPLK356Chymotrypsin: 329ASNF332, GluC: 315DGMYANLGIGIPLLASNFISPNMTVHLQSE344

    Phosphorylation

    Using the CORRECT Enzyme

  • Generating Peptides containing modified residue --Different Enzymes

    Low population of modifications--Enrichment--Targeted Method

    Difficulties for PTMs Identification

  • PTM Enrichment Techniques (Start with mg of samples)

    Acetylation: Anti-acetyl lysine polyclonal antibody

    Phosphopeptides: Immobilized Metal Affinity Chromatography (Fe3+)Metal Oxide Affinity Chromatography (TiO2, ZrO2)Reversible Covalent Binding

    (Dunn JD1, Reid GE, Bruening ML, Techniques for phosphopeptide enrichment prior to analysis by mass spectrometry. Mass Spectrom Rev. 2010 Jan-Feb;29(1):29-54.)

    Phospho-Threonine Antibody (P-Thr-Polyclonal)

    Nitration: Anti‐Nitrotyrosine polyclonal antibody

    Ubiquitination: K-ε-GG–specific antibody (enrichment has to be done prior to other treatment on lysine)

    Glycopeptides: Lectin affinity enrichmentCovalent InteractionsChromatographic separation

    Ongay S1, Boichenko A, Govorukhina N, Bischoff R., Glycopeptide enrichment and separation for protein glycosylation analysis., J Sep Sci. 2012 Sep;35(18):2341-72.

    Methylation: Anti-methyl lysine/araginine antibody

  • RT: 10.04 - 89.85

    15 20 25 30 35 40 45 50 55 60 65 70 75 80 85Time (min)

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    1000

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Rel

    ativ

    e A

    bund

    ance

    35.88

    42.9541.90

    49.23

    49.07

    40.05

    45.5136.2769.9828.36

    61.2660.55

    65.79 71.3953.2834.20

    59.1532.0427.80

    61.7524.09 74.1717.6789.7880.23 82.6574.6210.19 14.63

    44.39

    35.70

    65.64 69.7936.07

    42.6641.65 44.57

    39.72

    53.0348.95 61.7528.19 61.2549.11 70.1849.40

    57.3134.12 71.3327.61 65.82

    17.77 74.1723.8680.19 82.5578.61 89.7314.23

    NL:2.47E8Base Peak MS 17625_1_Rerun

    NL:3.98E8Base Peak MS 17625_1_target_1

    Full Scan

    Scan for 479.27302+ (SLVLfGlyTPSR ) and 516.77932+ (SLVLC(CAM)TPSR)

    17625_1_target_1 #1211-2280 RT: 27.51-40.35 AV: 25 NL: 4.96E2T: ITMS + c ESI d Full ms2 [email protected] [120.00-1450.00]

    150 200 250 300 350 400 450 500 550 600 650 700 750 800 850m/z

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    60

    65

    70

    75

    80

    85

    90

    95

    100

    Rel

    ativ

    e A

    bund

    ance

    581.20

    359.28

    470.05

    460.31757.37417.14

    658.29545.37

    413.03601.33

    300.11201.06 670.45403.45286.23173.18 448.88

    640.46255.07 487.34 730.46337.35219.26 511.32 812.38 833.42687.02 782.91

    No MSMS spectrum for 479.29302+

    Targeted MS Scan (for Known Modifications)

    SLVLfGlyTPSR

    99Val

    113Leu

    85fGly

    101Thr

  • Generating Peptides containing modified residue --Different Enzymes

    Low population of modifications--Enrichment--Targeted Method

    Modification not stable--Experiment Condition (reducing reagents, enzymes)--Fresh sample

    Difficulties for PTMs Identification

  • m/z400 600 800 1000 1200 1400 1600250

    Chain A

    Chain B

    185N A C187 G S G Y D F D V F V V R199

    138L V E G C142 L V G G R146

    S

    S

    408.17 465.20 552.31 609.30 772.30 1034.35 1149.39 1248.41 1395.53 1494.50 1593.59

    289.23y3B

    342.33b3B

    501.10y5B

    274.25y2A

    373.31y3A

    520.42y4A

    619.48y5A

    734.51y6A

    1303.64y11A

    1159.62y9A

    1216.57y10A

    1360.66y12A

    996.57y8A

    y2Ay3Ay4Ay5Ay6Ay8Ay10Ay11Ay12A y9A

    V F V D FD Y G S G

    VFVDFDYGSG V

    y3By5B

    b3B

    A

    B

    Adjust Experiment Condition to Preserve Modifications

  • 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400m/z

    194A G R P G M G V O202 G P E T S L208y4y5y7y8y9y10y12

    b3 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14

    y6 y3

    Theoretical m/z =783.40892+, Observed m/z =783.40802+, Mass Error =1.15ppm

    674.472+b13

    285.21b3

    439.23b5

    570.30b6

    627.43b7

    1020.49b10

    726.35b8

    963.39b9

    1117.55b11

    1347.71b13

    1246.54b12

    718.062+b14

    623.822+b12

    154.13 (97+57)P‐G

    130.97M

    57.13G

    98.92V

    237.04O

    101.17T

    57.10G

    97.06P

    128.99E

    320.13y3

    449.05y4

    546.24y5

    603.21y6

    840.38y7

    939.24y8

    996.30y9

    1127.37y10

    1281.45y12

    128.92E

    97.19P

    56.97G

    237.17 O

    98.86V

    57.06G

    131.07M

    154.08 (57+97)G‐P

    O=Pyrrolysine

    Using Different Enzyme to Protect Modifications

  • Generating Peptides containing modified residue --Different Enzymes

    Low population of modifications--Enrichment--Targeted Method

    Modification not stable--Experiment Condition (reducing reagents, enzymes)--Fresh sample

    Modification labile in MS analysis--Neutral Loss Method--Different Fragmentation Method

    Difficulties for PTMs Identification

  • Scan ScanDissociateNeutral Loss Scan

    Phosphopeptides can lose phosphoric acid on CID (Serine, Threonine)

    + Pi(H3PO4)

    98 amu Neutral (M+H)+49 amu Neutral (M+2H)2+

    LDIFpSDFGGLK

    98//32.7

    113

    129

  • Neutral Loss Scan

    Image from http://www.mcponline.org/content/9/3/579/F5.expansion

  • ECD/ETD: Keep the Phosphorylation Intact

    PO3 or H3PO4 groups may leave upon CID activation

    actual amino acid location of PO3 group may not be clear

    Electron Capture Dissociation (ECD) requires an ICR; Electron Transfer Dissociation (ETD) in traps

    • Peptide fragments without loss of phospho group

    Sweet, Anal. Chem. 2006, 78, 7563-7569

  • Leann M. Mikesh et al. Biochimica et Biophysica Acta 1764 (2006) 1811–1822

  • Identification of PTMs:

    High Mass Accuracy

    High Samples Purity

    High Concentration

    Know the Modification (Stability, Mass Shift, possible modification site)

  • Protein Complex Identification(Whole cell lysate, IP Products)

    Clean Sample!!!(Less Salt, No Detergent

    Lipids, DNA Free, Keratin Free)

    Better SeparationMore sensitive Instruments

    On Bead DigestionPre-Fractionation

  • Method Separation based onSeparation done

    using Further steps

    Gel Electrophoresis (1D) Molecular mass

    Gel (which acts like a molecular sieve) and potential

    In-gel digestion of proteins to peptidesLC-MS/MSGel Electrophoresis

    (2D)

    Isoelectric point (pI; IEF) & Molecular mass

    Gel, potential and ampholytes

    Reverse Phase (C8 or C4) chromatography

    Combination of hydrophobicity and molecular weight

    HPLC

    Protein(s) Digest to peptides LC-MS/MS

    Gel Filtration Molecular Weight HPLC

    Ion Exchange Cation or Anion affinity FPLC

    Affinity Chromatography DNA,RNA, Anti-body, peptides etc

    HPLC

    Types of Separation Technologies for Molecules

  • Pre-Fractionation Method

    LC/MSMSLC/LC/MSMS

    High Abundant Protein Depletion1D SDS FractionationOff-gel Fractionation

    SCX Fractionation

  • 1

    2

    3

    4567

    8

    9

    10

    11

    In Gel Digestion

    In Gel Digestion

    In Gel Digestion

    In Gel DigestionIn Gel DigestionIn Gel DigestionIn Gel Digestion

    In Gel Digestion

    In Gel Digestion

    In Gel Digestion

    In Gel Digestion

    Same Volume

    LC/MSMS

    LC/MSMS

    LC/MSMS

    LC/MSMSLC/MSMSLC/MSMSLC/MSMS

    LC/MSMS

    LC/MSMS

    LC/MSMS

    LC/MSMS

    MASCOT Search

    1D SDS PAGE Fractionation LC/MSMS Workflow

    >1800 Proteins identifiedGlobal Digestion:     920 ProteinsSCX‐LC/MSMS:         981 Proteins1D SDS‐LC/MSMS: >1800 Proteins

  • Quantitative ProteomicsQuantitation in proteomics has become a popular area in recent proteomics research with the development of quantitation techniques such as DIGE, SILAC, ICAT, iTRAQ and Label Free.

    •Difference Gel Electrophoresis•Gel based using cy-dye chemistry.

    •Isobaric tag for relative and absolute quantitation – iTRAQ• is a non-gel based technique used to identify and quantify proteins/peptides from different sources in one single experiment by using isotope coded covalent tags that will label the N-terminus and side chain amines of peptides from protein digestions.

    •Stable isotope labeling by amino acids in cell culture – SILAC• is a non-gel based approach for in vivo incorporation of a label into proteins for MS quantitative proteomics. It relies on metabolic incorporation of a given 'light' or 'heavy' form of the amino acid into the proteins.

    •Label Free Quantitation•It has been observed the chromatographic peak areas and number of spectra/peptides observed for a protein in a LC/MS/MS run is correlated with the concentration of that particular protein.

  • DIGE (Difference Gel Electrophoresis)

  • Spot Volume = [spot 1 on treated]/[spot 1 on standard]

    DIGE (Difference Gel Electrophoresis)

  • In Gel Digestion, LC/MSMS, MASCOT

    DIGE (Difference Gel Electrophoresis)

  • high sensitivity

    linearity of the dyes utilized

    straightforward significant reduction of experiment error

    High reproducibility

    Pros and Cons to DIGE

    300 – 500 µg of total protein is required for each biological replicate

    Requires high resolution 2D gels

    Not ideal for membrane proteins

    Not ideal for serum type samples

    Some protein spots identify more than one protein or do not have enough protein to identify the spot

    Labor Intensive

  • Overview of iTRAQ™ Reagents Methodology

    Labeling Lys and N‐terminus

    Up to 8 samples 

    Fractionation offers more identification

    Trypsin digestion

    Cell Culture + Tissue

    Isobaric tag for relative and absolute quantitation

  • Chemistry of TMT™ Reagents

    Figure Provided Courtesy of Thermo Fisher Scientifics 

  • Figure Provided Courtesy of Thermo Fisher Scientifics 

    Workflow of TMT™ Reagents

  • Group IS Normal Mod Mild Mix1 IS 1 (126) 2004 (127) 2041 (128) 2043 (129) 2069 (130)2 IS 2 (126) 2007 (131) 2042 (127) 2040 (128) 2066 (129)3 IS 3 (126) 2008 (130) 2065 (131) 2070 (127) 2037 (128)4 IS 4 (126) 2063 (129) 2046 (130) 2038 (131) 2014 (127)5 IS 5 (126) 2015 (128) 2068 (129) 2071 (130) 2036 (131)6 IS 6 (126) 2016 (127) 2067 (128) 2062 (130) 2035 (131)

    Dry Eye Studies: 4 Groups: Normal, Moderate Dry Eye, Mild Dry Eye, Mixed Dry Eyes

    100 300 500 700 900 1100 1300 1500m/z 19001700

    232.12y2

    331.31y3

    559.25y5

    674.35y6

    821.55y7

    968.30y8

    1131.44y9

    1245.38y10

    1344.23y11

    1401.32y121458.29

    y131605.40y14

    1706.27y15

    1834.52y16

    487.24b2

    588.18b3

    792.12b5 849.14

    b6948.30b7

    1062.54b8

    1225.15b9

    1372.42b10

    1519.43b11

    1634.48b12

    1733.70b13

    1862.61b14

    735.20b4

    359.16b1

    Peptide Sequence:EQTFGGVNYFFDVEVGRProtein Name : Human Cystatin-S

    Observed m/z= 1097.02702+Theoretical m/z= 1097.04432+

    124 126 128 130 132 134m/z05

    101520253035404550556065707580859095

    100

    Rel

    ativ

    e A

    yund

    ance 126

    127 129128

    131Ratio 126:127:128:129:130:131=1:0.30:0.09:0.25:0.00:1.49

    99.17Val

    227.94 (129+99)Glu-Val

    115.10Asp

    147.20Phe

    146.75Phe

    163.14Tyr

    113.94Asn

    98.85Val

    57.09Gly

    56.97Gly

    147.11Phe

    100.87Thr

    128.25Gln

    99.22Val

    115.05Asp

    147.01Phe

    147.27Phe

    162.61Tyr

    114.24Asn

    99.16Val

    56.92Gly

    57.02Gly

    147.02Phe

    100.94Thr

    128.08Gln

    128.91Glu

  • iTraq MASCOT Results

  • Protein Name

    DE/NDE (Ratio (# of Detection, p value))

    FunctionMild/Normal Mod/Normal Mix/Normal

    Aldehyde dehydrogenase, dimeric NADP-preferring OS=Homo sapiens (2.41, 6, 0.0030) (1.69, 6, 0.0471) oxidoreductase activity

    Apolipoprotein A-I OS=Homo sapiens (1.75, 6, 0.0362) transporter activity; protein binding; enzyme regulator activity; lipid binding

    Cystatin-S OS=Homo sapiens (0.51, 6, 0.0014) (0.43, 6, 0.0005) (0.60, 6, 0.0283) enzyme regulator activity

    Deleted in malignant brain tumors 1 protein OS=Homo sapiens (0.60, 6, 0.0472) signal transducer activity; protein binding; bacterial cell surface binding

    Ezrin OS=Homo sapiens (1.79, 6, 0.0101) protein binding; binding

    Hemopexin OS=Homo sapiens (2.15, 6, 0.0384) (2.11, 6, 0.0486) binding; transporter activity; ion binding

    Haptoglobin OS=Homo sapiens (1.97, 6, 0.0474) catalytic activity; protein binding; peptidase activity

    Ig alpha-1 chain C region OS=Homo sapiens (0.59, 6, 0.0113) antigen binding; protein binding

    Ig gamma-1 chain C region OS=Homo sapiens (1.94, 6, 0.0266) antigen binding; protein binding

    Ig gamma-2 chain C region OS=Homo sapiens (1.87, 6, 0.0369) antigen binding

    Ig gamma-3 chain C region OS=Homo sapiens (2.08, 6, 0.0408) antigen binding

    Extracellular glycoprotein lacritin OS=Homo sapiens (0.28, 6, 0.0059) (0.23, 6, 0.0003) (0.48, 6, 0.0428) protein binding; extracellular matrix binding

    Putative lipocalin 1-like protein 1 OS=Homo sapiens (0.43, 6, 0.0026) (0.39, 6, 0.0002) (0.50, 6, 0.0119) binding; transporter activity

    Lipocalin-1 OS=Homo sapiens (0.33, 6, 0.0030) (0.32, 6, 0.0003) (0.43, 6, 0.0188) binding; transporter activity; protein binding; enzyme regulator activity

    Lysozyme C OS=Homo sapiens (0.33, 6, 0.0019) (0.28, 6, 0.0031) catalytic activity; hydrolase activity; protein binding

    Polymeric immunoglobulin receptor OS=Homo sapiens (0.51, 6, 0.0290) (0.43, 6, 0.0016) protein binding

    Prolactin-inducible protein OS=Homo sapiens (0.36, 6, 0.0004) (0.38, 6, 0.0008) (0.58, 6, 0.0409) protein binding

    Proline-rich protein 1 OS=Homo sapiens (0.44, 6, 0.0023) (0.39, 6, 0.0056) enzyme regulator activity

    Proline-rich protein 4 OS=Homo sapiens (0.41, 6, 0.0042) (0.34, 6, 0.0081)

    Secretoglobin family 1D member 1 OS=Homo sapiens (0.28, 6, 0.0032) (0.21, 6, 0.0006) (0.41, 6, 0.0169) binding

    Mammaglobin-B OS=Homo sapiens (0.34, 6, 0.0076) (0.26, 6, 0.0009) (0.43, 6, 0.0215) steroid binding; binding; hormone binding

    Serotransferrin OS=Homo sapiens (2.02, 6, 0.0429) protein binding; ion binding

    Lactotransferrin OS=Homo sapiens (0.33, 6, 0.0019) (0.34, 6, 0.0072) peptidase activity; ion binding; pattern bindingcarbohydrate binding; hydrolase activity; protein binding

    Vitamin D-binding protein OS=Homo sapiens (1.65, 6, 0.0449) (1.87, 6, 0.0206) transporter activity; steroid binding; vitamin binding;: protein binding

    Zinc-alpha-2-glycoprotein OS=Homo sapiens (0.40, 6, 0.0047) (0.36, 6, 0.0029) (0.59, 6, 0.0502) lipid binding; carboxylic acid binding; hydrolase activity; transporter activity

    Zymogen granule protein 16 homolog B OS=Homo sapiens (0.44, 6, 0.0383) carbohydrate binding

    iTraq Results

  • Pros and Cons to iTRAQ

    Requires less total protein than DIGE (50 µg or less)

    One experiment can determine fold change, protein ID and Post translational modification

    Up to 8-10 groups can be compared at the same time

    Samples can come from both tissue or cell culture

    • Mass Spectrometry requirements are rigorousHigh resolutionAdvanced LC chromatographyLong instrument timePQD/HCD needed on IT instrument

    • Produces enormous amount of data

    • Requiring detailed bioinformatic analysis

    • Expensive

  • Regular Media (Lys Light)

    Lys-depleted Media(Lys Heavy)

    No Drug Drug Treatment

    Combination/Extraction

    Digestion/Peptide Identification

    Change =

    Digestion

    Shotgun Proteomics

    SILAC (Stable isotope labeling by amino acids in cell culture)

    Heavy Isotopic Labeled Amino Acids:

    L-Lysine: 13C6, (+6Da), 13C6/15N2 (+8Da), 13C6/15N2/D9 (+17Da), 15N2/D9 (+11Da), D4 (+4Da)

    L- Arginine: 13C6 (+6Da), 13C6/15N4 (+10Da), 13C6/15N4, D7 (+17Da),15N4/D7 (+11Da)

    L-Tyrosine: 13C9 (+9Da)

    Fractionation/IP LC/MSMS

  • Optimization of Heavy Amino Acids IncorporationS G R G K5 G G K8 G L G K12 G G A K16 R H R K20 V L R D N I Q G I T K31 P A I R R

    L A R R G G VK44 R I S G L I Y E E T R G V L K59 V F L E N V I R D A V T Y

    T E H A K77 R K79 T V T A M D V V Y A L K91 R Q G R T L Y G F G G

    ∆ M =4*11= 44

    11353

    11396

    11309

    11279

    11351

    11393

    11200 11300 11400 11500 11600

    Mass

  • 17881_13Days #21693-22317 RT: 127.45-130.89 AV: 100 NL: 6.03E5T: FTMS + c ESI Full ms [350.00-2000.00]

    920 940 960 980 1000 1020 1040 1060 1080 1100m/z

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    60

    65

    70

    75

    80

    85

    90

    95

    100

    Relative Abundance

    935.19

    944.68

    1012.47

    907.49

    1082.79984.88

    1044.02

    945.93

    982.84908.801086.07

    1014.48

    1047.03948.171001.85966.48 1057.00 1064.50924.47914.92 1032.53

    1078.08

    1041.70

    957.65 979.78 1091.02

    930.44 1009.11

    1023.84

    994.55

    987.00

    1095.56

    K* =13C6/15N2 labeled LysR* =13C6/15N4 labeled Arg

    Cell Culture Labeled for 7 days

    Cell Culture Labeled for 7 days

  • 17872_1_7 #1858-1959 RT: 22.95-23.41 AV: 13 NL: 5.19E4T: FTMS + p ESI Full ms [350.00-2000.00]

    660 662 664 666 668 670 672 674 676 678m/z

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    60

    65

    70

    75

    80

    85

    90

    95

    100

    Relative Abundance

    663.38

    672.39

    663.88

    672.90

    664.39

    673.40

    675.40671.89

    675.90664.89673.90667.18 670.41661.29

    674.88

    662.83 676.40 679.39668.18665.35 678.37666.42 668.89

    17872_1_7 #1902 RT: 23.14 AV: 1 NL: 1.01E3T: ITMS + c ESI d Full ms2 [email protected] [170.00-1340.00]

    200 300 400 500 600 700 800 900 1000 1100 1200m/z

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    50

    55

    60

    65

    70

    75

    80

    85

    90

    95

    100

    Relative Abund

    ance

    685.43

    606.03456.31

    855.50

    654.58

    492.54 549.04

    983.57

    742.11511.08 798.47229.90 342.92 584.37

    1151.56696.36298.04 428.40358.01 1168.47838.40784.19 1117.35921.24 1027.74279.94 423.46

    873.56

    615.20

    703.42

    663.81466.34

    1001.27230.07558.07

    602.24501.42 816.61342.89725.30

    1143.22255.27

    983.84825.94775.75 1012.89298.12 411.46

    1068.81 1195.44975.96

    18Da18Da

    ∆ M =10+8= 18Da

    DNIQGITKPAIR DNIQGITK*PAIR*

    K* =13C6/15N2 labeled LysR* =13C6/15N4 labeled Arg

    MSMS of DNIQGITK*PAIR* MSMS of DNIQGITKPAIR

    Ratio=Heavy/Light=1:1

  • Accession Description Ratio: Heavy/Light

    Sample 1 Sample 2

    P35527 Keratin, type I cytoskeletal 9 OS=Homo sapiens  0.096 0.049

    P22314 Ubiquitin‐like modifier‐activating enzyme 1 OS=Homo sapiens  0.106 0.182

    P23526 Adenosylhomocysteinase OS=Homo sapiens  0.250 0.151

    P13645 Keratin, type I cytoskeletal 10 OS=Homo sapiens  0.257 0.265

    P52597 Heterogeneous nuclear ribonucleoprotein F OS=Homo sapiens 0.260 0.254

    O43175 D‐3‐phosphoglycerate dehydrogenase OS=Homo sapiens  0.262 0.276

    P31943 Heterogeneous nuclear ribonucleoprotein H OS=Homo sapiens  0.284 0.337

    P23771 Trans‐acting T‐cell‐specific transcription factor GATA‐3 OS=Homo sapiens  0.295 0.379

    O00299 Chloride intracellular channel protein 1 OS=Homo sapiens  0.306 0.316

    P07741 Adenine phosphoribosyltransferase OS=Homo sapiens  0.319 0.343

    Q14103 Heterogeneous nuclear ribonucleoprotein D0 OS=Homo sapiens  0.359 0.390

    Q9BQE3 Tubulin alpha‐1C chain OS=Homo sapiens  0.380 0.404

    P13639 Elongation factor 2 OS=Homo sapiens  0.391 0.609

    P31949 Protein S100‐A11 OS=Homo sapiens  0.394 0.626

    P08107 Heat shock 70 kDa protein 1A/1B OS=Homo sapiens  0.412 0.435

    P11586 C‐1‐tetrahydrofolate synthase, cytoplasmic OS=Homo sapiens  0.415 0.835

    P23246 Splicing factor, proline‐ and glutamine‐rich OS=Homo sapiens  0.418 0.387

    P31942 Heterogeneous nuclear ribonucleoprotein H3 OS=Homo sapiens  0.424 0.382

    P58546 Myotrophin OS=Homo sapiens  0.429 0.420

    P11021 78 kDa glucose‐regulated protein OS=Homo sapiens  0.442 0.514

    P00558 Phosphoglycerate kinase 1 OS=Homo sapiens  0.450 0.574

    P61978 Heterogeneous nuclear ribonucleoprotein K OS=Homo sapiens  0.472 0.445

    P62826 GTP‐binding nuclear protein Ran OS=Homo sapiens  0.475 0.496

    P35080 Profilin‐2 OS=Homo sapiens  0.484 0.409

    O60506 Heterogeneous nuclear ribonucleoprotein Q  1.198 1.051

    Q99623 Prohibitin‐2 OS=Homo sapiens  1.222 0.706

    Q06830 Peroxiredoxin‐1 OS=Homo sapiens  1.251 1.183

    P62244 40S ribosomal protein S15a OS=Homo sapiens  1.265 1.124

    P07355 Annexin A2 OS=Homo sapiens  1.299 1.194

    P28072 Proteasome subunit beta type‐6 OS=Homo sapiens  1.302 1.133

    P21333 Filamin‐A OS=Homo sapiens  1.310 1.243

  • Pros and Cons to iTRAQ

    Expensive

    Special data analysis platform

    Samples come from cell cultures

    Time consuming

    One experiment can determine fold change, protein ID and Post translational modification

    Up to several groups can be compared at the same time

    Mixing at the beginning, allow more sample preparation steps

    significant reduction of experiment error

    High reproducibility

  • doesn’t use a stable isotope containing compound tochemically label the protein. It can determine the relativeamount of proteins in two or more biological samples bycomparing peptide peak areas or spectral counting.

    Label-free quantification

    Peak AreaMASCOT

    ProteomeDiscoverer

    Spectral CountingMASCOTScaffold

    ProteomeDiscoverer

    Relative Concentration (emPAI)MASCOT

  • Label Free Quantitation by Spectral CountingRelative protein quantification is achieved by comparing the number ofidentified MS/MS spectra from the same protein in each of multipleLC/MS/MS

    Hongbin Liu, Rovshan G. Sadygov and John R. Yates, III, A Model for Random Sampling and Estimation of Relative Protein Abundance in Shotgun Proteomics Anal. Chem. 2004, 76, 4193-4201

  • # of reports = # of Treatment Conditions X # of Bio-replicates

    Scaffold

    Label Free Quantitation by Spectral Counting

  • Spectral Counting Results-Scaffold

    Conditions

    Bio-Replicates

    P-Value

    # of Spectra

  • Spectral Counting Results-Scaffold

  • Spectral Counting Results-Scaffold

  • Spectral Counting Results

  • emPAI = 10PAI -1 Protein content (mol %) = emPAI/ ∑ (emPAI) x 100

    Protein name Conc.

    Fmol

    emPAI

    Protein Content RankConc. emPAI Conc. emPA

    IElongation factor 1-a 1 870 9.00 15.04 16.18 2 1a enolase 596 6.50 10.30 11.69 3 2Heat shock protein HSP 90-a 940 6.26 16.25 11.26 1 3Vimentin 336 5.58 5.81 10.03 6 414-3-3 protein 381 4.62 6.58 8.31 5 540 S ribosomal protein S16 456 2.98 7.88 5.36 4 6Pyruvate kinase, M2 isozyme 216 2.06 3.73 3.70 9 740 S ribosomal protein S9 135 1.89 2.33 3.40 12 8GTP-binding nuclear protein RAN 255 1.85 4.41 3.33 8 9ADP, ATP carrier protein, fibroblast isoform

    264 1.64 4.56 2.95 7 10

    Peripherin 84 1.48 1.45 2.66 18 11Stress-70 protein, mitochondrial precursor

    195 1.42 3.37 2.55 11 12

    Fructose-bisphosphate aldolase A 210 1.15 3.63 2.07 10 13IgE-binding protein 122 1.15 2.11 2.07 13 14Calreticulin precursor 114 1.15 1.97 2.07 14 1560 S ribosomal protein L11 108 1.15 1.87 2.07 15 1660 S ribosomal protein L17 90 1.00 1.56 1.80 17 17Peroxiredoxin 4 72 0.85 1.24 1.53 20 18Voltage-dependent anion-selective channel protein

    54 0.85 0.93 1.53 21 19

    T-complex protein 1, e subunit 96 0.81 1.66 1.46 16 20ATP synthase oligomycin sensitivity conferral protein

    78 0.70 1.35 1.26 19 21

    Phosphate carrier protein, mitochondrial precursor

    48 0.55 0.83 0.99 22 22

    T-complex protein 1, a subunit B 36 0.52 0.62 0.94 23 23Nucleolar RNA helicase II 30 0.45 0.52 0.81 24 24

    Relative Quantitation Using emPAI

    Ishihama Y1, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J, Mann M. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein.Mol Cell Proteomics. 2005 Sep;4(9):1265-72

  • Relative Quantitation of PTM Using Peak Area

    RT: 19.96 - 50.19 SM: 7B

    20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50Time (min)

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Rel

    ativ

    e Abu

    ndan

    ce

    RT: 31.46AA: 6948813009

    RT: 36.22AA: 12379095

    RT: 33.66AA: 3238508

    RT: 41.54AA: 3445463

    RT: 44.32AA: 3944626

    RT: 48.01AA: 2336711

    RT: 39.67AA: 66098364

    RT: 42.77AA: 41752420

    RT: 38.84AA: 31864608

    RT: 33.82AA: 596224

    RT: 35.79AA: 304562

    RT: 31.35AA: 126488

    RT: 45.02AA: 90790

    RT: 49.46AA: 72789

    NL: 1.75E8Base Peak m/z= 514.7983-514.8189 F: FTMS + c ESI Full ms [350.00-2000.00] MS ICIS 30138_TRY

    NL: 2.39E6Base Peak m/z= 535.8032-535.8246 F: FTMS + c ESI Full ms [350.00-2000.00] MS ICIS 30138_TRY

    Sequence m/z Mass Error

    Peak Area RT (min)

    Total Peak Area

    Percentage (%)Theoretical Observed

    115GELLEAIKR123 514.80862+ 514.80632+ ‐4.47 6948813009 31.46 99.40

    115GELLEAIK(Ace)R123 535.81392+ 535.81362+ ‐0.56 41739255 42.77 6.99E+09 0.60

    115GELLEAIKR123

    115GELLEAIK(Ac)R123

    (Based on Retention Time and SIC)

  • MALDI Imaging

    Image from 2014 ASMS Workshop

  • MALDI Imaging

  • Laser Capture Microdissection Proteomics

    50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 21Time (min)

    0

    10

    20

    30

    40

    50

    60

    70

    80

    0

    10

    20

    30

    40

    50

    60

    70

    80

    Rel

    ativ

    e A

    bund

    ance

    0

    10

    20

    30

    40

    50

    60

    70

    80172.3651.09 74.43

    147.2873.4659.81

    83.0067.5146.9484.43

    125.6190.98 98.24102.59 154.41135.68

    107.81 113.21 129.55 156.09140.88 161.85121.24 203.90186.96 193.16175.36

    96.3074.03

    72.89 97.42 164.8778.17 82.2072.6559.3690.1855.88 185.19123.9166.13 128.35

    101.89153.68113.47 188.09 199.8052.73

    50.86 130.21 163.13141.80 195.09178.09 208.48120.3046.39

    146.51 171.8573.23 171.2978.49

    97.0378.6667.29

    56.18 59.48 82.84 85.96 128.6398.06 185.93113.7690.37168.18124.41 189.02 200.9953.11 153.97105.4151.41

    124.14 135.09 155.6747.08 210.16184.39 200.06120.75

  • �Thermo LTQ Orbitrap�Bruker ultrafleXtreme MALDI-TOF TOF�Thermo Scientific LTQ�Bruker maXis UHR QTOF�Bruker amaZon ion trap with ETD�Ettan Spot Handling Workstation�Thermo Trace GC-MS�Thermo DSQ II GC-MS�Micromass Q-TOF II�FPLC System

    Facility Instruments