Promenade around Pascal Triangle { Number Motives · Pascal [Pas1665] wrote his Trait e du Triangle...

26
Bull. Math. Soc. Sci. Math. Roumanie Tome 56(104) No. 1, 2013, 73–98 Promenade around Pascal Triangle – Number Motives by Cristian Cobeli and Alexandru Zaharescu Dedicated to the memory of Nicolae Popescu (1937-2010) on the occasion of his 75th anniversary Abstract We survey classical results and recent developments, old and new problems, conjectures and ideas selected from the endless theme of iterated application of the fundamental rule of addition. The multitude of forms created by this spring, like the commandment “Let there be light” from the first day of creation, is emphasized by the role played by the prime numbers. The subject sounds harmoniously between poetry and astronomy or geometry, finding its origin in the East at Pingala (4-2nd century BC) and in the West at Apollonius of Perga (3rd century BC). Our work is divided in two parts: the present paper is mostly dedicated to playing with numbers, while the second one, which will follow in a companion paper, is based on geometrical motives. Key Words: Pascal triangle, Sierpinski gasket, fractals, Collatz conjecture, Thwaites conjectures, Ducci game, absolute differences, Gilbreath conjecture, greatest prime factor, continued fractions. 2010 Mathematics Subject Classification: Primary 11-02, Secondary 11B65, 11L05, 11B50, 11B85. 1 From history to content Repeated application of simple rules often produce very complex objects. This fact is revealed in numerous situations (cf. Wolfram [Wol’02]). Pascal Arithmetic Triangle is generated recursively by two basic rules: (i) boundary conditions; (ii) insertion method. (R) To obtain a row: (i) copy the row above and attach a 1 at each endpoint; (ii) between any two consecutive elements that come from the previous row insert their sum; then delete the older entries. Small changes in (i) and (ii) may produce very different constructions. Although,

Transcript of Promenade around Pascal Triangle { Number Motives · Pascal [Pas1665] wrote his Trait e du Triangle...

Bull. Math. Soc. Sci. Math. RoumanieTome 56(104) No. 1, 2013, 73–98

Promenade around Pascal Triangle – Number Motives

byCristian Cobeli and Alexandru Zaharescu

Dedicated to the memory of Nicolae Popescu (1937-2010)on the occasion of his 75th anniversary

Abstract

We survey classical results and recent developments, old and new problems, conjecturesand ideas selected from the endless theme of iterated application of the fundamental ruleof addition. The multitude of forms created by this spring, like the commandment “Letthere be light” from the first day of creation, is emphasized by the role played by the primenumbers. The subject sounds harmoniously between poetry and astronomy or geometry,finding its origin in the East at Pingala (4-2nd century BC) and in the West at Apolloniusof Perga (3rd century BC). Our work is divided in two parts: the present paper is mostlydedicated to playing with numbers, while the second one, which will follow in a companionpaper, is based on geometrical motives.

Key Words: Pascal triangle, Sierpinski gasket, fractals, Collatz conjecture, Thwaitesconjectures, Ducci game, absolute differences, Gilbreath conjecture, greatest primefactor, continued fractions.2010 Mathematics Subject Classification: Primary 11-02,

Secondary 11B65, 11L05, 11B50, 11B85.

1 From history to content

Repeated application of simple rules often produce very complex objects. This fact is revealed innumerous situations (cf. Wolfram [Wol’02]). Pascal Arithmetic Triangle is generated recursivelyby two basic rules:

(i) boundary conditions; (ii) insertion method. (R)

To obtain a row: (i) copy the row above and attach a 1 at each endpoint; (ii) between anytwo consecutive elements that come from the previous row insert their sum; then delete theolder entries. Small changes in (i) and (ii) may produce very different constructions. Although,

74 Cristian Cobeli and Alexandru Zaharescu

11 1

1 2 11 3 3 1

1 4 6 4 11 5 10 10 5 1

1 6 15 20 15 6 11 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 11 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 11 11 55 165 330 462 462 330 165 55 11 1

1 12 66 220 495 792 924 792 495 220 66 12 11 13 78 286 715 1287 1716 1716 1287 715 286 78 13 1

1 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 11 15 105 455 1365 3003 5005 6435 6435 5005 3003 1365 455 105 15 1

1 16 120 560 1820 4368 8008 11440 12870 11440 8008 4368 1820 560 120 16 11 17 136 680 2380 6188 12376 19448 24310 24310 19448 12376 6188 2380 680 136 17 1

1 18 153 816 3060 8568 18564 31824 43758 48620 43758 31824 18564 8568 3060 816 153 18 11 19 171 969 3876 11628 27132 50388 75582 92378 92378 75582 50388 27132 11628 3876 969 171 19 1

1 20 190 1140 4845 15504 38760 77520 125970 167960 184756 167960 125970 77520 38760 15504 4845 1140 190 20 11 21 210 1330 5985 20349 54264 116280 203490 293930 352716 352716 293930 203490 116280 54264 20349 5985 1330 210 21 1

1 22 231 1540 7315 26334 74613 170544 319770 497420 646646 705432 646646 497420 319770 170544 74613 26334 7315 1540 231 22 11 23 253 1771 8855 33649 100947 245157 490314 817190 1144066 1352078 1352078 1144066 817190 490314 245157 100947 33649 8855 1771 253 23 1

1 24 276 2024 10626 42504 134596 346104 735471 1307504 1961256 2496144 2704156 2496144 1961256 1307504 735471 346104 134596 42504 10626 2024 276 24 11 25 300 2300 12650 53130 177100 480700 1081575 2042975 3268760 4457400 5200300 5200300 4457400 3268760 2042975 1081575 480700 177100 53130 12650 2300 300 25 1

1 26 325 2600 14950 65780 230230 657800 1562275 3124550 5311735 7726160 9657700 10400600 9657700 7726160 5311735 3124550 1562275 657800 230230 65780 14950 2600 325 261

Figure 1: The first 27 rows of Pascal triangle with entries written in base 10.

they usually share remarkable arithmetic, geometric, topologic, and probabilistic properties. Ineach case, a ’kaleidoscope of mirrors’, or the multitude of symmetries involved is perhaps themost appealing. We survey various such constructions, recent results and open questions.

Known for more than a millenium in Asia and Europe (cf. Burton [Bur’07]), the origins ofthe Pascal triangle are lost in the mist of time. In Chandah. sastra, the Hindu scholar Pingala hasclassified meters (chandas) or rhythm of poems that are closely allied to music (Bag [Bag’66]).He enumerated and counted the meters of a given length n that have exactly r syllables of a kind.In doing this, he obtained Meruprastara (the stairway to the mythical mountain Meru). ThenHalayudha (cca. 975) in Mr.tasanjıvanı, a text of commentaries on Pingala’s Chandah. sastra,clearly described Meruprastara as what is today known as the arithmetic triangle of Pascal.Among those who considered the triangle before Pascal, we find: Al-Karaji (953-1029), Persia;Jia Xian (1010-1070), China; Al-Karaji (953-1029); Al-Samawal al-Maghribi (1030-1080) inIraq, Marocco, Iran in his treatise The brilliant in algebra; Omar Khayyam (1048-1131), it iscalled Khayyam triangle in Iran; Yang Hui’s (1238-1298) triangle in China; in 1303 was namedthe Old Method by Chu Chijie in Siyuan yujian (Jade Mirror of the Four Unknown). Andin the West: Ramon Llull, a Majorcan theologian (1232–1316); Niccolo Tartaglia in GeneraleTrattato (1556) (the triangle bears his name in Italy); Michael Stifel in Arithmetica Integra(1544); in 1527, Petrus Apianus puts the triangle on the frontispiece of his book. De Moivrenamed it Triangulum Arithmeticum Pascalianum in 1730.

Pascal [Pas1665] wrote his Traite du Triangle Arithmetique in 1654. It was the result ofa fruitful correspondence with Pierre de Fermat about calculating the odds in some games ofchance. The relations between binomial coefficients proved by Pascal, later led Newton to thediscovery of the binomial theorem for negative and fractional exponents, and Leibniz to thediscovery of infinitesimal calculus1. Pascal triangle is extremely rich in displaying remarkablesequences of integers, triangular numbers, Fibonacci and Padovan numbers, squares, powers,Catalan, Bernoulli and Stirling numbers, etc. Consequently, there are so many relations, that’when someone finds a new identity, there aren’t many people who get excited about it anymore, except the discoverer’ (cf. Donald Knuth, The art of computer science, Vol. I, Chap. 1).

1’On several occasions Leibniz was to declare that he was led to the invention of calculus more by studyingPascal’s writings than anything else.’ (cf. Burton [Bur’07, pages 412–413])

Promenade around Pascal Triangle – Number Motives 75

The following matrices [BC’04], [MP’09] nicely relate the triangle in the form used by Pascalwith one close to what we use today. Let L(∞)i,j =

(ij

), i, j ≥ 0, where,

(ij

)= 0 if i < j.

L(∞) =

11 11 2 11 3 3 11 4 6 4 11 5 10 10 5 1...

......

......

......

. . .

= exp

01 00 2 0

0 3 0. . .

and

P (∞) =

1 1 1 1 1 · · ·1 2 3 4 5 · · ·1 3 6 10 15 · · ·1 4 10 20 35 · · ·1 5 15 35 70 · · ·...

......

......

. . .

Then

P (∞) = L(∞) · L(∞)T ; tr(P (n)

)=

n−1∑k=0

(2k)!

(k!)2and det(P (n)) = 1.

But looking further than pure identities, a more optimistic thought becomes appropriate,that of Jacobi Bernoulli [Ber1713, Part II, Chapter 3, page 88], who used the triangle to get intothe intricacies of sums of consecutive p powers. He admired the exceptional properties of thetriangle, which conceals within itself mysteries of combinations and top secrets of mathematics.

2 The Shape of the game

The mountain shape in Figure 1 captures some magic of the triangle. One can use Stirling’sformula to study the shape of the outer curve. More generally, let b ≥ 2, n and S be fixedpositive integers and denote by db(m) the number of digits of m in base b. Then denote:

mb(n, S) := mina1+···+an=Sa1,...,an∈N\{0}

n∑k=1

db(ak) and Mb(n, S) := maxa1+···+an=Sa1,...,an∈N\{0}

n∑k=1

db(ak) .

Question 1. Estimate mb(n, S) and Mb(n, S).

One may ask about the distribution of digits in Figure 1. The first digit of the binomialcoefficients appears to satisfy Benford’s law. The triangle has a different shape in anothernumber system, such as the Chinese one used by Chu Chijie in 1303 or the Arabic one employedby Al-Samawal al-Maghribi.

76 Cristian Cobeli and Alexandru Zaharescu

Question 2. Find the shape of the triangle in closed form.

Problems similar to Questions 1 and 2 may be addressed for the shape of individual rowsof the triangle (see Figure 2). The thickness of the lens shape figure that corresponds to then-the row of the Pascal triangle is ≈ n. Remark that if n = 2m is even, the number that givesthat thickness is (m+ 1)Cm, where Cm is the m-th Catalan number.

1360

64620

7711320

688235310

49002354072

2899305949260

146622043719720

6469697679132645

253037064783854560

8881600973913295056

282596394624513933600

8218845143662946902200

220012162307285040151200

5453158594330564923747600

125786191575891697574444640

2712264755855164728948962550

54883475059657450985790771600

1045835108081250316007013036600

18825031945462505688126234658800

320966794670135721982552300932540

5196605247040292641622275348431600

80074962670302691159543242869014200

1176753799241839548344592003901165200

16523584597687496991338646054778861350

222076976992919959563591402976227896544

2861376434331853325146273846039859436240

35396286261734778170327980169530113026080

420962975898488611811400621301911701345880

4819300275803386866254655388697747753339040

53172946376364035091009697788631816878507408

566034590458068760646232266782209663545401440

5819543133147019445394075492854593103326158555

57842731747643102366341113989585046602756969880

556310978867038072758633655135126771738280269140

5181639403161554620551844902115752216762267649704

46778689056319590324426377588544985290214916282050

409629601466149926084166117261853384703503591226600

3481851612462274371715411996725753769979780525426100

28747595364432111479291350331940838818807418697107800

230699452799567694621313086413825231520929535044290095

1800581095021016153141955796400587172846279297906654400

13675842126469146496482949977423507336618168953148160800

101137623167841595020501816112108728675455295979095700800

728650603277404218670433538807692431593621109667575844400

5116746458570216291107933294738462408524094903443421485120

35038589879339524602152151909622079536632389012710386256800

234087600470481079256931397864283680308565322340235346481600

1526446228067928704321240156906683165345436372760284655182100

9719412717493750117310753652140513216077064251045077804424800

60454747102811125729672887716313992203999339641500383943522256

367470031409244097572521474354065442808623437036570961225331360

2183619994335700502882867991834735035151243116236546673435142120

12689716193498033111092893235567894166539299618884082555057052320

72143386507479558613065152283691546465325277462915061933379908560

401379568568886271556326119978356603970718816430036526392986400352

2186085150241255586154990474882120789483379268056448938390372359060

11659120801286696459493282532704644210578022762967727671415319248320

60908855220514983228042493231198399927674843054814163524807616073120

311770750450771609065573439929185030138267840721252159059184746679360

1564049931428037572145626756978078234526977000951614997946910145841456

7692048843088709371208000444154483120624477053860401629247099077908800

37095525872314904870825679561325652468818042566197743341046493940237600

175467725554759391293746865226588006915996455313125833581458018955409600

814279913902555300222544046442134969594546050437474571463953619214947675

3708105454079328751782662119182645399999778937376807279282004173655761720

16574107711415181542058868563013339287877799795850881021033200473158328900

72728174136657662289034438172028682845314524477315806271399417001620129800

313372867971186691921868976241241236377605230468434282904706311492274971050

1326157644167920493350517986412209290177691699953374066785133955880352051400

5513026777898069479500010486370755763452975495520455049063914016588320670820

22517996698456903507816944240105903822554406953534253017303310771980464711800

90384736747972848802209678963758419509975327910713876694453566848643809745975

356586358676933978836114897829622257792779375866925979287707222635745441189600

1382976823517297998999526698339210648466590282078483189940161795898093805694800

5273751620345963036184861809666856606152597608992615897638483648358064379049504

19776568576297361385693231786250712273072241033722309616144313681342741421435640

72942149034655203032946465289548081630552161734767999103701105006510890437502880

264649079189838749465690380473616757710849509883837740337787342523622846074529680

944696713057399080371198573336201590815943820091673959180456083438754969531865440

3318247204614114269803834988843408087741002668072004781621351993078626830480677358

11470484164098172784507083912051287216882478358767423936468871087185376697957897040

39027622948577929352164346481247672359880627586537942417985549186886830472320161880

130719026261501980239779377370925938747551981554910216773493767156078781581988012080

431061550886143434838320089663648631346094034413215833884021113121831220216793801740

1399682212289124564886780526437259085312022982329971413552821496725004903292177520944

4475728004412898317951914474072630796055887443497001613104952460457864516341265328600

14095970956426829185273845585010354461141530569174464850468470967419021580201226437200

43729546262551413267951816417134395089677702788461692092930597433015828311306077469950

133645354869820049538010045679332083869576799533276182576147443840228149445789360357600

402421012996902593608896915323322163651725696372420505312621747563353649997876851743440

1193996412188612090927496342168098727318307011214874026751734855407752587905788461216800

3491141683464528831081483870034984322267658543660881665176268218529189632028881478992600

10060494313639717491718684700745976326534757953775443938357418092105621735309034799677600

28576084912146857130732859735097613608348727379340888633419474793534053226888428633126800

80013037754011199966052007258273318103376436662154488173574529421895349035287600172755040

220869322966801749906289395035858638514528705369488951729138023925023619732825146310209225

601128879002429504899591755561512170802428641417990549036004518723775624839854006452528200

1613233624261622038659108486864058172663660537682974636698665188003601931968179629561376700

4269365753096413880087741652104881224625041018918579341566164436938825314905687504495764600

11143044615581640227029005711993739996271357059377492081487689180410334071903844386733945606

28685065347041846128985559258597746525054978568694534071156427593135513452425738025255701560

72837567891018021053012351450753101470482739698940042396367791633549980237041824985698301020

182447500154200479919195987129070875528005309148801271245270779043261115545211561614661763720

450855841727206955184936237424723221256705427415787756827255675135751025914609339759308396885

1099229480782523624069939778864087091825872280175634911883594788902402501277523723603647139072

2644372807542863435262590977456058569958466334384782099342610105378421111563854240744622834560

6277296197344741238847645871718120343639723821810604235822644549216065068572139973356394392320

14705147573409440124337540792080411545748612286278545107991935842145041318043994567214516493120

33997221912836503773697800730314345958978443083873333644164842497436242313276024137046405103360

77575479092017840429074072575535462142759901945929152224412504244149971096657109621805888008576

174719547504544685651067731025980770591801580959299892397325460009346781749227724373436684704000

388438994005639524349248794870260820333558871954157796490482495913637041567479494365944057958000

852503278879633646359413284317032596838253099510010031235749194571522002732167385865080764368000

1847090437572539567112062116020237293149548382271688401010789921571631005919696002707674989464000

3951167370807345508778845917747638035780773061207263883901341919188010673532567101444243890505600

8345137981446548703886355602139407920399046551687755616860592846560884612202404653912411665292000

17403535619426990459386929631812098569037327851383011713794740637272272182712707141492550823344000

35839484368819988827381558479070677561661615829542981749594254024213238477959218943921100424344000

72883657287852414254002833209538688822874882611339509104216886334954653039211184743100052963792000

146374678386436931960122356695823533385940389244440180784302246722700594853749129359059273035615600

290329940601197220416771616586757421591947879493104490811839167053290436073551992117142359740064000

568761113144968325242691937411762489839963468843048961508439023981446018209663328819647737523568000

1100529633565060661851712854504060752698465899062159779178930794370602864503250993976228955533408000

2103431638346124006926257633205341922496261436110740868269408050530910313607020044938437600495304000

3971278933197482125076774411491685549672941591377078759292642399402358672090053844843770189735133952

7406750391281018249151126878575762731532867253758837368521991776663129269374306774113380909426638720

13647083398108332837018611729029358103769219979366676726253118706607655504201478623169536478786090240

24841956498119074617385441662998753423267408243690903728257630145621747909991754056238296871540304890

44677007035376940397158313688493882125566191570048757092680389099102678411768115822071975768971711120

79387604809015947936489003554169898238506078866778945295455152937636297793218728883835587712557425144

139382817603615786453377639827931882403483955262283644411867825768369072461376394223528131098383265520

241808069933545568922905147883306068715135043598961777047861606825428163588296926342332894102498240940

414528119886078118153551682085667546368802931883934474939191325986448280437080445158284961318568413040

702223009060744274782509192786914425565061683116814371725346499991968355665800455603960344920261416120

1175573333686875600747015389406241927242251410254815170443913399986554432447932614566629910755400592912

1944882353526080957118223989826503188452254171377451568749121433801284906623417928510968602352684804450

3179953629122935287550964771687129300827043316704738331385424826069254153895223474353700488518258366400

5138620719524743254520761913668332131046598982790990202166302436329302002308948078122284122750518954400

8207005753485561169090713272189710310016870317838847661013806768813705356205658081605374642090756891200

12955344796573635845493197379670899846526631001731323807743223542198777740867503114534198542157551949680

20214013157774467276656052649131900469757863974332561969528433895629298602771990675159742406203272545600

31175132968680340377377996691266804245612480354780500502300894529174763338077929280704109767313497799200

47525727183023176239639183767106037241563081939455588178332832219301387466440479602751719785135262379200

71618630546639091972234047760152847787633255422651823852071004108252785279288778290257799953988555113100

106687063434993405972431409077193207738819194284777889324464392326776562898802593866866791655596744168480

157107661907695769068991458572579038793466621720734563046300303768883294679743545762851782232556849289200

228714555430250983542613415881169485046271136382565962529988197323408333751463393151362458488212011890400

329163515585428780368761199883034461586863189523557770397888419120851183034200694197568943635061881977400

468340035598059741195821304531565811116879168986538572646660032574633898008392934026071248661967241471200

658798316741270702615455301707735907637743364374397592189635112488318349865139393863340223117833919669488

916209579573952632776461015620030070224676202110089366621346845182429493189928958352989714269835252520480

1259788171914184870067633896477541346558929777901372879104351912125840553136152317735360857121023472215660

1712653201033663091333776800440056209701028717669840253945785606027286503609932562672908877654724720397760

2302072809181612077312284400591504126026707432192577484199854678231482508099065197878520374509922189106080

3059529023815561857589229590463547419106462780849490075775290733649583204312306004922420626768025619070016

4020534935142244748755077346442482185364261987654778625217529489731824082589889301340360439022084948136880

5224134565407757507936533622129085132575219397971814264613859973919058043619983550786200825226148595031360

6712020992264397304500736236026609379194743910052394276687427688009929005410485194997460553929798511337760

8527221637971121103831124023128145249039863332267821659690945867786199113791937165971616552791316347737280

10712322182701220886687849554054732469106328311161450959986750746406412636701121064751843294444091161844958

13307232525094684331289254104415816731809103492126026037250622045225357312672200080437072415458498337695600

16346538719097791246460256585053997096481553055142464082795517203702753735936838370413440806643464007416200

19856531695591182004902642968347800154008266901338698701800689609405799016659472376330437298867520696125200

23852053317265017408328174785149491648412369387583680757650828372274039062694610110592049682176229128882100

28333348182932990375953468229632123412659541817978190475754923399792191856291779282885101440645702480369040

33283149973927307971752568101073879912461509966902091221519337728671550674559620241943342053770554118505800

38664258053544297883353282704241513191721754093287459263321865385402879226733930101419211727134655682575600

44417867882940770782661806916182214559537491309550474034649523924897355302140764937939927757958265159149350

50462903156950461480893887147378610623853244564696396536406559725327172887639212237186190115550218405660800

56696555899867871428533720265584203700917468893276539637962664161985235420818173748838601835706421855771840

62996173222075412698370800295093559667686076548085044042180737957761372689797970832042890928562690950857600

69222539180071238372046984045190016146469002718535310023093950430330810688208235391023874334292724358791200

75224493444239264820490364164715162055122384457136637481743714918509782713197388748627100432641804505507200

80844714218808865065699414360929513243148769502784777063713072929662812456137423540191194143126537026033600

85926381969705422298400520406473654075575263585816963050575037513813046381951775877003212060694490781955712

90320344684065358665932365199986511386258089564637148661115806477587577162847037143440876313798186333305720

93892335716768508443681102806765638955206149603916583918900047411729458745558501889226673682140487487730240

96529760877351893512323830413697258026981603244476038523363531889587027811444976661395962268717467473340640

98147578098760025805826464442977100340282970896618095034928283820697424925603272359631648787187592626525120

98692842421530914838081055912104750897728987401599306674011218730812410619634401650518491280449745918894704

98147578098760025805826464442977100340282970896618095034928283820697424925603272359631648787187592626525120

96529760877351893512323830413697258026981603244476038523363531889587027811444976661395962268717467473340640

93892335716768508443681102806765638955206149603916583918900047411729458745558501889226673682140487487730240

90320344684065358665932365199986511386258089564637148661115806477587577162847037143440876313798186333305720

85926381969705422298400520406473654075575263585816963050575037513813046381951775877003212060694490781955712

80844714218808865065699414360929513243148769502784777063713072929662812456137423540191194143126537026033600

75224493444239264820490364164715162055122384457136637481743714918509782713197388748627100432641804505507200

69222539180071238372046984045190016146469002718535310023093950430330810688208235391023874334292724358791200

62996173222075412698370800295093559667686076548085044042180737957761372689797970832042890928562690950857600

56696555899867871428533720265584203700917468893276539637962664161985235420818173748838601835706421855771840

50462903156950461480893887147378610623853244564696396536406559725327172887639212237186190115550218405660800

44417867882940770782661806916182214559537491309550474034649523924897355302140764937939927757958265159149350

38664258053544297883353282704241513191721754093287459263321865385402879226733930101419211727134655682575600

33283149973927307971752568101073879912461509966902091221519337728671550674559620241943342053770554118505800

28333348182932990375953468229632123412659541817978190475754923399792191856291779282885101440645702480369040

23852053317265017408328174785149491648412369387583680757650828372274039062694610110592049682176229128882100

19856531695591182004902642968347800154008266901338698701800689609405799016659472376330437298867520696125200

16346538719097791246460256585053997096481553055142464082795517203702753735936838370413440806643464007416200

13307232525094684331289254104415816731809103492126026037250622045225357312672200080437072415458498337695600

10712322182701220886687849554054732469106328311161450959986750746406412636701121064751843294444091161844958

8527221637971121103831124023128145249039863332267821659690945867786199113791937165971616552791316347737280

6712020992264397304500736236026609379194743910052394276687427688009929005410485194997460553929798511337760

5224134565407757507936533622129085132575219397971814264613859973919058043619983550786200825226148595031360

4020534935142244748755077346442482185364261987654778625217529489731824082589889301340360439022084948136880

3059529023815561857589229590463547419106462780849490075775290733649583204312306004922420626768025619070016

2302072809181612077312284400591504126026707432192577484199854678231482508099065197878520374509922189106080

1712653201033663091333776800440056209701028717669840253945785606027286503609932562672908877654724720397760

1259788171914184870067633896477541346558929777901372879104351912125840553136152317735360857121023472215660

916209579573952632776461015620030070224676202110089366621346845182429493189928958352989714269835252520480

658798316741270702615455301707735907637743364374397592189635112488318349865139393863340223117833919669488

468340035598059741195821304531565811116879168986538572646660032574633898008392934026071248661967241471200

329163515585428780368761199883034461586863189523557770397888419120851183034200694197568943635061881977400

228714555430250983542613415881169485046271136382565962529988197323408333751463393151362458488212011890400

157107661907695769068991458572579038793466621720734563046300303768883294679743545762851782232556849289200

106687063434993405972431409077193207738819194284777889324464392326776562898802593866866791655596744168480

71618630546639091972234047760152847787633255422651823852071004108252785279288778290257799953988555113100

47525727183023176239639183767106037241563081939455588178332832219301387466440479602751719785135262379200

31175132968680340377377996691266804245612480354780500502300894529174763338077929280704109767313497799200

20214013157774467276656052649131900469757863974332561969528433895629298602771990675159742406203272545600

12955344796573635845493197379670899846526631001731323807743223542198777740867503114534198542157551949680

8207005753485561169090713272189710310016870317838847661013806768813705356205658081605374642090756891200

5138620719524743254520761913668332131046598982790990202166302436329302002308948078122284122750518954400

3179953629122935287550964771687129300827043316704738331385424826069254153895223474353700488518258366400

1944882353526080957118223989826503188452254171377451568749121433801284906623417928510968602352684804450

1175573333686875600747015389406241927242251410254815170443913399986554432447932614566629910755400592912

702223009060744274782509192786914425565061683116814371725346499991968355665800455603960344920261416120

414528119886078118153551682085667546368802931883934474939191325986448280437080445158284961318568413040

241808069933545568922905147883306068715135043598961777047861606825428163588296926342332894102498240940

139382817603615786453377639827931882403483955262283644411867825768369072461376394223528131098383265520

79387604809015947936489003554169898238506078866778945295455152937636297793218728883835587712557425144

44677007035376940397158313688493882125566191570048757092680389099102678411768115822071975768971711120

24841956498119074617385441662998753423267408243690903728257630145621747909991754056238296871540304890

13647083398108332837018611729029358103769219979366676726253118706607655504201478623169536478786090240

7406750391281018249151126878575762731532867253758837368521991776663129269374306774113380909426638720

3971278933197482125076774411491685549672941591377078759292642399402358672090053844843770189735133952

2103431638346124006926257633205341922496261436110740868269408050530910313607020044938437600495304000

1100529633565060661851712854504060752698465899062159779178930794370602864503250993976228955533408000

568761113144968325242691937411762489839963468843048961508439023981446018209663328819647737523568000

290329940601197220416771616586757421591947879493104490811839167053290436073551992117142359740064000

146374678386436931960122356695823533385940389244440180784302246722700594853749129359059273035615600

72883657287852414254002833209538688822874882611339509104216886334954653039211184743100052963792000

35839484368819988827381558479070677561661615829542981749594254024213238477959218943921100424344000

17403535619426990459386929631812098569037327851383011713794740637272272182712707141492550823344000

8345137981446548703886355602139407920399046551687755616860592846560884612202404653912411665292000

3951167370807345508778845917747638035780773061207263883901341919188010673532567101444243890505600

1847090437572539567112062116020237293149548382271688401010789921571631005919696002707674989464000

852503278879633646359413284317032596838253099510010031235749194571522002732167385865080764368000

388438994005639524349248794870260820333558871954157796490482495913637041567479494365944057958000

174719547504544685651067731025980770591801580959299892397325460009346781749227724373436684704000

77575479092017840429074072575535462142759901945929152224412504244149971096657109621805888008576

33997221912836503773697800730314345958978443083873333644164842497436242313276024137046405103360

14705147573409440124337540792080411545748612286278545107991935842145041318043994567214516493120

6277296197344741238847645871718120343639723821810604235822644549216065068572139973356394392320

2644372807542863435262590977456058569958466334384782099342610105378421111563854240744622834560

1099229480782523624069939778864087091825872280175634911883594788902402501277523723603647139072

450855841727206955184936237424723221256705427415787756827255675135751025914609339759308396885

182447500154200479919195987129070875528005309148801271245270779043261115545211561614661763720

72837567891018021053012351450753101470482739698940042396367791633549980237041824985698301020

28685065347041846128985559258597746525054978568694534071156427593135513452425738025255701560

11143044615581640227029005711993739996271357059377492081487689180410334071903844386733945606

4269365753096413880087741652104881224625041018918579341566164436938825314905687504495764600

1613233624261622038659108486864058172663660537682974636698665188003601931968179629561376700

601128879002429504899591755561512170802428641417990549036004518723775624839854006452528200

220869322966801749906289395035858638514528705369488951729138023925023619732825146310209225

80013037754011199966052007258273318103376436662154488173574529421895349035287600172755040

28576084912146857130732859735097613608348727379340888633419474793534053226888428633126800

10060494313639717491718684700745976326534757953775443938357418092105621735309034799677600

3491141683464528831081483870034984322267658543660881665176268218529189632028881478992600

1193996412188612090927496342168098727318307011214874026751734855407752587905788461216800

402421012996902593608896915323322163651725696372420505312621747563353649997876851743440

133645354869820049538010045679332083869576799533276182576147443840228149445789360357600

43729546262551413267951816417134395089677702788461692092930597433015828311306077469950

14095970956426829185273845585010354461141530569174464850468470967419021580201226437200

4475728004412898317951914474072630796055887443497001613104952460457864516341265328600

1399682212289124564886780526437259085312022982329971413552821496725004903292177520944

431061550886143434838320089663648631346094034413215833884021113121831220216793801740

130719026261501980239779377370925938747551981554910216773493767156078781581988012080

39027622948577929352164346481247672359880627586537942417985549186886830472320161880

11470484164098172784507083912051287216882478358767423936468871087185376697957897040

3318247204614114269803834988843408087741002668072004781621351993078626830480677358

944696713057399080371198573336201590815943820091673959180456083438754969531865440

264649079189838749465690380473616757710849509883837740337787342523622846074529680

72942149034655203032946465289548081630552161734767999103701105006510890437502880

19776568576297361385693231786250712273072241033722309616144313681342741421435640

5273751620345963036184861809666856606152597608992615897638483648358064379049504

1382976823517297998999526698339210648466590282078483189940161795898093805694800

356586358676933978836114897829622257792779375866925979287707222635745441189600

90384736747972848802209678963758419509975327910713876694453566848643809745975

22517996698456903507816944240105903822554406953534253017303310771980464711800

5513026777898069479500010486370755763452975495520455049063914016588320670820

1326157644167920493350517986412209290177691699953374066785133955880352051400

313372867971186691921868976241241236377605230468434282904706311492274971050

72728174136657662289034438172028682845314524477315806271399417001620129800

16574107711415181542058868563013339287877799795850881021033200473158328900

3708105454079328751782662119182645399999778937376807279282004173655761720

814279913902555300222544046442134969594546050437474571463953619214947675

175467725554759391293746865226588006915996455313125833581458018955409600

37095525872314904870825679561325652468818042566197743341046493940237600

7692048843088709371208000444154483120624477053860401629247099077908800

1564049931428037572145626756978078234526977000951614997946910145841456

311770750450771609065573439929185030138267840721252159059184746679360

60908855220514983228042493231198399927674843054814163524807616073120

11659120801286696459493282532704644210578022762967727671415319248320

2186085150241255586154990474882120789483379268056448938390372359060

401379568568886271556326119978356603970718816430036526392986400352

72143386507479558613065152283691546465325277462915061933379908560

12689716193498033111092893235567894166539299618884082555057052320

2183619994335700502882867991834735035151243116236546673435142120

367470031409244097572521474354065442808623437036570961225331360

60454747102811125729672887716313992203999339641500383943522256

9719412717493750117310753652140513216077064251045077804424800

1526446228067928704321240156906683165345436372760284655182100

234087600470481079256931397864283680308565322340235346481600

35038589879339524602152151909622079536632389012710386256800

5116746458570216291107933294738462408524094903443421485120

728650603277404218670433538807692431593621109667575844400

101137623167841595020501816112108728675455295979095700800

13675842126469146496482949977423507336618168953148160800

1800581095021016153141955796400587172846279297906654400

230699452799567694621313086413825231520929535044290095

28747595364432111479291350331940838818807418697107800

3481851612462274371715411996725753769979780525426100

409629601466149926084166117261853384703503591226600

46778689056319590324426377588544985290214916282050

5181639403161554620551844902115752216762267649704

556310978867038072758633655135126771738280269140

57842731747643102366341113989585046602756969880

5819543133147019445394075492854593103326158555

566034590458068760646232266782209663545401440

53172946376364035091009697788631816878507408

4819300275803386866254655388697747753339040

420962975898488611811400621301911701345880

35396286261734778170327980169530113026080

2861376434331853325146273846039859436240

222076976992919959563591402976227896544

16523584597687496991338646054778861350

1176753799241839548344592003901165200

80074962670302691159543242869014200

5196605247040292641622275348431600

320966794670135721982552300932540

18825031945462505688126234658800

1045835108081250316007013036600

54883475059657450985790771600

2712264755855164728948962550

125786191575891697574444640

5453158594330564923747600

220012162307285040151200

8218845143662946902200

282596394624513933600

8881600973913295056

253037064783854560

6469697679132645

146622043719720

2899305949260

49002354072

688235310

7711320

64620

360

1

Figure 2: The 360th row of Pascal triangle. The binomial coefficients(360k

), 0 ≤ k ≤ 360, written

in base 10 are displayed centered, and the figure is rotated by 90 degrees in the counterclockwisedirection.

3 Singmaster Conjecture

Singmaster [Sng’71], [Sng’75] guesses that there are not too many points on any ’parabola’ thatcuts Pascal triangle passing only through entries greater than one of the same size. He provedthat N(t) = O

(log t

)for t ≥ 2, where

N(t) :={m : m binomial coefficient, t = m

},

and made the following conjecture.

Conjecture 1 (Singmaster). The function N(t) is bounded.

This seems very difficult to prove, although Singmaster believed that N(t) ≤ 10 or 12 shouldbe the real margin. The best upper bound so far is:

N(t) = O

((log t)(log log log t)

(log log t)3

),

due to Kane [Kan’07], who improves on previous estimates of himself, Abbott, Erdos andHanson.

As for lower bounds, the results obtained so far are sporadic: N(2) = 1, N(3) = N(4) =N(5) = 2, N(6) = 3; if t < 1028 then N(t) = 6 for t = 120, 210, 1540, 7140, 11628, 24310;N(3003) = 8 since

(30031

)=(782

)=(155

)=(146

), the single known t for which N(t) = 8.

Singmaster proved that N(t) ≥ 6 infinitely often, but there are not known solutions of equationsN(t) = 5 or 7.

Promenade around Pascal Triangle – Number Motives 77

4 Odds and Ends in Pascal Triangle – Sierpinski Gasket

Recognition of primes is an extremely difficult problem. The Pascal triangle encodes enoughinformation to offer a genuine image of every positive integer. Looking at the entries in Pascal

Figure 3: The first 107 rows of Pascal triangle modulo 2 on the left and modulo 7 on the rightwith residue classes drown in distinct colors.

triangle modulo n, for n = 2, 3, 4, 5, . . ., using colors to distinguish distinct residue classes, onemay see the face of a prime. It is striking to see the relative order in these images when nis prime (two examples are shown in Figure 3), as opposed to the ’chaos’ when n is highlycomposite. A systematic study to discover some sort of 2-dimensional distribution is yet to bedone.

Pascal triangle modulo prime powers brought the attention of many mathematicians. Amongthem are Legendre, Cauchy, Gauss, Kummer, Hermite, Hensel, Lucas, Granville [Gra’95].Singmaster[Sng’80] studied the distribution of entries that are equal to zero in the Pascaltriangle modulo n. Actually, the most attention by far was given to the Pascal triangle mod-ulo 2, the Sierpinski triangle. Glaisher [Gla1899] proved that the odd numbers in any rowof the Pascal triangle is always a power of 2. For higher powers of 2 and similar problemsfor other primes the reader is referred to Granville [Gra’92], [Gra’97], Huard et al. [HSW’97],[HSW’98], Mihet[Mih’10], Rowland [Row’11a], [Row’11b] and Shevelev [She’11]. Another in-triguing property that relates the Pascal triangle modulo 2 with Fermat numbers was discoveredby Hewgill [Hew’77]. Let c(n, j) :=

(nj

)(mod 2) and let Fj := 22

j

be the Fermat numbers forj = 0, 1, . . . Then

n∑j=0

c(n, j)2j = F d0

0 F d1

1 · · ·F drr , (4.1)

where d0, . . . , dr ∈ {0, 1} are the digits of n in base 2, that is n = d0 + 2d1 + · · · + dr2r and

dr 6= 0. Reading the rows of the Pascal triangle modulo 2 as numbers written in base 2, we

78 Cristian Cobeli and Alexandru Zaharescu

obtain the expressions from (4.1). These numbers are:

1, 3, 5, 15, 17, 51, 85, 255, 257, 771, . . . (4.2)

The 32-nd is 232 − 1 = 4294967295, which is the product of 3, 5, 17, 257 and 65537, theonly known Fermat primes (cf. Cosgrave [Cos’99], Dubner and Gallot [DG’01]). Gauss provedthat the regular N -gons constructible with the ruler and the compass are those for which Nis a square free product of Fermat primes multiplied by a power of 2. Gardner [Gar’77] andWatkins [CG’96], [KLS’01] observed that the known constructible N -gons with N odd arethose for which N is one of the first 32 numbers of the sequence (4.2). Close resemblance toGlaisher’s result are relations between binomial coefficients and Bernoulli numbers, such as

n∑j=0

Bj

(n

j

)= Bn .

In a work of Lehmer [Leh’35], one finds:

n∑j=0

B6j

(6n+ 3

6j

)= 2n+ 1

andn∑j=0

B6j+2

(6n+ 5

6j + 2

)=

1

3(6n+ 5) .

Kummer and later Vandiver [Van’39] obtained similar relations modulo powers of primes, whichhave various applications (cf. [Car’68]). Their congruences employ sums of binomial coefficientswith weights Euler numbers or Bernoulli numbers. Later, Carlitz (see [Car’68] and the refer-ences therein) obtained more general results of this kind. Sierpinski triangle, first outlined inmathematical form by Sierpinski [Sie’15] appeared beforehand in the XIII-th century Cosmatimosaics in cathedrals of Rome region (see Wolfram [Wol’02, page 43]). There are several waysto define the Sierpinski triangle (one of them being nondeterministic2). The most commonone is to start with a given triangle, delete from its interior the triangle determined by themidpoints of the edges, then do the same thing with the three remaining triangles, and repeatthe process forever. The set of remaining points is the Sierpinski Gasket (Figure 3, left). Itis a basic type of fractal, and its dimension δS is easy to find: doubling its size, it replicatesthree times the original triangle, so 3 = 2δS , and δS = log 3/ log 2 ≈ 1.58496. Fraenkel andKontorovich [FK’07] recover Sierpinski triangle and its connection to binomial coefficients inthe context of a p-variety XY with a Nim-product and p-sieve with p prime. Sierpinski gasketis a fertile ground of investigation, where one uses tools from analysis, pde, harmonic functiontheory, number theory, see Ben-Bassat et al. [BST’99], Needleman et al. [NSTY’04], Ben-Galet al. [BSSY’06], Hinoa and Kumagai [HK’06], Teplyaev [Tep’07], DeGrado et al. [DRS’09],image recognition and processing, theoretical or applied physics Huzler [Huz’08], Daerden andVanderzande [DV’98], Pradhan et al. [PCRM’03], Belrose [Bel’04].

2Take a triangle and label its vertices by the numbers 1, 2, 3. Pick a point P in its interior. Cast a 3-facedie. Draw the midpoint of the segment determined by P and the chosen vertex, and let P be this drawn point.Repeat the process endlessly. The collection of drowned points is the Sierpinski triangle.

Promenade around Pascal Triangle – Number Motives 79

5 Cousins of Pascal Triangle

Replacing the 1-s on the edges of the triangle with different sequences produces interestingoutcomes. Hosoya [Hos’76] proposes a Fibonacci triangle where each entry is the sum of theprevious two numbers in either the row or the column:

HF (∞) =

1 1 2 3 5 8 · · ·1 1 2 3 5 8 · · ·2 2 4 6 10 16 · · ·3 3 6 9 15 24 · · ·5 5 10 15 25 40 · · ·8 8 16 24 40 64 · · ·...

......

......

.... . .

Actually, this is the multiplication table of Fibonacci numbers. Here the sum of entries ajkwith j + k = n, are the first convolved Fibonacci numbers (see Koshy [Kos’01] and Klavzarand Peterin [KP’07]). Falcon and Plaza [FP’07] study a Pascal 2-triangle using the k-Fibonaccisequence, while Fahr and Ringel [FR’12] change the rule of insertion to get Fibonacci partitiontriangles.

The sequences on the boundary can be quite arbitrary. Given u = (u0, . . . , un−1) andv = (v0, . . . , vn−1), with u0 = v0, put P (j, 0) = uj , P (j, j) = vj for 0 ≤ j ≤ n and

P (j, k) = P (j − 1, k − 1) + P (j − 1, k), for 2 ≤ j ≤ n, 1 ≤ k ≤ n− 1.

Then Pu,v = (P (j, k))j,k is the generalized Pascal triangle with u and v the generating edges.One can also consider triangles with no boundary conditions. Steinhaus’ definition is as fol-

lows. Let x = (x0, . . . , xn−1) and ∂x := (x0 +x1, . . . , xn−2 +xn−1). Then, recursively ∂0x = x,∂1x = ∂x, and ∂ix = ∂∂i−1x. This generates the shrinking triangle S(x) = (x, ∂x, . . . , ∂n−1x),whose lines are shorter and shorter, the last one, ∂n−1x, containing just one number. One pro-blem is to characterize the x-s based on the shape of the produced triangles. Molluzzo [Mol’76]and J. Chappelon [Cha’08] considered Steinhaus triangles with entries in Zm. Most questions onSteinhaus or generalized Pascal triangles refer to triangles with components in F2, also namedBoolean triangles. Steinhaus [Ste’58], Harborth and Hurlbert [Har’72], [HH’05] estimate thenumber of triangles that are balanced on the number of entries. Kutyreva and Malyshev [KM’06]estimate the number of Boolean Pascal triangles of size n containing a positive proportion ofones. Eliahou et al. [EH’04], [EH’05], [EMR’07] investigate binary sequences that generatetriangles with symmetries, while Brunat and Maureso [BM’11] give explicit formulae for thenumber of these binary triangles having rotational and dihedral symmetries.

6 Euclid-Mullin sequences

The sequence P of prime numbers, like the Pascal arithmetic triangle, is also generated by asimple rule (Eratostene’s sieve). Gallagher [Gal’76], [Gal’81] showed that primes appear like ina Poissonian process. Goldston and Ledoan [GL’12] show Poisson distribution for individualspacings between neighboring primes. The result is implicitly contained in an earlier work of

80 Cristian Cobeli and Alexandru Zaharescu

Odlyzko, Rubinstein and Wolf [ORW’99] on jumping champions. All these results are provedassuming the prime k-tuple conjecture of Hardy and Littlewood.

Subsequences of primes constructed recursively are natural places to look for symmetries.If p1, p2, . . ., pr is a list of known primes, then the integer p1 · p2 · · · pr + 1 is not divisible byany of p1, p2, . . ., pr, so it is either prime or divisible by a different prime. In any case, a newprime pr+1 may be added to the list. Choosing various selection rules of primes from the setof divisors of nr = p1 · p2 · · · pr + 1, we get a large class of sequences of primes (cf. Caldwelland Gallot [CG’01]). For example, one may work with spf(nr), the smallest prime factor ofnr, or gpf(nr), the greatest prime factor of nr. These choices produce the first Euclid-Mullinsequence:

2, 3, 7, 43, 13, 53, 5, 6221671, 38709183810571, 139, 2801, 11, 17, 5471, 52662739, . . . (6.1)

and the second Euclid-Mullin sequence:

2, 3, 7, 43, 139, 50207, 340999, 2365347734339, 4680225641471129, . . . (6.2)

These sequences are not monotonic, but their members do not repeat. Also, they are infinite,but since factoring large numbers is a very difficult task, only few terms of each of them areknown: the first 47 members of the first one and 13 of the second one. Mullin [Mul’63] askedif the sequence (6.1) contains all primes, while Cox and Van der Poorten [CV’68] found a fewprimes (5, 11, 13, 17, and a some others) that are absent from (6.2) and conjectured thatthere are infinitely many of them. This conjecture was proved by Booker [Boo’12]. Sloane’sEncyclopedia of Sequences, started in 1964, today in the form of OEIS foundation [OEIS], andthe references therein collect more information about the Euclid-Mullin sequences and someothers that are related to them.

7 Baby-Fractal sequences of numbers

Kimberling [Kim’95] defines a fractal sequence of numbers as one that contains itself as a propersubsequence. For example, the sequence

1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, 1, 9, 5, 10, 3, 11, 6, 12, 2, 13, 7, 14, 4, 15, 8, . . .

is fractal because we get the same sequence after we delete from it the first appearance ofall positive integers. This sequence appears in a card sorting algorithm of Kimberling andShultz [KS’97], [Kim’97]. Simple examples of fractal sequences of numbers are constant or cyclicsequences, or sequences that repeat periodically except for finitely many terms. We call thembaby-fractal sequences. The ‘3n+ 1’ type problems, iterated applications of absolute differences(Thwaites [Thw’96a]) and the gpf-sequences produce examples galore of such sequences.

7.1 The ’3n+ 1’ conjecture

For any positive integer n, let C(n) = n/2, for n even and C(n) = 3n + 1, for n odd. Forexample, starting with n = 7, repeated application of C(·) gives:

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8,4,2,1, 4, 2, 1, . . .

Promenade around Pascal Triangle – Number Motives 81

The ’3n + 1’ conjecture asserts that for any n ≥ 1, the sequence{C(k)(n)

}k≥1 eventually

enters into the cycle 1, 4, 2. The number of iterations necessary to reach the cycle may be largeeven when n is small (for example, starting with n = 27, it takes 111 steps to reach 1). Collatz[Cox’71] mentions the ’3n + 1’ problem for the first time in a mathematics journal, but theproblem entered the mathematical folklore in the early 1950’s. It was first posed by Collatzin 1937 and independently by Thwaites (cf. Wirsching [Wir’98]). Thwaites [Thw’85] indicateseven the day and the hour of his discovery, while Collatz [Col’86] says that because he couldn’tsolve it, he did not publish anything, but the problem was publicized in seminars in differentcountries after he told it to Helmut Hasse. In spite of numerous tries to solve it, the conjectureis wide open. Wirsching [Wir’98], Chamberland [Cha’03b] and Lagarias [Lag’11], [Lag’12] wrotesurveys on the problem. Functions analogue to C(·) and similar problems gather into a largecategory, but a general statement on periodicity of the generated sequences looks similar toone about a Turing machine, which falls beyond the undecidability line. This was proved byConway [Con’72], while Kurtz and Simon [KS’07] showed that a certain generalization of the’(3n+ 1)’-problem is undecidable.

7.2 The greatest prime factor, a resourceful tool and a startling phenomenon

Let spf(n) be the smallest prime factor and gpf(n) the greatest prime factor of any integer n ≥ 2.These functions are simple to define but very deep in nature. In recent studies, mostly, thegpf(·) function was employed and many generated sequences are like baby fractals, terminatingin surprising cycles. Back and Caragiu [BC’10] combined the Fibonacci growing rule with thegpf(·) function in the role of a molifier. The new terms are obtained by a fixed combinationof neighbor terms. In this sense, the Fibonacci growing rule resembles exactly the Pascal-rule,since Fn = Fn−1 +Fn−2 for n ≥ 2 and F0 = 0, F1 = 1. The general idea is to consider recursivesequences of primes produced by the linear formula:

pj = gpf(a0 + a1pj−1 + a2pj−2 + · · ·+ arpj−r) . (7.1)

(Here, the coefficients a0, . . . , ar are non negative integers.) The case r = 1 and a0 > 0 whereinvestigated by Caragiu and Scheckelhoff [CS’06] and by Caragiu and Back [BC’09]. In thiscase, they showed that when a0 divides a1 the generated sequences are always ultimately peri-odic. Furthermore, based also on computer investigations, they conjecture that this propertycharacterizes all these sequences that do not necessarily satisfy the divisibility constrain on thecoefficients.

The gpf-Fibonacci sequences are those generated by pj = gpf(pj−1 + pj−2), for j ≥ 2. Forinstance, if p0 = 509, p1 = 673, the first elements are:

509, 673, 197, 29, 113, 71, 23, 47,7,3,5,2, 7, 3, 5, 2, . . .

Back and Caragiu [BC’10] proved that if the first two terms of a gpf-Fibonacci sequence aredistinct, then it eventually enters into the 4-cycle 7, 3, 5, 2. Similarly, the gpf-Tribonacci se-quences are given by pj = gpf(pj−1 + pj−2 + pj−3), for j ≥ 3. Two examples of gpf-Tribonaccisequences are:

9431, 563, 523, 809, 379,59,43,37,139,73,83, 59, 43, 37, . . . . . . (7.2)

82 Cristian Cobeli and Alexandru Zaharescu

and

31,13,7,17,37,61,23,11,19,53,83,31,167,281,479,103,863,

17,983,23,31,61,23,23,107,17,7,131, 31, 13, 7, . . .(7.3)

Again, both sequences (7.2) and (7.3) enter into cycles. The length of the first one is 6, whilethe length of the second one is 28. This phenomenon is widely spread, but these two cyclesare quite rare. In fact, most astonishingly, in the large class of gpf-Tribonacci sequences, only4 distinct cycles where discovered so far. The other two have length 100 and 212. Back andCaragiu observed that almost 99% of gpf-Tribonacci sequences with p0, p1, p2 ≤ 1000 enter intoone of the longer cycles and the one of length 100 is encountered about three times more oftenthan the one of length 212. They state the following conjecture.

Conjecture 2 (Back, Caragiu [BC’10]). All recurrent sequences of primes defined by relation(7.1) are ultimately periodic.

A multidimensional version of the problem with vector analogues of gpf-sequences is formu-lated by Caragiu, Sutherland and Zaki [CSZ’11]. Using bounds on the spacings between consecu-tive primes, Caragiu, Zaki and one of the authors [CZZ’12] found the rate of growth of the relatedinfinite order recurrent sequences of primes defined by qj = gpf(q1+q2+ · · ·+qj−1), for j ≥ 2.They showed that qj = j/2 +O

(j0.525

).

7.3 Ultimately periodic sequences in Ducci games

Let d ≥ 2 be a positive integer, let Nd be the set of sequences with nonnegative integer en-tries that are periodic of period d, and define the application φd : Nd → Nd, φd(a0, a1, . . .) :=(a′0, a

′1, . . .), where a′j = |aj−aj−1| for j ≥ 0. Let a ∈ Nd and denote by ||a|| the largest element

of a. Since in Nd there are finitely many sequences whose components are ≤ ||a||, it followsthat starting with any a ∈ Nd and applying φd repeatedly, produces a sequence that eventuallyenters into a cycle. The first interesting fact is that the length of each cycle is 1 if and only ifd is a power of 2. Thus,

φ(n)

2k(a) = (0, 0, . . .), for any k ∈ N, a ∈ N2k and sufficiently large n. (7.4)

Pairing neighbor numbers placed around a circular table and taking absolute differencesrecursively is just a different setting of the same problem. The original Ducci game beginswith only four numbers, and the evolution may be viewed in a Diffy box. Start by placing thenumbers on the corners of a square. Then, for the next generation, the absolute differences ofneighbor numbers are recorded on the middle of the edges. This produces a new square, onwhich the operation is repeated. The iterated process eventually ends with 4 zeros. Duringthe action a graph is generated and one may consider a more developed game, by taking theabsolute differences of neighbor numbers on the other edges. In the same way, a similar gamemay be played on different graphs. This leads tangentially to Golomb rulers problems, codetheory and even worldly applications (Malkevitch [Mal’12]).

The origin of the problem is not completely clear (cf. Thwaites [Thw’96b] and Behn et al.[BKP’05]). The article of Ciamberlini and Marengoni [CM’37] seems to be the first published

Promenade around Pascal Triangle – Number Motives 83

source on the subject. Ciamberlini and Marengoni begin their work by stating that Prof. Duccihas communicated the problem to them long before. This might had happened in the XIXthcentury, as both Enrico Ducci (1864–1940) and Corrado Ciamberlini (1861–1944) lived at thetime. Anyhow, Thomas et al. [CT’04] and [CST’05] place the first reference to Ducci gamesat the end of the XIXth century. But for this, their cited support is Honsberger [Hon’98],whose single reference from page 73 attributes the cyclic quadruples game to an observationmade by professor E. Ducci in the 1930’s. The problem was discovered repeatedly, and severalindependent proofs where given (see Ciamberlini and Marengoni [CM’37], Meyers [Mey’82],Pompilli [Pom’96], Thwaites [Thw’96b], Andriychenko and Chamberland [AC’00], Crasmaruand the authors[CCZ’00], Chamberland [Cha’03a] and the references therein).

Following a note of Campbell [Cam’96] that advertized Thwaites conjectures [Thw’96a] andbeing unaware of the other previous results, Crasmaru and the authors [CCZ’00] gave threedistinct proofs of problem (7.4), the second £100–conjecture of Thwaites. Regarding the cycles,it turns out that the essence of the evolution function φ is captured by its restriction to Ud, thesubset of all the elements of Nd with components in {0, 1}. The advantage is that the evolution

function restricted in this way is additive. Then the j-th component of φ(n)|Ud (a0, a1, . . .) is equal

ton∑k=0

(n

j

)aj+k (mod 2).

Moreover, one only needs to understand the transforms of the unitary sequence e0, whosecomponents are all equal to zero, except those of rank divisible by d, which are equal to one.In this case we have

φ(n)(e0) =(Sd(n, 0), Sd(n,−1), Sd(n,−2), . . .

)(mod 2), (7.5)

where

Sd(n, r) =∑

1≤k≤nk≡r (mod d)

(n

k

).

Expression (7.5) is used in [CCZ’00] to investigate the general problem of finding the length ofthe cycles for arbitrary d. It is shown that the periods (multiples of the length of cycles) dependon the order of 2 modulo the largest odd factor of d. Short periods occur when d = 2p − 1 isa Mersenne prime (47 such primes are known so far: 3, 7, 31, 127, 8191, . . . , 243 112 609 − 1).In this case d is the length of the cycle. Long cycles may happen when d is prime and 2 is aprimitive root modulo d. (For example 3, 5, 11, 13, 19, 29, 37, . . . and Artin’s conjecture states

that there are infinitely many such primes.) In these cases d(2d−1

2 − 1)

is a period. Anyhow,very long cycles do occur, because known partial results on Artin’s conjecture allow to deduce

that there are infinitely many primes d for which the length of the cycle is larger than 2d1/4

.A more general evolution function is defined as follows. Let S = {0, 1}d. Denote by ρ(x) the

circular rotation to the right of the vector x ∈ S (e.g., for d = 5, ρ(1, 0, 1, 0, 0) = (0, 1, 0, 1, 0) )and · : S × S → S the componentwise addition modulo 2. Let s and α1, . . . , αs be positiveintegers and define θ : S → S by

θ(x) = ρ(α1)(x) · · · ρ(αs)(x).

84 Cristian Cobeli and Alexandru Zaharescu

Since θ(x) has an accentuated chaotic character, Crasmaru [Cra’01] initiated the constructionof a cryptosystem based on the fact that there is an effective way to calculate θ(x). For s = 2,α1 = 0 and α2 = 1 the function θ(x) replicates Ducci’s evolution function. There is an efficientalgorithm to calculate θ(n)(x) in Os(log n) steps (cf. [CCZ’00]). In the case θ(x) = xρ(x), theprocedure is based on the formula

θ(n)(x) = x∏

R⊂P(Rn)

ρ

(∑r∈R

r)(x), x ∈ S, (7.6)

where n = 2l0 + 2l1 + · · ·+ 2lµ with l0 < · · · < lµ is the representation of n in base 2, and

Rn ={r : r ≡ 2li (mod d), 0 ≤ r ≤ d− 1, for some 0 ≤ i ≤ µ

}.

For any m ∈ {1, . . . , d} denote

νn,d(m) = #{R ⊂ Rn :∑r∈R

r ≡ m (mod d)}.

The representation (7.6) and the fact that (0, . . . , 0) and (1, . . . , 1) ∈ S are the only fixedpoints of ρ(x) yield a criterion of periodicity, which states that a positive integer n is a periodfor θ(x) = xρ(x) if and only if the numbers νk,d(m), 1 ≤ m ≤ d, have the same parity (cf.[CCZ’00, Corollary 3]). Furthermore, computer experiments show that when n is the length ofthe shortest period, the numbers νn,d(m) are most of the time equal.

Conjecture 3 ( [CCZ’00]). Suppose d is prime, s is the order of 2 mod d, s is even andn = d(2s/2 − 1). Then

νn,d(1) = νn,d(2) = · · · = νn,d(d− 1) = νn,d(d) + 2.

As consequence of Conjecture 3, we get precise values for the length of the periods of Ducci’sevolution function θ(x) = xρ(x). The stretch of the initial iterations before the games enterinto the cycle and various results on the length of cycles in the n-Ducci game for particularvalues and for n satisfying divisibility constrains were obtained by Webb [Web’82], Ludington[Lud’88], Ehrlich [Ehr’90], Ludington-Young [LY’90] and [LY’99], Creely [Cre’88], Calkin et al.[CST’05], Lidman and Thomas [LT’07], Brown and Merzel [BM’07]. Some generalizations ofthe Ducci game with weights, with p-adic integers or with algebraic numbers are considered inChamberland [Cha’03a], Breuer [Bre’07] and [Bre’10], Baxter and Caragiu [BC’07], Caragiu,Zaki and the second author [CZZ’11], while the close relation between the length of the cyclesand Pascal triangle modulo 2 is studied by Glaser and Schoffl [GS’95], and Breuer [Bre’98].

8 p-adic functions and convergents to e

The convergents of continued fractions of linear fractional transformations involving the Eulernumber e and the special exponentials e2/h reveal augmented symmetries. Farther, runningacross the sequence of denominators of convergents of the continued fraction of e, one finds

Promenade around Pascal Triangle – Number Motives 85

that their divisibility properties exhibit attractive ’supercongruences’ modulo powers of primesfrom a distinguished set B (cf. Berndt et al. [BKZ’12]), which are encoded by six remarkablep-adic functions. These functions satisfy certain functional equations and are represented bybinomial coefficient series, whose coefficients also carry the signature of the entries from thePascal triangle.

Since 1873, when Hermite [Coh’06] proved that e is not an algebraic number, continuedfractions became an important instrument not only in diophantine approximation, but also infinding the barrier between transcendence and algebraicity. There is a regularity in the con-tinued fraction of e, more precisely e = [2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, . . .]. Hurwitz (cf. Perron[Per’54, §33]) proved a general statement, which roughly asserts that if the terminal compo-nents of the continued fraction for a number r consists of a few arithmetic progressions, then(ar + b)/(cr + d), were a, b, c, d ∈ Z and ad − bc 6= 0 has the same property. For example, wehave:

1

2e− 5= [2, 3, 2, 3, 1, 2, 1, 3, 4, 3, 1, 4, 1, 3, 6, 3, 1, 6, 1, 3, 8, 3, 1, 8, 1, 3, . . .] (8.1)

and

−36e+ 98

78e− 212= [5, 2, 5, 1, 2, 5, 1, 2, 1, 5, 4, 5, 1, 4, 5, 1, 4, 1, 5, 6, 5, 1, 6, 5, 1, 6, 1, 5, . . .] . (8.2)

A similar result occurs for generalized continued fractions. Inspired by Angel’s [Ang’10] in-vestigation of a family of generalized continued fractions that converge to rational numbers,Gottfried Helms found, by computer experiments, a few examples that converge to rationalexpressions involving e. In particular, the expressions that are analogous to relations (8.1) and(8.2) are:

1

2e− 5= 2 +

1

3+

2

4+

3

5+

4

6+· · ·

and−36e+ 98

78e− 212= 5 +

3

6+

4

7+

5

8+

6

9+· · ·

The result of Hurwitz applies as well to some exponentials r = ea/h, with a, h positive integers.The following expressions were already known by Euler, Stieltjes and Hurwitz:

e1

q = [1, (2j − 1)q − 1, 1]∞j=1 = [1, q − 1, 1, 1, 3q − 1, 1, 1, 5q − 1, 1, 1, 7q − 1, . . .] (8.3)

for q ≥ 1, and

e2

2q+1 = [1, (1 + 6j)q + 3j, (12 + 24j)q + 6 + 12j, (5 + 6j)q + 2 + 3j, 1]∞j=0, (8.4)

for q ≥ 0. Thakur [Tha’96] further extended Hurvitz’s result. He found the patterns dis-played by the simple continued fractions for the analogues of the fractional transform (ae2/h +b)/(ce2/h + d) in function fields Fq[t]. We remark that relations (8.4) and (8.3) are special, inthe sense that no such relations are known for e3 or for other powers of e. Also, the number ofarithmetic progressions needed to express the tail of (8.3) and (8.4) is small (three, respectivelyfive), but their fractional transforms may need many. For example, 94 arithmetic progressionsare needed to describe the tail of the continued fraction of 3e1/3 − 1/3.

86 Cristian Cobeli and Alexandru Zaharescu

Ramanujan, and later Davis, found best possible diophantine approximations of e2/a (seeBerndt et al. [BKZ’12] for a detailed description). Sondow and Schlam’s investigations [Son’06],[SS’08], [SS’10], compare convergents of the simple continued fraction of e to the partial sumsof the Taylor series of e. Berndt, Kim and the second author [BKZ’12] proved that at mostOa(

log n)

of the first convergents of e2/a may coincide with partial fractions of the series

e2/a =

∞∑j=0

2j

aj j!. (8.5)

Furthermore, as a consequence of a finer analysis in the case a = 2, they proved that equalityoccurs only twice, which settles a conjecture of Sondow [Son’06]. This required the study ofthe symmetries of the sequence {qj}j∈Z of the denominators of convergents. (Here, for j ≤ 0the definition of qj is made naturally, by the same recursive defining relation of the convergentsfor j ≥ 0.) An important role is played by their images modulo powers of primes selected froma distinguished set of primes: B :=

{p : qj+6p ≡ qj (mod p), for any j ∈ Z

}. There are other

equivalent ways to define the set B, whose first elements are:

B :={

3, 7, 11, 17, 47, 53, 61, 67, 73, 79, 89, 101, 139, . . .}.

Based in part on numerical data, in [BKZ’12] the following conjecture is made:

Conjecture 4 (Berndt, Kim, Zaharescu [BKZ’12]).

limx→∞

#{p ∈ B : p ≤ x}π(x)

=1

e.3

The divisibility and the congruence properties of the sequence {qj}j∈Z are captured by a fewfunctions fr : Z → Z defined by fr(l) := q6l−r, for l ∈ Z. These functions are 1-Lipschitzianwith respect to the p-adic absolute value | · |p on the field of p-adic numbers Qp, normalized by|p|p = 1/p. Consequently, by a result of Mahler [Mah’58], they can be represented in a Pascalseries

fr(x) = ar,0 + ar,1x+ ar,2x(x− 1)

2+ · · ·+ ar,j

(x

j

)+ · · · ,

where

ar,j =

j∑k=0

(−1)k(j

k

)f(j − k) ,

that is, ar,0 = fr(0) = q−r, ar,1 = fr(1)− fr(0) = q−r+6 − q−r, ar,2 = fr(2)− 2fr(1) + fr(0) =q−r+12 − 2q−r+6 + q−r, . . . This is reminiscent of continued fractions of Hurwitz type, whosedefinition involves binomial coefficients and the iterated difference operator (cf. Perron [Per’54,§32]). Of these functions, only six of them fr(x) for r = 1, . . . , 6 are essential. This sextupleof functions is intrinsically linked by a few functional relations. Moreover, each fr(x) has aunique extension by continuity to a function defined on Zp, the ring of integers in Qp, and the

3 Unrelated to B, but based on similar heuristic arguments, the proportion of missed residue classes modulop by the set of factorials {1!, 2!, . . . , p!} is conjectured by Richard K. Guy to have the same limit [CVZ’00].

Promenade around Pascal Triangle – Number Motives 87

extensions satisfy the same functional equations. Among the properties of any function fr(x)that are reckoned as interesting to investigate, Berndt et al. [BKZ’12] highlight the naturalquestions:

Question 3 (BKZ2012). (a) Is fr(x) differentiable? (b) Does fr(x) has any zeros exceptcertain trivial ones?

We remark that Question 3 a. is equivalent to the limit ar,j/j → 0 as j →∞.

9 A whopping class of fractals

The authors [CZ’12] consider triangles generated by a multiplicative rule. These are similarto Pascal arithmetic triangle, except that the length of the new lines appears as decaying. Inreality, triangles may have any size, since we view them as chunks cut off from an infinitetriangle, if the first generating row is so. Let us consider the following function

Z(a, b) :=ab

gcd(a, b)2.

Starting with a given sequence of integers, the subsequent generations are obtained as follows:under two consecutive terms, say a and b, in the next generation put Z(a, b). For example,Figure 4 shows the triangle of order n = 10 that starts on the first line with the sequence ofnatural numbers. More precisely, this is triangle

TN(n) :={aj,k : 1 ≤ j ≤ k ≤ n

}, (9.1)

where a1,k = k for k ≥ 1 and aj+1,k = Z(aj,k−1, aj,k), for j ≥ 1, k ≥ 2.

1 2 3 4 5 6 7 8 9 102 6 12 20 30 42 56 72 90

3 2 15 6 35 12 63 206 30 10 210 420 84 1260

5 3 21 2 5 1515 7 42 10 3

105 6 105 3070 70 14

1 55

Figure 4: Triangle TN(10), that is, the cut-off triangle of order 10 generated by the repeteadapplication of the Z(·, ·) rule on the sequence of positive integers.

This is reminiscent of the Gilbreath’s Conjecture from 1958 (for which an incorrect proofwas given by Proth in 1878). In that case, the first line of the triangle from Figure 5 lists theprimes and the following generations are obtained by taking the absolute difference of neighbornumbers and iterating this operation. The conjecture states that the left edge of that trianglecontains only ones.

88 Cristian Cobeli and Alexandru Zaharescu

2 3 5 7 11 13 17 19 23 291 2 2 4 2 4 2 4 6

1 0 2 2 2 2 2 21 2 0 0 0 0 0

1 2 0 0 0 01 2 0 0 0

1 2 0 01 2 0

1 21

Figure 5: Triangle generated by iterated absolute differences staring with the sequence of thefirst 10 primes.

Odlyzko [Odl’93] confirmed Gilbreath’s earlier checks and verified the conjecture for trianglesof order < π(1013). He had also offered heuristics to support it for analogue triangles producedby starting with many other sequences whose spacings are sufficiently random and not too large.The analogous property of the triangle from Figure 4 is that the maximal powers of all primesthat divide the numbers situated on the left edge are ones.

Conjecture 5. The left edge of the triangle TN(n), for n ≥ 1, contains only square free numbers.

Spectacular properties of the Z(·, ·)-generated triangles are revealed by the scans of theirp-localized versions. Each of these renderings may be considered as a face of the correspondingprime, an analogue facet of the Pascal arithmetic triangle modulo p. The collection of thesep-generated images build on the unique ’p-print face’ and inherent character. For instance,for the prime p = 3, Figure 6 is just a bit from this collection. There, darker colors indicatehigher powers. Notice that each number m that is part of the triangle carries a ’potentialenergy’ proportional to the maximum power of p in m. This energy radiates in the subsequentgenerations along the ’force lines’ on the left and on the right, and downward. Also, whenforces coming from opposite directions meet, their strength cancels like in a physical dynamicclash. These carry flavors from the world of billiards, in which techniques involving Fareyseries play a significant role in solving problems that involve successive insertions (see Bocaet al. [BGZ’03a], [BGZ’03b], [BZ’07], [BG’09], [Boca’10] and Alkan et al. [ALZ’06]). Thepropagation of the potential energy continues endlessly as long as the sequence from the firstline does not terminate. This does not happen when the Z(·, ·) rule is applied repeatedly onthe n-th row of the Pascal triangle. In that case, triangles are radically distinctive, changingabruptly with the change of n. Looking at their localizations, even modulo the same p, onehardly notices any similarity in figures for successive values of n. This is a result of mixing theadditive insertion rule used in the construction of the Pascal triangle with the multiplicativefibers distilled by the Z(·, ·) rule.

Let TB(n) be the Z(·, ·)-generated triangles, whose first line are the binomial coefficients:(n0

),(n1

),(n2

), . . . ,

(nn

). The 5-local renderings of TB(n) with n = 24, 74, 124, 374, 624 show that

Promenade around Pascal Triangle – Number Motives 89

they are entirely flat. This is a consequence of the fact that for these values of n, no binomialcoefficient

(nk

), for 0 ≤ k ≤ n, is divisible by 5.

Question 4. For fixed p, are there infinitely many n > 1 for which the p-localized triangleTB(n) is completely flat?

We conclude our promenade by tempting the reader to explore patterns such as those thatstart to reveal in Figure 6., where the constraints imposed by the small size of the triangle leadto the appearance of a central darker figure which looks like a dwarf.

Figure 6: The 3-adic scan of order 64 of the Fibonacci–Z(·, ·)-generated triangle.

90 Cristian Cobeli and Alexandru Zaharescu

Acknowledgements

The first author is partially supported by the CNCS grant PN-II-ID-PCE-2012-4-0376.The authors are grateful to Emilio Ambrisi, Alberto Burato, Mauro Caselli, Andrea Cen-

tomo, Salvatore Rao, Sergio Savarino, Massimo Squillante, Pasqualina Ventrone, and Alessan-dro Zampa for their assistance in clarifying some blurry issues regarding the first written noteson Ducci’s game.

References

[ALZ’06] E. Alkan, A. H. Ledoan, A. Zaharescu, A parity problem on the free path lengthof a billiard in the unit square with pockets, Funct. Approx. Comment. Math. Volume35, no. 1 (2006), 19–36. 88

[AC’00] O. Andriychenko, M. Chamberland, Iterated Strings and Cellular Automata, Ma-thematical Intelligencer 22 (4) (2000), 33–36. 83

[Ang’10] D. Angell, A family of continued fractions, Journal of Number Theory, 130 (2010),904–911. 85

[BC’04] R. Bacher, R. Chapman, Symmetric Pascal matrices modulo p, European J. Com-binatorics 25 (2004), 459–473. 75

[BC’09] G. Back, M. Caragiu, The greatest prime factor and related magmas, JP J. ofAlgebra, Number Theory and Appl., 15 (2009), 127–136. 81

[BC’10] G. Back, M. Caragiu, The greatest prime factor and recurrent sequences, FibonacciQuart. 48 (4) (2010), 358–362. 81, 82

[Bag’66] A. K. Bag, Binomial theorem in ancient India, Indian J. History Sci., 1 no. 4 (1966),68–74. 74

[BC’07] N. Baxter, M. Caragiu, A note on p-adic Ducci games, JP J. Algebra NumberTheory Appl. 8, no. 1 (2007), 115–120. 84

[BST’99] O. Ben-Bassat, R. Strichartz, A. Teplyaev, What is not in the domain of theLaplacian on Sierpinski gasket type fractals, J. of Functional Analysis 166 (1999),197–217. 78

[BKP’05] A. Behn, C. Kribs-Zaleta, V. Ponomarenko, The Convergence of DifferenceBoxes, The American Mathematical Monthly 112, no. 5 (2005), 426–439. 82

[Bel’04] J. S. Belrose, A wire model for the Sierpinski gasket type monopole antenna and atruly broadband bent-wire antenna, Antennas and Propagation Society InternationalSymposium, IEEE Vol. 4 (2004), 3429–3432. 78

[BSSY’06] N. Ben-Gal, A. Shaw-Krauss, R. S. Strichartz, C. Young, Calculus on theSierpinski gasket II: Point singularities, eigenfunctions, and normal derivatives ofthe heat kernel, Trans. Amer. Math. Soc. 358 (2006), 3883–3936. 78

Promenade around Pascal Triangle – Number Motives 91

[BKZ’12] B. C. Berndt, S. Kim, A. Zaharescu, Diophantine approximation of the exponen-tial function and Sondows conjecture, submitted for publication, 2012, pp. 31. 85, 86,87

[Ber1713] J. Bernoulli, Ars Conjectandi, Opus Posthumum, Basel, 1713 (translated in 2006 byE. D. Sylla as The Art of Conjecturing, Johns Hopkins University Press, Baltimore).75

[Boca’10] F. P. Boca, The distribution of the linear flow length in a honeycomb in the small-scatterer limit, New York Journal of Mathematics 16 (2010), 651–735. 88

[BG’09] F. P. Boca, R. N. Gologan, On the distribution of the free path length of the linearflow in a honeycomb, Annales de l’Institut Fourier 59 (2009), 1043–1075. 88

[BGZ’03a] F. P. Boca, R. N. Gologan, A. Zaharescu, The average length of a trajectoryin a certain billiard in a flat two-torus, New York Journal of Mathematics 9 (2003),303–330. 88

[BGZ’03b] F. P. Boca, R. N. Gologan, A. Zaharescu, The statistics of the trajectory of acertain billiard in a flat two-torus, Commun. Math. Phys. 240 (2003), 53–73. 88

[BZ’07] F.P. Boca, A. Zaharescu, The distribution of the free path lengths in the periodictwo-dimensional Lorentz gas in the small-scatterer limit, Commun. Math. Phys. 269(2007), 425–471. 88

[Boo’12] A. R. Booker, On Mullin’s second sequence of primes, Integers 12A #A4, The JohnSelfridge Memorial Volume (2012), pp. 10. 80

[Bre’98] F. Breuer, A Note on a Paper by Glaser and Schoffl, Fibonacci Quarterly 36 (1998),463–466. 84

[Bre’07] F. Breuer, Ducci sequences in higher dimensions, Integers 7 #A24 (2007), pp. 13.84

[Bre’10] F. Breuer, Ducci sequences and cyclotomic fields, J. Difference Equ. Appl. 16, no.7 (2010), 847–862. 84

[BM’07] R. Brown, L. J. Merzel, The length of Duccis four-number game, Rocky Mt. J.Math. 37, no. 1 (2007), 45–65. 84

[BM’11] J. Brunat, J. Maureso, Symmetries in Steinhaus Triangles and in generalized Pas-cal Triangles, Integers 11 #A1 (2011), pp. 23. 79

[Bur’07] D. Burton, History of Mathematics, McGraw-Hill, 6th ed., 2007, pp. 790. 74

[CG’01] C. K. Caldwell, Y. Gallot, On the primality of n!± 1 and 2× 3× 5× · · ·× p± 1,Mathematics of Computation, 71 no. 237 (2001), 441–448. 80

[CST’05] N. J. Calkin, J. Stevens, D. Thomas, A characterization for the length of cyclesof the n-number Ducci game, Fibonacci Quart. 43 (2005), 53–59. 83, 84

[Cam’96] P. J. Campbell, Reviews, Mathematics Magazine, Vol. 69, No. 4 (1996), pp. 311–313. 83

92 Cristian Cobeli and Alexandru Zaharescu

[CS’06] M. Caragiu, L. Scheckelhoff, The greatest prime factor and related sequences,JP J. of Algebra, Number Theory and Appl. 6 (2006), 403–409. 81

[CSZ’11] M. Caragiu, L. Sutherland, M. Zaki, Multidimensional greatest prime factorsequences, JP Journal of Algebra, Number Theory and Applications, 23 (2), (2011),187–195. 82

[CZZ’11] M. Caragiu, A. Zaharescu, M. Zaki, On Ducci sequences with algebraic numbers,Fibonacci Quart. 49 (2011), 34–40. 84

[CZZ’12] M. Caragiu, A. Zaharescu, M. Zaki, On a class of solvable recurrences withprimes, JP Journal of Algebra, Number Theory and Applications, 26 (2), (2012),197–208. 82

[Car’68] L. Carlitz, Bernoulli Numbers, Fib. Quart. 6, no. 3 (1968), 71–85. 78

[Cha’03a] M. Chamberland, Unbounded Ducci sequences, J. Difference Equ. Appl. 9, no. 10(2003), 887–895. 83, 84

[Cha’03b] M. Chamberland, Una actualizachio del problema 3x + 1, Butletti de la SocietatCatalana 22 (2003), 19–45. 81

[CT’04] M. Chamberland, D. Thomas, The N-number Ducci game, Section of Open Pro-blems and Conjectures from J. Difference Equ. Appl. 10, no. 3 (2004), 339–342. 83

[Cha’08] J. Chappelon, On a problem of Molluzo concerning Steinhaus triangles infinite cyclicgroups, Integers 8, Issue 1 #A37 (2008), pp. 29. 79

[CM’37] C. Ciamberlini, A. Marengoni, Su una interessante curiosita numerica, Periodicodi Matematiche 17 (1937), 25–30. 82, 83

[CCZ’00] C. Cobeli, M. Crasmaru, A. Zaharescu, A cellular automaton on a torus, Por-tugaliae Mathematica, 57, fasc. 3 (2000), 311-323. 83, 84

[CVZ’00] C. Cobeli, M. Vajaitu, A. Zaharescu, The sequence n! (mod p), J. RamanujanMath. Soc. 15 (2000), 135–154. 86

[CZ’12] C. Cobeli, A. Zaharescu, A game with divisors and absolute differences of expo-nents, in preparation. 87

[Coh’06] H. Cohn, A short proof of the simple continued fraction expansion of e, Amer. Math.Monthly 113, No. 1 (2006), 57–62. 85

[Col’86] L. Collatz, On the motivation and origin of the (3n+1)-problem, J. of Qufu NormalUniversity, Natural Science Edition 12, no. 3 (1986), 9–11. 81

[Con’72] J. H. Conway, Unpredictable Iterations, Proceedings of the 1972 Number TheoryConference: University of Colorado, Boulder, Colorado, August 14-18, 1972, pp. 49–52. 81

[CG’96] J. H. Conway, R. K. Guy, The Book of Numbers, Springer-Verlag, New York, pp.310, 1996. 78

Promenade around Pascal Triangle – Number Motives 93

[Cos’99] J. Cosgrave, Could there exist a sixth Fermat prime? I believe it is not impossible,Unpublished manuscript, available at http://staff.spd.dcu.ie/johnbcos/fermat6.htm1999, pp. 22. 78

[CV’68] C. D. Cox, A. J. Van der Poorten, On a sequence of prime numbers, J. Austral.Math. Soc. 8 (1968), 571–574. 80

[Cox’71] H. S. M. Coxeter, Cyclic sequences and frieze patterns, The Fourth Felix BehrendMemorial Lecture, Vinculum 8 (1971), 4–7. 81

[Cra’01] M. Crasmaru, A characterization of some linear cellular automata, IEICE Trans.Inf. Syst. E84D, no. 1 (2001), 15–20. 84

[Cre’88] J. Creely, The length of a three-number game, Fibonacci Quarterly 26 (1988), 141–143. 84

[DV’98] F. Daerden, C. Vanderzande, Sandpiles on a Sierpinski gasket, Physica Vol. 256,issue 3-4 (1998), 533–546. 78

[DRS’09] J. L. DeGrado, L. G. Rogers, R. S. Strichartz, Gradients of Laplacian eigen-functions on the Sierpinski gasket, Proc. Amer. Math. Soc. 137 (2009), 531–540.78

[DG’01] H. Dubner, Y. Gallot, Distribution of generalized Fermat prime numbers, Math-ematics of Computation 71, no. 238 (2001), 825–832. 78

[Ehr’90] A. Ehrlich, Periods in Duccis n-number game of differences, Fibonacci Quarterly28 (1990), 302–305. 84

[EH’04] S. Eliahou, D. Hachez, On a problem of Steinhaus concerning binary sequences,Experiment. Math. 13, (2) (2004), 215–229. 79

[EH’05] S. Eliahou, D. Hachez, On symmetric and antisymmetric balanced binary se-quences, Integers 5, Issue 1 #A6 (2005), pp. 18. 79

[EMR’07] S. Eliahou, J. M. Marın, M. P. Revuelta, Zero-sum balanced binary sequences,Integers 7, Issue 2 #A11 (2007), pp. 14. 79

[FR’12] P. Fahra, C. M. Ringel, The Fibonacci partition triangles, Advances in Mathemat-ics 230, Issues 4-6 (2012), 2513–2535. 79

[FP’07] S. Falcon, A. Plaza, The k-Fibonacci sequence and the Pascal 2-triangle, Chaos,Solitons and Fractals 33 (2007), 38–49. 79

[FK’07] A. Fraenkel, A. Kontorovich, The Sierpinski sieve of Nim-varieties and binomialcoefficients, Integers 7, Issue 2 (2007), pp. 19. 78

[Gal’76] P. X. Gallagher, On the distribution of primes in short intervals, Mathematika 23(1976), 4–9. 79

[Gal’81] P. X. Gallagher, Corrigendum: On the distribution of primes in short intervals,Mathematika 28 (1981), no. 1, 86. 79

94 Cristian Cobeli and Alexandru Zaharescu

[Gar’77] M. Gardner, Mathematical Carnival, Mathematical Association of America, Wash-ington D. C., updated and revised (first ed. 1975) pp. 297, 1989. 78

[Gla1899] W. L. Glaisher, On the residue of a binomial-theorem coefficient with respect to aprime modulus, J. Quart. J. Math., 30 (1899), 150–156. 77

[GS’95] H. Glaser, G. Schoffl, Ducci-Sequences and Pascals Triangle, Fibonacci Quarterly33 (1995), 313–324. 84

[GL’12] D. A. Goldston, A. H. Ledoan, On the differences between consecutive prime num-bers, I, Integers 12B, #A3, Proceedings of the Integers Conference 2011 (2012/13),pp. 8. 79

[Gra’92] A. Granville, Zaphod Beeblebrox’s brain and the fifty-ninth row of Pascal’s Triangle,The American Mathematical Monthly 99 (1992), 318–331. 77

[Gra’95] A. Granville, Arithmetic properties of binomial coefficients. I. Binomial coefficientsmodulo prime powers, Organic mathematics (Burnaby, BC, 1995), 253–276, CMSConf. Proc. 20, Amer. Math. Soc., Providence, RI, 1997. 77

[Gra’97] A. Granville, Correction to: Zaphod Beeblebrox’s brain and the fifty-ninth row ofPascal’s Triangle, The American Mathematical Monthly 104 (1997), 848–851. 77

[Har’72] H. Harborth, Solution of Steinhaus’s problem with plus and minus signs, J. Com-binatorial Theory Ser. A 12 (1972), 253–259. 79

[HH’05] H. Harborth, G. Hurlbert, On the number of ones in general binary Pascal tri-angles, J. Combin. Math. Combin. Comput. 54 (2005), 99–110. 79

[Hew’77] D. Hewgill, A relationship between Pascal’s triangle and Fermat’s numbers, Fi-bonacci Quart. 15 (1977), 183–184. 77

[HK’06] M. Hinoa, T. Kumagai, A trace theorem for Dirichlet forms on fractals, Journal ofFunctional Analysis, Volume 238, Issue 2 (2006), 578–611. 78

[Hon’98] R. Honsberger, Ingenuity in Mathematics, Mathematical Association of America,Series: New Mathematical Library (23) 6th printing, pp. 206, 1998. 83

[Hos’76] H. Hosoya, Fibonacci Triangle, The Fibonacci Quarterly 14, 2 (1976), 173–178. 79

[HSW’97] J. G. Huard, B. K. Spearman, K. S. Willimas, Pascal’s Triangle (mod 9), ActaArithmetica LXXVIII.4 (1997), 331–349. 77

[HSW’98] J. G. Huard, B. K. Spearman, K. S. Willimas, Pascal’s Triangle (mod 8), Europ.J. Combinatorics 19 (1998), 45–62. 77

[Huz’08] S. Huzler, Relation between grain shape and fractal properties in random Apollonianpacking with grain rotation, Phys. Rev. Lett. 101, 120602 (2008), 4 pages. 78

[Kan’07] D. M. Kane, Improved bounds on the number of ways of expressing t as a binomialcoefficient, Integers 7, #A53, (2007) pp. 1–7. 76

[Kim’95] C. Kimberling, Numeration systems and fractal sequences, Acta Arithmetica 73(1995), 103–117. 80

Promenade around Pascal Triangle – Number Motives 95

[Kim’97] C. Kimberling, Fractal Sequences and Interspersions, Ars Combinatoria 45 (1997),157–168. 80

[KS’97] C. Kimberling, Harris S. Shultz, Card sorting by dispersions and fractal se-quences, Ars Combinatoria 53 (1999), 209–218. 80

[KP’07] S. Klavzar, I. Peterin, Edge-counting vectors, Fibonacci cubes and Fibonacci tri-angle, Publ. Math. Debrecen 71, 3-4 (2007), 267–278. 79

[Kos’01] T. Koshy, Fibonacci and Lucas Numbers and Applications, Hosoya’s Triangle, Chap.15, John Wiley & Sons, New York, 2001, pp. 654. 79

[KLS’01] M. Krızek, F. Luca, L. Somer, 17 Lectures on Fermat Numbers: From NumberTheory to Geometry, Springer-Verlag, New York, pp. 257, 2001. 78

[KS’07] S. A. Kurtz, J. Simon, The undecidability of the generalized Collatz problem, J-Y.Cai et al., Ed., Theory and Applications of Models of Computation, 4-th Interna-tional Conference, TAMC 2007, Shanghai, China, May 22-25, 2007. Lecture Notes inComputer Science No. 4484, Springer-Verlag: New York (2007), pp. 542–553. 81

[KM’06] E. V. Kutyreva, F. M. Malyshev, On the distribution of the number of ones in aBoolean Pascal’s triangle, Discrete Math. Appl. 16, 3 (2006), 271–279. 79

[Lag’11] J. C. Lagarias, The 3x + 1 problem: An annotated Bibliography (1963-1999),arXiv:0309224v13, 2011, pp. 74. 81

[Lag’12] J. C. Lagarias, The 3x + 1 problem: An annotated Bibliography, II (2000-2009),arXiv:0608208v6, 2012, pp. 42. 81

[Leh’35] D. H. Lehmer, Lacunary recurrence formulas for the numbers of Bernoulli and Euler,Ann. Math. 36, No. 3 (1935), 637–649. 78

[LT’07] L. Lidman, D. M. Thomas, Algebraic dynamics of a one-parameter class of mapsover Z2, Atlantic electronic J. of Math. 2, no. 1 (2007), 55–63. 84

[LY’90] A. Ludington-Young, Length of the n-number game, Fibonacci Quart. 28, no. 3(1990), 259–265. 84

[Lud’88] A. Ludington, Length of the 7-number game, Fibonacci Quarterly, 26 (1988), 195–204. 84

[LY’99] A. Ludington-Young, Even Ducci-sequences, Fibonacci Quarterly, 37 (1999), 145–153. 84

[Mah’58] K. Mahler, An interpolation series for continuous functions of a p-adic variable, J.Reine Angew. Math. 199 (1958), 23–34. 86

[Mal’12] J. Malkevitch, Weird Rulers, AMS, Monthly Feature Column, Jan. 2012. 82

[Mey’82] L. F. Meyers, Duccis four-number problem, A short bibliography, Crux Mathemati-corum 8 (1982), 262–266. 83

[Mih’10] D. Mihet, Legendre’s and Kummer’s theorems again, Resonance, Dec. (2010), 1111–1121. 77

96 Cristian Cobeli and Alexandru Zaharescu

[MP’09] A. R. Moghaddamfar, S. M. H. Pooya, Generalized Pascal triangles and Toeplitzmatrices, Electronic Journal of Linear Algebra 18 (2009), 564–588. 75

[Mol’76] J. C. Molluzzo, Steinhaus graphs, Theory ans Applications of Graphs (Proc. In-ternat. Conf. Western Mich. Univ. Kalamazoo, Mich, 1976) 642, Lecture Notes inMath., Springer, 1978, 394–402. 79

[Mul’63] A. A. Mullin, Recursive function theory (A modern look at a Euclidean idea), Bull.Amer. Math. Soc. 69 (1963), 737. 80

[NSTY’04] J. Needleman, R. Strichartz, A. Teplyaev, P.-L. Yang, Calculus on the Sier-pinski gasket I: polynomials, exponentials and power series, J. Functional Anal. 215(2004), 290–340. 78

[Odl’93] A. M. Odlyzko, Iterated absolute values of differences of consecutive primes, Math-ematics of Computation 61 (1993), 373–380. 88

[ORW’99] A. Odlyzko, M. Rubinstein, M. Wolf, Jumping champions, Experiment. Math.8, no. 2 (1999), 107–118. 80

[Pas1665] B. Pascal, Traite du Triangle Arithmetique, avec quelques autres petitez sur lamesme matiere, Paris, 1665. 74

[Per’54] O. Perron, Die lehre von den kettenbrochen, Dritte, verbesserte und erweiterte Au-flage, Band I, B. G. Teubner Verlagsgesellschaft. Stuttgart, 1954, pp. 194+VI. 85,86

[Pom’96] F. Pompili, Evolution of nite sequences of integers..., Mathematical Gazette 80(1996), 322–332. 83

[PCRM’03] S. Pradhan, B. K. Chakrabarti, P. Ray, M. Kanti, Magnitude Distribution ofEarthquakes: Two Fractal Contact Area Distribution, Physica Scripta T 106 (2003),77. 78

[Row’11a] E. Rowland, The number of nonzero binomial coefficients modulo pα, Journal ofCombinatorics and Number Theory 3 (2011), 15–25. 77

[Row’11b] E. Rowland, Two binomial coefficients conjectures, arXiv:1102.1464, (2011), pp. 10.77

[She’11] V. Shevelev, Binomial Coefficient Predictors, Journal of Integer Sequences 14(2011), pp. 8. 77

[Sie’15] W. Sierpinski, Sur une courbe dont tout point est un point de ramification, C. R.Acad. Sci. Paris 160 (1915), 302–305. 78

[Sng’71] D. Singmaster, How often does an integer occur as a binomial coefficient?, AmericanMathematical Monthly 78, (4) (1971), 385–386. 76

[Sng’75] D. Singmaster, Repeated binomial coefficients and Fibonacci numbers, FibonacciQuarterly 13, (4) (1975), 295–298. 76

Promenade around Pascal Triangle – Number Motives 97

[Sng’80] D. Singmaster, Divisibility of binomial and multinomial coefficients by primes andprime powers, A collection of manuscripts related to the Fibonacci sequence, Fib.Assoc. Santa Clara, 1980, 98–113. 77

[OEIS] N. J. A. Sloane and OEIS foundation, On-Line Encyclopedia of Inte-ger Sequences, published electronically, sequences: http://oeis.org/A000945 andhttp://oeis.org/A000946. 80

[Son’06] J. Sondow, A geometric proof that e is irrational and a new measure of its irra-tionality, Amer. Math. Monthly 113 (2006), 637–641. 86

[SS’08] J. Sondow, K. Schalm, Which partial sums of the Taylor series for e are convergentsto e?, (and a link to the primes 2, 5, 13, 37, 463), in Tapas in Experimental Mathe-matics, T. Amdeberhan and V. H. Moll, eds., Contemp. Math., vol. 457, AmericanMathematical Society, Providence, RI, 2008, pp. 273–284. 86

[SS’10] J. Sondow, K. Schalm, Which partial sums of the Taylor series for e are convergentsto e? (and a link to the primes 2, 513, 37, 463). Part II, in Gems in ExperimentalMathematics, T. Amdeberhan, L. A. Medina, V. H. Moll, eds., Contemp. Math., vol.517, American Mathematical Society, Providence, RI, 2010, pp. 349–363. 86

[Ste’58] H. Steinhaus, One Hundred Problems in Elementary Mathematics, Pergamon, Elins-ford, 1963 (original in Polish, STO ZADAN, Warshau, 1958). 79

[Tep’07] A. Teplyaev, Spectral zeta functions of fractals and the complex dynamics of poly-nomials, Trans. Amer. Math. Soc. 359 (2007), 4339–4358. 78

[Tha’96] D. S. Thakur, Exponential and continued fractions, Journal of number theory 59(1996), 248–261. 85

[Thw’85] B. Thwaites, My conjecture, Bull. Inst. Math. Appl. 21 (1985), 35–41. 81

[Thw’96a] B. Thwaites, Two Conjectures, or how to win £ 1000, Math. Gazette 80 (1996),35–36. 80, 83

[Thw’96b] B. Thwaites, Correspondence, The Mathematical Gazette 80, no. 488 (1996), 420.82, 83

[Van’39] H. S. Vandiver, Certain congruences involving the Bernoulli numbers, Duke Math.J., 5 (1939), 548–551. 78

[Web’82] W. A. Webb, The length of the four-number game, Fibonacci Quart. 20, no. 1 (1982),33–35. 84

[Wir’98] G. J. Wirsching, The dynamical system generated by the 3n + 1 function, LectureNotes in Math. no. 1681, Springer-Verlag: Berlin 1998, pp. 158. 81

98 Cristian Cobeli and Alexandru Zaharescu

[Wol’02] S. Wolfram, A New Kind of Science, Wolfram Media, Inc., Champaign, IL, 2002,pp. 1197. 73, 78

Received: 20.11.2012,Accepted: 23.12.2012.

Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, Bucharest, 70700, Romania.

Email: [email protected]

Department of Mathematics, University of Illinois at Urbana - Champaign, 1409 West Green Street,Urbana, IL 61801, USA, and

Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, Bucharest, 70700, Romania,

Email: [email protected]