Protein Catabolism. Overview of Protein Catabolism Proteases are zymogens Excess amino acids are not...

28
Protein Catabolism
  • date post

    19-Dec-2015
  • Category

    Documents

  • view

    220
  • download

    2

Transcript of Protein Catabolism. Overview of Protein Catabolism Proteases are zymogens Excess amino acids are not...

Protein Catabolism

Overview of Protein Catabolism

Proteases are zymogens

Excess amino acids are not stored

Normal protein turnover 1-2% of body protein per day

~75-80% amino acids reused; lose 30-40 g/day

Not excreted as amino acids or ammonia

Protein(diet)

stomach/intestine

Aamino acids Protein

(body)

B

CD urea

cycle

Nitrogensecretion

.

.

Methods of Nitrogen Excretion

• Uricotelic (birds, reptiles)

• Ammonotelic (fish)

• Ureotelic (mammals)

Two Amino Acids are Used to Transport Nitrogen

• Transaminase• Nonspecific for one

pair, specific for the other pair– Pyr-Ala– KG-Glu

are the two most common

-amino acid

-amino acid'

-keto acid

-keto acid'

transaminase

PLP

H3N C

CO2

CH2

H

CH2

CO2

H3N C

CO2

CH2

H

CH2

CO NH2

NH4

Glutamine Synthetase

H2OMg2+

ATP ADP+Pi

.

.

• Gln synthetase particularly important to the brain

Transamination Mechanism

N

PO43-

CH3

HO

CHN

H

Enz-Lys

H

C CO2R

NH3

H

N

PO43-

CH3

HO

CH

NH

C CO2R

H

H

Enz-Lys NH3

N

PO43-

CH3

HO

CH2

NH3

C CO2R

O

N

PO43-

CH3

HO

CH

NH

C CO2R

H

N

PO43-

CH3

HO

CH

NH

C CO2R

HH

N

PO43-

CH3

HO

CH2

NH

C CO2R

HH2O

H

Urea Cycle

Importancemeans of excreting nitrogen in nontoxic form

LocationMitochondrial matrix and cytoplasm of liver and kidney

ReactionsEnergeticsRegulation

Intracellular Ammonium Generation

• Glutaminase mitochondria only• Liver quantitatively more important

H3N C

CO2

CH2

H

CH2

CO2

H3N C

CO2

CH2

H

CH2

CO NH2

NH4

Glutaminase

H2O

• Oxidative deamination of Glu Only• Glu DH can use NAD or NADP

H3N C

CO2

CH2

H

CH2

CO2

C

CO2

CH2

CH2

CO2

O

ATP, GTP, NADHADP

NH4

Glutamate dehydrogenase

H2O

NAD(P)H

+ H+NAD(P)+

.

.

Carbamoyl Phosphate Synthetase I

• Liver Mitochondrial enzyme• RDS of urea cycle• Activated by (requires) NAcGlu

.

.

carbamoylphosphate

C

O

NH2 OPO32-

NH4 2 ATP 2 ADP+ 1 Pi

carbamoyl phosphatesynthetase I

HCO3Mg2+

Ornithine Transcarbamoylase

• Mitochondrial enzyme• Transported to Cp after synthesis

.

.

Pi

ornithinetranscarbamoylase

carbamoylphosphateC

O

NH2 OPO32-

H3N C

H

CH2

CO2

CH2

CH2

NH3

L-ornithine

H3N C

H

CH2

CO2

CH2

CH2

NH C NH2

O

L-citrulline

Arginosuccinate Synthetase

• Cytoplasmic enzyme

.

H3N C

H

CH2

CO2

CH2

CH2

NH C NH2

O

citrulline

.

ATP AMP+ PPi H2O

arginosuccinatesynthetase

Asp

CNH3 H

CO2

CH2

CO2

H3N C

H

CH2

CO2

CH2

CH2

NH

CHN NH C H

CO2

CH2

CO2arginosuccinate

Mg2+

Arginosuccinase

• Enzyme restricted to liver and kidney• Fumarate converted back to Asp

.

.

H3N C

H

CH2

CO2

CH2

CH2

NH

CHN NH C H

CO2

CH2

CO2arginosuccinate

H3N C

H

CH2

CO2

CH2

CH2

NH

CH2N NH2

arginosuccinase

fumarate

C H

CO2

C

CO2

H

Arginase

• Primarily liver enzyme• Ornithine transported back into mitochondrion by

ornithine-citrulline antiporter

.

.

H3N C

H

CH2

CO2

CH2

CH2

NH

CH2N NH2

H3N C

H

CH2

CO2

CH2

CH2

NH3

arginase

H2O

C

O

NH2H2Nurea

Regulation

• GluNAc as described earlier occurs by changing ATP affinity

• 10-20–fold change in enzyme levels based on “nitrogen balance” i.e. how much protein is consumed relative to needs

EnergeticsFalse Claim #27 of Vegetarians

• “consuming protein uses energy”

• 4 ATP equivalents consumed in the urea cycle

• However, the carbon backbone is now available for energy use

• Carnivores obtain large amount of energy from amino acid carbon, herbivores ~10-15%

Carbon Backbone Catabolism

• Glucogenic amino acids vs. ketogenic amino acids

• Glucogenic are converted to metabolite of glycolysis (e.g., pyruvate) and can be converted into glucose

• Ketogenic form molecules such as acetoacetate, which can be converted to fat

• Most amino acids are glucogenic and ketogenic• Leu is the sole amino acid which is ketogenic

Ala

-keto acid' -amino acid'

PLP

Transaminase

to glycolysis

CO2

C O

CH3

pyruvate

CO2

C H

CH3

H3N

Ala

Gln, Glu

H3N C

CO2

CH2

H

CH2

CO2

H3N C

CO2

CH2

H

CH2

CO NH2

NH4

Glutaminase

H2O -keto acid'-amino acid'

PLP

Transaminase C

CO2

CH2

CH2

CO2

Oto Kreb's cycle

Asn, Asp

-keto acid'-amino acid'

PLP

TransaminaseH3N C

CO2

CH2

H

CO2

H3N C

CO2

CH2

H

CO NH2

NH4

Asparaginase

H2O

C

CO2

CH2

CO2

O to Kreb's cycle

Thr, Ser, GlyCO2

C H

CH

H3N

CH3

OH

Ser hydroxymethyltransferase

PLP

CO2

C H

H

H3NCO2 and NH4

+

MeTHF

THF

H2OSer hydroxymethyl

transferase

CO2

C H

CH2OH

H3N

Ser dehydratasePLP

THF MeTHF

NAD+ NADH+ H+

major p/w: Gly synthase

pyruvate to glycolysisCO2 C

O

CH3

NH4+

CH3CHO

Pro

N

CO2H

H

CH2

CH2

C

C

O

CO2

HH3N

H

Glu--semialdehyde

1. Pro dehydrogenase2. spontaneous

NAD+

NADH+ H+

Glu--semialdehyde DH

NADH+ H+

NAD+

CH2

CH2

CO2

C

CO2

HH3N

.

.

Met

H3N C

CH2

CH2

S

CH3

CO2

H

Met adenosyltransferase

ATP PPi + Pi

H3N C

CH2

CH2

S

CH3 O

CH2

OHHO

NN

N N

NH2

CO2

H

S-Adenosylmethinonine (SAM)

Acceptor methylated acceptor

SAM SAH

SAH

H2O Adenosine

H3N C

CH2

CH2

CO2

H

SH

homocysteine

3 steps

CoASH

Ser CO2 + NH4+

2 NAD 2 NADH

proprionyl CoA

Arg

CH2

CH2

C

C

O

CO2

HH3N

H

Glu--semialdehyde

-keto acid' -amino acid'

PLP

TransaminaseH3N C

H

CH2

CO2

CH2

CH2

NH

CH2N NH2

H3N C

H

CH2

CO2

CH2

CH2

NH3

arginase

H2O

C

O

NH2H2Nurea

.

.

Phe

CO2

C H

CH2

H3N

CO2

C H

CH2

H3N

OH

Phe Hydroxylase

O2 H2O

NADNADH+ H

.

.

Glu TAase

PLP

KG Glu

CO2

C O

CH2

OH

Cu2+

ascorbateO2 CO2

Dioxygenase

HO

OH

CH2

CO2

homogentisate

1,2-Dioxygenase

O2HO

OH

CH2

CO2

homogentisate

C O

CH2

CH

C

CH

CH2

O

CO2

CO2

maleylacetoacetate

C O

CH2

CH

C

C

CH2

O

CO2

CO2

H

fumerylacetoacetate

cis-trans isomerase hydrolase

H2O

C

CO2

C

H

CO2

H

acetoacetateCH3

C

CH2

O

CO2

thiolase

CoASH

acetate andacetyl CoA

Phenylketonuria (PKU) is a Congenital Absence of Phe

Hydroxylase CO2

C H

CH2

H3N

Phe Hydroxylaseabsent

O2 H2O

NADNADH+ H

.

CO2

C O

CH2

LeuCO2

C H

CH2

H3N

CH

CH3

CH3

Leu

CO2

C O

CH2

CH

CH3

CH3

-ketoisocaproate isovaleryl CoA

C O

CH2

CH

CH3

CH3

S-CoAGlu TAase

PLP

-KG Glu

ß-methylcrotonyl CoA

C O

CH

CH

CH3

CH3

S-CoAbranched-chainamino acid DH

PLP

NAD NADH+ H

ß-methylglutaconyl CoA

C O

CH

CH

CH2

CH3

S-CoA

CO2

ß-hydroxy-ß-methylglutaryl CoA(HMG-CoA)

CH3

CH2

CO2

C O

S-CoA

C

HO C

-keto aciddehydrogenase

CoASH CO2

crotonase

Mg2+

ATP ADP+ Pi

CO2

biotinhydrating enzyme

H2O

HMG-CoA lyase

acetoacetate

C

CH2

CO2

CH3

O

C O

CH3

S-CoA

Acetyl-CoA

Maple Syrup Urine Disease

• The result of branched chain amino acid dehydrogenase deficiency

• Oxidation products of keto compounds accumulate

CO2

C H

CH2

H3N

CH

CH3

CH3

Leu

CO2

C O

CH2

CH

CH3

CH3

-ketoisocaproate isovaleryl CoA

C O

CH2

CH

CH3

CH3

S-CoAGlu TAase

PLP

-KG Glu

branched-chainamino acid DH

PLP

NAD NADH+ H

-keto aciddehydrogenase

CoASH CO2

HistidineCO2

C H

CH2

H3N

N NH

CO2

C H

C

N NH

H

urocanate

Histidase

NH4

CO2

CH2

CH2

N NH

O

4-Imidazolone-5-propionate

urocanase

H2O

Imidazolonepropionatehydrolase

H2O

CO2CH2CH2CHCO2

HN NH2

N-Formiminoglutamate (Figlu)

H3N C

CO2

CH2

H

CH2

CO2

THFN5-formiminoTHF

glutamateformiminotransferase

Cysteine Has Two Catabolic Pathways

H3N C

CO2

CH2SH

H C

CO2

CH2SH

O

mercaptopyruvate

sulfurtransferase

2H H2S

C

CO2

CH3

O

pyruvate

cysteinedioxygenase

[O]

H3N C

CO2

CH2SH

H

transaminase

-ketoacid

-aminoacid

PLP

transaminase

-ketoacid

-aminoacid

PLPH3N C

CO2

CH2SO2

H

cysteinesulfinate

ß-sulfinylpyruvate

C

CO2

CH2SO2

Odesulfinase

SO32-

C

CO2

CH3

O

pyruvate