Prospects for asteroseismology of solar-like stars T. Appourchaux Institut d’Astrophysique...

22
Prospects for asteroseismology of solar-like stars T. Appourchaux Institut d’Astrophysique Spatiale, Orsay

Transcript of Prospects for asteroseismology of solar-like stars T. Appourchaux Institut d’Astrophysique...

Page 1: Prospects for asteroseismology of solar-like stars T. Appourchaux Institut d’Astrophysique Spatiale, Orsay.

Prospects for asteroseismology of solar-like stars

T. Appourchaux

Institut d’Astrophysique Spatiale, Orsay

Page 2: Prospects for asteroseismology of solar-like stars T. Appourchaux Institut d’Astrophysique Spatiale, Orsay.

2

Contents

• What is a solar-like star?• A shopping list for physics• The store: PLATO 2.0• Summary

HELAS VI: Helioseismology and applications

Page 3: Prospects for asteroseismology of solar-like stars T. Appourchaux Institut d’Astrophysique Spatiale, Orsay.

3

What is meant by a solar-like star?

HELAS VI: Helioseismology and applications

Houdek et al (2000)

Huber (2014)

Huber et al (2011)

Page 4: Prospects for asteroseismology of solar-like stars T. Appourchaux Institut d’Astrophysique Spatiale, Orsay.

4

Shopping list for physics

• Internal rotation (Subgiant stars, MS star)• Helium ionization and convection zones• Excitation and damping (mode physics)• Stellar cycle and activity• Atmosphere: surface effect, asymmetries• Stellar Radius, Mass and Age• Clusters and Binary stars

HELAS VI: Helioseismology and applications

Page 5: Prospects for asteroseismology of solar-like stars T. Appourchaux Institut d’Astrophysique Spatiale, Orsay.

5

Rotation in solar-like stars

HELAS VI: Helioseismology and applications

Nielsen et al (2014)

Davies et al (2014)

Seismically derived rotation provides light on differential rotation and gyrochronology

(a few stars)

Page 6: Prospects for asteroseismology of solar-like stars T. Appourchaux Institut d’Astrophysique Spatiale, Orsay.

6

Rotation in evolved stars

HELAS VI: Helioseismology and applications

Deheuvels et al (2014)

Subgiant stars having mixed modes provides the stellar rotation as a function of depth

(6 stars)

g-mode like

p-mode like

Page 7: Prospects for asteroseismology of solar-like stars T. Appourchaux Institut d’Astrophysique Spatiale, Orsay.

7

Second differences: in depths...

HELAS VI: Helioseismology and applications

Mazumdar et al (2014)

BCZ

HeII

Signatures and depths of the base of the convection and second Helium ionization zones(20 stars)

Page 8: Prospects for asteroseismology of solar-like stars T. Appourchaux Institut d’Astrophysique Spatiale, Orsay.

8

...leading to Helium abundance

HELAS VI: Helioseismology and applications

Verma et al (2014)

Amplitude of the signature of the second Helium ionization zone as a marker of helium abundance

(1 star)

Page 9: Prospects for asteroseismology of solar-like stars T. Appourchaux Institut d’Astrophysique Spatiale, Orsay.

9

Mode physics: linewidth et al

HELAS VI: Helioseismology and applications

Appourchaux et al (2014)

Different inferred background affects mode-physic parameters (and vice versa)

Page 10: Prospects for asteroseismology of solar-like stars T. Appourchaux Institut d’Astrophysique Spatiale, Orsay.

10

Stellar linewidths

HELAS VI: Helioseismology and applications

Appourchaux et al (2014)

Linewidth depression at nmax decreases with effective temperature(23 stars)

Page 11: Prospects for asteroseismology of solar-like stars T. Appourchaux Institut d’Astrophysique Spatiale, Orsay.

11

Stellar activity

HELAS VI: Helioseismology and applications

Garcia et al (2010)

Garcia et al (2013)

Studies of stellar activity impact on seismic parameters to be done on more stars than just 2!

Sun HD49933

Page 12: Prospects for asteroseismology of solar-like stars T. Appourchaux Institut d’Astrophysique Spatiale, Orsay.

12

Departure from Lorentzian mode profile (asymmetry)

HELAS VI: Helioseismology and applications

Toutain and Kosovichev (2005)

Mode asymmetry yet to be detected in other stars than the Sun (impact on stellar modelling)

Page 13: Prospects for asteroseismology of solar-like stars T. Appourchaux Institut d’Astrophysique Spatiale, Orsay.

13

Surface effects

HELAS VI: Helioseismology and applications

Ball and Gizon (2014)

Understanding and proper modelling of surface effect key for stellar modelling(8 stars)

Page 14: Prospects for asteroseismology of solar-like stars T. Appourchaux Institut d’Astrophysique Spatiale, Orsay.

14

Stellar mass and radius

HELAS VI: Helioseismology and applications

Huber et al (2012)

White et al (2014)

Lebreton and Goupil (2014)

• Calibration of scaling laws using interferometry• From scaling laws to stellar modelling

Page 15: Prospects for asteroseismology of solar-like stars T. Appourchaux Institut d’Astrophysique Spatiale, Orsay.

15

Stellar age

HELAS VI: Helioseismology and applications

Lebreton and Goupil (2014)

Metcalfe et al (2012)

Age calibration possible on binary stars(3 binary stars)

Age determination on single stars(>50 stars)

No seismic proxy for stellar age (yet), model comparison required using

frequencies and /or ratio

Page 16: Prospects for asteroseismology of solar-like stars T. Appourchaux Institut d’Astrophysique Spatiale, Orsay.

16

Binary stars

HELAS VI: Helioseismology and applications

Chaplin et al (2014)

Seismic binary detection 0.5% for MS and subgiant stars to 1% for Red giants

A "typical" seismic binary (Kepler)

Appourchaux et al (2012)

"Speckle-Interferometry" binary

Page 17: Prospects for asteroseismology of solar-like stars T. Appourchaux Institut d’Astrophysique Spatiale, Orsay.

17

Clusters

HELAS VI: Helioseismology and applications

Seismic scaling relation provides ways of

identifying cluster members

Stello et al (2011)

Appourchaux et al (1993)

Improved stellar age precision and other stellar parameters with cluster by a factor 3

(No cluster MS stars but...cluster RG stars)

Page 18: Prospects for asteroseismology of solar-like stars T. Appourchaux Institut d’Astrophysique Spatiale, Orsay.

Credits: G. Perez Diaz, IAC (MultiMedia Service)

PLATO 2.0

Page 19: Prospects for asteroseismology of solar-like stars T. Appourchaux Institut d’Astrophysique Spatiale, Orsay.

19

PLATO 2.0 in short

HELAS VI: Helioseismology and applications

- Selected by ESA in February 2014 - 32 « Normal » 12cm cameras, cadence 25 s, white light- 2 « Fast » 12cm cameras, cadence 2.5 s, 2 colours- Dynamic range: 4 ≤ mV ≤ 16- L2 orbit- Nominal mission duration: 6 years launched in 2024- 2 long pointings of 2-3 years + step-and-stare phase (2-5 months per pointing)

Page 20: Prospects for asteroseismology of solar-like stars T. Appourchaux Institut d’Astrophysique Spatiale, Orsay.

20

PLATO 2.0 targets

HELAS VI: Helioseismology and applications

4300 deg2 (long stare fields)

20,000 deg2 (plus step and stare

fields)

Noise Level (ppm/√hr)

Number of cool stars

mV Number of cool stars

34

(Asteroseismology)

22,000 9.8-11.3 85,000

80(Earth radius detection)

267,000 11.6-12.9 1,000,000

For the Baseline mission

Page 21: Prospects for asteroseismology of solar-like stars T. Appourchaux Institut d’Astrophysique Spatiale, Orsay.

21

Summary

• Stellar physics will face a revolution with PLATO 2.0• Stellar physics will improve in the following fields:

– Stellar evolution– Internal structure and rotation (g modes?)– Convection zone, HeII zone– Stellar activity– Seismic inversion and diagnostics (left out here...)

• Stellar physics will be calibrated with:– Binary stars and clusters

HELAS VI: Helioseismology and applications

Page 22: Prospects for asteroseismology of solar-like stars T. Appourchaux Institut d’Astrophysique Spatiale, Orsay.

22

PLATO 2.0 observing strategy

HELAS VI: Helioseismology and applications

Baseline observing strategy:• 6 years nominal science operation• 2 long pointings of 2-3 years + step-and-stare phase (2-5 months per pointing)