Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton,...

57
Page | 66

Transcript of Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton,...

Page 1: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

Page | 66

Page 2: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

Parent/ Significant Adult Review Page

Student PortionUnit Summary (write a summary of the past unit using 5-7 sentences):

Explain your favorite activity or assignment from this unit:

Adult PortionDear Parent/ Significant Adult:This Interactive Notebook represents your student’s learning to date and should contain the work your student has completed. Please take some time to look at the unit your student just completed, read his/ her reflection and respond to the following

Ask your child to explain to you the difference between independent and dependent variables. Write a fact from your discussion below:

What is one thing your child could improve upon during the next unit?

Parent/ Significant Adult Signature:

Comments? Questions? Concerns? Feel free to email your child’s teacher.

Page | 67

Page 3: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

Intentionally Left Blank

Page | 68

Page 4: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

Cell Biology Unit(see guidelines on page 21)

Page | 69

Page 5: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

Cell Unit Front Page

At the end of this unit, I will:

Know the six elements that are commonly found in living things. Be able to use prefixes, roots, and suffixes to predict the meaning of terms in science. Know the structure and functions of cell organelles. Have studied the similarities and differences between prokaryotic and eukaryotic cells Demonstrate basic microscopy skills. Know the levels of organization (from subatomic particles to the Biosphere)

Roots, Prefixes and Suffixes I will understand are: Prefixes: Phospho-, bi-, lyso-, chloro-, bio-, homeo-, Eu-, Pro-, micro-, cyto-, mito, nucleo - Suffixes: -port, -some, plast, -um (-a), -scope

The terms I can clearly define are: Levels of Organization: Cell, Tissue, Organ, Organ System, Organism, Population,

Community, Ecosystem, Biosphere Cell Theory: Cell, cell theory, plasma membrane, organelle, eukaryotic cell, nucleus,

prokaryotic cell Cell Structure: Cytoplasm, cytoskeleton, ribosome, nucleolus, endoplasmic reticulum,

Golgi apparatus, vacuole, lysosome, centriole, mitochondrion, chloroplast, cell wall, cilium, flagellum

Microscopes: objectives, ocular lens, stage, diaphragm, fine adjustment knob, coarse adjustment knob, stage clips, body tube, cover slip

The assignments I will have completed by the end of this unit are:

Written an acrostic poem for the six elements of life (page 71) Building biology words (pages 72-73) Characteristics of life notes (pages 74-75) Cell structure and function notes (pages 76-77 & 80-85) Cell theory, plant cell, and animal cell coloring pages/readings (pages 78-79 & 102-105) Organelle of the year & When good organelles go bad (pages 76-78) Cell city analogy (page 89) Label the parts of a microscope (page 90) Microscopy notes (pages 91-93) Prokaryotic microscopy lab (pages 94-95) Eukaryotic microscopy lab (pages 96-101) Concept cards (page 106)

Page | 70

Page 6: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

Acrostic Poem for the six common elements of life

CarbonHydrogenOxygenNitrogenPhosphorusSulfur

Page | 71

CHONPS

Page 7: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

My word part is: which means:

My partner’s word part

The meaning of that word partOur word parts combined

createTranslation

Page | 72

Building Bio logy Words

Page 8: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

Introduction: Many words in Biology, including “biology” itself, are built of prefixes, roots and suffixes. Often the language used seems foreign to us, but many of the terms are used in everyday words that we may not even notice.

Instructions: Using the card that your teacher has given to you, try to build as many words as possible with your classmates. Many of the words that you build may actually exist, while some may not. That’s okay, as long as you provide a translation for what that word would mean.

1. Open up to your appendix to translate the meaning of the prefix, root or suffix that you were assigned. Hint: prefixes have a “-” after them (i.e., “Bio-”), while suffixes have “-” before them (i.e., “-ology”), and roots tend to have no dashes. However, prefixes and suffixes can be found within larger words.

2. When the music starts, begin mingling to find classmates who may have terms that match with yours. For instance, if you have “Bio” you may be a good match with “ology.”

3. When you find a match, write down the joined term in the space provided on previous page, along with the meaning of that term.

4. When the music stops, return to your seat. See how many terms you can make in the time provided. For an added challenge, try to make words with more than one other person!

Page | 73

Building Bio logy Words

Page 9: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

Levels of Organization

Page | 74

Page 10: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

Characteristics of Life Notes

What makes something alive?

__________________________________________________________

__________________________________________________________

__________________________________________________________

__________________________________________________________

__________________________________________________________

What are some characteristics of living things?

1. ______________________________________________________

2.______________________________________________________

3.______________________________________________________

4.______________________________________________________

5.______________________________________________________

6.______________________________________________________

What are the two types of cells?

1.

2.

What is homeostasis?All organisms have stable internal conditions which must be maintained

in order to remain alive. This is called ________________

What are adaptations? Changes that occur over time are called ____________________.

What is the definition of differentiation?

Differentiation is ______________________________________

____________________________________________________.

What are the two ways an organism can reproduce?

1.

2.

Page | 75

Page 11: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

Prokaryotes & Eukaryotes

Use the Venn diagram below to compare and contrast eukaryotic cells and prokaryotic cells.

Page | 76

Page 12: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

Cell Structure and Function Notes

Who was Robert Hooke?

Who coined the term “nucleus”?

What is the cell theory?

1.____________________________________________________________________________________

_

2.____________________________________________________________________________________

______________________________________________________________________________________

3.____________________________________________________________________________________

______________________________________________________________________________________

What did Rudolph Virchow discover?

Can cells be seen through the light microscope?

What can be used to see smaller objects, like organelles?

What are examples of eukaryotic cells?

What size are they?

What are some differences between prokaryotic and eukaryotic cells?

______________________________________________________________________________________

______________________________________________________________________________________

______________________________________________________________________________________

______________________________________________________________________________________

Page | 77

Page 13: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

Page | 78

Page 14: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

Page | 79

Page 15: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

Page | 80

Page 16: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

Prokaryotic Cells:

Cells without a ___________________________

For example: ___________________________

They are _____________ in size.

Label the following image:

Page | 81

Page 17: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

Cell Structure and FunctionTake notes during class, and then use your textbook to draw the individual organelles. Use color and be neat.

Cell Organelle Drawing of Organelle

Function/Information

Present in Plant? Animal?

Prokaryotic Cells?

Plasma Membrane

Microvilli

Cell Wall

Cytoplasm

Cilia

Page | 82

Page 18: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

Flagella

Eukaryotic Cells:

Cells __________ a ______________________________

For example: ___________________________ and __________________________ cells.

They are ________________ in size, about ______ x larger than the prokaryotic cell.

Label and color the following image:

Type of Cell: _______________________________

Page | 83

Page 19: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

Cell Structure and Function

Cell OrganelleDrawing of Organelle Function/Information

Present in Plant? Animal?

Prokaryotic Cells?

Nucleolus

Page | 84

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

23 (threadlike)

Page 20: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

Nucleus

Ribosomes

Rough Endoplasmic

Reticulum (RER)

Smooth Endoplasmic

Reticulum (SER)

Golgi Apparatus

Mitochondria

Eukaryotic Cells:

Type of Cell: _____________________________________

Page | 85

16 (opening)

Page 21: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

Page | 86

2

17

13

5

20

21

22

Page 22: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

Cell Structure and Function

Cell Organelle Drawing of Organelle

Function/Information

Present in Plant? Animal?

Prokaryotic Cells?

Vesicle

Chloroplast

Cytoskeleton

Centrosome&

Centriole

Lysosome

Vacuole

Page | 87

Page 23: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

Organelle of the Year

Use the following diagram to design an “Organelle of the Year” magazine cover modeled after TIME magazine’s “Person of the Year” edition. BE CREATIVE! Your magazine cover should have a picture of your organelle (in four or more colors) and an explanation (its function) of why you have chosen this cell structure to be the “Organelle of the Year”.

TIME

Organelle of the Year

Page | 88

Page 24: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

What Happens When Good Organelles Go Bad?

Write a three paragraph explanation of a specific disorder that occurs when your organelle (from “Organelle of the Year!”) does not function properly.

In the first paragraph, re-introduce your organelle. Name the key function(s) for which your organelle is responsible. At the end of the first paragraph, you should introduce the disorder associated with your organelle not functioning properly.

In the second paragraph, you should give a detailed description of what happens to the cell due to this disorder. Follow this up with a description of what happens to the tissue, organ, and/or organism affected by this disorder.

The third paragraph should explore treatment options for individuals with this disorder. If there are currently no treatment options available, suggest something that you think may work to treat individuals with the disorder.

Each paragraph must contain at least five to seven sentences. Each sentence must be complete and contain relevant information, as per the instructions listed above.

Page | 89

Page 25: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

Page | 90

Page 26: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

Page | 91

Page 27: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

Cell City Analogy

In a faraway city called Foothill City, the main export and production product is the steel widget. Everyone in the town has something to do with steel widget making and the entire town is designed to build and export widgets. The town hall has the instructions for widget making. Widgets come in all shapes and sizes and any citizen of Foothill can get the instructions and begin making their own widgets. Widgets are generally produced in small shops around the city. These small shops can be built by the carpenter’s union (whose headquarters are in town hall).

After the widget is constructed, they are placed on special carts which can deliver the widget anywhere in the city. In order for a widget to be exported, the carts take the widget to the post office, where the widgets are packaged and labeled for export. Sometimes widgets don't turn out right, and the "rejects" are sent to the scrap yard where they are broken down for parts or destroyed altogether. The town powers the widget shops and carts from a hydraulic dam that is in the city. The entire city is enclosed by a large wooden fence, only the postal trucks (and citizens with proper passports) are allowed outside the city.  

Match the parts of the city (underlined) with the parts of the cell.

1. Mitochondria ________________________________________

2. Ribosomes ________________________________________

3. Nucleus ________________________________________

4. Endoplasmic Reticulum

________________________________________

5. Golgi Apparatus ________________________________________

6. Protein ________________________________________

7. Cell Membrane ________________________________________

8. Lysosomes ________________________________________

9. Nucleolus ________________________________________

Page | 92

Page 28: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

Labeling Microscopes

Compound Light Microscope

Dissecting Microscope

Page | 93

Page 29: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

Topic: Care and Handling of the Microscope Ocular/Eyepiece ONLY use lens tissue to clean the eyepiece.

NEVER use paper towels, Kleenex, toilet paper, etc.The magnification of the eyepiece is ____________.

Nosepiece Use only the nosepiece to change the objective lenses!Do NOT change the magnification by grabbing onto the objectives. They will loosen, fall off, and break.

Objectives There are three objectives. Low power – __________ (short one) Medium power – _________ High power – _________ (biggest one)

Always start with the lowest power.ONLY use lens tissue to clean the objective lens.Do not touch the lens with your fingers.

How do you calculate the total magnification?

Course Adjustment This is the focus knob that you must use first to focus roughly.

Fine Adjustment This is the focus knob that you use second to focus sharply.

How do you properly focus?

1. Start with low power and the stage down, away from the objective lens.2. Position your slide in the middle of your stage.3. Slowly turn your course adjustment focus knob while you look through

your eyepiece. (the image should become roughly clear as the stage moves closer to the lens.)

4. Once the image is as clear, use the fine adjustment knob to sharpen the focus.

5. On high power, only focus with the FINE adjustment knob.

How do you change to a higher power and focus?

1. Make sure your image is in focus at LOW power.2. Re-adjust your slide so your image is in the middle. (If you have a

pointer in your field of view, use your pointer to find the center of your specimen). Any movement of the object also shows up in the opposite way. When you move an object to the right, it appears to move to the left, and when you move it up, its image moves down

3. Without touching any of the focus knobs, carefully turn the nosepiece to change the power. (On high power, the objective might touch the slide)

4. On MEDIUM power, refocus CAREFULLY with the course adjustment, then the fine adjustment.

5. On HIGH power, refocus ONLY with the fine adjustment.

How do you properly carry a microscope?

Support the arm and the base, using two hands.

How do you properly store a microscope?

Change the microscope back to LOW power and lower the stageTurn off the power, and wind the cordCover the microscope

Page | 94

Page 30: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

Tips for Using a Compound Light Microscope

1. Multiply the _____________ X ___________________ to get the Total Magnification.

a. If the Ocular is 10X, and the Objective Lens is 10X, what is the total magnification?

b. If the Ocular is 10X, and the Objective Lens is 40X, what is the total magnification?

2. Always start with your objective lens at the ____________________________ power.

3. Only use the _______________ Focus Knob when you are at the LOWEST MAGNIFICATION!

4. Move the slide in the __________________ direction of what you want to see.

5. When you are done:

a. Rotate your Nosepiece to the ____________________ magnification.

b. Drop your ________________

c. Remove and _______________ your slides

Use your notes to help you write the name of the microscope part beside its function.

1. _________________________supports the microscope

2. _________________________used to change which objective is in position

3._________________________provides light to view a specimen

4._________________________controls the amount of light reaching the stage

5. _________________________supports the slide

6. _________________________holds slide in place

7._________________________also called eyepiece; magnifies ten diameters or 10X

8._________________________objective used to locate specimen on a slide

9. _________________________ knob that brings object into view

10. _________________________ knob that brings object into focus

Page | 95

Page 31: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

Learning How to View a Slide

1. Select a slide and set it on the _____________ making sure the specimen is centered over the opening in the stage. Carefully anchor it in place using the stage _____________.

2. Rotate the _______________________ to center the lowest power objective lens (shortest objective) over your specimen.

3. While looking through the eyepiece, rotate the ___________________ adjustment knob to get your specimen in view. Use the small __________ adjustment knob to sharpen the image and make it clear.

4. To increase magnification, rotate the ______________________ to center the next largest objective lens (middle-sized objective) over your specimen. You may need to use the ____________ adjustment knob to sharpen the image.

5. To view your specimen under the highest magnification, rotate the nosepiece to center the largest objective lens (longest objective) over your specimen. You may need to use the fine adjustment knob to sharpen the image.

Recording what you see

1. Try to make observations while looking through the eyepiece. Don’t try to draw from memory.

2. Focus on one section as a representative of the specimen. Don’t try to draw the entire field of view.

3. Use colored pencils to draw what you see.4. Your illustrations should be objective, clean, and clear. Pay attention to details, and

include them in your drawing.

5. Label any recognizable and significant parts.

The image on the right shows an exampleof properly drawn and labeled observations.

Page | 96

Page 32: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

Prokaryotic (Bacteria) Microscopy Lab Flow Chart

Page | 97

Page 33: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

Prokaryotic (Bacteria) Microscopy Lab

Name of Slide:

Magnification:

Name of Slide:

Magnification:

Page | 98

Page 34: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

Making a Wet Mount Slide

1. Place your sample tissue or cell collection in the middle of a clean ___________. 2. Place _______ drop of water on top of your sample. 3. Place a __________________ _____________ on one

side of the drop of water and slowly lower it over the drop of water.

4. Place the slide on the __________________ making sure the specimen is centered over the opening in the stage. For living samples (i.e., pond water) you do not need to anchor the slide with a stage __________. This will allow you to move the slide around for viewing.

5. Rotate the ________________________ to center the lowest power objective lens (shortest objective) over your specimen.

6. While looking through the eyepiece, rotate the large ____________ adjustment knob to get your specimen in view. Use the small ____________ adjustment knob to sharpen the image and make it clear.

7. To increase magnification, rotate the ___________________ to center the next largest ______________________ lens (medium-sized objective) over your specimen. You may need to use the fine adjustment knob to sharpen the image.

Staining a Slide with Methylene Blue

1. Place __________ drop of Methylene Blue stain on one edge of the cover slip, and the flat edge of a piece of paper towel on the other edge of the cover slip.

2. As soon as the stain has covered the area containing the specimen you are finished. The stain does not need to be under the entire cover slip. If the stain does not cover the area needed, get a new piece of paper towel and add more stain until it does.

a. Be sure to wipe off the excess stain with a paper towel, so you don’t end up staining the objective lenses.

b. You are now ready to place the slide on the microscope stage. Be sure to follow all the instructions on the previous pages as to how to use the microscope.

c. Be careful not to use too much stain or you may not be able to see your specimen!

Page | 99

Page 35: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

Comparing Eukaryotic (Plant and Animal) Cells Lab Procedure

Objectives: In this lab you will observe cell structures, compare and contrast animal and plant cells and relate the structure of a cell to its function.

Materials: glass slides, coverslips, pipette, water, microscope, toothpick, Elodea plant in water, methylene blue, paper towel

Procedure:

Part 1: Plant Cells

Elodea is a leafy flowering plant commonly found in aquariums. Its leaves are thin and transparent; most of them are only 2 cell layers thick. New leaves are produced at the tip of the plant. You will create a wet-mount slide of an elodea leaf.

A. Cut one leaf from an elodea stem. B. Follow the directions for creating a “wet mount” slide on the previous page. (Steps 1-3)C. Locate your sample on low power, then center and focus. Find it on medium and then on

high power.D. Draw (in color) and name your sample on the following pages. E. Label the following structures: cell wall, cytoplasm, and chloroplasts.

Part 2: Animal Cells

Inside the mouth, epithelial cells are joined together in a sheet. You will prepare a slide with cells from your oral cavity, by the following procedure. Don't worry; these cells are constantly being shed from your mouth so they will not be missed!

A. Take a flat toothpick (a NEW one) and using the large end gently scrape the inside of your cheek 3 or 4 times.

B. Follow the directions for creating a “wet mount” slide on the previous page. (Steps 1-3) C. Follow the directions for staining your microscope slide on the previous page. D. Locate your sample on low power, then center and focus. Find it on medium and then on

high power.E. Draw (in color) and name your sample on the following pages. F. Label the following structures: cell membrane, cytoplasm, and nucleus (maybe

nucleolus).

Page | 100

Page 36: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

Comparing Eukaryotic (Plant and Animal) Cells Lab Flowchart

Page | 101

Page 37: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

Comparing Eukaryotic (Plant and Animal) Cells Lab Data

Name of Slide:

Magnification:

Name of Slide:

Magnification:

Page | 102

Page 38: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

Comparing Eukaryotic (Plant and Animal) Cells Lab Conclusion Questions

1. What observable characteristics can be used as evidence for classifying a specimen as a plant? In other words, what structures or features do you see that tell you the specimen you observed (elodea) was a plant?

2. Are the chloroplasts you observed moving or stationary?

3. Inside the mouth, cheek cells are joined together in a sheet. Why are they scattered here?

4. How are the animal cells different from the plant cells you observed (list at least three

differences)?

5. What is the relationship between plant cell structure and the ability of plants to stand

upright?

6. Cheek cells do not move on their own, so you will not find two organelles that function for

cell movement. Name these organelles.

7. Were the cells you observed eukaryotic or prokaryotic? How do you know?

Page | 103

Page 39: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

8. Is the nucleus always found in the center of the cell?

9. Why do you think stains such as methylene blue are when observing some cells under the

microscope?

10. The light microscope used in this lab is not powerful enough to view other organelles in the cheek cells and elodea leaf cells. What parts of the cell were visible? What parts of the cell were not? Fill in the table below.

Visible Not visible

Elodea Leaf

Cheek Cell

Page | 104

Page 40: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

Page | 105

Page 41: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

Page | 106

Page 42: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

Page | 107

Page 43: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word

Scientific Concepts Unit Concept Car

Page | 108

Page 44: Prokaryotes & Eukaryotes - FTHS Web viewCell, Tissue, Organ, Organ System ... cytoskeleton, ribosome, nucleolus, endoplasmic reticulum, Golgi apparatus, vacuole, lysosome ... Our word