Properties Bio-Based Medium Density Fiberboard · 2013-12-08 · Medium density fiberboard (MDP)...

11
Properties of Bio-Based Medium Density Fiberboard Sangyeob Lee, Todd E Shupe, and Chung E: Hse Ab$tNct In order to utilize agri* waste fibers as an al- ternative resource for composites,a number of vari- ables weneindgated to detesmiae whether the me- chanical and physical properties of agm-based f i - could be impwed. Fibers wen cmifkd into fourdifkmnt mesh sizes and used to evaluate the effect of fiber size on the mechanical ard physical pmperties of the composite. Moisture content (MC) of the knish and additional mobstme from the msin applications were significaa~ factors influencing the mechanical properties of the composites. Medium density fiberboard (MDP) made from f i b with8~tMChada63-~tin~inmodu- futsofnqpture(MOR)anda3U-pemmt incseasein lIlOddus d~city(MOE)compluadto~~m@tes xma&du& with 0 percent MC iumish. For ba- gasse MDP. a compowrded d system of 1 percent 4,4'+@hxi- dibuqamk (ppI)/4 pe ~dehyde(UF)perfamedasWenasppnels with 4.5 percent MDI in MOR and 3.5 percent MDI in MOE. Intend bond (IB) test dts also showed that the modified resin system had slightly lower IB seength than with 4.5 percent MDI. Static bending ad tensile stm@ parallel- and peqmdi&-to- the surfhe in& as fiber aspect ratios increased fiwn 3 to 20. Fiber bundles (1 1%of weight fixdon, > 40 mesh) and particles smaller than 80 mesh size were mponsible for the mechanical property loss of agro-bed composites. Hardboard appeared to be the most pmnbiagpanel basedon compatibility and property enhancement. Two mixing wmbina- ttuns (50/50 and 25n5) of -ow tree f i b yielded mechanical and physical pmpezties which statisticauy diffaed hsigdicantly from higher pro- partions of &piurn fibers and pmvided the maximum utihation of bagasse fibers into the panels. Pi- materials agridtud nsidues or weedtreeshavegmatpotenhlforreplaci~wdia composite materials (Bowyer ad Stodrmann 2001). Whether used alone or in combination with wood, ag- riahd &dues provide an attmctive optionto tra- diUonal conposites (Enghh et al. 1997). Bemuse of en-ental pollution and decmasing fiber re- sauce availabil~ hwsQp&n and development of new products based on the utilhtiion of agricuhd dues and waste paper is gaining much attention (Lee and Lee 1994). M o b a d (1975,1982) m d o n e d tee, ~peand~e 4 51

Transcript of Properties Bio-Based Medium Density Fiberboard · 2013-12-08 · Medium density fiberboard (MDP)...

Properties of Bio-Based Medium Density Fiberboard

Sangyeob Lee, Todd E Shupe, and Chung E: Hse

Ab$tNct In order to utilize agri* waste fibers as an al-

ternative resource for composites, a number of vari- ables weneindgated to detesmiae whether the me- chanical and physical properties of agm-based fi- could be impwed. Fibers wen cmifkd into fourdifkmnt mesh sizes and used to evaluate the effect of fiber size on the mechanical ard physical pmperties of the composite. Moisture content (MC) of the knish and additional mobstme from the msin applications were significaa~ factors influencing the mechanical properties of the composites. Medium density fiberboard (MDP) made from f i b w i t h 8 ~ t M C h a d a 6 3 - ~ t i n ~ i n m o d u - futsofnqpture(MOR)anda3U-pemmt incseasein lIlOddus d~city(MOE)compluadto~~m@tes xma&du& with 0 percent MC iumish. For ba- gasse MDP. a compowrded d system of 1 percent 4,4'+@hxi- dibuqamk (ppI)/4 pe ~dehyde(UF)perfamedasWenasppnels

with 4.5 percent MDI in MOR and 3.5 percent MDI in MOE. Intend bond (IB) test d t s also showed that the modified resin system had slightly lower IB seength than with 4.5 percent MDI. Static bending a d tensile stm@ parallel- and peqmdi&-to- the surfhe in& as fiber aspect ratios increased fiwn 3 to 20. Fiber bundles (1 1% of weight fixdon, > 40 mesh) and particles smaller than 80 mesh size were mponsible for the mechanical property loss of agro-bed composites. Hardboard appeared to be the most pmnbiagpanel basedon compatibility and property enhancement. Two mixing wmbina- ttuns (50/50 and 25n5) of -ow tree f i b yielded mechanical and physical pmpezties which statisticauy diffaed hsigdicantly from higher pro- partions of &piurn fibers and pmvided the maximum utihation of bagasse fibers into the panels.

Pi- materials a g r i d t u d nsidues or weedtreeshavegmatpotenhlforreplaci~wdia composite materials (Bowyer a d Stodrmann 2001). Whether used alone or in combination with wood, ag- r iahd &dues provide an attmctive option to tra- diUonal conposites (Enghh et al. 1997). Bemuse of en-ental pollution and decmasing fiber re- sauce availabil~ hwsQp&n and development of new products based on the utilhtiion of agricuhd d u e s and waste paper is gaining much attention (Lee and Lee 1994). Mobad (1975,1982) mdoned

tee, ~ p e a n d ~ e 4 51

t h e u s e o f d a g r i c d ~ n s i d u e s s c r h a s t h e whentstraw,ricestraw,~ondothergrarsss for paper and board pduction. Utilization of m w - able agricultural raw mataids is one key to the sus- tainable and mviromlenw a-ble production of many mnn* ma*, raa(glng from low- cost commodity items to advanced, high-pdk- mamx pducts (Baddel1995). Bio-based fiber nsou~.ces such as bagasse, corn

s t a l l c s , k d ~ I . l a h d d ~ ~ ~ % ~ , d ~ t ~ ~ s ~ adable in different locations in North America, Hto-, a%ro-ffibem pmvide mmxeptable rnechani- d a n d p h y s i c a i p m p e r r i e s w h e n ~ ~ t o ~ wood. The poor strrnefh paperties ofagm-fiberppn- efsateduetotheEoURk~~)~ewntent(Kuoetai. 1998, Hse 2000, Han d d. 2001)- To avoid law

p-? ~ f i b = p g n & h b e c n F &aced with a higher amaunt of resin because ofthe n a t u n o f t h B b a e n d h ~ m a t a i a l s . % lncnsPedacbsiveusedtedina~manuEac- nvingaostevenwfEenrenewableagri~fibers e r c d a r t h e - - h , t h b s t u d y ~ ~ ~ n r i n t y p e s t o e s t a b ~ m ~ c a l a m l p h y s k a l ~ ~ ~ T h e c o s t o f u s $ r g e e c h R s i n wapalpoconsidd~prr,jectPLOattemptedto M a n o p ~ c o m ~ i t e f 6 n n ~ ~ f c r r n o n - ~

d bamboo) and ~~ f i b (Chi- Q = { W m M - l ) .

BasapseistheBberresidueftPmpmcessodsugar cane. Bicbyearmore than4.5 dontmsofbagapse iPgeneratedintheUnHedSatcs ,~ in~iaaa , M 8 d & % @ 8 s n d h h w d y b u n r t d h stesmboikrptogeneratesnagyforindusMaluse (ChmGmReport2001) . bdation W h d - bcwd, and d m density f i u (MDF) have been pduced usbg lragage f i b in both now

jm&*-,~than was the a d y way to BPd physical p m p

tiss a g r o f i b e r w co-ites. T h d treat- ment of bagasse fibers Rduced static bending stmngth-but immsed dimensid stabme (Shin 1978, Kuo etd. 1998). Impmving111- proper- ticssnd&WMdstabilityaretwopos- &Me mswch opportuttks fur bagaaR fiber am- posit-. Material (surface) treatments such as acetylation, polymer egaftink cyanwhylation, and impmgnation ha~Plsobem~edtoincnasepr0- duct performance (Nada 1989, Rowell et al. 1991, assa an et al. 2008). ~epihed fibersmw

an incrPase of 40 to 60 perrrent in mechanical pmper- tks (Atchfson 1985). Bamboo (&mbusoideae) is also a well-known

agmbased fiber resame that can be turmd into v d u 4 e d composite products due to its beding &egg and stmagth development as well as dimen- sional stability. Many studies have reported on the influence of bambm fiber on the prapmties ofazxqxs- ites such as oriented strandbod (OSB), f i w , sancnt-bodd @du=; impact of fiber midorcement in the thermoplastic mtdx (Jiadal 1986, Shin 1989, Jain 1992, Lee et d. 1997,Ennli,ch 1997,Baietal. 1999,ICawaietal.2001). ~ , b a r n O f i b e r s a r e m ~ y a c c e p t e d f i - ka rasauce of n o n u - ligoduloslc fi- bers and can wdbute as a vdue-addd component h a g m W M D F .

Chinesetallow tree (SaQium s&$mm) was in- d u d into the United States (Bruce 1997) and is one of the fastest gfbwing a d 1rr:pfOducing species thraughout the d a u t e m United States. It has been COILSW as a weed or noxious sped- by the U.S. Department of Agrkdttm (USDA) (Jubinsky 1996, Keay et d. 2000) because it ean readily become t h e d ~ t p l a n t i n d i s t u r b e d ~ t l ~ ~ a n d ~ - b e d a g r i a h d land. It has the mty to invade 1 1 8 ~ , w e t ~ e s a n d ~ ~ b ~ . C h i n e s e t au iowi s themogt~ fu .? exot3cMerofthena- h ~ i n ~ ~ ~ I t h a s h p o t e n i a i t o i n V 8 d & s u m n r n d i n g ~ , ~ them fnnrn tBerkmw to wood plant cxxmnunities and creating u n h d eaqstem ( B ~ c e 1997, U h t s c h ZOOO). &#am, ho-, has considerable potesltial tor composite mantdhddng in combinn- tionwithbegassefiberswhichalsogmwinthesame afea TI& ~ ~ c t i ~ of the quantity of this invash speciesintheezosyste~~~winhelpittoretumtoa ~ l a o l n e ~ ~ ~ t a ~ a n d & ~ & ~ t ~ t ~ p e r f o n n better.

Reacting p o 1 ~ o n a l alcohol with a dliso- ~ t e ~ p m q o m . Whentheprqmlymeris in molar errcess, the prepolyrner is bydmxyl-tern- ina-dandcumotgmw~eruntiladditiddiiso- cyanate is added (Maria 1393). U-Wdehyde ~ isanimportantwood~fminfes lorapp, l i - cationdue to its iowpduction cost and mmpatib1e ~ e s s d ~ o f M D F m a d e w i t h W O O d - b a s e d f i k ( W h i t e 1 9 9 5 ) . H o ~ , U F ~ i n i t s e l f i s l e s s e f - fective for binding agmfibem. Various ndn syatcau have been developed to obtain i n d strength pmpede and dimarrod stability of agm?xmed

composites. Adhesives included in some UF modifl- cation research fndude pheml-formaldehyde (PP) and pMDI (4.4'-diphenyh-e dihqamte). Hoe et al. (2000,2001) rqported that 1 percsnt pMDI and 6 p e r r c e l l t U F n e s i n s y s t e m ~ d e d ~ ~ d nnd physical pqmt ies , with an i n d econoanic gain, than using a shglepMDI system for MDF manu- f a ~ . ~ , t h c g d o f t b i s r r s e a r c h i s t o & d o p a multi-polymer resin system oonsisting of UF and pRADI and to optimize the physical and mechani- cal performance of agmfibkxd composites.

The specific objectives wexe to: evaluate the e&ct of pMDJ concentsatiion and fi- ber MC;

* detmmb the e8Frsct of fiber morphology and as- pect ratios on mexhanid pmprdes; investigate fiber mixing combinatiop with panel typg b 3 g p d a o w and -1; ~~d evaluate the efkt of Imodi€ied (pMDYUF) adhe- sive, cad-.

Materials and Methods

e B q p s s e f i k , Chinesetalkrwtree(S0qium~ rum), and bamboo --> MC 8 percent, Single disk refiraer with a O l O O S d plate dear- 811- {Chinese tanow and beunbao).

Fiber elmeatlo111 rrrm8 aWcd ilber dime- * ~clesizedassifier(5min.)-~~standarrl40.

60, and 80. mdms (TAPPI 1995). Mataial densityupinBAmslcrw1ume-meter(VM 9). lmageandysiswinghage Pro-Plus, Version 4.5 - 0.26 by 0 2 6 h ~ h segments.

E x p e ~ ~ wWmle8 mRaplne1 wwkatien 6- by 6- by 0.25-inch pa&

Scma hctions: +40, -140/+60, -b(H+80, and -80. Pane1 types: siingle andmulti-size withclassified fi- lms.

*MC:Opercent ,4~t~and8percent

pMDI itpplication levels: 2.5 pacent, 3.5 pereenf and 4.5 pacent Mechanical and physical pmpmties b a d on ASTNI D 1037-99.

12- by 12- by 0.25-inch panels Piba mixing combinations in weight fnactbs. - Bagasse and tallow: 10(VO. 75/25,50/50,25/7$,

and 0/100 with 8 percent UP, 2.5 peraslt pMDL and 1 percent p W 4 percent UP (45 paneb total)

- Bagssse a d bamboo: 75/25, WU), d W100 with 1 p m t pMDU4 perceat UP d three pand typJ (24 Imh

Panel types: hardbod, MbF, and BCP (bagasse COIe panel: H)% and 75%). Mechanical and physicdl properties based on ASTM D 1037-99.

b

Results and Discassfen

Elt&t Ot MC u4 pMDI 06mntmtjlon levels on ~ S e ~ r s

Figure 1 and2shawtheefiactof MCandpMDI corkamtraon 1& on the rrmhnical properties. ~ ~ M C f r o m O t o 8 p e r o e n t i n ~ mechanical pedcmmnces of bagassebased MDF without a significant di&rence in intaaal bond (IB) strength properties. Furnish and a d d i t i d m o b fmm R3in (6096 solid content) acted as significant hcfxm on panel pmperty development. This result in- d i c a t e s t h a t e l h h a t i n g m ~ ~ e x p e n s e s c a n be a cantribtation in panel produrcts;. Eight percent MC provided a 63-pereent iaprase in MOR and a 30-paantinaegseinMOEcomparedwith0~ MC. I n d resin 0011-t a h contributed to MOR and MOE development. Property performance (MOE, MOR, d I B ) ofme&ddymodified resin (1% pMDY4 % UP) pmvided an e q d or bcner to 4.5 pement pMDl and 3.5 parent pMDI. Statistidly in- -t dl&remr lmween 2.5 percent and 3.5 prant pMllI usage on IB stmngth was also ob- served. One hundred prant bagasse Bbaa snd 2.5 percent pMIlI yielded poor m w c a l properties due to the insufficient surface covemge.

~ - ~ - ~ ~ - r P B s I o a v W 1 shows aspect ratios of two fiben fram a

particle classifier and generated fFom image analysis. It shouldbnotedthatthe~fracti011~~m40to 60 mesh had mar than 50 ~t (wendried weight basis) of both fiber types. UW ckmidwith im d sereen W o n .

Larger wides S~UU"EX~ a nztdvely ctc811 surface o k d fnnn Lhe b g a s e f i k , A m & * I N i r ~ i g - nificart ~l y d 1Tets ham each cr;ahef. .Bagasse fibers con-

of lager and ihic.kt:r fillers tlian bamboo R- bcrs. Even though the bagasse fiber hirtl a Irigltcr aw;m.gg fit=* la* and disizne~, itnhensnr sk&r norphQIogy oF bnmlwr~ rih:m wcrc cnk;ru~cod m wfi

Resin Content {%)

ax c CIO rrjcrrk size.This may contribute to the B k x net- work spkcn~ during panel fabrication. Material dm* was 29.28 pcl' lijr l q 9 t ~ ~ c and 46.73 pcf bl- bamboo. 'i'o achieve the t a m dmsiiy (42 pt.f) for. m F , fiber required more fibers for panel m;in~~r.dun.s \ .# I ich mtr wntrpbut~ ta a m i n s h u ~ g e w h n prd5aci ng ac~xq~ktdc patocl imprties.

I;l;tlOlllcwceoP r a h ~ 0 m mwhassAeal w@B=-

Thc influence d the fiber's ~ n s i o n a l chamc~eri~- t i<~l trr l On. n l o c t w ~ i d plr)@eu of agro-ked corn- posit= was ak? evabrrtexf. Figure 3 and4 shaw thc in-

of E i k &action of' r.wr f?txzn nrl MUR and MOE. respedidy U b sire Lnfluonc*?ll MOR atid MOE d MDF cxcept fibem clossifid as > 10 mesh. MC)R arrcl MOE iaa~6Cdwit.h M m w =ti-. mberfrad~n,rnfrluf - 2fi.s)~rt~mboofiripro-

Figure 5. - IB of& by 6- by 0.25-inck MDF rrrcrde f h n ckrssifkd m.

vided the highest MORand MOE. I N (< 3.5) maypm made frPm both classified fibem. The highest IB was vide a negative contribution to the MOE and MOB of 146 psi foI bamboo fibers and 79 psi for bagme. M- MDFmadewithundass&dfibaa The finegeometry mensional chamdmWcs acngth and diameter) in- p r o d u c e d ~ ~ e s B b e r s i n ~ a o d m a y p r o - &Id1Bstrengthofag-bedpandsandshod vide less effecthe stms tmnsh, different behavior with bamboo fibers. The D3

Fi- S shows the infh~mce of aspect ratios and streagth changes rapidly with aspect ratios from 3.5 size fkdon on in& bond (IB) stnmgth of MDF to 10. Less than SO mesh (LA4 - 3.5) showed the bw-

MOE (x L@ psi) 232 293 260 Zli, 199

<PSI) SCi 254 56 52 40

@@ 17 22 26 31 36 I

lAt!A @@ 38 91 101 107 157

2-5% $MDX &!mR (psi) 337 2,275 2 ,&7,3 2,RY.S 4,151

A3tJH [x t @? pst) f 63 278 269 265 343

n-3 ( ~ 1 ) 45 71 IW 154 18g

Ts 21 19 18 17 16

est 1B from thls study. Panicle nxqhoIogy ilpp.led bC PL JM~OE' ~ h 2 i l ~ k h I 3 I R w I % Y ~ d u ~ ~ i u t l d l l ~ 10 L ~ I C

mlc of X U ~ ~ ~ C BIW. T l l ~ i r n j ~ t w c f n ~ t i l ill Lwodir~g pnaprties ttTMnF wzisakt.ribrr(*rl koprrk4r.gm~mt?- zria of the classified fiber sim as we]! w the inter- acaiun between su~cfs area and a m t of applied

mixing mtim and dinbmnl adhruive! rppliratir~n rm pawl pmpmics. Resin type influencad MOR more ~rhan fiber volume hctiorr. A modified resin

F) pr~,Vidd b ~ l * Or equal v f ~ m ~ e of the mechanical and phyJical properties. 1Jmm this re. sult w r rimy corid.de that the pMDUUF 533wm a d furnish moisturn provide clcsc to optimum MC for pMDI Tuf~ctioodity. Tlrc quantity of UF pmvidcd an cxkrrdd w~tuntc ~ r r i u f 3 ~ ~ - tfrc exjxmcd fitxr- surfa~;~:. The 1 prc*nt pMOW pmi15ni. l IF n~-sl.ern has great

po#emtial lor incnesa! dimomiit~wl stability as d l as mechanical idues. MX?F made: with UF showed poor dimensi~n~d stability whw cornpad to that of m y other adhesive applica~ion. Modified pMUlRll-f system pmvidd better dimens id stability regard- less of fiber mixing combfimtions. M e c f ~ d d and physical p ~ ~ ~ p . t i a of bagasse wIumc fmetions (30%

to 75%) bsigdficantly differed lram Supiunt s p fi- b ~ = with UF ~win. NOWCV~L", tallow tree fibers (1OQ4r-h) witti 2-5 ~ C E E C ~ I ~ pMDI m ~ d 1 pcixcnt pAADU4 pzmwn~ TrT: xII(KYU~ ~(11~isti~11ily signilica~l I, diffem~la: mrnpml14.1 the her fiber mixing ratios, MDF ntscl~ from bagasse and Sapiarn fiber cambinations of 50 p m n W percent and 25 ple~~caW5 pemrr;t pm- vided a better or eqwl mechanical d physical per- I9nn;lnce thm 6 t h fiber corn binarions ssrl th maxi- munl bagasse fiber utilizdon.

iJaeer d m paw Q F S

Tabk 3 shows the inhence of bagaswJbambao fi- ber mixing ratios and panel types on me&anieal and physical properties of fikrlmards. In general, the ad- dition of bagasse 6bas into the Furnish results in &- m-tsued sulet~gth prape~ties but not a dgnificnnt df f- fwmcc in k ~ d i n g stiffks and physical properties. Rqarrilcss oof tttc fikr fnixiug ratio, hadhard x h t d ixz~lcr it1d:animI and pllysiczil ptn~wrti~s l b n MnF and baprtro I:C?W: pirnel. TI. ahu~lt l ixi rnrlml that 75 F e n 4 and 50petcenl weigh1 imc~ions ol'bPr- gasse showed an insignificant diEerence on the me- c h W and phpical propenies @less of panel ~ 5 - i ~ . 'l'herebre. bagasse fiber utilization combined with other fiber resou~cw can pvezn pael proper- ties to optimize bionlass utilization. B;unboo 'f%a-s

] D e n s k t y w 72 (1.15) MoR (psi) 4,659 MOE(x idpsi) 5%

(Pa 198 [%I 17

m<%) 29 Ma density a-

Density - 46 (0.74) BllOR(psi) 1,691 MOE ( X 103 psi) 257

b# 64 = 15

m- + 48 -f!v--w Density 46 (0.74)

MOR (pi) 2 2 w MOE (x 103 psi) 329

(psi1 38 'rs (9Q) 17 WA (6) 50

also provided better mechanical and physical pmpa- ti- compared to the other fiber mrnbinatim. The ba- g v s e a t r r p a n d a d d e d s o m d m d m e c M and physical property development can- to the NIIDF.

Coa-as 4 This ~ i n ~ ~ t e d ~ c a l , and ph@-

ca lpper t i e so fag~~pane l s in tamrofma~ coxdition, modified dheshe, and furnish formula- tion for&-umtion. M M d pmperties of MDF made fium bamboo and Sopiurn sp. Bbas and modified adhesive wae staktically supmior to the bsgarsefi~fromthisstud~Themixedresinb mulation (1% pMDI and 4% UP) d t e d in equal or ~ p r o ~ d u e s a n d ~ ~ 6 6 p a c e n t l ~ resin cost cumpard to the 4.5 parent pMDI system Paad mechanicpl and physical p m values are strongly related to the Runish MC, moistme addition

fkn the adhesive, and w in content. Inrreased YW from 3 to 20 and o o m ~ o n ratios positively Mu-

loss. This d t was supported by image d y s i s of the~basedftbem.Barnboofihhadabeaama c W d pafonnencs and more slend- f i b than tile lmgase f i b . Therehm, lnatexial @!!om end fibersepatbn influence the m e d u i n i c a l p ~ e s of phased MDP. Twenty-five to 50 paant of ba- gasse f i b in the mixingoombinations were bmea- cia1 to rnanufkture ag-based panel. The high-density f ibehad provided the best deal pmpaties fIl)m orn: study. It was fclund that hadhadmade b m -boa combinations is compatible

physical pmpmties.

Amerhm Society for Testing and MEtterials (ASTM). 1999. ~ t e s t l a d h o d s f c a : d ~ p a u , ~ o f w o o d - ~ f C L E l C C d ~ ~ m a t e r f a l s . V o L 0 4 . 1 0 , A S T M D 1037-99.

AtchisoenJ.E.andD.Efenprd. 1985.Rapidgmwthintbeuseof b a g a s s e a s a r a w ~ f o e r ~ ~ ~ b a a r d I n : Pmc. of tbe 19th fn- Partkkbodhhrnpsite h t d & ~ . ~ h u & D ~ w k ~ . 145-193.

hi* X, AW.C. Lee, LL. lknnpson, d D.V. R d I 1999. P i n f t a d e m e n t ~ 0 f M a s o ) w u n b o o - - d o e m pine 06B canposite beam. Woad Fiber Sci. 31(4): 403-4 15.

Backid, A. 1995. The fiber &k uf the equation. In: Woad- f i ~ ~ V i r g i n a n d ~ w o o d f i b e r a u d ~ f o r c ~ l m ~ t e s . F o n e s t ~ c t s - ~ # WI, pp 3-6.

-# 3.L and VB Stocbmann. 2001. Al&dtmd rp;sidures; a n & C i t i n g b ; i o - b a s e d r a w m a t e x h l k ~ g S ~ ~ i n - drrstry. F~op.est Rad 3. 51(1)A0.21.

]Bnroe, Ilk, CN. Chmmm, PA lhrmnbe* aad G. JuErinsky. 1997. Imtmkthn, impact om nati.ve habitats, and manage- mentabawmdy~,thetfbeChinescow%e,Scrpium s & i j k ~ ~ (L) Raxb. NiWd Arr?as 3.17(3)255-260.

choose Green R e p a t 2001. lhticle- and medium- ~ f i b e d m a d M a r k ~ ~ E d . ~ S e g l J l f I l c . p p . 1-7.

b@sb, %., P. Chow, and D.S. Bajwa 1997. Rrocessing into ~ t e s . ~ 8 . i n P a p e r a n d ( 3 o m p o s i t e s ~ m ~ b d ~ R ~ ~ ~ D E d , C R C ~ P u ~ ~ Boca Ralml, FL pp* 269..299.

Han,G*sKU~M.~1:Handa,dS-ICa~.2001. rlewhpmat of of-p?dbmmce UF-banded d and wheat straw d u m a t y f i a J. Wood Sci. 47: 350-355.

I h s a , ML, RM. Rmdl, NA, Fadl, S.P. Yacaub, 4 A.W. Christlansrut. 2000, Tlmm-ti011 Oflmgaaw. 11. Dk

~ l 3 a l ~ a a d m P r h a n i c a l ~ O Q F ~ w t e . J. App, Pdym. Sci, 76:s 15-586.

~ C . Y . a n d E T . C h ~ 2 0 0 0 . M o d i f i e d ~ ~ ~ r i c e h * O O d ~ ~ f n : ~ of tbe 5th Pad& Rim B i o - W Coxpsi& Symp. Dec. 10.13, Cdxxm, A w t d a - pp. 503- 508,

~ , C X d J . W a a g . 2 0 0 1 . B o ~ o f ~ f i ~ ~ - ~ t i o n p o u t e l s . I # : P r o c , o f t b e ~ o f A g 3 r i a r l f t n i l and Farestry Residues Symp. -31- Max 3, Naniin& il[=binapp34-41,

kin, S., R -s and U.C. J i n . 1992. Mechanical behavior of bamboo and bamboo c;ompasite. J, Material Sci. 27; 459a4fHM.

~ ~ , U . C . 1 9 8 6 . ~ ~ t t a a d ~ o f b s u n b o o r ~ ~ * plastic 43Xnjdtes. J* campsi* lt1Waterials. 220: 19-29.

~ , G . r a n r i L C . ~ 19%.TheimrasivleptenWdb Chbese WImwtme (saphim swhifiensm Roxb.) in the soda- esst, Casaaaea. 61:226231.

&wai,SS,,Y.Ohmoai,G.P,Han,K,~,aaB~Kiyloodra,2001. AtriaiufmolMlfr;rchafng-*fiberoclan- d t e 9 . Oct. 31- N m 3. N@hg China. pp. 124-129.

JGeay; 3.. W.E. RogeIs, It. L d u w * d E. Sienatmn, 2000. The role of dkiopathy in tht inwasion of Chinese Tdaw (Sqpjrcm eb#kmrn). T~exas 1. Sci. 52(4k57-64.

Kuo,M.,D. Adawp D. MyasBD. H. Heemtam, J.L Sdth,andY.Bh. 1998.hprtb~0f~od&i~~bdfi- berbod bonded with so^^ adhesives, F m R d . J. 48(2):71-75.

be, B.G., aisd S.Y. Lee, 1994. Thin h a d a d n a n b ~ w a s t e ~ d o s i c ~ a s ~ y s u b s t i t u t e s i n h g r a d e p l y w m d a n d ~ e b o a r d ~ O ) . J . ~ Wood Sc. Tech. 22(4):19-25.

Lee, AW.G., X hi, and A.P. Bangi, 1997. Flexural propgties of ba.mboomWmA southem pine OSB beams. Fomt Prod. J. 47(6):74-78.

Marxa, AA. 1993. ?ixhml- of wood Boarlliag: Principles in &. pp. 91-93,

Mobad, F., A a d Y, Fahm~ 1975. Fiberboard h m ex- a t i c r a w ~ L ~ f r o m r i ~ s t r a w ~ . J . AppL Chem. Biotech 25653658.

Mob.& F, Y. Fahmy, and H. Augustin. 1982. Biderless ~ u i o s e ~ ~ a d p d t e f n , r n ? m g a a e a n d ~ o b s e l f s e l f - . H- 36:131-135.

Nda, A. d H . El-Saied. 1989. Imgmgxdon ofhat.dboard with poly (methyl m-te). ~~ Tech. &@. 28(7/8)787-7%.

R m i d l , R M . a a d F . ~ y 1991.l3i~~fiq3mrac- etyir;lsod f i k Woad F i k Sci. 23(1):15-22.

SefaiD, WZ, N A Naim, and M. h b a . 1978. Effect of h h n d ~onthepmpert iesufsugarcanebpse ihard- bosrd J. Applied Chern. Biotech. 28(2):79-84.

Shin, F.G., XJ. X h p W.F! Zheag, a d M.W. Yw. 1989. Andy- sisoftbemecha;licapropertiesandtlliarolstruaurrofbaun- bompozy composites. 3. hterkd Sci. 2434823490.

U ~ L 2 0 0 0 . ~ u F e e d ~ C h i n e s e m o w ? f . e e (Diudh se.b$ic#c~ (L.) Small), Plant Guide. USDA, NRCS. l h t t p J ~ . ~ g o v .

White, J.T. 1995. Wood adheshs and WQders; Wbat's the out- look? Farrest F d . J. 45(3):21-28.

Recent Developments in Wood Composites

Edited by ToddE Shupe

Rrsoc iaEepI .o f~r ; Louisiana FmA.;oduerp Dev&pmenf C&zte

School OfRelzewable Natuml Reso- Louisiuna State Uraivenity Agrirrrbluml Centerl;

Baton Rouge, LouisiaM, US4

Forest Products Society 2801 Marshall Court

M a h n , WI 53705-2295 phone: 608-23 1-1 361

f;u~: 608-23 1-21 52 www.fo~tpdorg

Optimizing Natural l?ibePReinforced Polymer Composites Through Ekpdmentd Design by Rupert Wimmer, A d m Ganz, GUnter Wuz& and Rudolf Kessler. . . . . 73

Characterizing Wet-Process Hardboard Manufactum by the Use of l3qmhlentalDesign by 1 3 2 0 ~ ~ ~ ~ HutZer, Rtcpert Wimmer, and RudotfiKess;F2er . . . . . . .

Heterogeneous Nucleaton of a SemicrystaIline Polymer on Fiber Surfaces bySangwobLerg ToddESht~pe,LeslieH.Groom,andChungf:Hse ....