Project

65
Project report Design Of Packed Bed Distillation Column Dr. Babasaheb Ambedkar Technological University,Lonere 1 Chapter-1 INTRODUCTION Many chemical reactions supply liquid or gas mixture that has to decompose by heat. Some mixtures occurring in nature must be broken down to recover specific constituent, such as aromatics, petroleum distillate serving as fuel, air liquefied to produce nitrogen, oxygen and rare gases, or water distilled for use in nuclear installations. Distillation is a method of separating the components of a solution, which depends on the distribution of the substances between a liquid and gas phase, applied to cases where all components are present in both phases. In order to make clear the distinction between distillation and the other operations let us site a few specific examples. In the separation of solution of common salt and water evaporation is used. Salt is non-volatile at the prevailing conditions. On the other hand, distillation, is concerned with the separation of solution where all the components of a liquid solution are appreciably volatile. The advantages of distillation as a separation method are clear. In distillation the new phase differ from the original by their heat content, but heat is readily added or removed, cost of this is considerable. Distillation in crude form was practiced before the time of Christ, usually for the concentration of alcoholic spirit. The first formalized documentation of the process appears to have been the treatise by Brunswig, published in 1500 (2) . Despite the emergence in recent year of many new separation techniques, distillation retains its position of supremacy among chemical engineering unit operation.

Transcript of Project

Page 1: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 1

Chapter-1

INTRODUCTION

Many chemical reactions supply liquid or gas mixture that has to decompose by

heat Some mixtures occurring in nature must be broken down to recover specific

constituent such as aromatics petroleum distillate serving as fuel air liquefied to produce

nitrogen oxygen and rare gases or water distilled for use in nuclear installations

Distillation is a method of separating the components of a solution which depends

on the distribution of the substances between a liquid and gas phase applied to cases where

all components are present in both phases

In order to make clear the distinction between distillation and the other operations

let us site a few specific examples In the separation of solution of common salt and water

evaporation is used Salt is non-volatile at the prevailing conditions On the other hand

distillation is concerned with the separation of solution where all the components of a

liquid solution are appreciably volatile

The advantages of distillation as a separation method are clear In distillation the

new phase differ from the original by their heat content but heat is readily added or

removed cost of this is considerable

Distillation in crude form was practiced before the time of Christ usually for the

concentration of alcoholic spirit The first formalized documentation of the process appears

to have been the treatise by Brunswig published in 1500 (2) Despite the emergence in

recent year of many new separation techniques distillation retains its position of

supremacy among chemical engineering unit operation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 2

Chapter-2

TYPES amp METHODS FOR DISTILLATION

21Batch Distillation ndashthe simplest form of batch still consist of a heated vessel (pot or

boiler) a condenser and one or more receiving tanks no trays or packing are provided The

feed is charged into the vessel and brought to boiling Vapors are condensed and collected

in a receiver no reflux is returned The rate of vaporization is some times controlled to

prevent ldquobumpingrdquo the charged and to avoid overloading the condenser

22Single-Stage Operation ndashFlash Vaporization

in this method a liquid mixture is partially vaporized the vapors allowed to come to

equilibrium with the residual liquid and the resulting vapor and liquid phases are separated

and removed from apparatus The liquid feed is heated in the conventional tubular heat

exchanger

23 Continuous Distillation

1 For binary system

Binary distillation is probably the most common and important of the unit

operationrsquos basic principle in binary distillation is that one component in binery

mixture is more volatile than other and concentration of this component in the

vapor phase is greater than liquid phase

2For multicomoponent system

Multicomponent distillation is more difficult than binary distillation in that

graphical techniques are not really useful except in special cases

For multicomponent calculations we use the following

1material balance

2energy balance

3 vapor liquid equilibrium

4 estimation procedure

5facilities limitations

6a well organized approach

Various kinds of devices such as random or structured packings or plates or trays are used

to bring the two phases into intimate contactThe feed material which is to be separated

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 3

into fraction is introduced at one ir more points along the column shell because of the

difference in gravity between vapor and liquid runs down the column while vapor flows up

the column Liquid reaching the bottom of the column is partially vaporized in heated

reboiler to provide boil up which is sent back to the column the remainder of the column

is withdrawn as bottomor bottom productVapor reaching the top of the column is cooled

and condensed to liquid in the overhead condenser part of this liquid is returned to the

column as reflux to provide liquid over flow The remainder of the overhead stream is

withdrawn as distillate The lighter component tends to concentrate in the top distillate and

heavier in the bottom products The result is a vapor phase that becomes richer in lighter

component as it passes up the column and a liquid phase that becomes richer in heavy

component as it cascades downward The overall separation achieved between the

distillate and the bottom depends primarily on the relative volatilities of the components

Key Components

When it is necessary to separate a mixture of many components as is frequently the

case in the petroleum industry the two key components are selected to produce a product

mixture having specified characteristics It is then likely that the keys do not fall adjacent to

each other but have an intermediate boiling component between them referred to as ldquoas a

distributed keyrdquo

Two components whose concentrations or fractional recoveries in the distillate and

bottom products are good index of the separation achieved Since the keys must be differ in

volatilities the more volatile identified as light key and less volatile as heavy key

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 4

Chapter- 3

MULTICOMPONENT DISTILLATION METHODS

31 Fenske-Underwood-Gilliland (FUG) Shortcut Method ndash

311 Fenske equation ndashthe fenske equation estimates the minimum number of theoretical

stages at the total or infinite reflux This equation assumes the relative volatility remains

constant throughout the column If the equilibrium data have some interaction between

components it is desirable to determine a third set of equilibrium data The third set of data

can be obtained by using the arithmetic mean average of the condition

3

bottomHK

LK

middleHK

LK

topHK

LKavgLK K

K

K

K

K

K

Otherwise the average relative volatility can be obtained using a two-point geometric

mean

3

bottomHK

LK

topHK

LKavgLK K

K

K

K

The Fenske equation yields the minimum number of the equilibrium stages via the

equation

avgLK

bottomLK

HK

distHK

LK

m

moles

moles

moles

moles

Nln

ln

312 Distribution of non-key component

The relationship to be used is the component material balance

fi = bi + di

The original form of Fenskey equation written in terms of an arbitrary component i and

reference component

r

N

avgr

avgii

i b

d

b

dm

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 5

In determining the product composition values using the combination of these

two equations one takes advantages of whether a component is very volatile or not

volatile

2

avgHKavgLK

avgmean

Following sets of equations can be used to revise the estimate of the distillate

and bottom products

If light component ii bd avgmeanavgi

Reference component is heavy key then

mN

avgHK

avgi

HK

ii

b

d

fb

1

iii bfd

For heavy component avgmeanavgiii db

Reference component is the light key

mN

avgi

avgLK

LK

ii

d

b

fd

1

iii dfb

313 Calculation of minimum reflux-The Underwood equation

The equation developed by Underwood in based on the assumptions

1constant molar flow rate

2knowledge of the component at the pinch zone

Based on the degree of feed vaporization the value of θ is solved of using

qZ

av

feediavi

1

The value of (1-q) is the fraction of the feed that is vapor

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 6

point)(bubblehpoint)(dewH

condition)(feedhpoint)(dewHq)1(

ff

ff

In the determination of the thermal conditions the average pressure should be

2ombolumnbuttcolumntop

feedstage

PPP

Use of the so found in the equation

avgi

idavgim

xR

1

Rm can be determined

314 Stage-Reflux co-relation

The two widely accepted co-relations are Gilliland correlations and the Erbor-Madox

corelations each relates the minimum column operating limits to the reflux and stage

actually required The values of reflux generally used lies in the range of

00201 mR

R

Fig 41 Gilliland stage-reflux co-relation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 7

The following analytical expressions for the Gilliland stage-reflux co-relations

440ln1050

1

1

1

XB

XY

N

NNY

R

RRX

B

m

m

315 Feed location (Kirkbride equation)

The Kirkbride equation yields the ratio of the number of theoretical stages in the rectifying

section lsquomrsquo to the number of theoretical stages in the stripping section lsquoprsquo

20602

distillateHK

bottomLK

feedLK

HK

x

x

x

x

D

B

p

m

and

Npm

Feed stage can be determined

32 The Winn equation

The Fenske equation has a weakness as the relative volatility difference between column

top and bottom increase the estimated minimum number of stages get increasingly too

small The relation relates the equilibrium K of component i and reference heavy key as

i

rii KK

Where amp are constant at fixed pressure Determination of A and B The equation has

the structure of a modified Antoine equation is

460

ln

T

BAPK i

ii

P is average column pressure and T is temperature (0F)

460

ln

T

BPKA i

topii

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 8

460

1

460

1

lnln

bottomtop

bottomitopi

i

TT

PKPKB

Winn equation amp can be obtained

rr

ir

i

r

ii APK

APK

PK

B

B

ln

ln

1 iPAAEXP rii

The Winn equation for two minimum number of stages require the use of mole

fraction and is as follows

LK

HKD

B

LKB

D

m

LK

x

x

x

x

N

ln

ln

Using molar flow rates

LK

LK

m

LK

HKd

b

b

d

N

ln

ln

The Winn equation molar form can be combined with the column component

material balance to estimate the fractionation of the nonkey components

d 1d

b

D

B

d

d

b

fbd

i

θ1θi

HK

N

i

iii

m

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 9

componentheavy

componentlight

bd 1d

b

bfd

d

b1

d

bf

b

bd 1d

b

iii

iii

i

ii

i

iii

iii

i

ii

dfb

d

b

fd

1

Three basic energy inputoutput location within the fractionation column system The

energy associated with the feed preheats QF This energy requirement must be consistent

with the degree of feed vaporization and is obtained by enthalpy balance

FFF hHFQ

HF amp hF are in Btulb of feed The condenser duty Qc is obtained by writing an energy

balance around the condenserreflux drum

L = RD

V = D 1 R

Case 1 ndash all-liquid distillate

QC = D DV hHR 1

Case 2 ndash all vapor distillate

DVDVC HHDhHRDQ

Case -3 distillate is liquid and vapor

Qc = D R (Hv - hD) + Vapor (Hv - HD)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 10

Hv- enthalpy of vapor entering the condenser

HD - enthalpy of vapor leaving the drum accumulator

hD- enthalpy of liquid leaving the drum

with the condenser duty calculated the reboiler duty QR can be obtained as

QR=Qc+[DV HD+DLhD]+B hB-F HF

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 11

Chapter -4

Packed Tower

41 Packing Hydraulics

At low liquid flow rates the open cross sectional area of the packing is about the same as in

a dry bed The pressure drop is entirely by frictional losses through a series of opening and

proportional to the square of gas flow rate In random packing the pressure drop is due to

expansion contraction and changes of direction A portion of the gas kinetic energy is

used to support the liquid the column and the pressure drop becomes proportional to the gas

rate raised to power different The point where the packing voids fill up with liquid ie

when tower operation switches from vapor continuous to liquid continuous is termed phase

inversion For all liquid flow rates as gas flow rate is raised a point is reached when the gas

velocity begins to interfere with the free drainage of liquid The accumulation of liquid

reduces the cross section area available for gas flow and therefore accelerates the pressure

drop rise Further increase in gas rate more liquid accumulates until the liquid surface

becomes continuous across the top of packing

Efficiency flow regimes

When the liquid distribution is poor it will take more liquid to wet the entire bed Turbulent

liquid film produces good wetting of the packing and essentially contact efficiency As

liquid rate increases more vapor is entrained down the bed These drops efficiency

Because structured packing permits far less lateral movement of fluid than random

packings

Flood point

Appearance of liquid on top of the bed excessive entrainment a sharp rise in pressure

drop a sharp rise in liquid hold up and a sharp drop in efficiency flood point can be

predicted far more reliably than packing pressure drop and maximum operational capacity

Pressure drop

This is often used to specify packed tower capacity In small columns (lt3 ft in dia )

pressure drop varies with tower diameter With random packings smaller the tower

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 12

diameter the lower the pressures drop possibly due to enhancement of wall effects Dry

packed beds have a higher-pressure drop than wet ndash packed beds Pressure drop

measurement under deep vacuum (lt50 mmHg) is affected by the pressure drop and the

pressure gradient along the bed Pressure drop measurements in a pressure tower include

the static head of the vapor To obtain the actual packing pressure drop the static head

must be subtracted from pressure drop measurement Pressure drop for foaming systems

are higher than for non-foaming systems

42 Flood Point Prediction

421 Sherwood ndashEckert generalized pressure drop correlation (GPDC)

The Sherwood ndashEckert GPDC chart has been the standard of the industry for predicting

flood points and pressure drops

GPDC chart ordinate describes the balance between the vapor momentum force that acts

to entrain swarms of liquid droplets and the gravity force that resists the upward

entrainment GPDC chart abscissa is the flow parameter the ratio of liquid kinetic energy

to vapor kinetic energy

422 The Kister and Gill correlation

Zens discovered that packing pressure drop at the flood point decreases as the packing

capacity increases A simple flood point correlation

FLP =0115 70PF

this equation expresses pressure drop at the flood point as a function of packing factor

alone Once this pressure drop is known the flood velocity can be calculated The flood

velocity calculated by the Kister and Gill correlation is tolerant to inaquaracies in flood

pressure drop predictions

43 Pressure Drop Prediction By GPDC Interpolation

Interpolation of pressure drop data is more accurate than correlation prediction

Superimposing experimental data points on the curves of generalized pressure correlation

chart converts the GPDC chart into an interpolation chart Pressure drops are calculated by

interpolating the plotted pressure drop data For all charts (random structured or grid

packings) the abscissa of the correlation is the flow parameter given by

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 13

50

L

GLV G

LF

And the ordinate of correlation as the capacity parameter given by

GL

GSS uC

FP is the packing factor which is an empirical factor characteristics of the packing size

and shape

44 Packing factors

Several of the predictive methods above use a packing factor to account for the type and

size of packing With the evolutions of the general pressure drop correlation the packing

factor shifted away from the ratio ap ε3 to become an imperial constant that must be

experimentally determined for each packing

Loading point

The point of transition from the preloading regime to the loading regime is termed the

loading point It is the point where liquid hold up starts increasing with gas velocity rapid

deterioration in efficiency loading point where the flow rate at which the vapor phase

bagans to interact with the liquid phase to increase interfacial area in a packed column the

loading points occurs at 70 percent of the flood point

Pressure drop

Packed tower are designed so that the pressure drop at any point in the tower does not

exceed a recommended maximum value Maximum pressure drop criterioa for packed

tower are listed in table

Average pressure drop

Specific pressure drop can be calculated at the top of the bed and at the bottom of the bed

the average pressure drop is

25050 5050 bottomtop PPP

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 14

Type of system Maximum pressure drop in of water ft

packing

Atmospheric fractionator 05-100

Low to medium pressure fractioantor 07-10

High pressure distillation

006ltρG ρGlt 020

020lt ρGρL

019 )( 270

OHGPF

0099 )( 270

OHGPF

Vacuum distillation 001-06

Liquid holdup

Liquid holdup is the liquid present in the void spaces of packing At flooding

essentially all the voids are filled with liquids or froth Reasonable liquid holdup is

necessary for good mass transfer and efficient tower operation but beyond that it should

be kept low

Static holdup is liquid remaining on the packing after it has been fully wetted and

drained for long time The contributation of static holdup to mass transfer rates is limited

Operational holdup is liquid on the packing attributed to dynamic operation and is defined

as the difference between total holdup and static holdup

Minimum Wetting Rate

The minimum wetting rate (MWR) is the lower stability limit of packing It is liquid

below which the falling liquid film breaks up and the liquid storage causes wetting of the

packing surface Gravity and viscous forces resists dewetting the surface tension and vapor

shear forces tend to dewett the falling film The MWR therefore rises with an increase in

surface tension and liquid density and with decrease in liquid viscosity

A thumb rule cited by Ludwi

QMW =3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 15

Underwetting

Underwetting is a packing surface phenomenon which brakes up liquid film

The tendency of liquid film to break is expressed by a contact angle A contact angle of

zero indicates perfect wetting an angle of 1800 indicates no wetting

The contact angle depends both on surface and a liquid and is a strong function of

composition Changing a material and surface roughness of the packing may significantly

affect the efficiency in system susceptible to underwetting

45 The HETP concept

The concept of HETP (height equivalent to theoretical plates) was introduced to

enable to comparison of efficiency between packed and plate columns HETP is defined as

HETP = Hn

A similar HETP value can be obtained for plate column if the tray spacing is known

HETP (trayed column) = 100 timesSE

The HETP approach is suitable for multicomponent systems while HTU approach is

difficult to apply for this

HETP prediction

Because there are only few variables that significantly affect HETP of random

packings For small diameter column the rule of thumb presented by Frank Ludig Vital

et al are identical The more conservative cause predicted from

HETP =15 dp helliphellipfor Pall rings or similar high efficiency packing

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 16

Chapter -5

Distillation Design

Problem statement-

A butane-pentane splitter is to be designed to process 4200 lbhr of C3 ndashC5 feed subjected to

specifications of

1maximum 3 of i-C5 in the distillate

2maximum 1 of C4 in the bottom product

The feed sink will be air (process design temperature) to be 130 0F

Components Wt molwt lbh molh

C3 5 441 210 4762

i-C4 15 581 630 10843

C4 25 581 1050 18072

i-C5 20 721 840 11651

C5 35 721 1470 20388

4200 65716

Solution-

Feed composition

Components lbgal(60F) galh Vol mol

C3 422 4976 592 725

i-C4 469 13433 1397 165

C4 487 21501 2563 275

i-C5 520 16154 192 1773

C5 525 28000 328 3102

Total 84124 100 100

Average molecular weight 650716

4200

= 6391

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 17

Average liquid density = 420065716

= 4993lbgal

x = mass of c4 in the bottom(i-wt)

y =mass of i-c5 in the distillate(3 wt)

51 Component Split

Assuming that the C3 and i-C5 have negligible concentration in the bottom and C5 has

negligible concentration in the distillate

Components F D B

C3 210 210 0

i-C4 630 630 0

C4 1050 (1050-x) x

i-C5 840 y (840-y)

C5 1470 0 1470

Total 4200 1890-x+y 2310+x-y

F =B+D

4200 =2310 + x ndashy +1890 ndashx + y

Distillate specification 3 in of i-c5 in distillate

yx

y

18900030

567 ndash 003 x -097 y =0

003 x + 097 y =567

Bottom specification 1 C4 in the bottom

003 yx

x

2310

231 -001 x + 001 y = x

099 x + 001 y = 231

x = 2275

y = 5775

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 18

Components D lbh B lbh D lbmolh B lbmolh

C3 210 0 4762 0

i-C4 630 0 10843 0

C4 102725 2275 1768 039

i-C5 5725 78225 0801 1085

C5 0 1470 0 20388

Total 1925 2275 34086 3163

52 Dew Point and Bubble Point calculation

1 The distillate and reflux will be a bubble point liquid The criteria for evaluation of

the bubble point condition are

1 like an air fin condenser to liquefy the distillate and reflux The criteria of

drum temperature will be assumed to be 130F ( design temperature for air is

about 120F

2 the bubble point design equation with temperature specified

01 ii xK

Average molecular weight of distillate

Components xid Ki

C3 01397 21

i-C4 03181 10

C4 05187 073

i-C5 00235 033

C5 0 027

For fixed temperature of 130F bubble point pressure is to be determined

4656 wtmolxid

9980 iDi xK

Pestimated = Pi-c4 = 120 lbin2

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 19

001

9980120calculatedP

= 1197 lbin2 (abs)

The result of distillate bubble point calculation is

T = 130 0F

P = 120 lbin2

The condition at the top of the column must be evaluated since the fractionator has a

total concentration and an equilibrium stage The criteria for evaluation of the dew

point condition are

Assumption of the pressure drop through the total condenser of 25 lbin2Thus the

pressure at the top of the column is established as

P = 120 lbin2 + 25 lbin2

P = 1225 lbin2

Dew point

01

i

i

k

y

Plk =1225 lbin2 T= 1320F

Components yi Ki1320

F Ki1450

F

C3 01397 220 240

i-C4 03181 100 115

C4 05187 073 085

i-C5 00235 035 042

C5 00000 028 033

For T =1320F

01

i

i

k

y

Kic4 = 1160 and Tcal =1450F

For T =1450F

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 20

01

i

i

k

y

The result of column top dew point calculation

T =1450F

P = 1225 lbin2

The column bottom condition Column ΔP =5 lbin2

The column bottom pressure

P = 1225 + 50 = 1275 lbin2

The bubble point design equation

ΣKiXi=10

Components B(mol) X

C3 0 0

i-C4 0 0

C4 0392 00124

i-C5 1085 03430

C5 20388 06446

3163 100

Average molecular wt = 6331

22750 =7193

The characteristic component is i-c5 an estimated bottom temperature is obtained

Components Xi Ki2380

F Ki2150

F

C3 0 38 45

i-C4 0 355 265

C4 00124 1925 205

i-C5 03430 10 1075

C5 06446 087 094

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 21

For T = 238 0F

ΣKiXi=0927

KHK = 108 Tcal =245 0F

For T =245 0F

ΣKiXi=100

The result of column bottom bubble point calculation

T =245 0F

P =1275 lbin2

53 Determination of the key component

Using the heavy key as column reference key The separation is clearly between

butane and isopentane

Reference component =i-C5

Key component

LK =C4

HK =iC5

The average relative volatility data for the column will be generated using three-point

geometric average

3321 avg

Point 1 ndash top of fractionation column

Point 2 ndash at the reboiler

Point 3 ndash arithmetic mean of condition at 1 amp 3

T2 = 05 [ T1 + T2 ] = 05 [ T1 + T2 ]

T2 = 05 [ 145 + 245 ] = 195 0F

P2 = 05 [ P1 + P3 ] = 05 [ 1225 +1275 ]

P2 = 125 lbin2

variable Point 1 Point 2 Point 3

T oF 145 195 245

P lbin2 1225 125 1275

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 22

Components Point 1 Point 2 Point 3

Ki αi Ki αi Ki αi αavg

C3 24 571 335 493 45 419 49

i-C4 115 274 175 257 25 237 256

C4 085 202 135 199 205 191 197

i-C5 024 100 068 100 1075 100 100

C5 033 079 058 085 094 087 084

54 Shortcut Method

541 Minimum stages at total reflux-the Fenske equation

LKavg

BLk

HK

DHK

LK

m

x

x

x

x

Nln

ln

Fi = bi + di

avgmeanavgiiir

rNavgi

i dbb

d

b

d for min

mN

avgHK

avgi

HK

ii

b

d

fb

1

or when ii db meanavgavgi

mN

avgi

avgLK

LK

ii

d

b

fd

1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 23

971ln

01240

3430

02350

51870ln

mN

4619mN

2

avgLKavgHKmean

2

001971

= 1485

For propaneC3

meanC 3

7624

904

3

3

C

C

f

4619

001

904

85010

80101

76243Cb

hmold

hmol

C 7624007624

1091

3

5

For isobutene(i-C4)

84310

562

4

4

4

iC

Ci

meanCi

f

4619

1

562

8500

80101

843104iCb

hmol 020

823104iCd

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 24

For butane (C4)

07218

971

4

4

C

C

meanavgi

f

4619

001

971

8510

80101

072184Cb

hmold

d

hmolb

C

C

C

68817

392007218

3920

4

4

4

For isopentane (i-C5)

meanavgiC

iCiC hmolf

5

5565111001

Hence

4619

001

971

6817

39201

651115iCd

hmolb

hmold

iC

iC

8510801065111

8010

5

5

For pentane (C5)

hmolb

hmold

d

C

C

C

meanavgC

C

105320

2850

840

971

6817

39201

38820

840

5

5

5

5

5

4619

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 25

The calculated data in the table

Components Fi(lbmolh) Di(lbmolh) Bi(lbmolh)

C3 4762 4762 0

i-C4 10834 10823 002

C4 18072 17680 0392

i-C5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Checking

Maximum 3wt of iC5 in the distillate

9772

1004656

172

35134

8010

wt

Maximum of 1 wt C4 in the bottom

011

1009371

158

36531

3920

wt

The set of specification were not met The parameter reevaluated

Again performing same calculations

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 1050-x x

i-C5 840 y 840-y

C5 1470 2055 144945

Total 190939-x+y 229061+x-y

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 26

3658

5522

612290100

1

391909100

3

y

x

yx

x

yx

y

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 102745 2255

i-C5 840 5836 78164

C5 1470 2055 144945

Total 4200 194520 224580

Components F(lbmolh) D(lbmolh) B(lbmolh)

C3 4762 4762 0

i-c4 10834 10823 002

C4 18072 17680 0392

i-c5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Column operating condition

Distillate bubble point calculation on with temperature specified at 130 0F

Components D (lbmolh) K120 (lbin2)

C3 4762 210

i-C4 10823 10

C4 17680 073

i-C5 0801 033

C5 0285 027

Total 34351

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 27

992036334

07634

001

ii

iiii

xK

D

dKxK

Condition of the distillatereflux before 130 0F amp 120 lbin2overhead or column top

conditions are found by dew point calculation at the specified pressure of 1225lbin2

Components D (lbmolh) K1450

F K148 0

F

C3 4762 24 2425

i-C4 10823 116 1175

C4 17680 084 087

i-C5 0801 042 0425

C5 0285 033 034

01D

K

d

K

y i

i

i

i

For T=145 0F

018136334

9934

i

i

K

y K=1175 Tcal=148 0F

For T=148 0F

997036334

24334

i

i

K

y

Conditions of column overhead are revised to 148 0F and 1225lbin2column bottom

conditions are found by way of bubble point calculation

Components B(lbmolh) K2450

F

C3 0 45

i-C4 002 255

C4 0392 205

i-C5 10850 1075

C5 20103 094

Total 31365

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 28

Design equation

001B

bKxK ii

ii

For T =245 0F

00139331

39831ii xK

At column midpoint condition

2

0

1255127512250

519624514850

inlbP

FT

Summery of operating condition

Point 1 Point 2 Point 3

Temperature 148 1965 245

Pressure lbin2 (abs) 1225 125 1275

Equilibrium K data for column midpoint condition

Point 1 Point 2 Point 3

Components Ki i Ki i Ki i avgi

C3 2425 571 34 486 45 419 488

i-C4 1175 276 18 257 255 237 256

C4 087 205 138 197 205 191 198

i-C5 0425 100 07 10 1075 10 10

C5 034 08 06 086 094 087 084

Fenske equation

3919

001

981ln

3880

84210

8090

68417ln

m

m

N

N

Separation of non key component

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 29

4912

100198

2

avgLKavgHK

mean

molh09220bmolh 2920d

molh38820f840

)(CPentane

molh8090dmolh 84210b

molh65111f001

)C-(itan

68417dmolh 3880b

molh07218f981

)(CButane

hmol 82210d h mol0210b

hmol84310f562

)C-(iIsobutane

molh76240007624d

molh000molh101882

001

884

84210

80901

7624

7624f884

)(Cropane

C5C5

C5C5

5

C5-iC5-i

C5-iiC5

5

C4C4

C4C4

4

iC4iC4

iC4iC4

4

33C3

5

39193

C3C3

3

lblb

lb

lblb

lb

eIsopen

hlbmollb

lblb

lb

lbbf

lblbb

hmol

P

CC

C

Components Feed (lbmolh) Distillate (lbmolh) Bottom (lbmolh)

C3 4762 4762 0000

i-C4 10843 10822 0021

C4 18072 17684 03880

i-C5 11651 0809 10842

C5 20388 0292 20096

Total 65716 34369 31347

Maximum value of 3 wt of i-C5 in distillate is required

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 30

Calculated value =

wt 3

1004956

172

36934

8090

Maximum value of 1 wt of C4 in bottom is required

Calculated value

wt 1

1009163

158

34731

3880

Conditions are satisfied

542 Component split by Winn equation

The Fenske equation has a weakness as the relative volatility difference between

column top and bottom increase the estimated minimum number of stages gets

increasingly too small

460

1

460

1

lnln

bottomtop

bottomitopi

i

TT

PKPKB

460

ln

T

BAPK i

ii

110 irHKi PAAi

r

ii B

B

Components KTop148 F Kbottom245 F

C3 2425 450

i-C4 1175 255

C4 087 205

i-C5 0425 1075

C5 034 094

For P=125 lbin2

For butane (C4)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 31

550594460148

)271263()42525122log(

271263

460245

1

460148

1545127log42525122log

4

4

C

C

A

B

Heavy component is iso-pentane( i-C5)

955824460148

)711857()42505122log(

680010717185

271263

711857

460245

1

460148

1

07515127log4250125log

5

4

5

Ci

C

Ci

A

A

B

311344

)125(10

10)1680010()955824550594(

1

irHKi PAAi

Components Bi Ai θi βi

C3 -126327 45509 068001 43113

i-C4 -156377 473016 084177 24069

C4 -172167 48593 092677 191988

i-C5 -185771 49558 100000 10000

C5 -202840 49558 109189 086704

5339

919881log

)369348090(

)3473484210(

)347313880(

)3693468417(log

m

m

N

N

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 32

abvg

1

bdcomponent

orlightif

D

B

d

bb

d

HK

N

i

im

d

b1

fd

2dbkeyheavy

1

avgHKLKif

b

df

b

componentlight propanefor

5

032068

9533

101976

09120713402

4311

b

d

7624

0001097611

76245

bfd

b

For isobutene (i-C4)

f =10843 θ =0842 β =2407 (light component)

lh10821lbmo

002210843d

h0022lbmol

494151

10843b

4941509120713402

2407

b

d08417108417

9533

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 33

For Butane (C4)

f =18072 β=191988θ=092677

h0388lbmol

455771

18072b

4557709120713402

191988

b

d0926771092677

9533

d=18072-0388

=17684 lbmolh

For Isopentane (C5)

f =11651 β =100 θ =100

111

5339

91207040213

00001

b

d

=007461

βltβavg

)0746101(1

65111

d

= 0809 lbmolh

b = 11651-0809

=10842 lbmolh

For Pentane (C5)

f =20388 lbmolh β= 086704 θ =109189

0918911091891

5339

91207040213

867040

b

d

=0014959

βltβavg

)01495901(1

38820

d

= 0300 lb molh

b=20388-03

=20088

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 34

Components Feed lbmolh Distillate lbmolh Bottom lbmolh

C3 4762 4762 000

i-C4 10843 10821 0022

C4 18072 17684 0388

i-C5 11651 0809 10842

C5 20388 03 20088

65716 34376 3134

Components Feed lbh Distillate lbh Bottom lbh

C3 210 210 000

i-C4 630 62872 128

C4 1050 102745 2257

i-C5 840 5836 78164

C5 1470 2163 1448348

4200 194602 2253818

543 Calculation of Rm

From Underwood equation

qx

i

iFi

1

Components Flbmolhr xif xid αi

C3 4762 00725 01386 488

i-C4 10843 01650 03149 256

C4 18072 02750 05145 198

i-C5 11651 01773 002335 100

C5 20388 03102 00085 084

65716 1000 1000

Feed is at boiling conditions since q =1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 35

0840

31020840

1

177301

981

27500981

562

16500562

884

07250884

θ =1284

from this value of θ

avgi

idavgim

xR

1

11284840

00850840

12841

023501

1284981

51450981

1284562

31490562

1284884

13860884

mR

Rm=1185

R=15 Rm

=15times1185

=17775

X=1

R

RR m

X=177751

185177751

=02133

From GillilandrsquoS correlation Y=1

N

NN m =042

We know the value of Nm 4201

5339

N

N

N=178 =18 stages

Feed location can be known by the use of Kirkbride equation

2

)376348090(

)34313880(

)07218(

)65111(

37634

34312060log

F

F

p

m

687890p

m

817 pm

m = 725=8

p =1054 =11

Feed is introduced on eight stage from top

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 36

Chapter- 6

PACKED COLUMN DESIGN

61 Stage AnalysisThe data shown in table are typical data generated by commercial simulation

Vapor liquidStage Temperature0F lbhr CFS

ft3sV

lbft3

Lbhr GPM

galminL

σ

dynecm

μ

cP

1 1349 00 00 00 3655 1423 3202 6867 0114

2 1474 5501 12050 12683 3720 1447 3204 6738 01132

3 1548 5566 12049 12831 3724 1447 3208 6699 01128

4 1609 5571 11987 12909 3707 1438 3214 6684 01130

5 1668 5553 11889 12974 3693 1430 3220 6665 01135

6 1726 5539 11794 13045 3689 1426 3224 6632 01142

7 1779 5535 11716 13122 3691 1426 3226 6590 01149

8 1824 5537 11650 13199 8032 310471 3226 6544 01156

9 1873 5678 11794 13373 8126 3142 3224 6507 01153

10 1917 5772 11871 13506 8201 3171 3224 6479 01151

11 1961 5847 11915 13631 8275 3201 3223 6447 01152

12 2010 5921 11946 13768 8360 3235 3222 6406 01156

13 2064 6006 12152 13928 8475 3274 3220 6348 01162

14 2122 6103 12013 14111 8574 3321 3218 6295 01170

15 2179 6220 12070 14310 8701 3374 3215 6236 01180

16 2232 6347 12148 14512 8829 3428 3211 6178 01191

17 2280 6475 12234 14701 8947 3477 3208 6128 01201

18 2321 6593 12317 14868 2354 91599 3204 6087 01212

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 37

62 Flood Point

15 inch pall ring will be used throughout the column for this packing the flood point can

be determined by interpolation

A-flood point by GPDC [generalized pressure drop correlation] interpolation

2

2

6593

5571

fthrlbA

G

fthrlbA

G

TBottom

TTop

Liquid flowrates ( 2 fthrlb )

LTop =TA

3724

LBottom = TA

8947

Vapor density( 3 ftlb )

48681

31991

BottomG

TopG

Liquid density ( 3 ftlb )

2432

2632

BottomL

TopL

1 Flow parameter

L

GLV ρ

ρ

G

LF

Top 05

LV 3228

13199

5571

3724F

1352110FLV

Bottom LVF =

2432

48681

6593

8947

= 029142

2 Capacity parameter from graphical correlation

Top =152

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 38

Bottom =119

3 Viscosity of the liquid L (cP)

Top L =01128 (cP)

Bottom L =01151 (cP)

4 Kinematic viscosity

=

L

L

462

Top =

2632

11280462

Top = 0218187

Bottom =

2432

11510462

Bottom = 022277

5 Packing factor ( 1ft )

Top FP = 40

Bottom FP = 40

6 Vapour capacity factor CSFI(fts)

Capacity parameter = CSFI FP05 005

Top 05050SFI 2181040

921C

Top SFIC =02593

Bottom 05050SFI 2181040

191C

Bottom 20280CSFI

63 Flood point by the Kister amp Gill correlation

1 FTP packed bed specific pressure drop at flood point

FTP =0115 70PF

Top FTP =0115 7040

=1521

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 39

Bottom FTP =1521 inch of H2O per ft

2 Flow parameter

Top FLV =0135211

Bottom FLV =029142

3 Capacity parameter at flood point

Top =152

Bottom = 119

4 CSFl vapor capacity factor at the flood point

CSFl = capacity parameter

05050

1

PF

Top CSFl =02593

Bottom CSFl =02028

64 Diameter calculation

1 Vapor capacity factor Cs design (nonderated) fts

The column will be designed for 75 flood capacity

SFlS CC 750

Top CS = 075 02593

=0194475

Bottom CS = 075 02028

Bottom CS = 01551

2 CS vapor capacity factor (derated )fts

= 09 CSdesign

Top CS = 09 01944

Top CS =017496

Bottom CS =09 01521

Bottom CS =013689

3 Vapor superficial velocity based on the cross section of empty column u (fts)

GL

G

ss

ρρ

ρ

(derated)Cu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 40

Top su =

319912632

31991

174960

Top su =084737

Bottom su =

486812432

48681

136890

Bottom su = 062257

4 Vapor flow rate CFS ft3s

Top CFS =1205 ft3s

Bottom CFS =12316 ft3shellipfrom table

5 Tower area ft2

AT = s

T u

CFSA

Top AT = 847370

2051

Top AT =1422 ft2

Bottom AT = 622570

23161

Bottom AT =19782 ft2

6 Tower diameter ft

1587ftD

π

197824D

13455ftD

π

14224D

π

A4

BottomT

BottomT

TopT

TopT

TT

D

65 Diameter calculation using the maximum pressure drop criterion

1 L

G

calculation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 41

Top L

G

=2632

31991

= 00409

Bottom L

G

=2432

48681

= 004611

2OH

L

2

calculation

Top ( OHL 2 )=

4362

2632

= 05167

Bottom ( OHL 2 ) =

4362

2432

= 05164

3 FP packing factor

Top FP = 40

Bottom FP =40

4 Maximum pressure drops recommended for packed column with random packing

1902

70max

OH

LPFP

helliphelliphelliphellipfor 006 20L

G

Top maxP = 019 5167040 70

Top maxP = 12984helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

Bottom maxP = 019 5164040 70

Bottom maxP =12977helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

5 Surface tension dyne

Top =6544 cmdyne

Bottom =6128 cmdyne

6 Vapor capacity factor Csmax (fts)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 42

P

s

FCP

3342maxmax

Top 12984 =

5446

403342maxsC

Top maxsC =02634

Bottom 12977 =

1286

403342maxsC

Bottom maxsC =025628

7 Maximum vapor superficial velocity usmax

maxsC = usmax

GL

G

Top usmax =

319912632

31991

26340

= 12752

Bottom usmax =

486812432

48681

25620

=11651 fts

8 Tower area AT (ft2)

AT =smaxu

CFS

Top AT =27521

2051

Top AT =09449

Bottom AT = 16511

23161

= 1057 ft2

9 Tower diameter (ft)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 2: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 2

Chapter-2

TYPES amp METHODS FOR DISTILLATION

21Batch Distillation ndashthe simplest form of batch still consist of a heated vessel (pot or

boiler) a condenser and one or more receiving tanks no trays or packing are provided The

feed is charged into the vessel and brought to boiling Vapors are condensed and collected

in a receiver no reflux is returned The rate of vaporization is some times controlled to

prevent ldquobumpingrdquo the charged and to avoid overloading the condenser

22Single-Stage Operation ndashFlash Vaporization

in this method a liquid mixture is partially vaporized the vapors allowed to come to

equilibrium with the residual liquid and the resulting vapor and liquid phases are separated

and removed from apparatus The liquid feed is heated in the conventional tubular heat

exchanger

23 Continuous Distillation

1 For binary system

Binary distillation is probably the most common and important of the unit

operationrsquos basic principle in binary distillation is that one component in binery

mixture is more volatile than other and concentration of this component in the

vapor phase is greater than liquid phase

2For multicomoponent system

Multicomponent distillation is more difficult than binary distillation in that

graphical techniques are not really useful except in special cases

For multicomponent calculations we use the following

1material balance

2energy balance

3 vapor liquid equilibrium

4 estimation procedure

5facilities limitations

6a well organized approach

Various kinds of devices such as random or structured packings or plates or trays are used

to bring the two phases into intimate contactThe feed material which is to be separated

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 3

into fraction is introduced at one ir more points along the column shell because of the

difference in gravity between vapor and liquid runs down the column while vapor flows up

the column Liquid reaching the bottom of the column is partially vaporized in heated

reboiler to provide boil up which is sent back to the column the remainder of the column

is withdrawn as bottomor bottom productVapor reaching the top of the column is cooled

and condensed to liquid in the overhead condenser part of this liquid is returned to the

column as reflux to provide liquid over flow The remainder of the overhead stream is

withdrawn as distillate The lighter component tends to concentrate in the top distillate and

heavier in the bottom products The result is a vapor phase that becomes richer in lighter

component as it passes up the column and a liquid phase that becomes richer in heavy

component as it cascades downward The overall separation achieved between the

distillate and the bottom depends primarily on the relative volatilities of the components

Key Components

When it is necessary to separate a mixture of many components as is frequently the

case in the petroleum industry the two key components are selected to produce a product

mixture having specified characteristics It is then likely that the keys do not fall adjacent to

each other but have an intermediate boiling component between them referred to as ldquoas a

distributed keyrdquo

Two components whose concentrations or fractional recoveries in the distillate and

bottom products are good index of the separation achieved Since the keys must be differ in

volatilities the more volatile identified as light key and less volatile as heavy key

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 4

Chapter- 3

MULTICOMPONENT DISTILLATION METHODS

31 Fenske-Underwood-Gilliland (FUG) Shortcut Method ndash

311 Fenske equation ndashthe fenske equation estimates the minimum number of theoretical

stages at the total or infinite reflux This equation assumes the relative volatility remains

constant throughout the column If the equilibrium data have some interaction between

components it is desirable to determine a third set of equilibrium data The third set of data

can be obtained by using the arithmetic mean average of the condition

3

bottomHK

LK

middleHK

LK

topHK

LKavgLK K

K

K

K

K

K

Otherwise the average relative volatility can be obtained using a two-point geometric

mean

3

bottomHK

LK

topHK

LKavgLK K

K

K

K

The Fenske equation yields the minimum number of the equilibrium stages via the

equation

avgLK

bottomLK

HK

distHK

LK

m

moles

moles

moles

moles

Nln

ln

312 Distribution of non-key component

The relationship to be used is the component material balance

fi = bi + di

The original form of Fenskey equation written in terms of an arbitrary component i and

reference component

r

N

avgr

avgii

i b

d

b

dm

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 5

In determining the product composition values using the combination of these

two equations one takes advantages of whether a component is very volatile or not

volatile

2

avgHKavgLK

avgmean

Following sets of equations can be used to revise the estimate of the distillate

and bottom products

If light component ii bd avgmeanavgi

Reference component is heavy key then

mN

avgHK

avgi

HK

ii

b

d

fb

1

iii bfd

For heavy component avgmeanavgiii db

Reference component is the light key

mN

avgi

avgLK

LK

ii

d

b

fd

1

iii dfb

313 Calculation of minimum reflux-The Underwood equation

The equation developed by Underwood in based on the assumptions

1constant molar flow rate

2knowledge of the component at the pinch zone

Based on the degree of feed vaporization the value of θ is solved of using

qZ

av

feediavi

1

The value of (1-q) is the fraction of the feed that is vapor

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 6

point)(bubblehpoint)(dewH

condition)(feedhpoint)(dewHq)1(

ff

ff

In the determination of the thermal conditions the average pressure should be

2ombolumnbuttcolumntop

feedstage

PPP

Use of the so found in the equation

avgi

idavgim

xR

1

Rm can be determined

314 Stage-Reflux co-relation

The two widely accepted co-relations are Gilliland correlations and the Erbor-Madox

corelations each relates the minimum column operating limits to the reflux and stage

actually required The values of reflux generally used lies in the range of

00201 mR

R

Fig 41 Gilliland stage-reflux co-relation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 7

The following analytical expressions for the Gilliland stage-reflux co-relations

440ln1050

1

1

1

XB

XY

N

NNY

R

RRX

B

m

m

315 Feed location (Kirkbride equation)

The Kirkbride equation yields the ratio of the number of theoretical stages in the rectifying

section lsquomrsquo to the number of theoretical stages in the stripping section lsquoprsquo

20602

distillateHK

bottomLK

feedLK

HK

x

x

x

x

D

B

p

m

and

Npm

Feed stage can be determined

32 The Winn equation

The Fenske equation has a weakness as the relative volatility difference between column

top and bottom increase the estimated minimum number of stages get increasingly too

small The relation relates the equilibrium K of component i and reference heavy key as

i

rii KK

Where amp are constant at fixed pressure Determination of A and B The equation has

the structure of a modified Antoine equation is

460

ln

T

BAPK i

ii

P is average column pressure and T is temperature (0F)

460

ln

T

BPKA i

topii

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 8

460

1

460

1

lnln

bottomtop

bottomitopi

i

TT

PKPKB

Winn equation amp can be obtained

rr

ir

i

r

ii APK

APK

PK

B

B

ln

ln

1 iPAAEXP rii

The Winn equation for two minimum number of stages require the use of mole

fraction and is as follows

LK

HKD

B

LKB

D

m

LK

x

x

x

x

N

ln

ln

Using molar flow rates

LK

LK

m

LK

HKd

b

b

d

N

ln

ln

The Winn equation molar form can be combined with the column component

material balance to estimate the fractionation of the nonkey components

d 1d

b

D

B

d

d

b

fbd

i

θ1θi

HK

N

i

iii

m

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 9

componentheavy

componentlight

bd 1d

b

bfd

d

b1

d

bf

b

bd 1d

b

iii

iii

i

ii

i

iii

iii

i

ii

dfb

d

b

fd

1

Three basic energy inputoutput location within the fractionation column system The

energy associated with the feed preheats QF This energy requirement must be consistent

with the degree of feed vaporization and is obtained by enthalpy balance

FFF hHFQ

HF amp hF are in Btulb of feed The condenser duty Qc is obtained by writing an energy

balance around the condenserreflux drum

L = RD

V = D 1 R

Case 1 ndash all-liquid distillate

QC = D DV hHR 1

Case 2 ndash all vapor distillate

DVDVC HHDhHRDQ

Case -3 distillate is liquid and vapor

Qc = D R (Hv - hD) + Vapor (Hv - HD)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 10

Hv- enthalpy of vapor entering the condenser

HD - enthalpy of vapor leaving the drum accumulator

hD- enthalpy of liquid leaving the drum

with the condenser duty calculated the reboiler duty QR can be obtained as

QR=Qc+[DV HD+DLhD]+B hB-F HF

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 11

Chapter -4

Packed Tower

41 Packing Hydraulics

At low liquid flow rates the open cross sectional area of the packing is about the same as in

a dry bed The pressure drop is entirely by frictional losses through a series of opening and

proportional to the square of gas flow rate In random packing the pressure drop is due to

expansion contraction and changes of direction A portion of the gas kinetic energy is

used to support the liquid the column and the pressure drop becomes proportional to the gas

rate raised to power different The point where the packing voids fill up with liquid ie

when tower operation switches from vapor continuous to liquid continuous is termed phase

inversion For all liquid flow rates as gas flow rate is raised a point is reached when the gas

velocity begins to interfere with the free drainage of liquid The accumulation of liquid

reduces the cross section area available for gas flow and therefore accelerates the pressure

drop rise Further increase in gas rate more liquid accumulates until the liquid surface

becomes continuous across the top of packing

Efficiency flow regimes

When the liquid distribution is poor it will take more liquid to wet the entire bed Turbulent

liquid film produces good wetting of the packing and essentially contact efficiency As

liquid rate increases more vapor is entrained down the bed These drops efficiency

Because structured packing permits far less lateral movement of fluid than random

packings

Flood point

Appearance of liquid on top of the bed excessive entrainment a sharp rise in pressure

drop a sharp rise in liquid hold up and a sharp drop in efficiency flood point can be

predicted far more reliably than packing pressure drop and maximum operational capacity

Pressure drop

This is often used to specify packed tower capacity In small columns (lt3 ft in dia )

pressure drop varies with tower diameter With random packings smaller the tower

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 12

diameter the lower the pressures drop possibly due to enhancement of wall effects Dry

packed beds have a higher-pressure drop than wet ndash packed beds Pressure drop

measurement under deep vacuum (lt50 mmHg) is affected by the pressure drop and the

pressure gradient along the bed Pressure drop measurements in a pressure tower include

the static head of the vapor To obtain the actual packing pressure drop the static head

must be subtracted from pressure drop measurement Pressure drop for foaming systems

are higher than for non-foaming systems

42 Flood Point Prediction

421 Sherwood ndashEckert generalized pressure drop correlation (GPDC)

The Sherwood ndashEckert GPDC chart has been the standard of the industry for predicting

flood points and pressure drops

GPDC chart ordinate describes the balance between the vapor momentum force that acts

to entrain swarms of liquid droplets and the gravity force that resists the upward

entrainment GPDC chart abscissa is the flow parameter the ratio of liquid kinetic energy

to vapor kinetic energy

422 The Kister and Gill correlation

Zens discovered that packing pressure drop at the flood point decreases as the packing

capacity increases A simple flood point correlation

FLP =0115 70PF

this equation expresses pressure drop at the flood point as a function of packing factor

alone Once this pressure drop is known the flood velocity can be calculated The flood

velocity calculated by the Kister and Gill correlation is tolerant to inaquaracies in flood

pressure drop predictions

43 Pressure Drop Prediction By GPDC Interpolation

Interpolation of pressure drop data is more accurate than correlation prediction

Superimposing experimental data points on the curves of generalized pressure correlation

chart converts the GPDC chart into an interpolation chart Pressure drops are calculated by

interpolating the plotted pressure drop data For all charts (random structured or grid

packings) the abscissa of the correlation is the flow parameter given by

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 13

50

L

GLV G

LF

And the ordinate of correlation as the capacity parameter given by

GL

GSS uC

FP is the packing factor which is an empirical factor characteristics of the packing size

and shape

44 Packing factors

Several of the predictive methods above use a packing factor to account for the type and

size of packing With the evolutions of the general pressure drop correlation the packing

factor shifted away from the ratio ap ε3 to become an imperial constant that must be

experimentally determined for each packing

Loading point

The point of transition from the preloading regime to the loading regime is termed the

loading point It is the point where liquid hold up starts increasing with gas velocity rapid

deterioration in efficiency loading point where the flow rate at which the vapor phase

bagans to interact with the liquid phase to increase interfacial area in a packed column the

loading points occurs at 70 percent of the flood point

Pressure drop

Packed tower are designed so that the pressure drop at any point in the tower does not

exceed a recommended maximum value Maximum pressure drop criterioa for packed

tower are listed in table

Average pressure drop

Specific pressure drop can be calculated at the top of the bed and at the bottom of the bed

the average pressure drop is

25050 5050 bottomtop PPP

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 14

Type of system Maximum pressure drop in of water ft

packing

Atmospheric fractionator 05-100

Low to medium pressure fractioantor 07-10

High pressure distillation

006ltρG ρGlt 020

020lt ρGρL

019 )( 270

OHGPF

0099 )( 270

OHGPF

Vacuum distillation 001-06

Liquid holdup

Liquid holdup is the liquid present in the void spaces of packing At flooding

essentially all the voids are filled with liquids or froth Reasonable liquid holdup is

necessary for good mass transfer and efficient tower operation but beyond that it should

be kept low

Static holdup is liquid remaining on the packing after it has been fully wetted and

drained for long time The contributation of static holdup to mass transfer rates is limited

Operational holdup is liquid on the packing attributed to dynamic operation and is defined

as the difference between total holdup and static holdup

Minimum Wetting Rate

The minimum wetting rate (MWR) is the lower stability limit of packing It is liquid

below which the falling liquid film breaks up and the liquid storage causes wetting of the

packing surface Gravity and viscous forces resists dewetting the surface tension and vapor

shear forces tend to dewett the falling film The MWR therefore rises with an increase in

surface tension and liquid density and with decrease in liquid viscosity

A thumb rule cited by Ludwi

QMW =3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 15

Underwetting

Underwetting is a packing surface phenomenon which brakes up liquid film

The tendency of liquid film to break is expressed by a contact angle A contact angle of

zero indicates perfect wetting an angle of 1800 indicates no wetting

The contact angle depends both on surface and a liquid and is a strong function of

composition Changing a material and surface roughness of the packing may significantly

affect the efficiency in system susceptible to underwetting

45 The HETP concept

The concept of HETP (height equivalent to theoretical plates) was introduced to

enable to comparison of efficiency between packed and plate columns HETP is defined as

HETP = Hn

A similar HETP value can be obtained for plate column if the tray spacing is known

HETP (trayed column) = 100 timesSE

The HETP approach is suitable for multicomponent systems while HTU approach is

difficult to apply for this

HETP prediction

Because there are only few variables that significantly affect HETP of random

packings For small diameter column the rule of thumb presented by Frank Ludig Vital

et al are identical The more conservative cause predicted from

HETP =15 dp helliphellipfor Pall rings or similar high efficiency packing

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 16

Chapter -5

Distillation Design

Problem statement-

A butane-pentane splitter is to be designed to process 4200 lbhr of C3 ndashC5 feed subjected to

specifications of

1maximum 3 of i-C5 in the distillate

2maximum 1 of C4 in the bottom product

The feed sink will be air (process design temperature) to be 130 0F

Components Wt molwt lbh molh

C3 5 441 210 4762

i-C4 15 581 630 10843

C4 25 581 1050 18072

i-C5 20 721 840 11651

C5 35 721 1470 20388

4200 65716

Solution-

Feed composition

Components lbgal(60F) galh Vol mol

C3 422 4976 592 725

i-C4 469 13433 1397 165

C4 487 21501 2563 275

i-C5 520 16154 192 1773

C5 525 28000 328 3102

Total 84124 100 100

Average molecular weight 650716

4200

= 6391

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 17

Average liquid density = 420065716

= 4993lbgal

x = mass of c4 in the bottom(i-wt)

y =mass of i-c5 in the distillate(3 wt)

51 Component Split

Assuming that the C3 and i-C5 have negligible concentration in the bottom and C5 has

negligible concentration in the distillate

Components F D B

C3 210 210 0

i-C4 630 630 0

C4 1050 (1050-x) x

i-C5 840 y (840-y)

C5 1470 0 1470

Total 4200 1890-x+y 2310+x-y

F =B+D

4200 =2310 + x ndashy +1890 ndashx + y

Distillate specification 3 in of i-c5 in distillate

yx

y

18900030

567 ndash 003 x -097 y =0

003 x + 097 y =567

Bottom specification 1 C4 in the bottom

003 yx

x

2310

231 -001 x + 001 y = x

099 x + 001 y = 231

x = 2275

y = 5775

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 18

Components D lbh B lbh D lbmolh B lbmolh

C3 210 0 4762 0

i-C4 630 0 10843 0

C4 102725 2275 1768 039

i-C5 5725 78225 0801 1085

C5 0 1470 0 20388

Total 1925 2275 34086 3163

52 Dew Point and Bubble Point calculation

1 The distillate and reflux will be a bubble point liquid The criteria for evaluation of

the bubble point condition are

1 like an air fin condenser to liquefy the distillate and reflux The criteria of

drum temperature will be assumed to be 130F ( design temperature for air is

about 120F

2 the bubble point design equation with temperature specified

01 ii xK

Average molecular weight of distillate

Components xid Ki

C3 01397 21

i-C4 03181 10

C4 05187 073

i-C5 00235 033

C5 0 027

For fixed temperature of 130F bubble point pressure is to be determined

4656 wtmolxid

9980 iDi xK

Pestimated = Pi-c4 = 120 lbin2

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 19

001

9980120calculatedP

= 1197 lbin2 (abs)

The result of distillate bubble point calculation is

T = 130 0F

P = 120 lbin2

The condition at the top of the column must be evaluated since the fractionator has a

total concentration and an equilibrium stage The criteria for evaluation of the dew

point condition are

Assumption of the pressure drop through the total condenser of 25 lbin2Thus the

pressure at the top of the column is established as

P = 120 lbin2 + 25 lbin2

P = 1225 lbin2

Dew point

01

i

i

k

y

Plk =1225 lbin2 T= 1320F

Components yi Ki1320

F Ki1450

F

C3 01397 220 240

i-C4 03181 100 115

C4 05187 073 085

i-C5 00235 035 042

C5 00000 028 033

For T =1320F

01

i

i

k

y

Kic4 = 1160 and Tcal =1450F

For T =1450F

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 20

01

i

i

k

y

The result of column top dew point calculation

T =1450F

P = 1225 lbin2

The column bottom condition Column ΔP =5 lbin2

The column bottom pressure

P = 1225 + 50 = 1275 lbin2

The bubble point design equation

ΣKiXi=10

Components B(mol) X

C3 0 0

i-C4 0 0

C4 0392 00124

i-C5 1085 03430

C5 20388 06446

3163 100

Average molecular wt = 6331

22750 =7193

The characteristic component is i-c5 an estimated bottom temperature is obtained

Components Xi Ki2380

F Ki2150

F

C3 0 38 45

i-C4 0 355 265

C4 00124 1925 205

i-C5 03430 10 1075

C5 06446 087 094

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 21

For T = 238 0F

ΣKiXi=0927

KHK = 108 Tcal =245 0F

For T =245 0F

ΣKiXi=100

The result of column bottom bubble point calculation

T =245 0F

P =1275 lbin2

53 Determination of the key component

Using the heavy key as column reference key The separation is clearly between

butane and isopentane

Reference component =i-C5

Key component

LK =C4

HK =iC5

The average relative volatility data for the column will be generated using three-point

geometric average

3321 avg

Point 1 ndash top of fractionation column

Point 2 ndash at the reboiler

Point 3 ndash arithmetic mean of condition at 1 amp 3

T2 = 05 [ T1 + T2 ] = 05 [ T1 + T2 ]

T2 = 05 [ 145 + 245 ] = 195 0F

P2 = 05 [ P1 + P3 ] = 05 [ 1225 +1275 ]

P2 = 125 lbin2

variable Point 1 Point 2 Point 3

T oF 145 195 245

P lbin2 1225 125 1275

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 22

Components Point 1 Point 2 Point 3

Ki αi Ki αi Ki αi αavg

C3 24 571 335 493 45 419 49

i-C4 115 274 175 257 25 237 256

C4 085 202 135 199 205 191 197

i-C5 024 100 068 100 1075 100 100

C5 033 079 058 085 094 087 084

54 Shortcut Method

541 Minimum stages at total reflux-the Fenske equation

LKavg

BLk

HK

DHK

LK

m

x

x

x

x

Nln

ln

Fi = bi + di

avgmeanavgiiir

rNavgi

i dbb

d

b

d for min

mN

avgHK

avgi

HK

ii

b

d

fb

1

or when ii db meanavgavgi

mN

avgi

avgLK

LK

ii

d

b

fd

1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 23

971ln

01240

3430

02350

51870ln

mN

4619mN

2

avgLKavgHKmean

2

001971

= 1485

For propaneC3

meanC 3

7624

904

3

3

C

C

f

4619

001

904

85010

80101

76243Cb

hmold

hmol

C 7624007624

1091

3

5

For isobutene(i-C4)

84310

562

4

4

4

iC

Ci

meanCi

f

4619

1

562

8500

80101

843104iCb

hmol 020

823104iCd

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 24

For butane (C4)

07218

971

4

4

C

C

meanavgi

f

4619

001

971

8510

80101

072184Cb

hmold

d

hmolb

C

C

C

68817

392007218

3920

4

4

4

For isopentane (i-C5)

meanavgiC

iCiC hmolf

5

5565111001

Hence

4619

001

971

6817

39201

651115iCd

hmolb

hmold

iC

iC

8510801065111

8010

5

5

For pentane (C5)

hmolb

hmold

d

C

C

C

meanavgC

C

105320

2850

840

971

6817

39201

38820

840

5

5

5

5

5

4619

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 25

The calculated data in the table

Components Fi(lbmolh) Di(lbmolh) Bi(lbmolh)

C3 4762 4762 0

i-C4 10834 10823 002

C4 18072 17680 0392

i-C5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Checking

Maximum 3wt of iC5 in the distillate

9772

1004656

172

35134

8010

wt

Maximum of 1 wt C4 in the bottom

011

1009371

158

36531

3920

wt

The set of specification were not met The parameter reevaluated

Again performing same calculations

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 1050-x x

i-C5 840 y 840-y

C5 1470 2055 144945

Total 190939-x+y 229061+x-y

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 26

3658

5522

612290100

1

391909100

3

y

x

yx

x

yx

y

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 102745 2255

i-C5 840 5836 78164

C5 1470 2055 144945

Total 4200 194520 224580

Components F(lbmolh) D(lbmolh) B(lbmolh)

C3 4762 4762 0

i-c4 10834 10823 002

C4 18072 17680 0392

i-c5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Column operating condition

Distillate bubble point calculation on with temperature specified at 130 0F

Components D (lbmolh) K120 (lbin2)

C3 4762 210

i-C4 10823 10

C4 17680 073

i-C5 0801 033

C5 0285 027

Total 34351

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 27

992036334

07634

001

ii

iiii

xK

D

dKxK

Condition of the distillatereflux before 130 0F amp 120 lbin2overhead or column top

conditions are found by dew point calculation at the specified pressure of 1225lbin2

Components D (lbmolh) K1450

F K148 0

F

C3 4762 24 2425

i-C4 10823 116 1175

C4 17680 084 087

i-C5 0801 042 0425

C5 0285 033 034

01D

K

d

K

y i

i

i

i

For T=145 0F

018136334

9934

i

i

K

y K=1175 Tcal=148 0F

For T=148 0F

997036334

24334

i

i

K

y

Conditions of column overhead are revised to 148 0F and 1225lbin2column bottom

conditions are found by way of bubble point calculation

Components B(lbmolh) K2450

F

C3 0 45

i-C4 002 255

C4 0392 205

i-C5 10850 1075

C5 20103 094

Total 31365

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 28

Design equation

001B

bKxK ii

ii

For T =245 0F

00139331

39831ii xK

At column midpoint condition

2

0

1255127512250

519624514850

inlbP

FT

Summery of operating condition

Point 1 Point 2 Point 3

Temperature 148 1965 245

Pressure lbin2 (abs) 1225 125 1275

Equilibrium K data for column midpoint condition

Point 1 Point 2 Point 3

Components Ki i Ki i Ki i avgi

C3 2425 571 34 486 45 419 488

i-C4 1175 276 18 257 255 237 256

C4 087 205 138 197 205 191 198

i-C5 0425 100 07 10 1075 10 10

C5 034 08 06 086 094 087 084

Fenske equation

3919

001

981ln

3880

84210

8090

68417ln

m

m

N

N

Separation of non key component

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 29

4912

100198

2

avgLKavgHK

mean

molh09220bmolh 2920d

molh38820f840

)(CPentane

molh8090dmolh 84210b

molh65111f001

)C-(itan

68417dmolh 3880b

molh07218f981

)(CButane

hmol 82210d h mol0210b

hmol84310f562

)C-(iIsobutane

molh76240007624d

molh000molh101882

001

884

84210

80901

7624

7624f884

)(Cropane

C5C5

C5C5

5

C5-iC5-i

C5-iiC5

5

C4C4

C4C4

4

iC4iC4

iC4iC4

4

33C3

5

39193

C3C3

3

lblb

lb

lblb

lb

eIsopen

hlbmollb

lblb

lb

lbbf

lblbb

hmol

P

CC

C

Components Feed (lbmolh) Distillate (lbmolh) Bottom (lbmolh)

C3 4762 4762 0000

i-C4 10843 10822 0021

C4 18072 17684 03880

i-C5 11651 0809 10842

C5 20388 0292 20096

Total 65716 34369 31347

Maximum value of 3 wt of i-C5 in distillate is required

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 30

Calculated value =

wt 3

1004956

172

36934

8090

Maximum value of 1 wt of C4 in bottom is required

Calculated value

wt 1

1009163

158

34731

3880

Conditions are satisfied

542 Component split by Winn equation

The Fenske equation has a weakness as the relative volatility difference between

column top and bottom increase the estimated minimum number of stages gets

increasingly too small

460

1

460

1

lnln

bottomtop

bottomitopi

i

TT

PKPKB

460

ln

T

BAPK i

ii

110 irHKi PAAi

r

ii B

B

Components KTop148 F Kbottom245 F

C3 2425 450

i-C4 1175 255

C4 087 205

i-C5 0425 1075

C5 034 094

For P=125 lbin2

For butane (C4)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 31

550594460148

)271263()42525122log(

271263

460245

1

460148

1545127log42525122log

4

4

C

C

A

B

Heavy component is iso-pentane( i-C5)

955824460148

)711857()42505122log(

680010717185

271263

711857

460245

1

460148

1

07515127log4250125log

5

4

5

Ci

C

Ci

A

A

B

311344

)125(10

10)1680010()955824550594(

1

irHKi PAAi

Components Bi Ai θi βi

C3 -126327 45509 068001 43113

i-C4 -156377 473016 084177 24069

C4 -172167 48593 092677 191988

i-C5 -185771 49558 100000 10000

C5 -202840 49558 109189 086704

5339

919881log

)369348090(

)3473484210(

)347313880(

)3693468417(log

m

m

N

N

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 32

abvg

1

bdcomponent

orlightif

D

B

d

bb

d

HK

N

i

im

d

b1

fd

2dbkeyheavy

1

avgHKLKif

b

df

b

componentlight propanefor

5

032068

9533

101976

09120713402

4311

b

d

7624

0001097611

76245

bfd

b

For isobutene (i-C4)

f =10843 θ =0842 β =2407 (light component)

lh10821lbmo

002210843d

h0022lbmol

494151

10843b

4941509120713402

2407

b

d08417108417

9533

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 33

For Butane (C4)

f =18072 β=191988θ=092677

h0388lbmol

455771

18072b

4557709120713402

191988

b

d0926771092677

9533

d=18072-0388

=17684 lbmolh

For Isopentane (C5)

f =11651 β =100 θ =100

111

5339

91207040213

00001

b

d

=007461

βltβavg

)0746101(1

65111

d

= 0809 lbmolh

b = 11651-0809

=10842 lbmolh

For Pentane (C5)

f =20388 lbmolh β= 086704 θ =109189

0918911091891

5339

91207040213

867040

b

d

=0014959

βltβavg

)01495901(1

38820

d

= 0300 lb molh

b=20388-03

=20088

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 34

Components Feed lbmolh Distillate lbmolh Bottom lbmolh

C3 4762 4762 000

i-C4 10843 10821 0022

C4 18072 17684 0388

i-C5 11651 0809 10842

C5 20388 03 20088

65716 34376 3134

Components Feed lbh Distillate lbh Bottom lbh

C3 210 210 000

i-C4 630 62872 128

C4 1050 102745 2257

i-C5 840 5836 78164

C5 1470 2163 1448348

4200 194602 2253818

543 Calculation of Rm

From Underwood equation

qx

i

iFi

1

Components Flbmolhr xif xid αi

C3 4762 00725 01386 488

i-C4 10843 01650 03149 256

C4 18072 02750 05145 198

i-C5 11651 01773 002335 100

C5 20388 03102 00085 084

65716 1000 1000

Feed is at boiling conditions since q =1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 35

0840

31020840

1

177301

981

27500981

562

16500562

884

07250884

θ =1284

from this value of θ

avgi

idavgim

xR

1

11284840

00850840

12841

023501

1284981

51450981

1284562

31490562

1284884

13860884

mR

Rm=1185

R=15 Rm

=15times1185

=17775

X=1

R

RR m

X=177751

185177751

=02133

From GillilandrsquoS correlation Y=1

N

NN m =042

We know the value of Nm 4201

5339

N

N

N=178 =18 stages

Feed location can be known by the use of Kirkbride equation

2

)376348090(

)34313880(

)07218(

)65111(

37634

34312060log

F

F

p

m

687890p

m

817 pm

m = 725=8

p =1054 =11

Feed is introduced on eight stage from top

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 36

Chapter- 6

PACKED COLUMN DESIGN

61 Stage AnalysisThe data shown in table are typical data generated by commercial simulation

Vapor liquidStage Temperature0F lbhr CFS

ft3sV

lbft3

Lbhr GPM

galminL

σ

dynecm

μ

cP

1 1349 00 00 00 3655 1423 3202 6867 0114

2 1474 5501 12050 12683 3720 1447 3204 6738 01132

3 1548 5566 12049 12831 3724 1447 3208 6699 01128

4 1609 5571 11987 12909 3707 1438 3214 6684 01130

5 1668 5553 11889 12974 3693 1430 3220 6665 01135

6 1726 5539 11794 13045 3689 1426 3224 6632 01142

7 1779 5535 11716 13122 3691 1426 3226 6590 01149

8 1824 5537 11650 13199 8032 310471 3226 6544 01156

9 1873 5678 11794 13373 8126 3142 3224 6507 01153

10 1917 5772 11871 13506 8201 3171 3224 6479 01151

11 1961 5847 11915 13631 8275 3201 3223 6447 01152

12 2010 5921 11946 13768 8360 3235 3222 6406 01156

13 2064 6006 12152 13928 8475 3274 3220 6348 01162

14 2122 6103 12013 14111 8574 3321 3218 6295 01170

15 2179 6220 12070 14310 8701 3374 3215 6236 01180

16 2232 6347 12148 14512 8829 3428 3211 6178 01191

17 2280 6475 12234 14701 8947 3477 3208 6128 01201

18 2321 6593 12317 14868 2354 91599 3204 6087 01212

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 37

62 Flood Point

15 inch pall ring will be used throughout the column for this packing the flood point can

be determined by interpolation

A-flood point by GPDC [generalized pressure drop correlation] interpolation

2

2

6593

5571

fthrlbA

G

fthrlbA

G

TBottom

TTop

Liquid flowrates ( 2 fthrlb )

LTop =TA

3724

LBottom = TA

8947

Vapor density( 3 ftlb )

48681

31991

BottomG

TopG

Liquid density ( 3 ftlb )

2432

2632

BottomL

TopL

1 Flow parameter

L

GLV ρ

ρ

G

LF

Top 05

LV 3228

13199

5571

3724F

1352110FLV

Bottom LVF =

2432

48681

6593

8947

= 029142

2 Capacity parameter from graphical correlation

Top =152

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 38

Bottom =119

3 Viscosity of the liquid L (cP)

Top L =01128 (cP)

Bottom L =01151 (cP)

4 Kinematic viscosity

=

L

L

462

Top =

2632

11280462

Top = 0218187

Bottom =

2432

11510462

Bottom = 022277

5 Packing factor ( 1ft )

Top FP = 40

Bottom FP = 40

6 Vapour capacity factor CSFI(fts)

Capacity parameter = CSFI FP05 005

Top 05050SFI 2181040

921C

Top SFIC =02593

Bottom 05050SFI 2181040

191C

Bottom 20280CSFI

63 Flood point by the Kister amp Gill correlation

1 FTP packed bed specific pressure drop at flood point

FTP =0115 70PF

Top FTP =0115 7040

=1521

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 39

Bottom FTP =1521 inch of H2O per ft

2 Flow parameter

Top FLV =0135211

Bottom FLV =029142

3 Capacity parameter at flood point

Top =152

Bottom = 119

4 CSFl vapor capacity factor at the flood point

CSFl = capacity parameter

05050

1

PF

Top CSFl =02593

Bottom CSFl =02028

64 Diameter calculation

1 Vapor capacity factor Cs design (nonderated) fts

The column will be designed for 75 flood capacity

SFlS CC 750

Top CS = 075 02593

=0194475

Bottom CS = 075 02028

Bottom CS = 01551

2 CS vapor capacity factor (derated )fts

= 09 CSdesign

Top CS = 09 01944

Top CS =017496

Bottom CS =09 01521

Bottom CS =013689

3 Vapor superficial velocity based on the cross section of empty column u (fts)

GL

G

ss

ρρ

ρ

(derated)Cu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 40

Top su =

319912632

31991

174960

Top su =084737

Bottom su =

486812432

48681

136890

Bottom su = 062257

4 Vapor flow rate CFS ft3s

Top CFS =1205 ft3s

Bottom CFS =12316 ft3shellipfrom table

5 Tower area ft2

AT = s

T u

CFSA

Top AT = 847370

2051

Top AT =1422 ft2

Bottom AT = 622570

23161

Bottom AT =19782 ft2

6 Tower diameter ft

1587ftD

π

197824D

13455ftD

π

14224D

π

A4

BottomT

BottomT

TopT

TopT

TT

D

65 Diameter calculation using the maximum pressure drop criterion

1 L

G

calculation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 41

Top L

G

=2632

31991

= 00409

Bottom L

G

=2432

48681

= 004611

2OH

L

2

calculation

Top ( OHL 2 )=

4362

2632

= 05167

Bottom ( OHL 2 ) =

4362

2432

= 05164

3 FP packing factor

Top FP = 40

Bottom FP =40

4 Maximum pressure drops recommended for packed column with random packing

1902

70max

OH

LPFP

helliphelliphelliphellipfor 006 20L

G

Top maxP = 019 5167040 70

Top maxP = 12984helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

Bottom maxP = 019 5164040 70

Bottom maxP =12977helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

5 Surface tension dyne

Top =6544 cmdyne

Bottom =6128 cmdyne

6 Vapor capacity factor Csmax (fts)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 42

P

s

FCP

3342maxmax

Top 12984 =

5446

403342maxsC

Top maxsC =02634

Bottom 12977 =

1286

403342maxsC

Bottom maxsC =025628

7 Maximum vapor superficial velocity usmax

maxsC = usmax

GL

G

Top usmax =

319912632

31991

26340

= 12752

Bottom usmax =

486812432

48681

25620

=11651 fts

8 Tower area AT (ft2)

AT =smaxu

CFS

Top AT =27521

2051

Top AT =09449

Bottom AT = 16511

23161

= 1057 ft2

9 Tower diameter (ft)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 3: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 3

into fraction is introduced at one ir more points along the column shell because of the

difference in gravity between vapor and liquid runs down the column while vapor flows up

the column Liquid reaching the bottom of the column is partially vaporized in heated

reboiler to provide boil up which is sent back to the column the remainder of the column

is withdrawn as bottomor bottom productVapor reaching the top of the column is cooled

and condensed to liquid in the overhead condenser part of this liquid is returned to the

column as reflux to provide liquid over flow The remainder of the overhead stream is

withdrawn as distillate The lighter component tends to concentrate in the top distillate and

heavier in the bottom products The result is a vapor phase that becomes richer in lighter

component as it passes up the column and a liquid phase that becomes richer in heavy

component as it cascades downward The overall separation achieved between the

distillate and the bottom depends primarily on the relative volatilities of the components

Key Components

When it is necessary to separate a mixture of many components as is frequently the

case in the petroleum industry the two key components are selected to produce a product

mixture having specified characteristics It is then likely that the keys do not fall adjacent to

each other but have an intermediate boiling component between them referred to as ldquoas a

distributed keyrdquo

Two components whose concentrations or fractional recoveries in the distillate and

bottom products are good index of the separation achieved Since the keys must be differ in

volatilities the more volatile identified as light key and less volatile as heavy key

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 4

Chapter- 3

MULTICOMPONENT DISTILLATION METHODS

31 Fenske-Underwood-Gilliland (FUG) Shortcut Method ndash

311 Fenske equation ndashthe fenske equation estimates the minimum number of theoretical

stages at the total or infinite reflux This equation assumes the relative volatility remains

constant throughout the column If the equilibrium data have some interaction between

components it is desirable to determine a third set of equilibrium data The third set of data

can be obtained by using the arithmetic mean average of the condition

3

bottomHK

LK

middleHK

LK

topHK

LKavgLK K

K

K

K

K

K

Otherwise the average relative volatility can be obtained using a two-point geometric

mean

3

bottomHK

LK

topHK

LKavgLK K

K

K

K

The Fenske equation yields the minimum number of the equilibrium stages via the

equation

avgLK

bottomLK

HK

distHK

LK

m

moles

moles

moles

moles

Nln

ln

312 Distribution of non-key component

The relationship to be used is the component material balance

fi = bi + di

The original form of Fenskey equation written in terms of an arbitrary component i and

reference component

r

N

avgr

avgii

i b

d

b

dm

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 5

In determining the product composition values using the combination of these

two equations one takes advantages of whether a component is very volatile or not

volatile

2

avgHKavgLK

avgmean

Following sets of equations can be used to revise the estimate of the distillate

and bottom products

If light component ii bd avgmeanavgi

Reference component is heavy key then

mN

avgHK

avgi

HK

ii

b

d

fb

1

iii bfd

For heavy component avgmeanavgiii db

Reference component is the light key

mN

avgi

avgLK

LK

ii

d

b

fd

1

iii dfb

313 Calculation of minimum reflux-The Underwood equation

The equation developed by Underwood in based on the assumptions

1constant molar flow rate

2knowledge of the component at the pinch zone

Based on the degree of feed vaporization the value of θ is solved of using

qZ

av

feediavi

1

The value of (1-q) is the fraction of the feed that is vapor

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 6

point)(bubblehpoint)(dewH

condition)(feedhpoint)(dewHq)1(

ff

ff

In the determination of the thermal conditions the average pressure should be

2ombolumnbuttcolumntop

feedstage

PPP

Use of the so found in the equation

avgi

idavgim

xR

1

Rm can be determined

314 Stage-Reflux co-relation

The two widely accepted co-relations are Gilliland correlations and the Erbor-Madox

corelations each relates the minimum column operating limits to the reflux and stage

actually required The values of reflux generally used lies in the range of

00201 mR

R

Fig 41 Gilliland stage-reflux co-relation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 7

The following analytical expressions for the Gilliland stage-reflux co-relations

440ln1050

1

1

1

XB

XY

N

NNY

R

RRX

B

m

m

315 Feed location (Kirkbride equation)

The Kirkbride equation yields the ratio of the number of theoretical stages in the rectifying

section lsquomrsquo to the number of theoretical stages in the stripping section lsquoprsquo

20602

distillateHK

bottomLK

feedLK

HK

x

x

x

x

D

B

p

m

and

Npm

Feed stage can be determined

32 The Winn equation

The Fenske equation has a weakness as the relative volatility difference between column

top and bottom increase the estimated minimum number of stages get increasingly too

small The relation relates the equilibrium K of component i and reference heavy key as

i

rii KK

Where amp are constant at fixed pressure Determination of A and B The equation has

the structure of a modified Antoine equation is

460

ln

T

BAPK i

ii

P is average column pressure and T is temperature (0F)

460

ln

T

BPKA i

topii

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 8

460

1

460

1

lnln

bottomtop

bottomitopi

i

TT

PKPKB

Winn equation amp can be obtained

rr

ir

i

r

ii APK

APK

PK

B

B

ln

ln

1 iPAAEXP rii

The Winn equation for two minimum number of stages require the use of mole

fraction and is as follows

LK

HKD

B

LKB

D

m

LK

x

x

x

x

N

ln

ln

Using molar flow rates

LK

LK

m

LK

HKd

b

b

d

N

ln

ln

The Winn equation molar form can be combined with the column component

material balance to estimate the fractionation of the nonkey components

d 1d

b

D

B

d

d

b

fbd

i

θ1θi

HK

N

i

iii

m

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 9

componentheavy

componentlight

bd 1d

b

bfd

d

b1

d

bf

b

bd 1d

b

iii

iii

i

ii

i

iii

iii

i

ii

dfb

d

b

fd

1

Three basic energy inputoutput location within the fractionation column system The

energy associated with the feed preheats QF This energy requirement must be consistent

with the degree of feed vaporization and is obtained by enthalpy balance

FFF hHFQ

HF amp hF are in Btulb of feed The condenser duty Qc is obtained by writing an energy

balance around the condenserreflux drum

L = RD

V = D 1 R

Case 1 ndash all-liquid distillate

QC = D DV hHR 1

Case 2 ndash all vapor distillate

DVDVC HHDhHRDQ

Case -3 distillate is liquid and vapor

Qc = D R (Hv - hD) + Vapor (Hv - HD)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 10

Hv- enthalpy of vapor entering the condenser

HD - enthalpy of vapor leaving the drum accumulator

hD- enthalpy of liquid leaving the drum

with the condenser duty calculated the reboiler duty QR can be obtained as

QR=Qc+[DV HD+DLhD]+B hB-F HF

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 11

Chapter -4

Packed Tower

41 Packing Hydraulics

At low liquid flow rates the open cross sectional area of the packing is about the same as in

a dry bed The pressure drop is entirely by frictional losses through a series of opening and

proportional to the square of gas flow rate In random packing the pressure drop is due to

expansion contraction and changes of direction A portion of the gas kinetic energy is

used to support the liquid the column and the pressure drop becomes proportional to the gas

rate raised to power different The point where the packing voids fill up with liquid ie

when tower operation switches from vapor continuous to liquid continuous is termed phase

inversion For all liquid flow rates as gas flow rate is raised a point is reached when the gas

velocity begins to interfere with the free drainage of liquid The accumulation of liquid

reduces the cross section area available for gas flow and therefore accelerates the pressure

drop rise Further increase in gas rate more liquid accumulates until the liquid surface

becomes continuous across the top of packing

Efficiency flow regimes

When the liquid distribution is poor it will take more liquid to wet the entire bed Turbulent

liquid film produces good wetting of the packing and essentially contact efficiency As

liquid rate increases more vapor is entrained down the bed These drops efficiency

Because structured packing permits far less lateral movement of fluid than random

packings

Flood point

Appearance of liquid on top of the bed excessive entrainment a sharp rise in pressure

drop a sharp rise in liquid hold up and a sharp drop in efficiency flood point can be

predicted far more reliably than packing pressure drop and maximum operational capacity

Pressure drop

This is often used to specify packed tower capacity In small columns (lt3 ft in dia )

pressure drop varies with tower diameter With random packings smaller the tower

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 12

diameter the lower the pressures drop possibly due to enhancement of wall effects Dry

packed beds have a higher-pressure drop than wet ndash packed beds Pressure drop

measurement under deep vacuum (lt50 mmHg) is affected by the pressure drop and the

pressure gradient along the bed Pressure drop measurements in a pressure tower include

the static head of the vapor To obtain the actual packing pressure drop the static head

must be subtracted from pressure drop measurement Pressure drop for foaming systems

are higher than for non-foaming systems

42 Flood Point Prediction

421 Sherwood ndashEckert generalized pressure drop correlation (GPDC)

The Sherwood ndashEckert GPDC chart has been the standard of the industry for predicting

flood points and pressure drops

GPDC chart ordinate describes the balance between the vapor momentum force that acts

to entrain swarms of liquid droplets and the gravity force that resists the upward

entrainment GPDC chart abscissa is the flow parameter the ratio of liquid kinetic energy

to vapor kinetic energy

422 The Kister and Gill correlation

Zens discovered that packing pressure drop at the flood point decreases as the packing

capacity increases A simple flood point correlation

FLP =0115 70PF

this equation expresses pressure drop at the flood point as a function of packing factor

alone Once this pressure drop is known the flood velocity can be calculated The flood

velocity calculated by the Kister and Gill correlation is tolerant to inaquaracies in flood

pressure drop predictions

43 Pressure Drop Prediction By GPDC Interpolation

Interpolation of pressure drop data is more accurate than correlation prediction

Superimposing experimental data points on the curves of generalized pressure correlation

chart converts the GPDC chart into an interpolation chart Pressure drops are calculated by

interpolating the plotted pressure drop data For all charts (random structured or grid

packings) the abscissa of the correlation is the flow parameter given by

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 13

50

L

GLV G

LF

And the ordinate of correlation as the capacity parameter given by

GL

GSS uC

FP is the packing factor which is an empirical factor characteristics of the packing size

and shape

44 Packing factors

Several of the predictive methods above use a packing factor to account for the type and

size of packing With the evolutions of the general pressure drop correlation the packing

factor shifted away from the ratio ap ε3 to become an imperial constant that must be

experimentally determined for each packing

Loading point

The point of transition from the preloading regime to the loading regime is termed the

loading point It is the point where liquid hold up starts increasing with gas velocity rapid

deterioration in efficiency loading point where the flow rate at which the vapor phase

bagans to interact with the liquid phase to increase interfacial area in a packed column the

loading points occurs at 70 percent of the flood point

Pressure drop

Packed tower are designed so that the pressure drop at any point in the tower does not

exceed a recommended maximum value Maximum pressure drop criterioa for packed

tower are listed in table

Average pressure drop

Specific pressure drop can be calculated at the top of the bed and at the bottom of the bed

the average pressure drop is

25050 5050 bottomtop PPP

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 14

Type of system Maximum pressure drop in of water ft

packing

Atmospheric fractionator 05-100

Low to medium pressure fractioantor 07-10

High pressure distillation

006ltρG ρGlt 020

020lt ρGρL

019 )( 270

OHGPF

0099 )( 270

OHGPF

Vacuum distillation 001-06

Liquid holdup

Liquid holdup is the liquid present in the void spaces of packing At flooding

essentially all the voids are filled with liquids or froth Reasonable liquid holdup is

necessary for good mass transfer and efficient tower operation but beyond that it should

be kept low

Static holdup is liquid remaining on the packing after it has been fully wetted and

drained for long time The contributation of static holdup to mass transfer rates is limited

Operational holdup is liquid on the packing attributed to dynamic operation and is defined

as the difference between total holdup and static holdup

Minimum Wetting Rate

The minimum wetting rate (MWR) is the lower stability limit of packing It is liquid

below which the falling liquid film breaks up and the liquid storage causes wetting of the

packing surface Gravity and viscous forces resists dewetting the surface tension and vapor

shear forces tend to dewett the falling film The MWR therefore rises with an increase in

surface tension and liquid density and with decrease in liquid viscosity

A thumb rule cited by Ludwi

QMW =3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 15

Underwetting

Underwetting is a packing surface phenomenon which brakes up liquid film

The tendency of liquid film to break is expressed by a contact angle A contact angle of

zero indicates perfect wetting an angle of 1800 indicates no wetting

The contact angle depends both on surface and a liquid and is a strong function of

composition Changing a material and surface roughness of the packing may significantly

affect the efficiency in system susceptible to underwetting

45 The HETP concept

The concept of HETP (height equivalent to theoretical plates) was introduced to

enable to comparison of efficiency between packed and plate columns HETP is defined as

HETP = Hn

A similar HETP value can be obtained for plate column if the tray spacing is known

HETP (trayed column) = 100 timesSE

The HETP approach is suitable for multicomponent systems while HTU approach is

difficult to apply for this

HETP prediction

Because there are only few variables that significantly affect HETP of random

packings For small diameter column the rule of thumb presented by Frank Ludig Vital

et al are identical The more conservative cause predicted from

HETP =15 dp helliphellipfor Pall rings or similar high efficiency packing

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 16

Chapter -5

Distillation Design

Problem statement-

A butane-pentane splitter is to be designed to process 4200 lbhr of C3 ndashC5 feed subjected to

specifications of

1maximum 3 of i-C5 in the distillate

2maximum 1 of C4 in the bottom product

The feed sink will be air (process design temperature) to be 130 0F

Components Wt molwt lbh molh

C3 5 441 210 4762

i-C4 15 581 630 10843

C4 25 581 1050 18072

i-C5 20 721 840 11651

C5 35 721 1470 20388

4200 65716

Solution-

Feed composition

Components lbgal(60F) galh Vol mol

C3 422 4976 592 725

i-C4 469 13433 1397 165

C4 487 21501 2563 275

i-C5 520 16154 192 1773

C5 525 28000 328 3102

Total 84124 100 100

Average molecular weight 650716

4200

= 6391

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 17

Average liquid density = 420065716

= 4993lbgal

x = mass of c4 in the bottom(i-wt)

y =mass of i-c5 in the distillate(3 wt)

51 Component Split

Assuming that the C3 and i-C5 have negligible concentration in the bottom and C5 has

negligible concentration in the distillate

Components F D B

C3 210 210 0

i-C4 630 630 0

C4 1050 (1050-x) x

i-C5 840 y (840-y)

C5 1470 0 1470

Total 4200 1890-x+y 2310+x-y

F =B+D

4200 =2310 + x ndashy +1890 ndashx + y

Distillate specification 3 in of i-c5 in distillate

yx

y

18900030

567 ndash 003 x -097 y =0

003 x + 097 y =567

Bottom specification 1 C4 in the bottom

003 yx

x

2310

231 -001 x + 001 y = x

099 x + 001 y = 231

x = 2275

y = 5775

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 18

Components D lbh B lbh D lbmolh B lbmolh

C3 210 0 4762 0

i-C4 630 0 10843 0

C4 102725 2275 1768 039

i-C5 5725 78225 0801 1085

C5 0 1470 0 20388

Total 1925 2275 34086 3163

52 Dew Point and Bubble Point calculation

1 The distillate and reflux will be a bubble point liquid The criteria for evaluation of

the bubble point condition are

1 like an air fin condenser to liquefy the distillate and reflux The criteria of

drum temperature will be assumed to be 130F ( design temperature for air is

about 120F

2 the bubble point design equation with temperature specified

01 ii xK

Average molecular weight of distillate

Components xid Ki

C3 01397 21

i-C4 03181 10

C4 05187 073

i-C5 00235 033

C5 0 027

For fixed temperature of 130F bubble point pressure is to be determined

4656 wtmolxid

9980 iDi xK

Pestimated = Pi-c4 = 120 lbin2

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 19

001

9980120calculatedP

= 1197 lbin2 (abs)

The result of distillate bubble point calculation is

T = 130 0F

P = 120 lbin2

The condition at the top of the column must be evaluated since the fractionator has a

total concentration and an equilibrium stage The criteria for evaluation of the dew

point condition are

Assumption of the pressure drop through the total condenser of 25 lbin2Thus the

pressure at the top of the column is established as

P = 120 lbin2 + 25 lbin2

P = 1225 lbin2

Dew point

01

i

i

k

y

Plk =1225 lbin2 T= 1320F

Components yi Ki1320

F Ki1450

F

C3 01397 220 240

i-C4 03181 100 115

C4 05187 073 085

i-C5 00235 035 042

C5 00000 028 033

For T =1320F

01

i

i

k

y

Kic4 = 1160 and Tcal =1450F

For T =1450F

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 20

01

i

i

k

y

The result of column top dew point calculation

T =1450F

P = 1225 lbin2

The column bottom condition Column ΔP =5 lbin2

The column bottom pressure

P = 1225 + 50 = 1275 lbin2

The bubble point design equation

ΣKiXi=10

Components B(mol) X

C3 0 0

i-C4 0 0

C4 0392 00124

i-C5 1085 03430

C5 20388 06446

3163 100

Average molecular wt = 6331

22750 =7193

The characteristic component is i-c5 an estimated bottom temperature is obtained

Components Xi Ki2380

F Ki2150

F

C3 0 38 45

i-C4 0 355 265

C4 00124 1925 205

i-C5 03430 10 1075

C5 06446 087 094

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 21

For T = 238 0F

ΣKiXi=0927

KHK = 108 Tcal =245 0F

For T =245 0F

ΣKiXi=100

The result of column bottom bubble point calculation

T =245 0F

P =1275 lbin2

53 Determination of the key component

Using the heavy key as column reference key The separation is clearly between

butane and isopentane

Reference component =i-C5

Key component

LK =C4

HK =iC5

The average relative volatility data for the column will be generated using three-point

geometric average

3321 avg

Point 1 ndash top of fractionation column

Point 2 ndash at the reboiler

Point 3 ndash arithmetic mean of condition at 1 amp 3

T2 = 05 [ T1 + T2 ] = 05 [ T1 + T2 ]

T2 = 05 [ 145 + 245 ] = 195 0F

P2 = 05 [ P1 + P3 ] = 05 [ 1225 +1275 ]

P2 = 125 lbin2

variable Point 1 Point 2 Point 3

T oF 145 195 245

P lbin2 1225 125 1275

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 22

Components Point 1 Point 2 Point 3

Ki αi Ki αi Ki αi αavg

C3 24 571 335 493 45 419 49

i-C4 115 274 175 257 25 237 256

C4 085 202 135 199 205 191 197

i-C5 024 100 068 100 1075 100 100

C5 033 079 058 085 094 087 084

54 Shortcut Method

541 Minimum stages at total reflux-the Fenske equation

LKavg

BLk

HK

DHK

LK

m

x

x

x

x

Nln

ln

Fi = bi + di

avgmeanavgiiir

rNavgi

i dbb

d

b

d for min

mN

avgHK

avgi

HK

ii

b

d

fb

1

or when ii db meanavgavgi

mN

avgi

avgLK

LK

ii

d

b

fd

1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 23

971ln

01240

3430

02350

51870ln

mN

4619mN

2

avgLKavgHKmean

2

001971

= 1485

For propaneC3

meanC 3

7624

904

3

3

C

C

f

4619

001

904

85010

80101

76243Cb

hmold

hmol

C 7624007624

1091

3

5

For isobutene(i-C4)

84310

562

4

4

4

iC

Ci

meanCi

f

4619

1

562

8500

80101

843104iCb

hmol 020

823104iCd

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 24

For butane (C4)

07218

971

4

4

C

C

meanavgi

f

4619

001

971

8510

80101

072184Cb

hmold

d

hmolb

C

C

C

68817

392007218

3920

4

4

4

For isopentane (i-C5)

meanavgiC

iCiC hmolf

5

5565111001

Hence

4619

001

971

6817

39201

651115iCd

hmolb

hmold

iC

iC

8510801065111

8010

5

5

For pentane (C5)

hmolb

hmold

d

C

C

C

meanavgC

C

105320

2850

840

971

6817

39201

38820

840

5

5

5

5

5

4619

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 25

The calculated data in the table

Components Fi(lbmolh) Di(lbmolh) Bi(lbmolh)

C3 4762 4762 0

i-C4 10834 10823 002

C4 18072 17680 0392

i-C5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Checking

Maximum 3wt of iC5 in the distillate

9772

1004656

172

35134

8010

wt

Maximum of 1 wt C4 in the bottom

011

1009371

158

36531

3920

wt

The set of specification were not met The parameter reevaluated

Again performing same calculations

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 1050-x x

i-C5 840 y 840-y

C5 1470 2055 144945

Total 190939-x+y 229061+x-y

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 26

3658

5522

612290100

1

391909100

3

y

x

yx

x

yx

y

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 102745 2255

i-C5 840 5836 78164

C5 1470 2055 144945

Total 4200 194520 224580

Components F(lbmolh) D(lbmolh) B(lbmolh)

C3 4762 4762 0

i-c4 10834 10823 002

C4 18072 17680 0392

i-c5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Column operating condition

Distillate bubble point calculation on with temperature specified at 130 0F

Components D (lbmolh) K120 (lbin2)

C3 4762 210

i-C4 10823 10

C4 17680 073

i-C5 0801 033

C5 0285 027

Total 34351

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 27

992036334

07634

001

ii

iiii

xK

D

dKxK

Condition of the distillatereflux before 130 0F amp 120 lbin2overhead or column top

conditions are found by dew point calculation at the specified pressure of 1225lbin2

Components D (lbmolh) K1450

F K148 0

F

C3 4762 24 2425

i-C4 10823 116 1175

C4 17680 084 087

i-C5 0801 042 0425

C5 0285 033 034

01D

K

d

K

y i

i

i

i

For T=145 0F

018136334

9934

i

i

K

y K=1175 Tcal=148 0F

For T=148 0F

997036334

24334

i

i

K

y

Conditions of column overhead are revised to 148 0F and 1225lbin2column bottom

conditions are found by way of bubble point calculation

Components B(lbmolh) K2450

F

C3 0 45

i-C4 002 255

C4 0392 205

i-C5 10850 1075

C5 20103 094

Total 31365

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 28

Design equation

001B

bKxK ii

ii

For T =245 0F

00139331

39831ii xK

At column midpoint condition

2

0

1255127512250

519624514850

inlbP

FT

Summery of operating condition

Point 1 Point 2 Point 3

Temperature 148 1965 245

Pressure lbin2 (abs) 1225 125 1275

Equilibrium K data for column midpoint condition

Point 1 Point 2 Point 3

Components Ki i Ki i Ki i avgi

C3 2425 571 34 486 45 419 488

i-C4 1175 276 18 257 255 237 256

C4 087 205 138 197 205 191 198

i-C5 0425 100 07 10 1075 10 10

C5 034 08 06 086 094 087 084

Fenske equation

3919

001

981ln

3880

84210

8090

68417ln

m

m

N

N

Separation of non key component

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 29

4912

100198

2

avgLKavgHK

mean

molh09220bmolh 2920d

molh38820f840

)(CPentane

molh8090dmolh 84210b

molh65111f001

)C-(itan

68417dmolh 3880b

molh07218f981

)(CButane

hmol 82210d h mol0210b

hmol84310f562

)C-(iIsobutane

molh76240007624d

molh000molh101882

001

884

84210

80901

7624

7624f884

)(Cropane

C5C5

C5C5

5

C5-iC5-i

C5-iiC5

5

C4C4

C4C4

4

iC4iC4

iC4iC4

4

33C3

5

39193

C3C3

3

lblb

lb

lblb

lb

eIsopen

hlbmollb

lblb

lb

lbbf

lblbb

hmol

P

CC

C

Components Feed (lbmolh) Distillate (lbmolh) Bottom (lbmolh)

C3 4762 4762 0000

i-C4 10843 10822 0021

C4 18072 17684 03880

i-C5 11651 0809 10842

C5 20388 0292 20096

Total 65716 34369 31347

Maximum value of 3 wt of i-C5 in distillate is required

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 30

Calculated value =

wt 3

1004956

172

36934

8090

Maximum value of 1 wt of C4 in bottom is required

Calculated value

wt 1

1009163

158

34731

3880

Conditions are satisfied

542 Component split by Winn equation

The Fenske equation has a weakness as the relative volatility difference between

column top and bottom increase the estimated minimum number of stages gets

increasingly too small

460

1

460

1

lnln

bottomtop

bottomitopi

i

TT

PKPKB

460

ln

T

BAPK i

ii

110 irHKi PAAi

r

ii B

B

Components KTop148 F Kbottom245 F

C3 2425 450

i-C4 1175 255

C4 087 205

i-C5 0425 1075

C5 034 094

For P=125 lbin2

For butane (C4)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 31

550594460148

)271263()42525122log(

271263

460245

1

460148

1545127log42525122log

4

4

C

C

A

B

Heavy component is iso-pentane( i-C5)

955824460148

)711857()42505122log(

680010717185

271263

711857

460245

1

460148

1

07515127log4250125log

5

4

5

Ci

C

Ci

A

A

B

311344

)125(10

10)1680010()955824550594(

1

irHKi PAAi

Components Bi Ai θi βi

C3 -126327 45509 068001 43113

i-C4 -156377 473016 084177 24069

C4 -172167 48593 092677 191988

i-C5 -185771 49558 100000 10000

C5 -202840 49558 109189 086704

5339

919881log

)369348090(

)3473484210(

)347313880(

)3693468417(log

m

m

N

N

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 32

abvg

1

bdcomponent

orlightif

D

B

d

bb

d

HK

N

i

im

d

b1

fd

2dbkeyheavy

1

avgHKLKif

b

df

b

componentlight propanefor

5

032068

9533

101976

09120713402

4311

b

d

7624

0001097611

76245

bfd

b

For isobutene (i-C4)

f =10843 θ =0842 β =2407 (light component)

lh10821lbmo

002210843d

h0022lbmol

494151

10843b

4941509120713402

2407

b

d08417108417

9533

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 33

For Butane (C4)

f =18072 β=191988θ=092677

h0388lbmol

455771

18072b

4557709120713402

191988

b

d0926771092677

9533

d=18072-0388

=17684 lbmolh

For Isopentane (C5)

f =11651 β =100 θ =100

111

5339

91207040213

00001

b

d

=007461

βltβavg

)0746101(1

65111

d

= 0809 lbmolh

b = 11651-0809

=10842 lbmolh

For Pentane (C5)

f =20388 lbmolh β= 086704 θ =109189

0918911091891

5339

91207040213

867040

b

d

=0014959

βltβavg

)01495901(1

38820

d

= 0300 lb molh

b=20388-03

=20088

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 34

Components Feed lbmolh Distillate lbmolh Bottom lbmolh

C3 4762 4762 000

i-C4 10843 10821 0022

C4 18072 17684 0388

i-C5 11651 0809 10842

C5 20388 03 20088

65716 34376 3134

Components Feed lbh Distillate lbh Bottom lbh

C3 210 210 000

i-C4 630 62872 128

C4 1050 102745 2257

i-C5 840 5836 78164

C5 1470 2163 1448348

4200 194602 2253818

543 Calculation of Rm

From Underwood equation

qx

i

iFi

1

Components Flbmolhr xif xid αi

C3 4762 00725 01386 488

i-C4 10843 01650 03149 256

C4 18072 02750 05145 198

i-C5 11651 01773 002335 100

C5 20388 03102 00085 084

65716 1000 1000

Feed is at boiling conditions since q =1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 35

0840

31020840

1

177301

981

27500981

562

16500562

884

07250884

θ =1284

from this value of θ

avgi

idavgim

xR

1

11284840

00850840

12841

023501

1284981

51450981

1284562

31490562

1284884

13860884

mR

Rm=1185

R=15 Rm

=15times1185

=17775

X=1

R

RR m

X=177751

185177751

=02133

From GillilandrsquoS correlation Y=1

N

NN m =042

We know the value of Nm 4201

5339

N

N

N=178 =18 stages

Feed location can be known by the use of Kirkbride equation

2

)376348090(

)34313880(

)07218(

)65111(

37634

34312060log

F

F

p

m

687890p

m

817 pm

m = 725=8

p =1054 =11

Feed is introduced on eight stage from top

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 36

Chapter- 6

PACKED COLUMN DESIGN

61 Stage AnalysisThe data shown in table are typical data generated by commercial simulation

Vapor liquidStage Temperature0F lbhr CFS

ft3sV

lbft3

Lbhr GPM

galminL

σ

dynecm

μ

cP

1 1349 00 00 00 3655 1423 3202 6867 0114

2 1474 5501 12050 12683 3720 1447 3204 6738 01132

3 1548 5566 12049 12831 3724 1447 3208 6699 01128

4 1609 5571 11987 12909 3707 1438 3214 6684 01130

5 1668 5553 11889 12974 3693 1430 3220 6665 01135

6 1726 5539 11794 13045 3689 1426 3224 6632 01142

7 1779 5535 11716 13122 3691 1426 3226 6590 01149

8 1824 5537 11650 13199 8032 310471 3226 6544 01156

9 1873 5678 11794 13373 8126 3142 3224 6507 01153

10 1917 5772 11871 13506 8201 3171 3224 6479 01151

11 1961 5847 11915 13631 8275 3201 3223 6447 01152

12 2010 5921 11946 13768 8360 3235 3222 6406 01156

13 2064 6006 12152 13928 8475 3274 3220 6348 01162

14 2122 6103 12013 14111 8574 3321 3218 6295 01170

15 2179 6220 12070 14310 8701 3374 3215 6236 01180

16 2232 6347 12148 14512 8829 3428 3211 6178 01191

17 2280 6475 12234 14701 8947 3477 3208 6128 01201

18 2321 6593 12317 14868 2354 91599 3204 6087 01212

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 37

62 Flood Point

15 inch pall ring will be used throughout the column for this packing the flood point can

be determined by interpolation

A-flood point by GPDC [generalized pressure drop correlation] interpolation

2

2

6593

5571

fthrlbA

G

fthrlbA

G

TBottom

TTop

Liquid flowrates ( 2 fthrlb )

LTop =TA

3724

LBottom = TA

8947

Vapor density( 3 ftlb )

48681

31991

BottomG

TopG

Liquid density ( 3 ftlb )

2432

2632

BottomL

TopL

1 Flow parameter

L

GLV ρ

ρ

G

LF

Top 05

LV 3228

13199

5571

3724F

1352110FLV

Bottom LVF =

2432

48681

6593

8947

= 029142

2 Capacity parameter from graphical correlation

Top =152

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 38

Bottom =119

3 Viscosity of the liquid L (cP)

Top L =01128 (cP)

Bottom L =01151 (cP)

4 Kinematic viscosity

=

L

L

462

Top =

2632

11280462

Top = 0218187

Bottom =

2432

11510462

Bottom = 022277

5 Packing factor ( 1ft )

Top FP = 40

Bottom FP = 40

6 Vapour capacity factor CSFI(fts)

Capacity parameter = CSFI FP05 005

Top 05050SFI 2181040

921C

Top SFIC =02593

Bottom 05050SFI 2181040

191C

Bottom 20280CSFI

63 Flood point by the Kister amp Gill correlation

1 FTP packed bed specific pressure drop at flood point

FTP =0115 70PF

Top FTP =0115 7040

=1521

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 39

Bottom FTP =1521 inch of H2O per ft

2 Flow parameter

Top FLV =0135211

Bottom FLV =029142

3 Capacity parameter at flood point

Top =152

Bottom = 119

4 CSFl vapor capacity factor at the flood point

CSFl = capacity parameter

05050

1

PF

Top CSFl =02593

Bottom CSFl =02028

64 Diameter calculation

1 Vapor capacity factor Cs design (nonderated) fts

The column will be designed for 75 flood capacity

SFlS CC 750

Top CS = 075 02593

=0194475

Bottom CS = 075 02028

Bottom CS = 01551

2 CS vapor capacity factor (derated )fts

= 09 CSdesign

Top CS = 09 01944

Top CS =017496

Bottom CS =09 01521

Bottom CS =013689

3 Vapor superficial velocity based on the cross section of empty column u (fts)

GL

G

ss

ρρ

ρ

(derated)Cu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 40

Top su =

319912632

31991

174960

Top su =084737

Bottom su =

486812432

48681

136890

Bottom su = 062257

4 Vapor flow rate CFS ft3s

Top CFS =1205 ft3s

Bottom CFS =12316 ft3shellipfrom table

5 Tower area ft2

AT = s

T u

CFSA

Top AT = 847370

2051

Top AT =1422 ft2

Bottom AT = 622570

23161

Bottom AT =19782 ft2

6 Tower diameter ft

1587ftD

π

197824D

13455ftD

π

14224D

π

A4

BottomT

BottomT

TopT

TopT

TT

D

65 Diameter calculation using the maximum pressure drop criterion

1 L

G

calculation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 41

Top L

G

=2632

31991

= 00409

Bottom L

G

=2432

48681

= 004611

2OH

L

2

calculation

Top ( OHL 2 )=

4362

2632

= 05167

Bottom ( OHL 2 ) =

4362

2432

= 05164

3 FP packing factor

Top FP = 40

Bottom FP =40

4 Maximum pressure drops recommended for packed column with random packing

1902

70max

OH

LPFP

helliphelliphelliphellipfor 006 20L

G

Top maxP = 019 5167040 70

Top maxP = 12984helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

Bottom maxP = 019 5164040 70

Bottom maxP =12977helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

5 Surface tension dyne

Top =6544 cmdyne

Bottom =6128 cmdyne

6 Vapor capacity factor Csmax (fts)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 42

P

s

FCP

3342maxmax

Top 12984 =

5446

403342maxsC

Top maxsC =02634

Bottom 12977 =

1286

403342maxsC

Bottom maxsC =025628

7 Maximum vapor superficial velocity usmax

maxsC = usmax

GL

G

Top usmax =

319912632

31991

26340

= 12752

Bottom usmax =

486812432

48681

25620

=11651 fts

8 Tower area AT (ft2)

AT =smaxu

CFS

Top AT =27521

2051

Top AT =09449

Bottom AT = 16511

23161

= 1057 ft2

9 Tower diameter (ft)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 4: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 4

Chapter- 3

MULTICOMPONENT DISTILLATION METHODS

31 Fenske-Underwood-Gilliland (FUG) Shortcut Method ndash

311 Fenske equation ndashthe fenske equation estimates the minimum number of theoretical

stages at the total or infinite reflux This equation assumes the relative volatility remains

constant throughout the column If the equilibrium data have some interaction between

components it is desirable to determine a third set of equilibrium data The third set of data

can be obtained by using the arithmetic mean average of the condition

3

bottomHK

LK

middleHK

LK

topHK

LKavgLK K

K

K

K

K

K

Otherwise the average relative volatility can be obtained using a two-point geometric

mean

3

bottomHK

LK

topHK

LKavgLK K

K

K

K

The Fenske equation yields the minimum number of the equilibrium stages via the

equation

avgLK

bottomLK

HK

distHK

LK

m

moles

moles

moles

moles

Nln

ln

312 Distribution of non-key component

The relationship to be used is the component material balance

fi = bi + di

The original form of Fenskey equation written in terms of an arbitrary component i and

reference component

r

N

avgr

avgii

i b

d

b

dm

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 5

In determining the product composition values using the combination of these

two equations one takes advantages of whether a component is very volatile or not

volatile

2

avgHKavgLK

avgmean

Following sets of equations can be used to revise the estimate of the distillate

and bottom products

If light component ii bd avgmeanavgi

Reference component is heavy key then

mN

avgHK

avgi

HK

ii

b

d

fb

1

iii bfd

For heavy component avgmeanavgiii db

Reference component is the light key

mN

avgi

avgLK

LK

ii

d

b

fd

1

iii dfb

313 Calculation of minimum reflux-The Underwood equation

The equation developed by Underwood in based on the assumptions

1constant molar flow rate

2knowledge of the component at the pinch zone

Based on the degree of feed vaporization the value of θ is solved of using

qZ

av

feediavi

1

The value of (1-q) is the fraction of the feed that is vapor

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 6

point)(bubblehpoint)(dewH

condition)(feedhpoint)(dewHq)1(

ff

ff

In the determination of the thermal conditions the average pressure should be

2ombolumnbuttcolumntop

feedstage

PPP

Use of the so found in the equation

avgi

idavgim

xR

1

Rm can be determined

314 Stage-Reflux co-relation

The two widely accepted co-relations are Gilliland correlations and the Erbor-Madox

corelations each relates the minimum column operating limits to the reflux and stage

actually required The values of reflux generally used lies in the range of

00201 mR

R

Fig 41 Gilliland stage-reflux co-relation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 7

The following analytical expressions for the Gilliland stage-reflux co-relations

440ln1050

1

1

1

XB

XY

N

NNY

R

RRX

B

m

m

315 Feed location (Kirkbride equation)

The Kirkbride equation yields the ratio of the number of theoretical stages in the rectifying

section lsquomrsquo to the number of theoretical stages in the stripping section lsquoprsquo

20602

distillateHK

bottomLK

feedLK

HK

x

x

x

x

D

B

p

m

and

Npm

Feed stage can be determined

32 The Winn equation

The Fenske equation has a weakness as the relative volatility difference between column

top and bottom increase the estimated minimum number of stages get increasingly too

small The relation relates the equilibrium K of component i and reference heavy key as

i

rii KK

Where amp are constant at fixed pressure Determination of A and B The equation has

the structure of a modified Antoine equation is

460

ln

T

BAPK i

ii

P is average column pressure and T is temperature (0F)

460

ln

T

BPKA i

topii

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 8

460

1

460

1

lnln

bottomtop

bottomitopi

i

TT

PKPKB

Winn equation amp can be obtained

rr

ir

i

r

ii APK

APK

PK

B

B

ln

ln

1 iPAAEXP rii

The Winn equation for two minimum number of stages require the use of mole

fraction and is as follows

LK

HKD

B

LKB

D

m

LK

x

x

x

x

N

ln

ln

Using molar flow rates

LK

LK

m

LK

HKd

b

b

d

N

ln

ln

The Winn equation molar form can be combined with the column component

material balance to estimate the fractionation of the nonkey components

d 1d

b

D

B

d

d

b

fbd

i

θ1θi

HK

N

i

iii

m

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 9

componentheavy

componentlight

bd 1d

b

bfd

d

b1

d

bf

b

bd 1d

b

iii

iii

i

ii

i

iii

iii

i

ii

dfb

d

b

fd

1

Three basic energy inputoutput location within the fractionation column system The

energy associated with the feed preheats QF This energy requirement must be consistent

with the degree of feed vaporization and is obtained by enthalpy balance

FFF hHFQ

HF amp hF are in Btulb of feed The condenser duty Qc is obtained by writing an energy

balance around the condenserreflux drum

L = RD

V = D 1 R

Case 1 ndash all-liquid distillate

QC = D DV hHR 1

Case 2 ndash all vapor distillate

DVDVC HHDhHRDQ

Case -3 distillate is liquid and vapor

Qc = D R (Hv - hD) + Vapor (Hv - HD)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 10

Hv- enthalpy of vapor entering the condenser

HD - enthalpy of vapor leaving the drum accumulator

hD- enthalpy of liquid leaving the drum

with the condenser duty calculated the reboiler duty QR can be obtained as

QR=Qc+[DV HD+DLhD]+B hB-F HF

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 11

Chapter -4

Packed Tower

41 Packing Hydraulics

At low liquid flow rates the open cross sectional area of the packing is about the same as in

a dry bed The pressure drop is entirely by frictional losses through a series of opening and

proportional to the square of gas flow rate In random packing the pressure drop is due to

expansion contraction and changes of direction A portion of the gas kinetic energy is

used to support the liquid the column and the pressure drop becomes proportional to the gas

rate raised to power different The point where the packing voids fill up with liquid ie

when tower operation switches from vapor continuous to liquid continuous is termed phase

inversion For all liquid flow rates as gas flow rate is raised a point is reached when the gas

velocity begins to interfere with the free drainage of liquid The accumulation of liquid

reduces the cross section area available for gas flow and therefore accelerates the pressure

drop rise Further increase in gas rate more liquid accumulates until the liquid surface

becomes continuous across the top of packing

Efficiency flow regimes

When the liquid distribution is poor it will take more liquid to wet the entire bed Turbulent

liquid film produces good wetting of the packing and essentially contact efficiency As

liquid rate increases more vapor is entrained down the bed These drops efficiency

Because structured packing permits far less lateral movement of fluid than random

packings

Flood point

Appearance of liquid on top of the bed excessive entrainment a sharp rise in pressure

drop a sharp rise in liquid hold up and a sharp drop in efficiency flood point can be

predicted far more reliably than packing pressure drop and maximum operational capacity

Pressure drop

This is often used to specify packed tower capacity In small columns (lt3 ft in dia )

pressure drop varies with tower diameter With random packings smaller the tower

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 12

diameter the lower the pressures drop possibly due to enhancement of wall effects Dry

packed beds have a higher-pressure drop than wet ndash packed beds Pressure drop

measurement under deep vacuum (lt50 mmHg) is affected by the pressure drop and the

pressure gradient along the bed Pressure drop measurements in a pressure tower include

the static head of the vapor To obtain the actual packing pressure drop the static head

must be subtracted from pressure drop measurement Pressure drop for foaming systems

are higher than for non-foaming systems

42 Flood Point Prediction

421 Sherwood ndashEckert generalized pressure drop correlation (GPDC)

The Sherwood ndashEckert GPDC chart has been the standard of the industry for predicting

flood points and pressure drops

GPDC chart ordinate describes the balance between the vapor momentum force that acts

to entrain swarms of liquid droplets and the gravity force that resists the upward

entrainment GPDC chart abscissa is the flow parameter the ratio of liquid kinetic energy

to vapor kinetic energy

422 The Kister and Gill correlation

Zens discovered that packing pressure drop at the flood point decreases as the packing

capacity increases A simple flood point correlation

FLP =0115 70PF

this equation expresses pressure drop at the flood point as a function of packing factor

alone Once this pressure drop is known the flood velocity can be calculated The flood

velocity calculated by the Kister and Gill correlation is tolerant to inaquaracies in flood

pressure drop predictions

43 Pressure Drop Prediction By GPDC Interpolation

Interpolation of pressure drop data is more accurate than correlation prediction

Superimposing experimental data points on the curves of generalized pressure correlation

chart converts the GPDC chart into an interpolation chart Pressure drops are calculated by

interpolating the plotted pressure drop data For all charts (random structured or grid

packings) the abscissa of the correlation is the flow parameter given by

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 13

50

L

GLV G

LF

And the ordinate of correlation as the capacity parameter given by

GL

GSS uC

FP is the packing factor which is an empirical factor characteristics of the packing size

and shape

44 Packing factors

Several of the predictive methods above use a packing factor to account for the type and

size of packing With the evolutions of the general pressure drop correlation the packing

factor shifted away from the ratio ap ε3 to become an imperial constant that must be

experimentally determined for each packing

Loading point

The point of transition from the preloading regime to the loading regime is termed the

loading point It is the point where liquid hold up starts increasing with gas velocity rapid

deterioration in efficiency loading point where the flow rate at which the vapor phase

bagans to interact with the liquid phase to increase interfacial area in a packed column the

loading points occurs at 70 percent of the flood point

Pressure drop

Packed tower are designed so that the pressure drop at any point in the tower does not

exceed a recommended maximum value Maximum pressure drop criterioa for packed

tower are listed in table

Average pressure drop

Specific pressure drop can be calculated at the top of the bed and at the bottom of the bed

the average pressure drop is

25050 5050 bottomtop PPP

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 14

Type of system Maximum pressure drop in of water ft

packing

Atmospheric fractionator 05-100

Low to medium pressure fractioantor 07-10

High pressure distillation

006ltρG ρGlt 020

020lt ρGρL

019 )( 270

OHGPF

0099 )( 270

OHGPF

Vacuum distillation 001-06

Liquid holdup

Liquid holdup is the liquid present in the void spaces of packing At flooding

essentially all the voids are filled with liquids or froth Reasonable liquid holdup is

necessary for good mass transfer and efficient tower operation but beyond that it should

be kept low

Static holdup is liquid remaining on the packing after it has been fully wetted and

drained for long time The contributation of static holdup to mass transfer rates is limited

Operational holdup is liquid on the packing attributed to dynamic operation and is defined

as the difference between total holdup and static holdup

Minimum Wetting Rate

The minimum wetting rate (MWR) is the lower stability limit of packing It is liquid

below which the falling liquid film breaks up and the liquid storage causes wetting of the

packing surface Gravity and viscous forces resists dewetting the surface tension and vapor

shear forces tend to dewett the falling film The MWR therefore rises with an increase in

surface tension and liquid density and with decrease in liquid viscosity

A thumb rule cited by Ludwi

QMW =3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 15

Underwetting

Underwetting is a packing surface phenomenon which brakes up liquid film

The tendency of liquid film to break is expressed by a contact angle A contact angle of

zero indicates perfect wetting an angle of 1800 indicates no wetting

The contact angle depends both on surface and a liquid and is a strong function of

composition Changing a material and surface roughness of the packing may significantly

affect the efficiency in system susceptible to underwetting

45 The HETP concept

The concept of HETP (height equivalent to theoretical plates) was introduced to

enable to comparison of efficiency between packed and plate columns HETP is defined as

HETP = Hn

A similar HETP value can be obtained for plate column if the tray spacing is known

HETP (trayed column) = 100 timesSE

The HETP approach is suitable for multicomponent systems while HTU approach is

difficult to apply for this

HETP prediction

Because there are only few variables that significantly affect HETP of random

packings For small diameter column the rule of thumb presented by Frank Ludig Vital

et al are identical The more conservative cause predicted from

HETP =15 dp helliphellipfor Pall rings or similar high efficiency packing

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 16

Chapter -5

Distillation Design

Problem statement-

A butane-pentane splitter is to be designed to process 4200 lbhr of C3 ndashC5 feed subjected to

specifications of

1maximum 3 of i-C5 in the distillate

2maximum 1 of C4 in the bottom product

The feed sink will be air (process design temperature) to be 130 0F

Components Wt molwt lbh molh

C3 5 441 210 4762

i-C4 15 581 630 10843

C4 25 581 1050 18072

i-C5 20 721 840 11651

C5 35 721 1470 20388

4200 65716

Solution-

Feed composition

Components lbgal(60F) galh Vol mol

C3 422 4976 592 725

i-C4 469 13433 1397 165

C4 487 21501 2563 275

i-C5 520 16154 192 1773

C5 525 28000 328 3102

Total 84124 100 100

Average molecular weight 650716

4200

= 6391

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 17

Average liquid density = 420065716

= 4993lbgal

x = mass of c4 in the bottom(i-wt)

y =mass of i-c5 in the distillate(3 wt)

51 Component Split

Assuming that the C3 and i-C5 have negligible concentration in the bottom and C5 has

negligible concentration in the distillate

Components F D B

C3 210 210 0

i-C4 630 630 0

C4 1050 (1050-x) x

i-C5 840 y (840-y)

C5 1470 0 1470

Total 4200 1890-x+y 2310+x-y

F =B+D

4200 =2310 + x ndashy +1890 ndashx + y

Distillate specification 3 in of i-c5 in distillate

yx

y

18900030

567 ndash 003 x -097 y =0

003 x + 097 y =567

Bottom specification 1 C4 in the bottom

003 yx

x

2310

231 -001 x + 001 y = x

099 x + 001 y = 231

x = 2275

y = 5775

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 18

Components D lbh B lbh D lbmolh B lbmolh

C3 210 0 4762 0

i-C4 630 0 10843 0

C4 102725 2275 1768 039

i-C5 5725 78225 0801 1085

C5 0 1470 0 20388

Total 1925 2275 34086 3163

52 Dew Point and Bubble Point calculation

1 The distillate and reflux will be a bubble point liquid The criteria for evaluation of

the bubble point condition are

1 like an air fin condenser to liquefy the distillate and reflux The criteria of

drum temperature will be assumed to be 130F ( design temperature for air is

about 120F

2 the bubble point design equation with temperature specified

01 ii xK

Average molecular weight of distillate

Components xid Ki

C3 01397 21

i-C4 03181 10

C4 05187 073

i-C5 00235 033

C5 0 027

For fixed temperature of 130F bubble point pressure is to be determined

4656 wtmolxid

9980 iDi xK

Pestimated = Pi-c4 = 120 lbin2

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 19

001

9980120calculatedP

= 1197 lbin2 (abs)

The result of distillate bubble point calculation is

T = 130 0F

P = 120 lbin2

The condition at the top of the column must be evaluated since the fractionator has a

total concentration and an equilibrium stage The criteria for evaluation of the dew

point condition are

Assumption of the pressure drop through the total condenser of 25 lbin2Thus the

pressure at the top of the column is established as

P = 120 lbin2 + 25 lbin2

P = 1225 lbin2

Dew point

01

i

i

k

y

Plk =1225 lbin2 T= 1320F

Components yi Ki1320

F Ki1450

F

C3 01397 220 240

i-C4 03181 100 115

C4 05187 073 085

i-C5 00235 035 042

C5 00000 028 033

For T =1320F

01

i

i

k

y

Kic4 = 1160 and Tcal =1450F

For T =1450F

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 20

01

i

i

k

y

The result of column top dew point calculation

T =1450F

P = 1225 lbin2

The column bottom condition Column ΔP =5 lbin2

The column bottom pressure

P = 1225 + 50 = 1275 lbin2

The bubble point design equation

ΣKiXi=10

Components B(mol) X

C3 0 0

i-C4 0 0

C4 0392 00124

i-C5 1085 03430

C5 20388 06446

3163 100

Average molecular wt = 6331

22750 =7193

The characteristic component is i-c5 an estimated bottom temperature is obtained

Components Xi Ki2380

F Ki2150

F

C3 0 38 45

i-C4 0 355 265

C4 00124 1925 205

i-C5 03430 10 1075

C5 06446 087 094

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 21

For T = 238 0F

ΣKiXi=0927

KHK = 108 Tcal =245 0F

For T =245 0F

ΣKiXi=100

The result of column bottom bubble point calculation

T =245 0F

P =1275 lbin2

53 Determination of the key component

Using the heavy key as column reference key The separation is clearly between

butane and isopentane

Reference component =i-C5

Key component

LK =C4

HK =iC5

The average relative volatility data for the column will be generated using three-point

geometric average

3321 avg

Point 1 ndash top of fractionation column

Point 2 ndash at the reboiler

Point 3 ndash arithmetic mean of condition at 1 amp 3

T2 = 05 [ T1 + T2 ] = 05 [ T1 + T2 ]

T2 = 05 [ 145 + 245 ] = 195 0F

P2 = 05 [ P1 + P3 ] = 05 [ 1225 +1275 ]

P2 = 125 lbin2

variable Point 1 Point 2 Point 3

T oF 145 195 245

P lbin2 1225 125 1275

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 22

Components Point 1 Point 2 Point 3

Ki αi Ki αi Ki αi αavg

C3 24 571 335 493 45 419 49

i-C4 115 274 175 257 25 237 256

C4 085 202 135 199 205 191 197

i-C5 024 100 068 100 1075 100 100

C5 033 079 058 085 094 087 084

54 Shortcut Method

541 Minimum stages at total reflux-the Fenske equation

LKavg

BLk

HK

DHK

LK

m

x

x

x

x

Nln

ln

Fi = bi + di

avgmeanavgiiir

rNavgi

i dbb

d

b

d for min

mN

avgHK

avgi

HK

ii

b

d

fb

1

or when ii db meanavgavgi

mN

avgi

avgLK

LK

ii

d

b

fd

1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 23

971ln

01240

3430

02350

51870ln

mN

4619mN

2

avgLKavgHKmean

2

001971

= 1485

For propaneC3

meanC 3

7624

904

3

3

C

C

f

4619

001

904

85010

80101

76243Cb

hmold

hmol

C 7624007624

1091

3

5

For isobutene(i-C4)

84310

562

4

4

4

iC

Ci

meanCi

f

4619

1

562

8500

80101

843104iCb

hmol 020

823104iCd

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 24

For butane (C4)

07218

971

4

4

C

C

meanavgi

f

4619

001

971

8510

80101

072184Cb

hmold

d

hmolb

C

C

C

68817

392007218

3920

4

4

4

For isopentane (i-C5)

meanavgiC

iCiC hmolf

5

5565111001

Hence

4619

001

971

6817

39201

651115iCd

hmolb

hmold

iC

iC

8510801065111

8010

5

5

For pentane (C5)

hmolb

hmold

d

C

C

C

meanavgC

C

105320

2850

840

971

6817

39201

38820

840

5

5

5

5

5

4619

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 25

The calculated data in the table

Components Fi(lbmolh) Di(lbmolh) Bi(lbmolh)

C3 4762 4762 0

i-C4 10834 10823 002

C4 18072 17680 0392

i-C5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Checking

Maximum 3wt of iC5 in the distillate

9772

1004656

172

35134

8010

wt

Maximum of 1 wt C4 in the bottom

011

1009371

158

36531

3920

wt

The set of specification were not met The parameter reevaluated

Again performing same calculations

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 1050-x x

i-C5 840 y 840-y

C5 1470 2055 144945

Total 190939-x+y 229061+x-y

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 26

3658

5522

612290100

1

391909100

3

y

x

yx

x

yx

y

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 102745 2255

i-C5 840 5836 78164

C5 1470 2055 144945

Total 4200 194520 224580

Components F(lbmolh) D(lbmolh) B(lbmolh)

C3 4762 4762 0

i-c4 10834 10823 002

C4 18072 17680 0392

i-c5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Column operating condition

Distillate bubble point calculation on with temperature specified at 130 0F

Components D (lbmolh) K120 (lbin2)

C3 4762 210

i-C4 10823 10

C4 17680 073

i-C5 0801 033

C5 0285 027

Total 34351

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 27

992036334

07634

001

ii

iiii

xK

D

dKxK

Condition of the distillatereflux before 130 0F amp 120 lbin2overhead or column top

conditions are found by dew point calculation at the specified pressure of 1225lbin2

Components D (lbmolh) K1450

F K148 0

F

C3 4762 24 2425

i-C4 10823 116 1175

C4 17680 084 087

i-C5 0801 042 0425

C5 0285 033 034

01D

K

d

K

y i

i

i

i

For T=145 0F

018136334

9934

i

i

K

y K=1175 Tcal=148 0F

For T=148 0F

997036334

24334

i

i

K

y

Conditions of column overhead are revised to 148 0F and 1225lbin2column bottom

conditions are found by way of bubble point calculation

Components B(lbmolh) K2450

F

C3 0 45

i-C4 002 255

C4 0392 205

i-C5 10850 1075

C5 20103 094

Total 31365

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 28

Design equation

001B

bKxK ii

ii

For T =245 0F

00139331

39831ii xK

At column midpoint condition

2

0

1255127512250

519624514850

inlbP

FT

Summery of operating condition

Point 1 Point 2 Point 3

Temperature 148 1965 245

Pressure lbin2 (abs) 1225 125 1275

Equilibrium K data for column midpoint condition

Point 1 Point 2 Point 3

Components Ki i Ki i Ki i avgi

C3 2425 571 34 486 45 419 488

i-C4 1175 276 18 257 255 237 256

C4 087 205 138 197 205 191 198

i-C5 0425 100 07 10 1075 10 10

C5 034 08 06 086 094 087 084

Fenske equation

3919

001

981ln

3880

84210

8090

68417ln

m

m

N

N

Separation of non key component

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 29

4912

100198

2

avgLKavgHK

mean

molh09220bmolh 2920d

molh38820f840

)(CPentane

molh8090dmolh 84210b

molh65111f001

)C-(itan

68417dmolh 3880b

molh07218f981

)(CButane

hmol 82210d h mol0210b

hmol84310f562

)C-(iIsobutane

molh76240007624d

molh000molh101882

001

884

84210

80901

7624

7624f884

)(Cropane

C5C5

C5C5

5

C5-iC5-i

C5-iiC5

5

C4C4

C4C4

4

iC4iC4

iC4iC4

4

33C3

5

39193

C3C3

3

lblb

lb

lblb

lb

eIsopen

hlbmollb

lblb

lb

lbbf

lblbb

hmol

P

CC

C

Components Feed (lbmolh) Distillate (lbmolh) Bottom (lbmolh)

C3 4762 4762 0000

i-C4 10843 10822 0021

C4 18072 17684 03880

i-C5 11651 0809 10842

C5 20388 0292 20096

Total 65716 34369 31347

Maximum value of 3 wt of i-C5 in distillate is required

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 30

Calculated value =

wt 3

1004956

172

36934

8090

Maximum value of 1 wt of C4 in bottom is required

Calculated value

wt 1

1009163

158

34731

3880

Conditions are satisfied

542 Component split by Winn equation

The Fenske equation has a weakness as the relative volatility difference between

column top and bottom increase the estimated minimum number of stages gets

increasingly too small

460

1

460

1

lnln

bottomtop

bottomitopi

i

TT

PKPKB

460

ln

T

BAPK i

ii

110 irHKi PAAi

r

ii B

B

Components KTop148 F Kbottom245 F

C3 2425 450

i-C4 1175 255

C4 087 205

i-C5 0425 1075

C5 034 094

For P=125 lbin2

For butane (C4)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 31

550594460148

)271263()42525122log(

271263

460245

1

460148

1545127log42525122log

4

4

C

C

A

B

Heavy component is iso-pentane( i-C5)

955824460148

)711857()42505122log(

680010717185

271263

711857

460245

1

460148

1

07515127log4250125log

5

4

5

Ci

C

Ci

A

A

B

311344

)125(10

10)1680010()955824550594(

1

irHKi PAAi

Components Bi Ai θi βi

C3 -126327 45509 068001 43113

i-C4 -156377 473016 084177 24069

C4 -172167 48593 092677 191988

i-C5 -185771 49558 100000 10000

C5 -202840 49558 109189 086704

5339

919881log

)369348090(

)3473484210(

)347313880(

)3693468417(log

m

m

N

N

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 32

abvg

1

bdcomponent

orlightif

D

B

d

bb

d

HK

N

i

im

d

b1

fd

2dbkeyheavy

1

avgHKLKif

b

df

b

componentlight propanefor

5

032068

9533

101976

09120713402

4311

b

d

7624

0001097611

76245

bfd

b

For isobutene (i-C4)

f =10843 θ =0842 β =2407 (light component)

lh10821lbmo

002210843d

h0022lbmol

494151

10843b

4941509120713402

2407

b

d08417108417

9533

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 33

For Butane (C4)

f =18072 β=191988θ=092677

h0388lbmol

455771

18072b

4557709120713402

191988

b

d0926771092677

9533

d=18072-0388

=17684 lbmolh

For Isopentane (C5)

f =11651 β =100 θ =100

111

5339

91207040213

00001

b

d

=007461

βltβavg

)0746101(1

65111

d

= 0809 lbmolh

b = 11651-0809

=10842 lbmolh

For Pentane (C5)

f =20388 lbmolh β= 086704 θ =109189

0918911091891

5339

91207040213

867040

b

d

=0014959

βltβavg

)01495901(1

38820

d

= 0300 lb molh

b=20388-03

=20088

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 34

Components Feed lbmolh Distillate lbmolh Bottom lbmolh

C3 4762 4762 000

i-C4 10843 10821 0022

C4 18072 17684 0388

i-C5 11651 0809 10842

C5 20388 03 20088

65716 34376 3134

Components Feed lbh Distillate lbh Bottom lbh

C3 210 210 000

i-C4 630 62872 128

C4 1050 102745 2257

i-C5 840 5836 78164

C5 1470 2163 1448348

4200 194602 2253818

543 Calculation of Rm

From Underwood equation

qx

i

iFi

1

Components Flbmolhr xif xid αi

C3 4762 00725 01386 488

i-C4 10843 01650 03149 256

C4 18072 02750 05145 198

i-C5 11651 01773 002335 100

C5 20388 03102 00085 084

65716 1000 1000

Feed is at boiling conditions since q =1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 35

0840

31020840

1

177301

981

27500981

562

16500562

884

07250884

θ =1284

from this value of θ

avgi

idavgim

xR

1

11284840

00850840

12841

023501

1284981

51450981

1284562

31490562

1284884

13860884

mR

Rm=1185

R=15 Rm

=15times1185

=17775

X=1

R

RR m

X=177751

185177751

=02133

From GillilandrsquoS correlation Y=1

N

NN m =042

We know the value of Nm 4201

5339

N

N

N=178 =18 stages

Feed location can be known by the use of Kirkbride equation

2

)376348090(

)34313880(

)07218(

)65111(

37634

34312060log

F

F

p

m

687890p

m

817 pm

m = 725=8

p =1054 =11

Feed is introduced on eight stage from top

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 36

Chapter- 6

PACKED COLUMN DESIGN

61 Stage AnalysisThe data shown in table are typical data generated by commercial simulation

Vapor liquidStage Temperature0F lbhr CFS

ft3sV

lbft3

Lbhr GPM

galminL

σ

dynecm

μ

cP

1 1349 00 00 00 3655 1423 3202 6867 0114

2 1474 5501 12050 12683 3720 1447 3204 6738 01132

3 1548 5566 12049 12831 3724 1447 3208 6699 01128

4 1609 5571 11987 12909 3707 1438 3214 6684 01130

5 1668 5553 11889 12974 3693 1430 3220 6665 01135

6 1726 5539 11794 13045 3689 1426 3224 6632 01142

7 1779 5535 11716 13122 3691 1426 3226 6590 01149

8 1824 5537 11650 13199 8032 310471 3226 6544 01156

9 1873 5678 11794 13373 8126 3142 3224 6507 01153

10 1917 5772 11871 13506 8201 3171 3224 6479 01151

11 1961 5847 11915 13631 8275 3201 3223 6447 01152

12 2010 5921 11946 13768 8360 3235 3222 6406 01156

13 2064 6006 12152 13928 8475 3274 3220 6348 01162

14 2122 6103 12013 14111 8574 3321 3218 6295 01170

15 2179 6220 12070 14310 8701 3374 3215 6236 01180

16 2232 6347 12148 14512 8829 3428 3211 6178 01191

17 2280 6475 12234 14701 8947 3477 3208 6128 01201

18 2321 6593 12317 14868 2354 91599 3204 6087 01212

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 37

62 Flood Point

15 inch pall ring will be used throughout the column for this packing the flood point can

be determined by interpolation

A-flood point by GPDC [generalized pressure drop correlation] interpolation

2

2

6593

5571

fthrlbA

G

fthrlbA

G

TBottom

TTop

Liquid flowrates ( 2 fthrlb )

LTop =TA

3724

LBottom = TA

8947

Vapor density( 3 ftlb )

48681

31991

BottomG

TopG

Liquid density ( 3 ftlb )

2432

2632

BottomL

TopL

1 Flow parameter

L

GLV ρ

ρ

G

LF

Top 05

LV 3228

13199

5571

3724F

1352110FLV

Bottom LVF =

2432

48681

6593

8947

= 029142

2 Capacity parameter from graphical correlation

Top =152

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 38

Bottom =119

3 Viscosity of the liquid L (cP)

Top L =01128 (cP)

Bottom L =01151 (cP)

4 Kinematic viscosity

=

L

L

462

Top =

2632

11280462

Top = 0218187

Bottom =

2432

11510462

Bottom = 022277

5 Packing factor ( 1ft )

Top FP = 40

Bottom FP = 40

6 Vapour capacity factor CSFI(fts)

Capacity parameter = CSFI FP05 005

Top 05050SFI 2181040

921C

Top SFIC =02593

Bottom 05050SFI 2181040

191C

Bottom 20280CSFI

63 Flood point by the Kister amp Gill correlation

1 FTP packed bed specific pressure drop at flood point

FTP =0115 70PF

Top FTP =0115 7040

=1521

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 39

Bottom FTP =1521 inch of H2O per ft

2 Flow parameter

Top FLV =0135211

Bottom FLV =029142

3 Capacity parameter at flood point

Top =152

Bottom = 119

4 CSFl vapor capacity factor at the flood point

CSFl = capacity parameter

05050

1

PF

Top CSFl =02593

Bottom CSFl =02028

64 Diameter calculation

1 Vapor capacity factor Cs design (nonderated) fts

The column will be designed for 75 flood capacity

SFlS CC 750

Top CS = 075 02593

=0194475

Bottom CS = 075 02028

Bottom CS = 01551

2 CS vapor capacity factor (derated )fts

= 09 CSdesign

Top CS = 09 01944

Top CS =017496

Bottom CS =09 01521

Bottom CS =013689

3 Vapor superficial velocity based on the cross section of empty column u (fts)

GL

G

ss

ρρ

ρ

(derated)Cu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 40

Top su =

319912632

31991

174960

Top su =084737

Bottom su =

486812432

48681

136890

Bottom su = 062257

4 Vapor flow rate CFS ft3s

Top CFS =1205 ft3s

Bottom CFS =12316 ft3shellipfrom table

5 Tower area ft2

AT = s

T u

CFSA

Top AT = 847370

2051

Top AT =1422 ft2

Bottom AT = 622570

23161

Bottom AT =19782 ft2

6 Tower diameter ft

1587ftD

π

197824D

13455ftD

π

14224D

π

A4

BottomT

BottomT

TopT

TopT

TT

D

65 Diameter calculation using the maximum pressure drop criterion

1 L

G

calculation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 41

Top L

G

=2632

31991

= 00409

Bottom L

G

=2432

48681

= 004611

2OH

L

2

calculation

Top ( OHL 2 )=

4362

2632

= 05167

Bottom ( OHL 2 ) =

4362

2432

= 05164

3 FP packing factor

Top FP = 40

Bottom FP =40

4 Maximum pressure drops recommended for packed column with random packing

1902

70max

OH

LPFP

helliphelliphelliphellipfor 006 20L

G

Top maxP = 019 5167040 70

Top maxP = 12984helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

Bottom maxP = 019 5164040 70

Bottom maxP =12977helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

5 Surface tension dyne

Top =6544 cmdyne

Bottom =6128 cmdyne

6 Vapor capacity factor Csmax (fts)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 42

P

s

FCP

3342maxmax

Top 12984 =

5446

403342maxsC

Top maxsC =02634

Bottom 12977 =

1286

403342maxsC

Bottom maxsC =025628

7 Maximum vapor superficial velocity usmax

maxsC = usmax

GL

G

Top usmax =

319912632

31991

26340

= 12752

Bottom usmax =

486812432

48681

25620

=11651 fts

8 Tower area AT (ft2)

AT =smaxu

CFS

Top AT =27521

2051

Top AT =09449

Bottom AT = 16511

23161

= 1057 ft2

9 Tower diameter (ft)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 5: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 5

In determining the product composition values using the combination of these

two equations one takes advantages of whether a component is very volatile or not

volatile

2

avgHKavgLK

avgmean

Following sets of equations can be used to revise the estimate of the distillate

and bottom products

If light component ii bd avgmeanavgi

Reference component is heavy key then

mN

avgHK

avgi

HK

ii

b

d

fb

1

iii bfd

For heavy component avgmeanavgiii db

Reference component is the light key

mN

avgi

avgLK

LK

ii

d

b

fd

1

iii dfb

313 Calculation of minimum reflux-The Underwood equation

The equation developed by Underwood in based on the assumptions

1constant molar flow rate

2knowledge of the component at the pinch zone

Based on the degree of feed vaporization the value of θ is solved of using

qZ

av

feediavi

1

The value of (1-q) is the fraction of the feed that is vapor

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 6

point)(bubblehpoint)(dewH

condition)(feedhpoint)(dewHq)1(

ff

ff

In the determination of the thermal conditions the average pressure should be

2ombolumnbuttcolumntop

feedstage

PPP

Use of the so found in the equation

avgi

idavgim

xR

1

Rm can be determined

314 Stage-Reflux co-relation

The two widely accepted co-relations are Gilliland correlations and the Erbor-Madox

corelations each relates the minimum column operating limits to the reflux and stage

actually required The values of reflux generally used lies in the range of

00201 mR

R

Fig 41 Gilliland stage-reflux co-relation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 7

The following analytical expressions for the Gilliland stage-reflux co-relations

440ln1050

1

1

1

XB

XY

N

NNY

R

RRX

B

m

m

315 Feed location (Kirkbride equation)

The Kirkbride equation yields the ratio of the number of theoretical stages in the rectifying

section lsquomrsquo to the number of theoretical stages in the stripping section lsquoprsquo

20602

distillateHK

bottomLK

feedLK

HK

x

x

x

x

D

B

p

m

and

Npm

Feed stage can be determined

32 The Winn equation

The Fenske equation has a weakness as the relative volatility difference between column

top and bottom increase the estimated minimum number of stages get increasingly too

small The relation relates the equilibrium K of component i and reference heavy key as

i

rii KK

Where amp are constant at fixed pressure Determination of A and B The equation has

the structure of a modified Antoine equation is

460

ln

T

BAPK i

ii

P is average column pressure and T is temperature (0F)

460

ln

T

BPKA i

topii

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 8

460

1

460

1

lnln

bottomtop

bottomitopi

i

TT

PKPKB

Winn equation amp can be obtained

rr

ir

i

r

ii APK

APK

PK

B

B

ln

ln

1 iPAAEXP rii

The Winn equation for two minimum number of stages require the use of mole

fraction and is as follows

LK

HKD

B

LKB

D

m

LK

x

x

x

x

N

ln

ln

Using molar flow rates

LK

LK

m

LK

HKd

b

b

d

N

ln

ln

The Winn equation molar form can be combined with the column component

material balance to estimate the fractionation of the nonkey components

d 1d

b

D

B

d

d

b

fbd

i

θ1θi

HK

N

i

iii

m

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 9

componentheavy

componentlight

bd 1d

b

bfd

d

b1

d

bf

b

bd 1d

b

iii

iii

i

ii

i

iii

iii

i

ii

dfb

d

b

fd

1

Three basic energy inputoutput location within the fractionation column system The

energy associated with the feed preheats QF This energy requirement must be consistent

with the degree of feed vaporization and is obtained by enthalpy balance

FFF hHFQ

HF amp hF are in Btulb of feed The condenser duty Qc is obtained by writing an energy

balance around the condenserreflux drum

L = RD

V = D 1 R

Case 1 ndash all-liquid distillate

QC = D DV hHR 1

Case 2 ndash all vapor distillate

DVDVC HHDhHRDQ

Case -3 distillate is liquid and vapor

Qc = D R (Hv - hD) + Vapor (Hv - HD)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 10

Hv- enthalpy of vapor entering the condenser

HD - enthalpy of vapor leaving the drum accumulator

hD- enthalpy of liquid leaving the drum

with the condenser duty calculated the reboiler duty QR can be obtained as

QR=Qc+[DV HD+DLhD]+B hB-F HF

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 11

Chapter -4

Packed Tower

41 Packing Hydraulics

At low liquid flow rates the open cross sectional area of the packing is about the same as in

a dry bed The pressure drop is entirely by frictional losses through a series of opening and

proportional to the square of gas flow rate In random packing the pressure drop is due to

expansion contraction and changes of direction A portion of the gas kinetic energy is

used to support the liquid the column and the pressure drop becomes proportional to the gas

rate raised to power different The point where the packing voids fill up with liquid ie

when tower operation switches from vapor continuous to liquid continuous is termed phase

inversion For all liquid flow rates as gas flow rate is raised a point is reached when the gas

velocity begins to interfere with the free drainage of liquid The accumulation of liquid

reduces the cross section area available for gas flow and therefore accelerates the pressure

drop rise Further increase in gas rate more liquid accumulates until the liquid surface

becomes continuous across the top of packing

Efficiency flow regimes

When the liquid distribution is poor it will take more liquid to wet the entire bed Turbulent

liquid film produces good wetting of the packing and essentially contact efficiency As

liquid rate increases more vapor is entrained down the bed These drops efficiency

Because structured packing permits far less lateral movement of fluid than random

packings

Flood point

Appearance of liquid on top of the bed excessive entrainment a sharp rise in pressure

drop a sharp rise in liquid hold up and a sharp drop in efficiency flood point can be

predicted far more reliably than packing pressure drop and maximum operational capacity

Pressure drop

This is often used to specify packed tower capacity In small columns (lt3 ft in dia )

pressure drop varies with tower diameter With random packings smaller the tower

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 12

diameter the lower the pressures drop possibly due to enhancement of wall effects Dry

packed beds have a higher-pressure drop than wet ndash packed beds Pressure drop

measurement under deep vacuum (lt50 mmHg) is affected by the pressure drop and the

pressure gradient along the bed Pressure drop measurements in a pressure tower include

the static head of the vapor To obtain the actual packing pressure drop the static head

must be subtracted from pressure drop measurement Pressure drop for foaming systems

are higher than for non-foaming systems

42 Flood Point Prediction

421 Sherwood ndashEckert generalized pressure drop correlation (GPDC)

The Sherwood ndashEckert GPDC chart has been the standard of the industry for predicting

flood points and pressure drops

GPDC chart ordinate describes the balance between the vapor momentum force that acts

to entrain swarms of liquid droplets and the gravity force that resists the upward

entrainment GPDC chart abscissa is the flow parameter the ratio of liquid kinetic energy

to vapor kinetic energy

422 The Kister and Gill correlation

Zens discovered that packing pressure drop at the flood point decreases as the packing

capacity increases A simple flood point correlation

FLP =0115 70PF

this equation expresses pressure drop at the flood point as a function of packing factor

alone Once this pressure drop is known the flood velocity can be calculated The flood

velocity calculated by the Kister and Gill correlation is tolerant to inaquaracies in flood

pressure drop predictions

43 Pressure Drop Prediction By GPDC Interpolation

Interpolation of pressure drop data is more accurate than correlation prediction

Superimposing experimental data points on the curves of generalized pressure correlation

chart converts the GPDC chart into an interpolation chart Pressure drops are calculated by

interpolating the plotted pressure drop data For all charts (random structured or grid

packings) the abscissa of the correlation is the flow parameter given by

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 13

50

L

GLV G

LF

And the ordinate of correlation as the capacity parameter given by

GL

GSS uC

FP is the packing factor which is an empirical factor characteristics of the packing size

and shape

44 Packing factors

Several of the predictive methods above use a packing factor to account for the type and

size of packing With the evolutions of the general pressure drop correlation the packing

factor shifted away from the ratio ap ε3 to become an imperial constant that must be

experimentally determined for each packing

Loading point

The point of transition from the preloading regime to the loading regime is termed the

loading point It is the point where liquid hold up starts increasing with gas velocity rapid

deterioration in efficiency loading point where the flow rate at which the vapor phase

bagans to interact with the liquid phase to increase interfacial area in a packed column the

loading points occurs at 70 percent of the flood point

Pressure drop

Packed tower are designed so that the pressure drop at any point in the tower does not

exceed a recommended maximum value Maximum pressure drop criterioa for packed

tower are listed in table

Average pressure drop

Specific pressure drop can be calculated at the top of the bed and at the bottom of the bed

the average pressure drop is

25050 5050 bottomtop PPP

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 14

Type of system Maximum pressure drop in of water ft

packing

Atmospheric fractionator 05-100

Low to medium pressure fractioantor 07-10

High pressure distillation

006ltρG ρGlt 020

020lt ρGρL

019 )( 270

OHGPF

0099 )( 270

OHGPF

Vacuum distillation 001-06

Liquid holdup

Liquid holdup is the liquid present in the void spaces of packing At flooding

essentially all the voids are filled with liquids or froth Reasonable liquid holdup is

necessary for good mass transfer and efficient tower operation but beyond that it should

be kept low

Static holdup is liquid remaining on the packing after it has been fully wetted and

drained for long time The contributation of static holdup to mass transfer rates is limited

Operational holdup is liquid on the packing attributed to dynamic operation and is defined

as the difference between total holdup and static holdup

Minimum Wetting Rate

The minimum wetting rate (MWR) is the lower stability limit of packing It is liquid

below which the falling liquid film breaks up and the liquid storage causes wetting of the

packing surface Gravity and viscous forces resists dewetting the surface tension and vapor

shear forces tend to dewett the falling film The MWR therefore rises with an increase in

surface tension and liquid density and with decrease in liquid viscosity

A thumb rule cited by Ludwi

QMW =3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 15

Underwetting

Underwetting is a packing surface phenomenon which brakes up liquid film

The tendency of liquid film to break is expressed by a contact angle A contact angle of

zero indicates perfect wetting an angle of 1800 indicates no wetting

The contact angle depends both on surface and a liquid and is a strong function of

composition Changing a material and surface roughness of the packing may significantly

affect the efficiency in system susceptible to underwetting

45 The HETP concept

The concept of HETP (height equivalent to theoretical plates) was introduced to

enable to comparison of efficiency between packed and plate columns HETP is defined as

HETP = Hn

A similar HETP value can be obtained for plate column if the tray spacing is known

HETP (trayed column) = 100 timesSE

The HETP approach is suitable for multicomponent systems while HTU approach is

difficult to apply for this

HETP prediction

Because there are only few variables that significantly affect HETP of random

packings For small diameter column the rule of thumb presented by Frank Ludig Vital

et al are identical The more conservative cause predicted from

HETP =15 dp helliphellipfor Pall rings or similar high efficiency packing

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 16

Chapter -5

Distillation Design

Problem statement-

A butane-pentane splitter is to be designed to process 4200 lbhr of C3 ndashC5 feed subjected to

specifications of

1maximum 3 of i-C5 in the distillate

2maximum 1 of C4 in the bottom product

The feed sink will be air (process design temperature) to be 130 0F

Components Wt molwt lbh molh

C3 5 441 210 4762

i-C4 15 581 630 10843

C4 25 581 1050 18072

i-C5 20 721 840 11651

C5 35 721 1470 20388

4200 65716

Solution-

Feed composition

Components lbgal(60F) galh Vol mol

C3 422 4976 592 725

i-C4 469 13433 1397 165

C4 487 21501 2563 275

i-C5 520 16154 192 1773

C5 525 28000 328 3102

Total 84124 100 100

Average molecular weight 650716

4200

= 6391

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 17

Average liquid density = 420065716

= 4993lbgal

x = mass of c4 in the bottom(i-wt)

y =mass of i-c5 in the distillate(3 wt)

51 Component Split

Assuming that the C3 and i-C5 have negligible concentration in the bottom and C5 has

negligible concentration in the distillate

Components F D B

C3 210 210 0

i-C4 630 630 0

C4 1050 (1050-x) x

i-C5 840 y (840-y)

C5 1470 0 1470

Total 4200 1890-x+y 2310+x-y

F =B+D

4200 =2310 + x ndashy +1890 ndashx + y

Distillate specification 3 in of i-c5 in distillate

yx

y

18900030

567 ndash 003 x -097 y =0

003 x + 097 y =567

Bottom specification 1 C4 in the bottom

003 yx

x

2310

231 -001 x + 001 y = x

099 x + 001 y = 231

x = 2275

y = 5775

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 18

Components D lbh B lbh D lbmolh B lbmolh

C3 210 0 4762 0

i-C4 630 0 10843 0

C4 102725 2275 1768 039

i-C5 5725 78225 0801 1085

C5 0 1470 0 20388

Total 1925 2275 34086 3163

52 Dew Point and Bubble Point calculation

1 The distillate and reflux will be a bubble point liquid The criteria for evaluation of

the bubble point condition are

1 like an air fin condenser to liquefy the distillate and reflux The criteria of

drum temperature will be assumed to be 130F ( design temperature for air is

about 120F

2 the bubble point design equation with temperature specified

01 ii xK

Average molecular weight of distillate

Components xid Ki

C3 01397 21

i-C4 03181 10

C4 05187 073

i-C5 00235 033

C5 0 027

For fixed temperature of 130F bubble point pressure is to be determined

4656 wtmolxid

9980 iDi xK

Pestimated = Pi-c4 = 120 lbin2

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 19

001

9980120calculatedP

= 1197 lbin2 (abs)

The result of distillate bubble point calculation is

T = 130 0F

P = 120 lbin2

The condition at the top of the column must be evaluated since the fractionator has a

total concentration and an equilibrium stage The criteria for evaluation of the dew

point condition are

Assumption of the pressure drop through the total condenser of 25 lbin2Thus the

pressure at the top of the column is established as

P = 120 lbin2 + 25 lbin2

P = 1225 lbin2

Dew point

01

i

i

k

y

Plk =1225 lbin2 T= 1320F

Components yi Ki1320

F Ki1450

F

C3 01397 220 240

i-C4 03181 100 115

C4 05187 073 085

i-C5 00235 035 042

C5 00000 028 033

For T =1320F

01

i

i

k

y

Kic4 = 1160 and Tcal =1450F

For T =1450F

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 20

01

i

i

k

y

The result of column top dew point calculation

T =1450F

P = 1225 lbin2

The column bottom condition Column ΔP =5 lbin2

The column bottom pressure

P = 1225 + 50 = 1275 lbin2

The bubble point design equation

ΣKiXi=10

Components B(mol) X

C3 0 0

i-C4 0 0

C4 0392 00124

i-C5 1085 03430

C5 20388 06446

3163 100

Average molecular wt = 6331

22750 =7193

The characteristic component is i-c5 an estimated bottom temperature is obtained

Components Xi Ki2380

F Ki2150

F

C3 0 38 45

i-C4 0 355 265

C4 00124 1925 205

i-C5 03430 10 1075

C5 06446 087 094

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 21

For T = 238 0F

ΣKiXi=0927

KHK = 108 Tcal =245 0F

For T =245 0F

ΣKiXi=100

The result of column bottom bubble point calculation

T =245 0F

P =1275 lbin2

53 Determination of the key component

Using the heavy key as column reference key The separation is clearly between

butane and isopentane

Reference component =i-C5

Key component

LK =C4

HK =iC5

The average relative volatility data for the column will be generated using three-point

geometric average

3321 avg

Point 1 ndash top of fractionation column

Point 2 ndash at the reboiler

Point 3 ndash arithmetic mean of condition at 1 amp 3

T2 = 05 [ T1 + T2 ] = 05 [ T1 + T2 ]

T2 = 05 [ 145 + 245 ] = 195 0F

P2 = 05 [ P1 + P3 ] = 05 [ 1225 +1275 ]

P2 = 125 lbin2

variable Point 1 Point 2 Point 3

T oF 145 195 245

P lbin2 1225 125 1275

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 22

Components Point 1 Point 2 Point 3

Ki αi Ki αi Ki αi αavg

C3 24 571 335 493 45 419 49

i-C4 115 274 175 257 25 237 256

C4 085 202 135 199 205 191 197

i-C5 024 100 068 100 1075 100 100

C5 033 079 058 085 094 087 084

54 Shortcut Method

541 Minimum stages at total reflux-the Fenske equation

LKavg

BLk

HK

DHK

LK

m

x

x

x

x

Nln

ln

Fi = bi + di

avgmeanavgiiir

rNavgi

i dbb

d

b

d for min

mN

avgHK

avgi

HK

ii

b

d

fb

1

or when ii db meanavgavgi

mN

avgi

avgLK

LK

ii

d

b

fd

1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 23

971ln

01240

3430

02350

51870ln

mN

4619mN

2

avgLKavgHKmean

2

001971

= 1485

For propaneC3

meanC 3

7624

904

3

3

C

C

f

4619

001

904

85010

80101

76243Cb

hmold

hmol

C 7624007624

1091

3

5

For isobutene(i-C4)

84310

562

4

4

4

iC

Ci

meanCi

f

4619

1

562

8500

80101

843104iCb

hmol 020

823104iCd

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 24

For butane (C4)

07218

971

4

4

C

C

meanavgi

f

4619

001

971

8510

80101

072184Cb

hmold

d

hmolb

C

C

C

68817

392007218

3920

4

4

4

For isopentane (i-C5)

meanavgiC

iCiC hmolf

5

5565111001

Hence

4619

001

971

6817

39201

651115iCd

hmolb

hmold

iC

iC

8510801065111

8010

5

5

For pentane (C5)

hmolb

hmold

d

C

C

C

meanavgC

C

105320

2850

840

971

6817

39201

38820

840

5

5

5

5

5

4619

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 25

The calculated data in the table

Components Fi(lbmolh) Di(lbmolh) Bi(lbmolh)

C3 4762 4762 0

i-C4 10834 10823 002

C4 18072 17680 0392

i-C5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Checking

Maximum 3wt of iC5 in the distillate

9772

1004656

172

35134

8010

wt

Maximum of 1 wt C4 in the bottom

011

1009371

158

36531

3920

wt

The set of specification were not met The parameter reevaluated

Again performing same calculations

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 1050-x x

i-C5 840 y 840-y

C5 1470 2055 144945

Total 190939-x+y 229061+x-y

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 26

3658

5522

612290100

1

391909100

3

y

x

yx

x

yx

y

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 102745 2255

i-C5 840 5836 78164

C5 1470 2055 144945

Total 4200 194520 224580

Components F(lbmolh) D(lbmolh) B(lbmolh)

C3 4762 4762 0

i-c4 10834 10823 002

C4 18072 17680 0392

i-c5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Column operating condition

Distillate bubble point calculation on with temperature specified at 130 0F

Components D (lbmolh) K120 (lbin2)

C3 4762 210

i-C4 10823 10

C4 17680 073

i-C5 0801 033

C5 0285 027

Total 34351

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 27

992036334

07634

001

ii

iiii

xK

D

dKxK

Condition of the distillatereflux before 130 0F amp 120 lbin2overhead or column top

conditions are found by dew point calculation at the specified pressure of 1225lbin2

Components D (lbmolh) K1450

F K148 0

F

C3 4762 24 2425

i-C4 10823 116 1175

C4 17680 084 087

i-C5 0801 042 0425

C5 0285 033 034

01D

K

d

K

y i

i

i

i

For T=145 0F

018136334

9934

i

i

K

y K=1175 Tcal=148 0F

For T=148 0F

997036334

24334

i

i

K

y

Conditions of column overhead are revised to 148 0F and 1225lbin2column bottom

conditions are found by way of bubble point calculation

Components B(lbmolh) K2450

F

C3 0 45

i-C4 002 255

C4 0392 205

i-C5 10850 1075

C5 20103 094

Total 31365

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 28

Design equation

001B

bKxK ii

ii

For T =245 0F

00139331

39831ii xK

At column midpoint condition

2

0

1255127512250

519624514850

inlbP

FT

Summery of operating condition

Point 1 Point 2 Point 3

Temperature 148 1965 245

Pressure lbin2 (abs) 1225 125 1275

Equilibrium K data for column midpoint condition

Point 1 Point 2 Point 3

Components Ki i Ki i Ki i avgi

C3 2425 571 34 486 45 419 488

i-C4 1175 276 18 257 255 237 256

C4 087 205 138 197 205 191 198

i-C5 0425 100 07 10 1075 10 10

C5 034 08 06 086 094 087 084

Fenske equation

3919

001

981ln

3880

84210

8090

68417ln

m

m

N

N

Separation of non key component

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 29

4912

100198

2

avgLKavgHK

mean

molh09220bmolh 2920d

molh38820f840

)(CPentane

molh8090dmolh 84210b

molh65111f001

)C-(itan

68417dmolh 3880b

molh07218f981

)(CButane

hmol 82210d h mol0210b

hmol84310f562

)C-(iIsobutane

molh76240007624d

molh000molh101882

001

884

84210

80901

7624

7624f884

)(Cropane

C5C5

C5C5

5

C5-iC5-i

C5-iiC5

5

C4C4

C4C4

4

iC4iC4

iC4iC4

4

33C3

5

39193

C3C3

3

lblb

lb

lblb

lb

eIsopen

hlbmollb

lblb

lb

lbbf

lblbb

hmol

P

CC

C

Components Feed (lbmolh) Distillate (lbmolh) Bottom (lbmolh)

C3 4762 4762 0000

i-C4 10843 10822 0021

C4 18072 17684 03880

i-C5 11651 0809 10842

C5 20388 0292 20096

Total 65716 34369 31347

Maximum value of 3 wt of i-C5 in distillate is required

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 30

Calculated value =

wt 3

1004956

172

36934

8090

Maximum value of 1 wt of C4 in bottom is required

Calculated value

wt 1

1009163

158

34731

3880

Conditions are satisfied

542 Component split by Winn equation

The Fenske equation has a weakness as the relative volatility difference between

column top and bottom increase the estimated minimum number of stages gets

increasingly too small

460

1

460

1

lnln

bottomtop

bottomitopi

i

TT

PKPKB

460

ln

T

BAPK i

ii

110 irHKi PAAi

r

ii B

B

Components KTop148 F Kbottom245 F

C3 2425 450

i-C4 1175 255

C4 087 205

i-C5 0425 1075

C5 034 094

For P=125 lbin2

For butane (C4)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 31

550594460148

)271263()42525122log(

271263

460245

1

460148

1545127log42525122log

4

4

C

C

A

B

Heavy component is iso-pentane( i-C5)

955824460148

)711857()42505122log(

680010717185

271263

711857

460245

1

460148

1

07515127log4250125log

5

4

5

Ci

C

Ci

A

A

B

311344

)125(10

10)1680010()955824550594(

1

irHKi PAAi

Components Bi Ai θi βi

C3 -126327 45509 068001 43113

i-C4 -156377 473016 084177 24069

C4 -172167 48593 092677 191988

i-C5 -185771 49558 100000 10000

C5 -202840 49558 109189 086704

5339

919881log

)369348090(

)3473484210(

)347313880(

)3693468417(log

m

m

N

N

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 32

abvg

1

bdcomponent

orlightif

D

B

d

bb

d

HK

N

i

im

d

b1

fd

2dbkeyheavy

1

avgHKLKif

b

df

b

componentlight propanefor

5

032068

9533

101976

09120713402

4311

b

d

7624

0001097611

76245

bfd

b

For isobutene (i-C4)

f =10843 θ =0842 β =2407 (light component)

lh10821lbmo

002210843d

h0022lbmol

494151

10843b

4941509120713402

2407

b

d08417108417

9533

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 33

For Butane (C4)

f =18072 β=191988θ=092677

h0388lbmol

455771

18072b

4557709120713402

191988

b

d0926771092677

9533

d=18072-0388

=17684 lbmolh

For Isopentane (C5)

f =11651 β =100 θ =100

111

5339

91207040213

00001

b

d

=007461

βltβavg

)0746101(1

65111

d

= 0809 lbmolh

b = 11651-0809

=10842 lbmolh

For Pentane (C5)

f =20388 lbmolh β= 086704 θ =109189

0918911091891

5339

91207040213

867040

b

d

=0014959

βltβavg

)01495901(1

38820

d

= 0300 lb molh

b=20388-03

=20088

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 34

Components Feed lbmolh Distillate lbmolh Bottom lbmolh

C3 4762 4762 000

i-C4 10843 10821 0022

C4 18072 17684 0388

i-C5 11651 0809 10842

C5 20388 03 20088

65716 34376 3134

Components Feed lbh Distillate lbh Bottom lbh

C3 210 210 000

i-C4 630 62872 128

C4 1050 102745 2257

i-C5 840 5836 78164

C5 1470 2163 1448348

4200 194602 2253818

543 Calculation of Rm

From Underwood equation

qx

i

iFi

1

Components Flbmolhr xif xid αi

C3 4762 00725 01386 488

i-C4 10843 01650 03149 256

C4 18072 02750 05145 198

i-C5 11651 01773 002335 100

C5 20388 03102 00085 084

65716 1000 1000

Feed is at boiling conditions since q =1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 35

0840

31020840

1

177301

981

27500981

562

16500562

884

07250884

θ =1284

from this value of θ

avgi

idavgim

xR

1

11284840

00850840

12841

023501

1284981

51450981

1284562

31490562

1284884

13860884

mR

Rm=1185

R=15 Rm

=15times1185

=17775

X=1

R

RR m

X=177751

185177751

=02133

From GillilandrsquoS correlation Y=1

N

NN m =042

We know the value of Nm 4201

5339

N

N

N=178 =18 stages

Feed location can be known by the use of Kirkbride equation

2

)376348090(

)34313880(

)07218(

)65111(

37634

34312060log

F

F

p

m

687890p

m

817 pm

m = 725=8

p =1054 =11

Feed is introduced on eight stage from top

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 36

Chapter- 6

PACKED COLUMN DESIGN

61 Stage AnalysisThe data shown in table are typical data generated by commercial simulation

Vapor liquidStage Temperature0F lbhr CFS

ft3sV

lbft3

Lbhr GPM

galminL

σ

dynecm

μ

cP

1 1349 00 00 00 3655 1423 3202 6867 0114

2 1474 5501 12050 12683 3720 1447 3204 6738 01132

3 1548 5566 12049 12831 3724 1447 3208 6699 01128

4 1609 5571 11987 12909 3707 1438 3214 6684 01130

5 1668 5553 11889 12974 3693 1430 3220 6665 01135

6 1726 5539 11794 13045 3689 1426 3224 6632 01142

7 1779 5535 11716 13122 3691 1426 3226 6590 01149

8 1824 5537 11650 13199 8032 310471 3226 6544 01156

9 1873 5678 11794 13373 8126 3142 3224 6507 01153

10 1917 5772 11871 13506 8201 3171 3224 6479 01151

11 1961 5847 11915 13631 8275 3201 3223 6447 01152

12 2010 5921 11946 13768 8360 3235 3222 6406 01156

13 2064 6006 12152 13928 8475 3274 3220 6348 01162

14 2122 6103 12013 14111 8574 3321 3218 6295 01170

15 2179 6220 12070 14310 8701 3374 3215 6236 01180

16 2232 6347 12148 14512 8829 3428 3211 6178 01191

17 2280 6475 12234 14701 8947 3477 3208 6128 01201

18 2321 6593 12317 14868 2354 91599 3204 6087 01212

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 37

62 Flood Point

15 inch pall ring will be used throughout the column for this packing the flood point can

be determined by interpolation

A-flood point by GPDC [generalized pressure drop correlation] interpolation

2

2

6593

5571

fthrlbA

G

fthrlbA

G

TBottom

TTop

Liquid flowrates ( 2 fthrlb )

LTop =TA

3724

LBottom = TA

8947

Vapor density( 3 ftlb )

48681

31991

BottomG

TopG

Liquid density ( 3 ftlb )

2432

2632

BottomL

TopL

1 Flow parameter

L

GLV ρ

ρ

G

LF

Top 05

LV 3228

13199

5571

3724F

1352110FLV

Bottom LVF =

2432

48681

6593

8947

= 029142

2 Capacity parameter from graphical correlation

Top =152

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 38

Bottom =119

3 Viscosity of the liquid L (cP)

Top L =01128 (cP)

Bottom L =01151 (cP)

4 Kinematic viscosity

=

L

L

462

Top =

2632

11280462

Top = 0218187

Bottom =

2432

11510462

Bottom = 022277

5 Packing factor ( 1ft )

Top FP = 40

Bottom FP = 40

6 Vapour capacity factor CSFI(fts)

Capacity parameter = CSFI FP05 005

Top 05050SFI 2181040

921C

Top SFIC =02593

Bottom 05050SFI 2181040

191C

Bottom 20280CSFI

63 Flood point by the Kister amp Gill correlation

1 FTP packed bed specific pressure drop at flood point

FTP =0115 70PF

Top FTP =0115 7040

=1521

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 39

Bottom FTP =1521 inch of H2O per ft

2 Flow parameter

Top FLV =0135211

Bottom FLV =029142

3 Capacity parameter at flood point

Top =152

Bottom = 119

4 CSFl vapor capacity factor at the flood point

CSFl = capacity parameter

05050

1

PF

Top CSFl =02593

Bottom CSFl =02028

64 Diameter calculation

1 Vapor capacity factor Cs design (nonderated) fts

The column will be designed for 75 flood capacity

SFlS CC 750

Top CS = 075 02593

=0194475

Bottom CS = 075 02028

Bottom CS = 01551

2 CS vapor capacity factor (derated )fts

= 09 CSdesign

Top CS = 09 01944

Top CS =017496

Bottom CS =09 01521

Bottom CS =013689

3 Vapor superficial velocity based on the cross section of empty column u (fts)

GL

G

ss

ρρ

ρ

(derated)Cu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 40

Top su =

319912632

31991

174960

Top su =084737

Bottom su =

486812432

48681

136890

Bottom su = 062257

4 Vapor flow rate CFS ft3s

Top CFS =1205 ft3s

Bottom CFS =12316 ft3shellipfrom table

5 Tower area ft2

AT = s

T u

CFSA

Top AT = 847370

2051

Top AT =1422 ft2

Bottom AT = 622570

23161

Bottom AT =19782 ft2

6 Tower diameter ft

1587ftD

π

197824D

13455ftD

π

14224D

π

A4

BottomT

BottomT

TopT

TopT

TT

D

65 Diameter calculation using the maximum pressure drop criterion

1 L

G

calculation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 41

Top L

G

=2632

31991

= 00409

Bottom L

G

=2432

48681

= 004611

2OH

L

2

calculation

Top ( OHL 2 )=

4362

2632

= 05167

Bottom ( OHL 2 ) =

4362

2432

= 05164

3 FP packing factor

Top FP = 40

Bottom FP =40

4 Maximum pressure drops recommended for packed column with random packing

1902

70max

OH

LPFP

helliphelliphelliphellipfor 006 20L

G

Top maxP = 019 5167040 70

Top maxP = 12984helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

Bottom maxP = 019 5164040 70

Bottom maxP =12977helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

5 Surface tension dyne

Top =6544 cmdyne

Bottom =6128 cmdyne

6 Vapor capacity factor Csmax (fts)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 42

P

s

FCP

3342maxmax

Top 12984 =

5446

403342maxsC

Top maxsC =02634

Bottom 12977 =

1286

403342maxsC

Bottom maxsC =025628

7 Maximum vapor superficial velocity usmax

maxsC = usmax

GL

G

Top usmax =

319912632

31991

26340

= 12752

Bottom usmax =

486812432

48681

25620

=11651 fts

8 Tower area AT (ft2)

AT =smaxu

CFS

Top AT =27521

2051

Top AT =09449

Bottom AT = 16511

23161

= 1057 ft2

9 Tower diameter (ft)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 6: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 6

point)(bubblehpoint)(dewH

condition)(feedhpoint)(dewHq)1(

ff

ff

In the determination of the thermal conditions the average pressure should be

2ombolumnbuttcolumntop

feedstage

PPP

Use of the so found in the equation

avgi

idavgim

xR

1

Rm can be determined

314 Stage-Reflux co-relation

The two widely accepted co-relations are Gilliland correlations and the Erbor-Madox

corelations each relates the minimum column operating limits to the reflux and stage

actually required The values of reflux generally used lies in the range of

00201 mR

R

Fig 41 Gilliland stage-reflux co-relation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 7

The following analytical expressions for the Gilliland stage-reflux co-relations

440ln1050

1

1

1

XB

XY

N

NNY

R

RRX

B

m

m

315 Feed location (Kirkbride equation)

The Kirkbride equation yields the ratio of the number of theoretical stages in the rectifying

section lsquomrsquo to the number of theoretical stages in the stripping section lsquoprsquo

20602

distillateHK

bottomLK

feedLK

HK

x

x

x

x

D

B

p

m

and

Npm

Feed stage can be determined

32 The Winn equation

The Fenske equation has a weakness as the relative volatility difference between column

top and bottom increase the estimated minimum number of stages get increasingly too

small The relation relates the equilibrium K of component i and reference heavy key as

i

rii KK

Where amp are constant at fixed pressure Determination of A and B The equation has

the structure of a modified Antoine equation is

460

ln

T

BAPK i

ii

P is average column pressure and T is temperature (0F)

460

ln

T

BPKA i

topii

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 8

460

1

460

1

lnln

bottomtop

bottomitopi

i

TT

PKPKB

Winn equation amp can be obtained

rr

ir

i

r

ii APK

APK

PK

B

B

ln

ln

1 iPAAEXP rii

The Winn equation for two minimum number of stages require the use of mole

fraction and is as follows

LK

HKD

B

LKB

D

m

LK

x

x

x

x

N

ln

ln

Using molar flow rates

LK

LK

m

LK

HKd

b

b

d

N

ln

ln

The Winn equation molar form can be combined with the column component

material balance to estimate the fractionation of the nonkey components

d 1d

b

D

B

d

d

b

fbd

i

θ1θi

HK

N

i

iii

m

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 9

componentheavy

componentlight

bd 1d

b

bfd

d

b1

d

bf

b

bd 1d

b

iii

iii

i

ii

i

iii

iii

i

ii

dfb

d

b

fd

1

Three basic energy inputoutput location within the fractionation column system The

energy associated with the feed preheats QF This energy requirement must be consistent

with the degree of feed vaporization and is obtained by enthalpy balance

FFF hHFQ

HF amp hF are in Btulb of feed The condenser duty Qc is obtained by writing an energy

balance around the condenserreflux drum

L = RD

V = D 1 R

Case 1 ndash all-liquid distillate

QC = D DV hHR 1

Case 2 ndash all vapor distillate

DVDVC HHDhHRDQ

Case -3 distillate is liquid and vapor

Qc = D R (Hv - hD) + Vapor (Hv - HD)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 10

Hv- enthalpy of vapor entering the condenser

HD - enthalpy of vapor leaving the drum accumulator

hD- enthalpy of liquid leaving the drum

with the condenser duty calculated the reboiler duty QR can be obtained as

QR=Qc+[DV HD+DLhD]+B hB-F HF

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 11

Chapter -4

Packed Tower

41 Packing Hydraulics

At low liquid flow rates the open cross sectional area of the packing is about the same as in

a dry bed The pressure drop is entirely by frictional losses through a series of opening and

proportional to the square of gas flow rate In random packing the pressure drop is due to

expansion contraction and changes of direction A portion of the gas kinetic energy is

used to support the liquid the column and the pressure drop becomes proportional to the gas

rate raised to power different The point where the packing voids fill up with liquid ie

when tower operation switches from vapor continuous to liquid continuous is termed phase

inversion For all liquid flow rates as gas flow rate is raised a point is reached when the gas

velocity begins to interfere with the free drainage of liquid The accumulation of liquid

reduces the cross section area available for gas flow and therefore accelerates the pressure

drop rise Further increase in gas rate more liquid accumulates until the liquid surface

becomes continuous across the top of packing

Efficiency flow regimes

When the liquid distribution is poor it will take more liquid to wet the entire bed Turbulent

liquid film produces good wetting of the packing and essentially contact efficiency As

liquid rate increases more vapor is entrained down the bed These drops efficiency

Because structured packing permits far less lateral movement of fluid than random

packings

Flood point

Appearance of liquid on top of the bed excessive entrainment a sharp rise in pressure

drop a sharp rise in liquid hold up and a sharp drop in efficiency flood point can be

predicted far more reliably than packing pressure drop and maximum operational capacity

Pressure drop

This is often used to specify packed tower capacity In small columns (lt3 ft in dia )

pressure drop varies with tower diameter With random packings smaller the tower

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 12

diameter the lower the pressures drop possibly due to enhancement of wall effects Dry

packed beds have a higher-pressure drop than wet ndash packed beds Pressure drop

measurement under deep vacuum (lt50 mmHg) is affected by the pressure drop and the

pressure gradient along the bed Pressure drop measurements in a pressure tower include

the static head of the vapor To obtain the actual packing pressure drop the static head

must be subtracted from pressure drop measurement Pressure drop for foaming systems

are higher than for non-foaming systems

42 Flood Point Prediction

421 Sherwood ndashEckert generalized pressure drop correlation (GPDC)

The Sherwood ndashEckert GPDC chart has been the standard of the industry for predicting

flood points and pressure drops

GPDC chart ordinate describes the balance between the vapor momentum force that acts

to entrain swarms of liquid droplets and the gravity force that resists the upward

entrainment GPDC chart abscissa is the flow parameter the ratio of liquid kinetic energy

to vapor kinetic energy

422 The Kister and Gill correlation

Zens discovered that packing pressure drop at the flood point decreases as the packing

capacity increases A simple flood point correlation

FLP =0115 70PF

this equation expresses pressure drop at the flood point as a function of packing factor

alone Once this pressure drop is known the flood velocity can be calculated The flood

velocity calculated by the Kister and Gill correlation is tolerant to inaquaracies in flood

pressure drop predictions

43 Pressure Drop Prediction By GPDC Interpolation

Interpolation of pressure drop data is more accurate than correlation prediction

Superimposing experimental data points on the curves of generalized pressure correlation

chart converts the GPDC chart into an interpolation chart Pressure drops are calculated by

interpolating the plotted pressure drop data For all charts (random structured or grid

packings) the abscissa of the correlation is the flow parameter given by

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 13

50

L

GLV G

LF

And the ordinate of correlation as the capacity parameter given by

GL

GSS uC

FP is the packing factor which is an empirical factor characteristics of the packing size

and shape

44 Packing factors

Several of the predictive methods above use a packing factor to account for the type and

size of packing With the evolutions of the general pressure drop correlation the packing

factor shifted away from the ratio ap ε3 to become an imperial constant that must be

experimentally determined for each packing

Loading point

The point of transition from the preloading regime to the loading regime is termed the

loading point It is the point where liquid hold up starts increasing with gas velocity rapid

deterioration in efficiency loading point where the flow rate at which the vapor phase

bagans to interact with the liquid phase to increase interfacial area in a packed column the

loading points occurs at 70 percent of the flood point

Pressure drop

Packed tower are designed so that the pressure drop at any point in the tower does not

exceed a recommended maximum value Maximum pressure drop criterioa for packed

tower are listed in table

Average pressure drop

Specific pressure drop can be calculated at the top of the bed and at the bottom of the bed

the average pressure drop is

25050 5050 bottomtop PPP

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 14

Type of system Maximum pressure drop in of water ft

packing

Atmospheric fractionator 05-100

Low to medium pressure fractioantor 07-10

High pressure distillation

006ltρG ρGlt 020

020lt ρGρL

019 )( 270

OHGPF

0099 )( 270

OHGPF

Vacuum distillation 001-06

Liquid holdup

Liquid holdup is the liquid present in the void spaces of packing At flooding

essentially all the voids are filled with liquids or froth Reasonable liquid holdup is

necessary for good mass transfer and efficient tower operation but beyond that it should

be kept low

Static holdup is liquid remaining on the packing after it has been fully wetted and

drained for long time The contributation of static holdup to mass transfer rates is limited

Operational holdup is liquid on the packing attributed to dynamic operation and is defined

as the difference between total holdup and static holdup

Minimum Wetting Rate

The minimum wetting rate (MWR) is the lower stability limit of packing It is liquid

below which the falling liquid film breaks up and the liquid storage causes wetting of the

packing surface Gravity and viscous forces resists dewetting the surface tension and vapor

shear forces tend to dewett the falling film The MWR therefore rises with an increase in

surface tension and liquid density and with decrease in liquid viscosity

A thumb rule cited by Ludwi

QMW =3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 15

Underwetting

Underwetting is a packing surface phenomenon which brakes up liquid film

The tendency of liquid film to break is expressed by a contact angle A contact angle of

zero indicates perfect wetting an angle of 1800 indicates no wetting

The contact angle depends both on surface and a liquid and is a strong function of

composition Changing a material and surface roughness of the packing may significantly

affect the efficiency in system susceptible to underwetting

45 The HETP concept

The concept of HETP (height equivalent to theoretical plates) was introduced to

enable to comparison of efficiency between packed and plate columns HETP is defined as

HETP = Hn

A similar HETP value can be obtained for plate column if the tray spacing is known

HETP (trayed column) = 100 timesSE

The HETP approach is suitable for multicomponent systems while HTU approach is

difficult to apply for this

HETP prediction

Because there are only few variables that significantly affect HETP of random

packings For small diameter column the rule of thumb presented by Frank Ludig Vital

et al are identical The more conservative cause predicted from

HETP =15 dp helliphellipfor Pall rings or similar high efficiency packing

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 16

Chapter -5

Distillation Design

Problem statement-

A butane-pentane splitter is to be designed to process 4200 lbhr of C3 ndashC5 feed subjected to

specifications of

1maximum 3 of i-C5 in the distillate

2maximum 1 of C4 in the bottom product

The feed sink will be air (process design temperature) to be 130 0F

Components Wt molwt lbh molh

C3 5 441 210 4762

i-C4 15 581 630 10843

C4 25 581 1050 18072

i-C5 20 721 840 11651

C5 35 721 1470 20388

4200 65716

Solution-

Feed composition

Components lbgal(60F) galh Vol mol

C3 422 4976 592 725

i-C4 469 13433 1397 165

C4 487 21501 2563 275

i-C5 520 16154 192 1773

C5 525 28000 328 3102

Total 84124 100 100

Average molecular weight 650716

4200

= 6391

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 17

Average liquid density = 420065716

= 4993lbgal

x = mass of c4 in the bottom(i-wt)

y =mass of i-c5 in the distillate(3 wt)

51 Component Split

Assuming that the C3 and i-C5 have negligible concentration in the bottom and C5 has

negligible concentration in the distillate

Components F D B

C3 210 210 0

i-C4 630 630 0

C4 1050 (1050-x) x

i-C5 840 y (840-y)

C5 1470 0 1470

Total 4200 1890-x+y 2310+x-y

F =B+D

4200 =2310 + x ndashy +1890 ndashx + y

Distillate specification 3 in of i-c5 in distillate

yx

y

18900030

567 ndash 003 x -097 y =0

003 x + 097 y =567

Bottom specification 1 C4 in the bottom

003 yx

x

2310

231 -001 x + 001 y = x

099 x + 001 y = 231

x = 2275

y = 5775

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 18

Components D lbh B lbh D lbmolh B lbmolh

C3 210 0 4762 0

i-C4 630 0 10843 0

C4 102725 2275 1768 039

i-C5 5725 78225 0801 1085

C5 0 1470 0 20388

Total 1925 2275 34086 3163

52 Dew Point and Bubble Point calculation

1 The distillate and reflux will be a bubble point liquid The criteria for evaluation of

the bubble point condition are

1 like an air fin condenser to liquefy the distillate and reflux The criteria of

drum temperature will be assumed to be 130F ( design temperature for air is

about 120F

2 the bubble point design equation with temperature specified

01 ii xK

Average molecular weight of distillate

Components xid Ki

C3 01397 21

i-C4 03181 10

C4 05187 073

i-C5 00235 033

C5 0 027

For fixed temperature of 130F bubble point pressure is to be determined

4656 wtmolxid

9980 iDi xK

Pestimated = Pi-c4 = 120 lbin2

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 19

001

9980120calculatedP

= 1197 lbin2 (abs)

The result of distillate bubble point calculation is

T = 130 0F

P = 120 lbin2

The condition at the top of the column must be evaluated since the fractionator has a

total concentration and an equilibrium stage The criteria for evaluation of the dew

point condition are

Assumption of the pressure drop through the total condenser of 25 lbin2Thus the

pressure at the top of the column is established as

P = 120 lbin2 + 25 lbin2

P = 1225 lbin2

Dew point

01

i

i

k

y

Plk =1225 lbin2 T= 1320F

Components yi Ki1320

F Ki1450

F

C3 01397 220 240

i-C4 03181 100 115

C4 05187 073 085

i-C5 00235 035 042

C5 00000 028 033

For T =1320F

01

i

i

k

y

Kic4 = 1160 and Tcal =1450F

For T =1450F

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 20

01

i

i

k

y

The result of column top dew point calculation

T =1450F

P = 1225 lbin2

The column bottom condition Column ΔP =5 lbin2

The column bottom pressure

P = 1225 + 50 = 1275 lbin2

The bubble point design equation

ΣKiXi=10

Components B(mol) X

C3 0 0

i-C4 0 0

C4 0392 00124

i-C5 1085 03430

C5 20388 06446

3163 100

Average molecular wt = 6331

22750 =7193

The characteristic component is i-c5 an estimated bottom temperature is obtained

Components Xi Ki2380

F Ki2150

F

C3 0 38 45

i-C4 0 355 265

C4 00124 1925 205

i-C5 03430 10 1075

C5 06446 087 094

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 21

For T = 238 0F

ΣKiXi=0927

KHK = 108 Tcal =245 0F

For T =245 0F

ΣKiXi=100

The result of column bottom bubble point calculation

T =245 0F

P =1275 lbin2

53 Determination of the key component

Using the heavy key as column reference key The separation is clearly between

butane and isopentane

Reference component =i-C5

Key component

LK =C4

HK =iC5

The average relative volatility data for the column will be generated using three-point

geometric average

3321 avg

Point 1 ndash top of fractionation column

Point 2 ndash at the reboiler

Point 3 ndash arithmetic mean of condition at 1 amp 3

T2 = 05 [ T1 + T2 ] = 05 [ T1 + T2 ]

T2 = 05 [ 145 + 245 ] = 195 0F

P2 = 05 [ P1 + P3 ] = 05 [ 1225 +1275 ]

P2 = 125 lbin2

variable Point 1 Point 2 Point 3

T oF 145 195 245

P lbin2 1225 125 1275

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 22

Components Point 1 Point 2 Point 3

Ki αi Ki αi Ki αi αavg

C3 24 571 335 493 45 419 49

i-C4 115 274 175 257 25 237 256

C4 085 202 135 199 205 191 197

i-C5 024 100 068 100 1075 100 100

C5 033 079 058 085 094 087 084

54 Shortcut Method

541 Minimum stages at total reflux-the Fenske equation

LKavg

BLk

HK

DHK

LK

m

x

x

x

x

Nln

ln

Fi = bi + di

avgmeanavgiiir

rNavgi

i dbb

d

b

d for min

mN

avgHK

avgi

HK

ii

b

d

fb

1

or when ii db meanavgavgi

mN

avgi

avgLK

LK

ii

d

b

fd

1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 23

971ln

01240

3430

02350

51870ln

mN

4619mN

2

avgLKavgHKmean

2

001971

= 1485

For propaneC3

meanC 3

7624

904

3

3

C

C

f

4619

001

904

85010

80101

76243Cb

hmold

hmol

C 7624007624

1091

3

5

For isobutene(i-C4)

84310

562

4

4

4

iC

Ci

meanCi

f

4619

1

562

8500

80101

843104iCb

hmol 020

823104iCd

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 24

For butane (C4)

07218

971

4

4

C

C

meanavgi

f

4619

001

971

8510

80101

072184Cb

hmold

d

hmolb

C

C

C

68817

392007218

3920

4

4

4

For isopentane (i-C5)

meanavgiC

iCiC hmolf

5

5565111001

Hence

4619

001

971

6817

39201

651115iCd

hmolb

hmold

iC

iC

8510801065111

8010

5

5

For pentane (C5)

hmolb

hmold

d

C

C

C

meanavgC

C

105320

2850

840

971

6817

39201

38820

840

5

5

5

5

5

4619

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 25

The calculated data in the table

Components Fi(lbmolh) Di(lbmolh) Bi(lbmolh)

C3 4762 4762 0

i-C4 10834 10823 002

C4 18072 17680 0392

i-C5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Checking

Maximum 3wt of iC5 in the distillate

9772

1004656

172

35134

8010

wt

Maximum of 1 wt C4 in the bottom

011

1009371

158

36531

3920

wt

The set of specification were not met The parameter reevaluated

Again performing same calculations

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 1050-x x

i-C5 840 y 840-y

C5 1470 2055 144945

Total 190939-x+y 229061+x-y

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 26

3658

5522

612290100

1

391909100

3

y

x

yx

x

yx

y

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 102745 2255

i-C5 840 5836 78164

C5 1470 2055 144945

Total 4200 194520 224580

Components F(lbmolh) D(lbmolh) B(lbmolh)

C3 4762 4762 0

i-c4 10834 10823 002

C4 18072 17680 0392

i-c5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Column operating condition

Distillate bubble point calculation on with temperature specified at 130 0F

Components D (lbmolh) K120 (lbin2)

C3 4762 210

i-C4 10823 10

C4 17680 073

i-C5 0801 033

C5 0285 027

Total 34351

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 27

992036334

07634

001

ii

iiii

xK

D

dKxK

Condition of the distillatereflux before 130 0F amp 120 lbin2overhead or column top

conditions are found by dew point calculation at the specified pressure of 1225lbin2

Components D (lbmolh) K1450

F K148 0

F

C3 4762 24 2425

i-C4 10823 116 1175

C4 17680 084 087

i-C5 0801 042 0425

C5 0285 033 034

01D

K

d

K

y i

i

i

i

For T=145 0F

018136334

9934

i

i

K

y K=1175 Tcal=148 0F

For T=148 0F

997036334

24334

i

i

K

y

Conditions of column overhead are revised to 148 0F and 1225lbin2column bottom

conditions are found by way of bubble point calculation

Components B(lbmolh) K2450

F

C3 0 45

i-C4 002 255

C4 0392 205

i-C5 10850 1075

C5 20103 094

Total 31365

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 28

Design equation

001B

bKxK ii

ii

For T =245 0F

00139331

39831ii xK

At column midpoint condition

2

0

1255127512250

519624514850

inlbP

FT

Summery of operating condition

Point 1 Point 2 Point 3

Temperature 148 1965 245

Pressure lbin2 (abs) 1225 125 1275

Equilibrium K data for column midpoint condition

Point 1 Point 2 Point 3

Components Ki i Ki i Ki i avgi

C3 2425 571 34 486 45 419 488

i-C4 1175 276 18 257 255 237 256

C4 087 205 138 197 205 191 198

i-C5 0425 100 07 10 1075 10 10

C5 034 08 06 086 094 087 084

Fenske equation

3919

001

981ln

3880

84210

8090

68417ln

m

m

N

N

Separation of non key component

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 29

4912

100198

2

avgLKavgHK

mean

molh09220bmolh 2920d

molh38820f840

)(CPentane

molh8090dmolh 84210b

molh65111f001

)C-(itan

68417dmolh 3880b

molh07218f981

)(CButane

hmol 82210d h mol0210b

hmol84310f562

)C-(iIsobutane

molh76240007624d

molh000molh101882

001

884

84210

80901

7624

7624f884

)(Cropane

C5C5

C5C5

5

C5-iC5-i

C5-iiC5

5

C4C4

C4C4

4

iC4iC4

iC4iC4

4

33C3

5

39193

C3C3

3

lblb

lb

lblb

lb

eIsopen

hlbmollb

lblb

lb

lbbf

lblbb

hmol

P

CC

C

Components Feed (lbmolh) Distillate (lbmolh) Bottom (lbmolh)

C3 4762 4762 0000

i-C4 10843 10822 0021

C4 18072 17684 03880

i-C5 11651 0809 10842

C5 20388 0292 20096

Total 65716 34369 31347

Maximum value of 3 wt of i-C5 in distillate is required

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 30

Calculated value =

wt 3

1004956

172

36934

8090

Maximum value of 1 wt of C4 in bottom is required

Calculated value

wt 1

1009163

158

34731

3880

Conditions are satisfied

542 Component split by Winn equation

The Fenske equation has a weakness as the relative volatility difference between

column top and bottom increase the estimated minimum number of stages gets

increasingly too small

460

1

460

1

lnln

bottomtop

bottomitopi

i

TT

PKPKB

460

ln

T

BAPK i

ii

110 irHKi PAAi

r

ii B

B

Components KTop148 F Kbottom245 F

C3 2425 450

i-C4 1175 255

C4 087 205

i-C5 0425 1075

C5 034 094

For P=125 lbin2

For butane (C4)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 31

550594460148

)271263()42525122log(

271263

460245

1

460148

1545127log42525122log

4

4

C

C

A

B

Heavy component is iso-pentane( i-C5)

955824460148

)711857()42505122log(

680010717185

271263

711857

460245

1

460148

1

07515127log4250125log

5

4

5

Ci

C

Ci

A

A

B

311344

)125(10

10)1680010()955824550594(

1

irHKi PAAi

Components Bi Ai θi βi

C3 -126327 45509 068001 43113

i-C4 -156377 473016 084177 24069

C4 -172167 48593 092677 191988

i-C5 -185771 49558 100000 10000

C5 -202840 49558 109189 086704

5339

919881log

)369348090(

)3473484210(

)347313880(

)3693468417(log

m

m

N

N

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 32

abvg

1

bdcomponent

orlightif

D

B

d

bb

d

HK

N

i

im

d

b1

fd

2dbkeyheavy

1

avgHKLKif

b

df

b

componentlight propanefor

5

032068

9533

101976

09120713402

4311

b

d

7624

0001097611

76245

bfd

b

For isobutene (i-C4)

f =10843 θ =0842 β =2407 (light component)

lh10821lbmo

002210843d

h0022lbmol

494151

10843b

4941509120713402

2407

b

d08417108417

9533

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 33

For Butane (C4)

f =18072 β=191988θ=092677

h0388lbmol

455771

18072b

4557709120713402

191988

b

d0926771092677

9533

d=18072-0388

=17684 lbmolh

For Isopentane (C5)

f =11651 β =100 θ =100

111

5339

91207040213

00001

b

d

=007461

βltβavg

)0746101(1

65111

d

= 0809 lbmolh

b = 11651-0809

=10842 lbmolh

For Pentane (C5)

f =20388 lbmolh β= 086704 θ =109189

0918911091891

5339

91207040213

867040

b

d

=0014959

βltβavg

)01495901(1

38820

d

= 0300 lb molh

b=20388-03

=20088

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 34

Components Feed lbmolh Distillate lbmolh Bottom lbmolh

C3 4762 4762 000

i-C4 10843 10821 0022

C4 18072 17684 0388

i-C5 11651 0809 10842

C5 20388 03 20088

65716 34376 3134

Components Feed lbh Distillate lbh Bottom lbh

C3 210 210 000

i-C4 630 62872 128

C4 1050 102745 2257

i-C5 840 5836 78164

C5 1470 2163 1448348

4200 194602 2253818

543 Calculation of Rm

From Underwood equation

qx

i

iFi

1

Components Flbmolhr xif xid αi

C3 4762 00725 01386 488

i-C4 10843 01650 03149 256

C4 18072 02750 05145 198

i-C5 11651 01773 002335 100

C5 20388 03102 00085 084

65716 1000 1000

Feed is at boiling conditions since q =1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 35

0840

31020840

1

177301

981

27500981

562

16500562

884

07250884

θ =1284

from this value of θ

avgi

idavgim

xR

1

11284840

00850840

12841

023501

1284981

51450981

1284562

31490562

1284884

13860884

mR

Rm=1185

R=15 Rm

=15times1185

=17775

X=1

R

RR m

X=177751

185177751

=02133

From GillilandrsquoS correlation Y=1

N

NN m =042

We know the value of Nm 4201

5339

N

N

N=178 =18 stages

Feed location can be known by the use of Kirkbride equation

2

)376348090(

)34313880(

)07218(

)65111(

37634

34312060log

F

F

p

m

687890p

m

817 pm

m = 725=8

p =1054 =11

Feed is introduced on eight stage from top

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 36

Chapter- 6

PACKED COLUMN DESIGN

61 Stage AnalysisThe data shown in table are typical data generated by commercial simulation

Vapor liquidStage Temperature0F lbhr CFS

ft3sV

lbft3

Lbhr GPM

galminL

σ

dynecm

μ

cP

1 1349 00 00 00 3655 1423 3202 6867 0114

2 1474 5501 12050 12683 3720 1447 3204 6738 01132

3 1548 5566 12049 12831 3724 1447 3208 6699 01128

4 1609 5571 11987 12909 3707 1438 3214 6684 01130

5 1668 5553 11889 12974 3693 1430 3220 6665 01135

6 1726 5539 11794 13045 3689 1426 3224 6632 01142

7 1779 5535 11716 13122 3691 1426 3226 6590 01149

8 1824 5537 11650 13199 8032 310471 3226 6544 01156

9 1873 5678 11794 13373 8126 3142 3224 6507 01153

10 1917 5772 11871 13506 8201 3171 3224 6479 01151

11 1961 5847 11915 13631 8275 3201 3223 6447 01152

12 2010 5921 11946 13768 8360 3235 3222 6406 01156

13 2064 6006 12152 13928 8475 3274 3220 6348 01162

14 2122 6103 12013 14111 8574 3321 3218 6295 01170

15 2179 6220 12070 14310 8701 3374 3215 6236 01180

16 2232 6347 12148 14512 8829 3428 3211 6178 01191

17 2280 6475 12234 14701 8947 3477 3208 6128 01201

18 2321 6593 12317 14868 2354 91599 3204 6087 01212

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 37

62 Flood Point

15 inch pall ring will be used throughout the column for this packing the flood point can

be determined by interpolation

A-flood point by GPDC [generalized pressure drop correlation] interpolation

2

2

6593

5571

fthrlbA

G

fthrlbA

G

TBottom

TTop

Liquid flowrates ( 2 fthrlb )

LTop =TA

3724

LBottom = TA

8947

Vapor density( 3 ftlb )

48681

31991

BottomG

TopG

Liquid density ( 3 ftlb )

2432

2632

BottomL

TopL

1 Flow parameter

L

GLV ρ

ρ

G

LF

Top 05

LV 3228

13199

5571

3724F

1352110FLV

Bottom LVF =

2432

48681

6593

8947

= 029142

2 Capacity parameter from graphical correlation

Top =152

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 38

Bottom =119

3 Viscosity of the liquid L (cP)

Top L =01128 (cP)

Bottom L =01151 (cP)

4 Kinematic viscosity

=

L

L

462

Top =

2632

11280462

Top = 0218187

Bottom =

2432

11510462

Bottom = 022277

5 Packing factor ( 1ft )

Top FP = 40

Bottom FP = 40

6 Vapour capacity factor CSFI(fts)

Capacity parameter = CSFI FP05 005

Top 05050SFI 2181040

921C

Top SFIC =02593

Bottom 05050SFI 2181040

191C

Bottom 20280CSFI

63 Flood point by the Kister amp Gill correlation

1 FTP packed bed specific pressure drop at flood point

FTP =0115 70PF

Top FTP =0115 7040

=1521

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 39

Bottom FTP =1521 inch of H2O per ft

2 Flow parameter

Top FLV =0135211

Bottom FLV =029142

3 Capacity parameter at flood point

Top =152

Bottom = 119

4 CSFl vapor capacity factor at the flood point

CSFl = capacity parameter

05050

1

PF

Top CSFl =02593

Bottom CSFl =02028

64 Diameter calculation

1 Vapor capacity factor Cs design (nonderated) fts

The column will be designed for 75 flood capacity

SFlS CC 750

Top CS = 075 02593

=0194475

Bottom CS = 075 02028

Bottom CS = 01551

2 CS vapor capacity factor (derated )fts

= 09 CSdesign

Top CS = 09 01944

Top CS =017496

Bottom CS =09 01521

Bottom CS =013689

3 Vapor superficial velocity based on the cross section of empty column u (fts)

GL

G

ss

ρρ

ρ

(derated)Cu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 40

Top su =

319912632

31991

174960

Top su =084737

Bottom su =

486812432

48681

136890

Bottom su = 062257

4 Vapor flow rate CFS ft3s

Top CFS =1205 ft3s

Bottom CFS =12316 ft3shellipfrom table

5 Tower area ft2

AT = s

T u

CFSA

Top AT = 847370

2051

Top AT =1422 ft2

Bottom AT = 622570

23161

Bottom AT =19782 ft2

6 Tower diameter ft

1587ftD

π

197824D

13455ftD

π

14224D

π

A4

BottomT

BottomT

TopT

TopT

TT

D

65 Diameter calculation using the maximum pressure drop criterion

1 L

G

calculation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 41

Top L

G

=2632

31991

= 00409

Bottom L

G

=2432

48681

= 004611

2OH

L

2

calculation

Top ( OHL 2 )=

4362

2632

= 05167

Bottom ( OHL 2 ) =

4362

2432

= 05164

3 FP packing factor

Top FP = 40

Bottom FP =40

4 Maximum pressure drops recommended for packed column with random packing

1902

70max

OH

LPFP

helliphelliphelliphellipfor 006 20L

G

Top maxP = 019 5167040 70

Top maxP = 12984helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

Bottom maxP = 019 5164040 70

Bottom maxP =12977helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

5 Surface tension dyne

Top =6544 cmdyne

Bottom =6128 cmdyne

6 Vapor capacity factor Csmax (fts)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 42

P

s

FCP

3342maxmax

Top 12984 =

5446

403342maxsC

Top maxsC =02634

Bottom 12977 =

1286

403342maxsC

Bottom maxsC =025628

7 Maximum vapor superficial velocity usmax

maxsC = usmax

GL

G

Top usmax =

319912632

31991

26340

= 12752

Bottom usmax =

486812432

48681

25620

=11651 fts

8 Tower area AT (ft2)

AT =smaxu

CFS

Top AT =27521

2051

Top AT =09449

Bottom AT = 16511

23161

= 1057 ft2

9 Tower diameter (ft)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 7: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 7

The following analytical expressions for the Gilliland stage-reflux co-relations

440ln1050

1

1

1

XB

XY

N

NNY

R

RRX

B

m

m

315 Feed location (Kirkbride equation)

The Kirkbride equation yields the ratio of the number of theoretical stages in the rectifying

section lsquomrsquo to the number of theoretical stages in the stripping section lsquoprsquo

20602

distillateHK

bottomLK

feedLK

HK

x

x

x

x

D

B

p

m

and

Npm

Feed stage can be determined

32 The Winn equation

The Fenske equation has a weakness as the relative volatility difference between column

top and bottom increase the estimated minimum number of stages get increasingly too

small The relation relates the equilibrium K of component i and reference heavy key as

i

rii KK

Where amp are constant at fixed pressure Determination of A and B The equation has

the structure of a modified Antoine equation is

460

ln

T

BAPK i

ii

P is average column pressure and T is temperature (0F)

460

ln

T

BPKA i

topii

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 8

460

1

460

1

lnln

bottomtop

bottomitopi

i

TT

PKPKB

Winn equation amp can be obtained

rr

ir

i

r

ii APK

APK

PK

B

B

ln

ln

1 iPAAEXP rii

The Winn equation for two minimum number of stages require the use of mole

fraction and is as follows

LK

HKD

B

LKB

D

m

LK

x

x

x

x

N

ln

ln

Using molar flow rates

LK

LK

m

LK

HKd

b

b

d

N

ln

ln

The Winn equation molar form can be combined with the column component

material balance to estimate the fractionation of the nonkey components

d 1d

b

D

B

d

d

b

fbd

i

θ1θi

HK

N

i

iii

m

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 9

componentheavy

componentlight

bd 1d

b

bfd

d

b1

d

bf

b

bd 1d

b

iii

iii

i

ii

i

iii

iii

i

ii

dfb

d

b

fd

1

Three basic energy inputoutput location within the fractionation column system The

energy associated with the feed preheats QF This energy requirement must be consistent

with the degree of feed vaporization and is obtained by enthalpy balance

FFF hHFQ

HF amp hF are in Btulb of feed The condenser duty Qc is obtained by writing an energy

balance around the condenserreflux drum

L = RD

V = D 1 R

Case 1 ndash all-liquid distillate

QC = D DV hHR 1

Case 2 ndash all vapor distillate

DVDVC HHDhHRDQ

Case -3 distillate is liquid and vapor

Qc = D R (Hv - hD) + Vapor (Hv - HD)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 10

Hv- enthalpy of vapor entering the condenser

HD - enthalpy of vapor leaving the drum accumulator

hD- enthalpy of liquid leaving the drum

with the condenser duty calculated the reboiler duty QR can be obtained as

QR=Qc+[DV HD+DLhD]+B hB-F HF

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 11

Chapter -4

Packed Tower

41 Packing Hydraulics

At low liquid flow rates the open cross sectional area of the packing is about the same as in

a dry bed The pressure drop is entirely by frictional losses through a series of opening and

proportional to the square of gas flow rate In random packing the pressure drop is due to

expansion contraction and changes of direction A portion of the gas kinetic energy is

used to support the liquid the column and the pressure drop becomes proportional to the gas

rate raised to power different The point where the packing voids fill up with liquid ie

when tower operation switches from vapor continuous to liquid continuous is termed phase

inversion For all liquid flow rates as gas flow rate is raised a point is reached when the gas

velocity begins to interfere with the free drainage of liquid The accumulation of liquid

reduces the cross section area available for gas flow and therefore accelerates the pressure

drop rise Further increase in gas rate more liquid accumulates until the liquid surface

becomes continuous across the top of packing

Efficiency flow regimes

When the liquid distribution is poor it will take more liquid to wet the entire bed Turbulent

liquid film produces good wetting of the packing and essentially contact efficiency As

liquid rate increases more vapor is entrained down the bed These drops efficiency

Because structured packing permits far less lateral movement of fluid than random

packings

Flood point

Appearance of liquid on top of the bed excessive entrainment a sharp rise in pressure

drop a sharp rise in liquid hold up and a sharp drop in efficiency flood point can be

predicted far more reliably than packing pressure drop and maximum operational capacity

Pressure drop

This is often used to specify packed tower capacity In small columns (lt3 ft in dia )

pressure drop varies with tower diameter With random packings smaller the tower

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 12

diameter the lower the pressures drop possibly due to enhancement of wall effects Dry

packed beds have a higher-pressure drop than wet ndash packed beds Pressure drop

measurement under deep vacuum (lt50 mmHg) is affected by the pressure drop and the

pressure gradient along the bed Pressure drop measurements in a pressure tower include

the static head of the vapor To obtain the actual packing pressure drop the static head

must be subtracted from pressure drop measurement Pressure drop for foaming systems

are higher than for non-foaming systems

42 Flood Point Prediction

421 Sherwood ndashEckert generalized pressure drop correlation (GPDC)

The Sherwood ndashEckert GPDC chart has been the standard of the industry for predicting

flood points and pressure drops

GPDC chart ordinate describes the balance between the vapor momentum force that acts

to entrain swarms of liquid droplets and the gravity force that resists the upward

entrainment GPDC chart abscissa is the flow parameter the ratio of liquid kinetic energy

to vapor kinetic energy

422 The Kister and Gill correlation

Zens discovered that packing pressure drop at the flood point decreases as the packing

capacity increases A simple flood point correlation

FLP =0115 70PF

this equation expresses pressure drop at the flood point as a function of packing factor

alone Once this pressure drop is known the flood velocity can be calculated The flood

velocity calculated by the Kister and Gill correlation is tolerant to inaquaracies in flood

pressure drop predictions

43 Pressure Drop Prediction By GPDC Interpolation

Interpolation of pressure drop data is more accurate than correlation prediction

Superimposing experimental data points on the curves of generalized pressure correlation

chart converts the GPDC chart into an interpolation chart Pressure drops are calculated by

interpolating the plotted pressure drop data For all charts (random structured or grid

packings) the abscissa of the correlation is the flow parameter given by

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 13

50

L

GLV G

LF

And the ordinate of correlation as the capacity parameter given by

GL

GSS uC

FP is the packing factor which is an empirical factor characteristics of the packing size

and shape

44 Packing factors

Several of the predictive methods above use a packing factor to account for the type and

size of packing With the evolutions of the general pressure drop correlation the packing

factor shifted away from the ratio ap ε3 to become an imperial constant that must be

experimentally determined for each packing

Loading point

The point of transition from the preloading regime to the loading regime is termed the

loading point It is the point where liquid hold up starts increasing with gas velocity rapid

deterioration in efficiency loading point where the flow rate at which the vapor phase

bagans to interact with the liquid phase to increase interfacial area in a packed column the

loading points occurs at 70 percent of the flood point

Pressure drop

Packed tower are designed so that the pressure drop at any point in the tower does not

exceed a recommended maximum value Maximum pressure drop criterioa for packed

tower are listed in table

Average pressure drop

Specific pressure drop can be calculated at the top of the bed and at the bottom of the bed

the average pressure drop is

25050 5050 bottomtop PPP

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 14

Type of system Maximum pressure drop in of water ft

packing

Atmospheric fractionator 05-100

Low to medium pressure fractioantor 07-10

High pressure distillation

006ltρG ρGlt 020

020lt ρGρL

019 )( 270

OHGPF

0099 )( 270

OHGPF

Vacuum distillation 001-06

Liquid holdup

Liquid holdup is the liquid present in the void spaces of packing At flooding

essentially all the voids are filled with liquids or froth Reasonable liquid holdup is

necessary for good mass transfer and efficient tower operation but beyond that it should

be kept low

Static holdup is liquid remaining on the packing after it has been fully wetted and

drained for long time The contributation of static holdup to mass transfer rates is limited

Operational holdup is liquid on the packing attributed to dynamic operation and is defined

as the difference between total holdup and static holdup

Minimum Wetting Rate

The minimum wetting rate (MWR) is the lower stability limit of packing It is liquid

below which the falling liquid film breaks up and the liquid storage causes wetting of the

packing surface Gravity and viscous forces resists dewetting the surface tension and vapor

shear forces tend to dewett the falling film The MWR therefore rises with an increase in

surface tension and liquid density and with decrease in liquid viscosity

A thumb rule cited by Ludwi

QMW =3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 15

Underwetting

Underwetting is a packing surface phenomenon which brakes up liquid film

The tendency of liquid film to break is expressed by a contact angle A contact angle of

zero indicates perfect wetting an angle of 1800 indicates no wetting

The contact angle depends both on surface and a liquid and is a strong function of

composition Changing a material and surface roughness of the packing may significantly

affect the efficiency in system susceptible to underwetting

45 The HETP concept

The concept of HETP (height equivalent to theoretical plates) was introduced to

enable to comparison of efficiency between packed and plate columns HETP is defined as

HETP = Hn

A similar HETP value can be obtained for plate column if the tray spacing is known

HETP (trayed column) = 100 timesSE

The HETP approach is suitable for multicomponent systems while HTU approach is

difficult to apply for this

HETP prediction

Because there are only few variables that significantly affect HETP of random

packings For small diameter column the rule of thumb presented by Frank Ludig Vital

et al are identical The more conservative cause predicted from

HETP =15 dp helliphellipfor Pall rings or similar high efficiency packing

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 16

Chapter -5

Distillation Design

Problem statement-

A butane-pentane splitter is to be designed to process 4200 lbhr of C3 ndashC5 feed subjected to

specifications of

1maximum 3 of i-C5 in the distillate

2maximum 1 of C4 in the bottom product

The feed sink will be air (process design temperature) to be 130 0F

Components Wt molwt lbh molh

C3 5 441 210 4762

i-C4 15 581 630 10843

C4 25 581 1050 18072

i-C5 20 721 840 11651

C5 35 721 1470 20388

4200 65716

Solution-

Feed composition

Components lbgal(60F) galh Vol mol

C3 422 4976 592 725

i-C4 469 13433 1397 165

C4 487 21501 2563 275

i-C5 520 16154 192 1773

C5 525 28000 328 3102

Total 84124 100 100

Average molecular weight 650716

4200

= 6391

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 17

Average liquid density = 420065716

= 4993lbgal

x = mass of c4 in the bottom(i-wt)

y =mass of i-c5 in the distillate(3 wt)

51 Component Split

Assuming that the C3 and i-C5 have negligible concentration in the bottom and C5 has

negligible concentration in the distillate

Components F D B

C3 210 210 0

i-C4 630 630 0

C4 1050 (1050-x) x

i-C5 840 y (840-y)

C5 1470 0 1470

Total 4200 1890-x+y 2310+x-y

F =B+D

4200 =2310 + x ndashy +1890 ndashx + y

Distillate specification 3 in of i-c5 in distillate

yx

y

18900030

567 ndash 003 x -097 y =0

003 x + 097 y =567

Bottom specification 1 C4 in the bottom

003 yx

x

2310

231 -001 x + 001 y = x

099 x + 001 y = 231

x = 2275

y = 5775

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 18

Components D lbh B lbh D lbmolh B lbmolh

C3 210 0 4762 0

i-C4 630 0 10843 0

C4 102725 2275 1768 039

i-C5 5725 78225 0801 1085

C5 0 1470 0 20388

Total 1925 2275 34086 3163

52 Dew Point and Bubble Point calculation

1 The distillate and reflux will be a bubble point liquid The criteria for evaluation of

the bubble point condition are

1 like an air fin condenser to liquefy the distillate and reflux The criteria of

drum temperature will be assumed to be 130F ( design temperature for air is

about 120F

2 the bubble point design equation with temperature specified

01 ii xK

Average molecular weight of distillate

Components xid Ki

C3 01397 21

i-C4 03181 10

C4 05187 073

i-C5 00235 033

C5 0 027

For fixed temperature of 130F bubble point pressure is to be determined

4656 wtmolxid

9980 iDi xK

Pestimated = Pi-c4 = 120 lbin2

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 19

001

9980120calculatedP

= 1197 lbin2 (abs)

The result of distillate bubble point calculation is

T = 130 0F

P = 120 lbin2

The condition at the top of the column must be evaluated since the fractionator has a

total concentration and an equilibrium stage The criteria for evaluation of the dew

point condition are

Assumption of the pressure drop through the total condenser of 25 lbin2Thus the

pressure at the top of the column is established as

P = 120 lbin2 + 25 lbin2

P = 1225 lbin2

Dew point

01

i

i

k

y

Plk =1225 lbin2 T= 1320F

Components yi Ki1320

F Ki1450

F

C3 01397 220 240

i-C4 03181 100 115

C4 05187 073 085

i-C5 00235 035 042

C5 00000 028 033

For T =1320F

01

i

i

k

y

Kic4 = 1160 and Tcal =1450F

For T =1450F

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 20

01

i

i

k

y

The result of column top dew point calculation

T =1450F

P = 1225 lbin2

The column bottom condition Column ΔP =5 lbin2

The column bottom pressure

P = 1225 + 50 = 1275 lbin2

The bubble point design equation

ΣKiXi=10

Components B(mol) X

C3 0 0

i-C4 0 0

C4 0392 00124

i-C5 1085 03430

C5 20388 06446

3163 100

Average molecular wt = 6331

22750 =7193

The characteristic component is i-c5 an estimated bottom temperature is obtained

Components Xi Ki2380

F Ki2150

F

C3 0 38 45

i-C4 0 355 265

C4 00124 1925 205

i-C5 03430 10 1075

C5 06446 087 094

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 21

For T = 238 0F

ΣKiXi=0927

KHK = 108 Tcal =245 0F

For T =245 0F

ΣKiXi=100

The result of column bottom bubble point calculation

T =245 0F

P =1275 lbin2

53 Determination of the key component

Using the heavy key as column reference key The separation is clearly between

butane and isopentane

Reference component =i-C5

Key component

LK =C4

HK =iC5

The average relative volatility data for the column will be generated using three-point

geometric average

3321 avg

Point 1 ndash top of fractionation column

Point 2 ndash at the reboiler

Point 3 ndash arithmetic mean of condition at 1 amp 3

T2 = 05 [ T1 + T2 ] = 05 [ T1 + T2 ]

T2 = 05 [ 145 + 245 ] = 195 0F

P2 = 05 [ P1 + P3 ] = 05 [ 1225 +1275 ]

P2 = 125 lbin2

variable Point 1 Point 2 Point 3

T oF 145 195 245

P lbin2 1225 125 1275

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 22

Components Point 1 Point 2 Point 3

Ki αi Ki αi Ki αi αavg

C3 24 571 335 493 45 419 49

i-C4 115 274 175 257 25 237 256

C4 085 202 135 199 205 191 197

i-C5 024 100 068 100 1075 100 100

C5 033 079 058 085 094 087 084

54 Shortcut Method

541 Minimum stages at total reflux-the Fenske equation

LKavg

BLk

HK

DHK

LK

m

x

x

x

x

Nln

ln

Fi = bi + di

avgmeanavgiiir

rNavgi

i dbb

d

b

d for min

mN

avgHK

avgi

HK

ii

b

d

fb

1

or when ii db meanavgavgi

mN

avgi

avgLK

LK

ii

d

b

fd

1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 23

971ln

01240

3430

02350

51870ln

mN

4619mN

2

avgLKavgHKmean

2

001971

= 1485

For propaneC3

meanC 3

7624

904

3

3

C

C

f

4619

001

904

85010

80101

76243Cb

hmold

hmol

C 7624007624

1091

3

5

For isobutene(i-C4)

84310

562

4

4

4

iC

Ci

meanCi

f

4619

1

562

8500

80101

843104iCb

hmol 020

823104iCd

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 24

For butane (C4)

07218

971

4

4

C

C

meanavgi

f

4619

001

971

8510

80101

072184Cb

hmold

d

hmolb

C

C

C

68817

392007218

3920

4

4

4

For isopentane (i-C5)

meanavgiC

iCiC hmolf

5

5565111001

Hence

4619

001

971

6817

39201

651115iCd

hmolb

hmold

iC

iC

8510801065111

8010

5

5

For pentane (C5)

hmolb

hmold

d

C

C

C

meanavgC

C

105320

2850

840

971

6817

39201

38820

840

5

5

5

5

5

4619

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 25

The calculated data in the table

Components Fi(lbmolh) Di(lbmolh) Bi(lbmolh)

C3 4762 4762 0

i-C4 10834 10823 002

C4 18072 17680 0392

i-C5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Checking

Maximum 3wt of iC5 in the distillate

9772

1004656

172

35134

8010

wt

Maximum of 1 wt C4 in the bottom

011

1009371

158

36531

3920

wt

The set of specification were not met The parameter reevaluated

Again performing same calculations

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 1050-x x

i-C5 840 y 840-y

C5 1470 2055 144945

Total 190939-x+y 229061+x-y

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 26

3658

5522

612290100

1

391909100

3

y

x

yx

x

yx

y

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 102745 2255

i-C5 840 5836 78164

C5 1470 2055 144945

Total 4200 194520 224580

Components F(lbmolh) D(lbmolh) B(lbmolh)

C3 4762 4762 0

i-c4 10834 10823 002

C4 18072 17680 0392

i-c5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Column operating condition

Distillate bubble point calculation on with temperature specified at 130 0F

Components D (lbmolh) K120 (lbin2)

C3 4762 210

i-C4 10823 10

C4 17680 073

i-C5 0801 033

C5 0285 027

Total 34351

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 27

992036334

07634

001

ii

iiii

xK

D

dKxK

Condition of the distillatereflux before 130 0F amp 120 lbin2overhead or column top

conditions are found by dew point calculation at the specified pressure of 1225lbin2

Components D (lbmolh) K1450

F K148 0

F

C3 4762 24 2425

i-C4 10823 116 1175

C4 17680 084 087

i-C5 0801 042 0425

C5 0285 033 034

01D

K

d

K

y i

i

i

i

For T=145 0F

018136334

9934

i

i

K

y K=1175 Tcal=148 0F

For T=148 0F

997036334

24334

i

i

K

y

Conditions of column overhead are revised to 148 0F and 1225lbin2column bottom

conditions are found by way of bubble point calculation

Components B(lbmolh) K2450

F

C3 0 45

i-C4 002 255

C4 0392 205

i-C5 10850 1075

C5 20103 094

Total 31365

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 28

Design equation

001B

bKxK ii

ii

For T =245 0F

00139331

39831ii xK

At column midpoint condition

2

0

1255127512250

519624514850

inlbP

FT

Summery of operating condition

Point 1 Point 2 Point 3

Temperature 148 1965 245

Pressure lbin2 (abs) 1225 125 1275

Equilibrium K data for column midpoint condition

Point 1 Point 2 Point 3

Components Ki i Ki i Ki i avgi

C3 2425 571 34 486 45 419 488

i-C4 1175 276 18 257 255 237 256

C4 087 205 138 197 205 191 198

i-C5 0425 100 07 10 1075 10 10

C5 034 08 06 086 094 087 084

Fenske equation

3919

001

981ln

3880

84210

8090

68417ln

m

m

N

N

Separation of non key component

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 29

4912

100198

2

avgLKavgHK

mean

molh09220bmolh 2920d

molh38820f840

)(CPentane

molh8090dmolh 84210b

molh65111f001

)C-(itan

68417dmolh 3880b

molh07218f981

)(CButane

hmol 82210d h mol0210b

hmol84310f562

)C-(iIsobutane

molh76240007624d

molh000molh101882

001

884

84210

80901

7624

7624f884

)(Cropane

C5C5

C5C5

5

C5-iC5-i

C5-iiC5

5

C4C4

C4C4

4

iC4iC4

iC4iC4

4

33C3

5

39193

C3C3

3

lblb

lb

lblb

lb

eIsopen

hlbmollb

lblb

lb

lbbf

lblbb

hmol

P

CC

C

Components Feed (lbmolh) Distillate (lbmolh) Bottom (lbmolh)

C3 4762 4762 0000

i-C4 10843 10822 0021

C4 18072 17684 03880

i-C5 11651 0809 10842

C5 20388 0292 20096

Total 65716 34369 31347

Maximum value of 3 wt of i-C5 in distillate is required

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 30

Calculated value =

wt 3

1004956

172

36934

8090

Maximum value of 1 wt of C4 in bottom is required

Calculated value

wt 1

1009163

158

34731

3880

Conditions are satisfied

542 Component split by Winn equation

The Fenske equation has a weakness as the relative volatility difference between

column top and bottom increase the estimated minimum number of stages gets

increasingly too small

460

1

460

1

lnln

bottomtop

bottomitopi

i

TT

PKPKB

460

ln

T

BAPK i

ii

110 irHKi PAAi

r

ii B

B

Components KTop148 F Kbottom245 F

C3 2425 450

i-C4 1175 255

C4 087 205

i-C5 0425 1075

C5 034 094

For P=125 lbin2

For butane (C4)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 31

550594460148

)271263()42525122log(

271263

460245

1

460148

1545127log42525122log

4

4

C

C

A

B

Heavy component is iso-pentane( i-C5)

955824460148

)711857()42505122log(

680010717185

271263

711857

460245

1

460148

1

07515127log4250125log

5

4

5

Ci

C

Ci

A

A

B

311344

)125(10

10)1680010()955824550594(

1

irHKi PAAi

Components Bi Ai θi βi

C3 -126327 45509 068001 43113

i-C4 -156377 473016 084177 24069

C4 -172167 48593 092677 191988

i-C5 -185771 49558 100000 10000

C5 -202840 49558 109189 086704

5339

919881log

)369348090(

)3473484210(

)347313880(

)3693468417(log

m

m

N

N

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 32

abvg

1

bdcomponent

orlightif

D

B

d

bb

d

HK

N

i

im

d

b1

fd

2dbkeyheavy

1

avgHKLKif

b

df

b

componentlight propanefor

5

032068

9533

101976

09120713402

4311

b

d

7624

0001097611

76245

bfd

b

For isobutene (i-C4)

f =10843 θ =0842 β =2407 (light component)

lh10821lbmo

002210843d

h0022lbmol

494151

10843b

4941509120713402

2407

b

d08417108417

9533

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 33

For Butane (C4)

f =18072 β=191988θ=092677

h0388lbmol

455771

18072b

4557709120713402

191988

b

d0926771092677

9533

d=18072-0388

=17684 lbmolh

For Isopentane (C5)

f =11651 β =100 θ =100

111

5339

91207040213

00001

b

d

=007461

βltβavg

)0746101(1

65111

d

= 0809 lbmolh

b = 11651-0809

=10842 lbmolh

For Pentane (C5)

f =20388 lbmolh β= 086704 θ =109189

0918911091891

5339

91207040213

867040

b

d

=0014959

βltβavg

)01495901(1

38820

d

= 0300 lb molh

b=20388-03

=20088

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 34

Components Feed lbmolh Distillate lbmolh Bottom lbmolh

C3 4762 4762 000

i-C4 10843 10821 0022

C4 18072 17684 0388

i-C5 11651 0809 10842

C5 20388 03 20088

65716 34376 3134

Components Feed lbh Distillate lbh Bottom lbh

C3 210 210 000

i-C4 630 62872 128

C4 1050 102745 2257

i-C5 840 5836 78164

C5 1470 2163 1448348

4200 194602 2253818

543 Calculation of Rm

From Underwood equation

qx

i

iFi

1

Components Flbmolhr xif xid αi

C3 4762 00725 01386 488

i-C4 10843 01650 03149 256

C4 18072 02750 05145 198

i-C5 11651 01773 002335 100

C5 20388 03102 00085 084

65716 1000 1000

Feed is at boiling conditions since q =1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 35

0840

31020840

1

177301

981

27500981

562

16500562

884

07250884

θ =1284

from this value of θ

avgi

idavgim

xR

1

11284840

00850840

12841

023501

1284981

51450981

1284562

31490562

1284884

13860884

mR

Rm=1185

R=15 Rm

=15times1185

=17775

X=1

R

RR m

X=177751

185177751

=02133

From GillilandrsquoS correlation Y=1

N

NN m =042

We know the value of Nm 4201

5339

N

N

N=178 =18 stages

Feed location can be known by the use of Kirkbride equation

2

)376348090(

)34313880(

)07218(

)65111(

37634

34312060log

F

F

p

m

687890p

m

817 pm

m = 725=8

p =1054 =11

Feed is introduced on eight stage from top

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 36

Chapter- 6

PACKED COLUMN DESIGN

61 Stage AnalysisThe data shown in table are typical data generated by commercial simulation

Vapor liquidStage Temperature0F lbhr CFS

ft3sV

lbft3

Lbhr GPM

galminL

σ

dynecm

μ

cP

1 1349 00 00 00 3655 1423 3202 6867 0114

2 1474 5501 12050 12683 3720 1447 3204 6738 01132

3 1548 5566 12049 12831 3724 1447 3208 6699 01128

4 1609 5571 11987 12909 3707 1438 3214 6684 01130

5 1668 5553 11889 12974 3693 1430 3220 6665 01135

6 1726 5539 11794 13045 3689 1426 3224 6632 01142

7 1779 5535 11716 13122 3691 1426 3226 6590 01149

8 1824 5537 11650 13199 8032 310471 3226 6544 01156

9 1873 5678 11794 13373 8126 3142 3224 6507 01153

10 1917 5772 11871 13506 8201 3171 3224 6479 01151

11 1961 5847 11915 13631 8275 3201 3223 6447 01152

12 2010 5921 11946 13768 8360 3235 3222 6406 01156

13 2064 6006 12152 13928 8475 3274 3220 6348 01162

14 2122 6103 12013 14111 8574 3321 3218 6295 01170

15 2179 6220 12070 14310 8701 3374 3215 6236 01180

16 2232 6347 12148 14512 8829 3428 3211 6178 01191

17 2280 6475 12234 14701 8947 3477 3208 6128 01201

18 2321 6593 12317 14868 2354 91599 3204 6087 01212

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 37

62 Flood Point

15 inch pall ring will be used throughout the column for this packing the flood point can

be determined by interpolation

A-flood point by GPDC [generalized pressure drop correlation] interpolation

2

2

6593

5571

fthrlbA

G

fthrlbA

G

TBottom

TTop

Liquid flowrates ( 2 fthrlb )

LTop =TA

3724

LBottom = TA

8947

Vapor density( 3 ftlb )

48681

31991

BottomG

TopG

Liquid density ( 3 ftlb )

2432

2632

BottomL

TopL

1 Flow parameter

L

GLV ρ

ρ

G

LF

Top 05

LV 3228

13199

5571

3724F

1352110FLV

Bottom LVF =

2432

48681

6593

8947

= 029142

2 Capacity parameter from graphical correlation

Top =152

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 38

Bottom =119

3 Viscosity of the liquid L (cP)

Top L =01128 (cP)

Bottom L =01151 (cP)

4 Kinematic viscosity

=

L

L

462

Top =

2632

11280462

Top = 0218187

Bottom =

2432

11510462

Bottom = 022277

5 Packing factor ( 1ft )

Top FP = 40

Bottom FP = 40

6 Vapour capacity factor CSFI(fts)

Capacity parameter = CSFI FP05 005

Top 05050SFI 2181040

921C

Top SFIC =02593

Bottom 05050SFI 2181040

191C

Bottom 20280CSFI

63 Flood point by the Kister amp Gill correlation

1 FTP packed bed specific pressure drop at flood point

FTP =0115 70PF

Top FTP =0115 7040

=1521

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 39

Bottom FTP =1521 inch of H2O per ft

2 Flow parameter

Top FLV =0135211

Bottom FLV =029142

3 Capacity parameter at flood point

Top =152

Bottom = 119

4 CSFl vapor capacity factor at the flood point

CSFl = capacity parameter

05050

1

PF

Top CSFl =02593

Bottom CSFl =02028

64 Diameter calculation

1 Vapor capacity factor Cs design (nonderated) fts

The column will be designed for 75 flood capacity

SFlS CC 750

Top CS = 075 02593

=0194475

Bottom CS = 075 02028

Bottom CS = 01551

2 CS vapor capacity factor (derated )fts

= 09 CSdesign

Top CS = 09 01944

Top CS =017496

Bottom CS =09 01521

Bottom CS =013689

3 Vapor superficial velocity based on the cross section of empty column u (fts)

GL

G

ss

ρρ

ρ

(derated)Cu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 40

Top su =

319912632

31991

174960

Top su =084737

Bottom su =

486812432

48681

136890

Bottom su = 062257

4 Vapor flow rate CFS ft3s

Top CFS =1205 ft3s

Bottom CFS =12316 ft3shellipfrom table

5 Tower area ft2

AT = s

T u

CFSA

Top AT = 847370

2051

Top AT =1422 ft2

Bottom AT = 622570

23161

Bottom AT =19782 ft2

6 Tower diameter ft

1587ftD

π

197824D

13455ftD

π

14224D

π

A4

BottomT

BottomT

TopT

TopT

TT

D

65 Diameter calculation using the maximum pressure drop criterion

1 L

G

calculation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 41

Top L

G

=2632

31991

= 00409

Bottom L

G

=2432

48681

= 004611

2OH

L

2

calculation

Top ( OHL 2 )=

4362

2632

= 05167

Bottom ( OHL 2 ) =

4362

2432

= 05164

3 FP packing factor

Top FP = 40

Bottom FP =40

4 Maximum pressure drops recommended for packed column with random packing

1902

70max

OH

LPFP

helliphelliphelliphellipfor 006 20L

G

Top maxP = 019 5167040 70

Top maxP = 12984helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

Bottom maxP = 019 5164040 70

Bottom maxP =12977helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

5 Surface tension dyne

Top =6544 cmdyne

Bottom =6128 cmdyne

6 Vapor capacity factor Csmax (fts)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 42

P

s

FCP

3342maxmax

Top 12984 =

5446

403342maxsC

Top maxsC =02634

Bottom 12977 =

1286

403342maxsC

Bottom maxsC =025628

7 Maximum vapor superficial velocity usmax

maxsC = usmax

GL

G

Top usmax =

319912632

31991

26340

= 12752

Bottom usmax =

486812432

48681

25620

=11651 fts

8 Tower area AT (ft2)

AT =smaxu

CFS

Top AT =27521

2051

Top AT =09449

Bottom AT = 16511

23161

= 1057 ft2

9 Tower diameter (ft)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 8: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 8

460

1

460

1

lnln

bottomtop

bottomitopi

i

TT

PKPKB

Winn equation amp can be obtained

rr

ir

i

r

ii APK

APK

PK

B

B

ln

ln

1 iPAAEXP rii

The Winn equation for two minimum number of stages require the use of mole

fraction and is as follows

LK

HKD

B

LKB

D

m

LK

x

x

x

x

N

ln

ln

Using molar flow rates

LK

LK

m

LK

HKd

b

b

d

N

ln

ln

The Winn equation molar form can be combined with the column component

material balance to estimate the fractionation of the nonkey components

d 1d

b

D

B

d

d

b

fbd

i

θ1θi

HK

N

i

iii

m

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 9

componentheavy

componentlight

bd 1d

b

bfd

d

b1

d

bf

b

bd 1d

b

iii

iii

i

ii

i

iii

iii

i

ii

dfb

d

b

fd

1

Three basic energy inputoutput location within the fractionation column system The

energy associated with the feed preheats QF This energy requirement must be consistent

with the degree of feed vaporization and is obtained by enthalpy balance

FFF hHFQ

HF amp hF are in Btulb of feed The condenser duty Qc is obtained by writing an energy

balance around the condenserreflux drum

L = RD

V = D 1 R

Case 1 ndash all-liquid distillate

QC = D DV hHR 1

Case 2 ndash all vapor distillate

DVDVC HHDhHRDQ

Case -3 distillate is liquid and vapor

Qc = D R (Hv - hD) + Vapor (Hv - HD)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 10

Hv- enthalpy of vapor entering the condenser

HD - enthalpy of vapor leaving the drum accumulator

hD- enthalpy of liquid leaving the drum

with the condenser duty calculated the reboiler duty QR can be obtained as

QR=Qc+[DV HD+DLhD]+B hB-F HF

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 11

Chapter -4

Packed Tower

41 Packing Hydraulics

At low liquid flow rates the open cross sectional area of the packing is about the same as in

a dry bed The pressure drop is entirely by frictional losses through a series of opening and

proportional to the square of gas flow rate In random packing the pressure drop is due to

expansion contraction and changes of direction A portion of the gas kinetic energy is

used to support the liquid the column and the pressure drop becomes proportional to the gas

rate raised to power different The point where the packing voids fill up with liquid ie

when tower operation switches from vapor continuous to liquid continuous is termed phase

inversion For all liquid flow rates as gas flow rate is raised a point is reached when the gas

velocity begins to interfere with the free drainage of liquid The accumulation of liquid

reduces the cross section area available for gas flow and therefore accelerates the pressure

drop rise Further increase in gas rate more liquid accumulates until the liquid surface

becomes continuous across the top of packing

Efficiency flow regimes

When the liquid distribution is poor it will take more liquid to wet the entire bed Turbulent

liquid film produces good wetting of the packing and essentially contact efficiency As

liquid rate increases more vapor is entrained down the bed These drops efficiency

Because structured packing permits far less lateral movement of fluid than random

packings

Flood point

Appearance of liquid on top of the bed excessive entrainment a sharp rise in pressure

drop a sharp rise in liquid hold up and a sharp drop in efficiency flood point can be

predicted far more reliably than packing pressure drop and maximum operational capacity

Pressure drop

This is often used to specify packed tower capacity In small columns (lt3 ft in dia )

pressure drop varies with tower diameter With random packings smaller the tower

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 12

diameter the lower the pressures drop possibly due to enhancement of wall effects Dry

packed beds have a higher-pressure drop than wet ndash packed beds Pressure drop

measurement under deep vacuum (lt50 mmHg) is affected by the pressure drop and the

pressure gradient along the bed Pressure drop measurements in a pressure tower include

the static head of the vapor To obtain the actual packing pressure drop the static head

must be subtracted from pressure drop measurement Pressure drop for foaming systems

are higher than for non-foaming systems

42 Flood Point Prediction

421 Sherwood ndashEckert generalized pressure drop correlation (GPDC)

The Sherwood ndashEckert GPDC chart has been the standard of the industry for predicting

flood points and pressure drops

GPDC chart ordinate describes the balance between the vapor momentum force that acts

to entrain swarms of liquid droplets and the gravity force that resists the upward

entrainment GPDC chart abscissa is the flow parameter the ratio of liquid kinetic energy

to vapor kinetic energy

422 The Kister and Gill correlation

Zens discovered that packing pressure drop at the flood point decreases as the packing

capacity increases A simple flood point correlation

FLP =0115 70PF

this equation expresses pressure drop at the flood point as a function of packing factor

alone Once this pressure drop is known the flood velocity can be calculated The flood

velocity calculated by the Kister and Gill correlation is tolerant to inaquaracies in flood

pressure drop predictions

43 Pressure Drop Prediction By GPDC Interpolation

Interpolation of pressure drop data is more accurate than correlation prediction

Superimposing experimental data points on the curves of generalized pressure correlation

chart converts the GPDC chart into an interpolation chart Pressure drops are calculated by

interpolating the plotted pressure drop data For all charts (random structured or grid

packings) the abscissa of the correlation is the flow parameter given by

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 13

50

L

GLV G

LF

And the ordinate of correlation as the capacity parameter given by

GL

GSS uC

FP is the packing factor which is an empirical factor characteristics of the packing size

and shape

44 Packing factors

Several of the predictive methods above use a packing factor to account for the type and

size of packing With the evolutions of the general pressure drop correlation the packing

factor shifted away from the ratio ap ε3 to become an imperial constant that must be

experimentally determined for each packing

Loading point

The point of transition from the preloading regime to the loading regime is termed the

loading point It is the point where liquid hold up starts increasing with gas velocity rapid

deterioration in efficiency loading point where the flow rate at which the vapor phase

bagans to interact with the liquid phase to increase interfacial area in a packed column the

loading points occurs at 70 percent of the flood point

Pressure drop

Packed tower are designed so that the pressure drop at any point in the tower does not

exceed a recommended maximum value Maximum pressure drop criterioa for packed

tower are listed in table

Average pressure drop

Specific pressure drop can be calculated at the top of the bed and at the bottom of the bed

the average pressure drop is

25050 5050 bottomtop PPP

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 14

Type of system Maximum pressure drop in of water ft

packing

Atmospheric fractionator 05-100

Low to medium pressure fractioantor 07-10

High pressure distillation

006ltρG ρGlt 020

020lt ρGρL

019 )( 270

OHGPF

0099 )( 270

OHGPF

Vacuum distillation 001-06

Liquid holdup

Liquid holdup is the liquid present in the void spaces of packing At flooding

essentially all the voids are filled with liquids or froth Reasonable liquid holdup is

necessary for good mass transfer and efficient tower operation but beyond that it should

be kept low

Static holdup is liquid remaining on the packing after it has been fully wetted and

drained for long time The contributation of static holdup to mass transfer rates is limited

Operational holdup is liquid on the packing attributed to dynamic operation and is defined

as the difference between total holdup and static holdup

Minimum Wetting Rate

The minimum wetting rate (MWR) is the lower stability limit of packing It is liquid

below which the falling liquid film breaks up and the liquid storage causes wetting of the

packing surface Gravity and viscous forces resists dewetting the surface tension and vapor

shear forces tend to dewett the falling film The MWR therefore rises with an increase in

surface tension and liquid density and with decrease in liquid viscosity

A thumb rule cited by Ludwi

QMW =3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 15

Underwetting

Underwetting is a packing surface phenomenon which brakes up liquid film

The tendency of liquid film to break is expressed by a contact angle A contact angle of

zero indicates perfect wetting an angle of 1800 indicates no wetting

The contact angle depends both on surface and a liquid and is a strong function of

composition Changing a material and surface roughness of the packing may significantly

affect the efficiency in system susceptible to underwetting

45 The HETP concept

The concept of HETP (height equivalent to theoretical plates) was introduced to

enable to comparison of efficiency between packed and plate columns HETP is defined as

HETP = Hn

A similar HETP value can be obtained for plate column if the tray spacing is known

HETP (trayed column) = 100 timesSE

The HETP approach is suitable for multicomponent systems while HTU approach is

difficult to apply for this

HETP prediction

Because there are only few variables that significantly affect HETP of random

packings For small diameter column the rule of thumb presented by Frank Ludig Vital

et al are identical The more conservative cause predicted from

HETP =15 dp helliphellipfor Pall rings or similar high efficiency packing

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 16

Chapter -5

Distillation Design

Problem statement-

A butane-pentane splitter is to be designed to process 4200 lbhr of C3 ndashC5 feed subjected to

specifications of

1maximum 3 of i-C5 in the distillate

2maximum 1 of C4 in the bottom product

The feed sink will be air (process design temperature) to be 130 0F

Components Wt molwt lbh molh

C3 5 441 210 4762

i-C4 15 581 630 10843

C4 25 581 1050 18072

i-C5 20 721 840 11651

C5 35 721 1470 20388

4200 65716

Solution-

Feed composition

Components lbgal(60F) galh Vol mol

C3 422 4976 592 725

i-C4 469 13433 1397 165

C4 487 21501 2563 275

i-C5 520 16154 192 1773

C5 525 28000 328 3102

Total 84124 100 100

Average molecular weight 650716

4200

= 6391

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 17

Average liquid density = 420065716

= 4993lbgal

x = mass of c4 in the bottom(i-wt)

y =mass of i-c5 in the distillate(3 wt)

51 Component Split

Assuming that the C3 and i-C5 have negligible concentration in the bottom and C5 has

negligible concentration in the distillate

Components F D B

C3 210 210 0

i-C4 630 630 0

C4 1050 (1050-x) x

i-C5 840 y (840-y)

C5 1470 0 1470

Total 4200 1890-x+y 2310+x-y

F =B+D

4200 =2310 + x ndashy +1890 ndashx + y

Distillate specification 3 in of i-c5 in distillate

yx

y

18900030

567 ndash 003 x -097 y =0

003 x + 097 y =567

Bottom specification 1 C4 in the bottom

003 yx

x

2310

231 -001 x + 001 y = x

099 x + 001 y = 231

x = 2275

y = 5775

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 18

Components D lbh B lbh D lbmolh B lbmolh

C3 210 0 4762 0

i-C4 630 0 10843 0

C4 102725 2275 1768 039

i-C5 5725 78225 0801 1085

C5 0 1470 0 20388

Total 1925 2275 34086 3163

52 Dew Point and Bubble Point calculation

1 The distillate and reflux will be a bubble point liquid The criteria for evaluation of

the bubble point condition are

1 like an air fin condenser to liquefy the distillate and reflux The criteria of

drum temperature will be assumed to be 130F ( design temperature for air is

about 120F

2 the bubble point design equation with temperature specified

01 ii xK

Average molecular weight of distillate

Components xid Ki

C3 01397 21

i-C4 03181 10

C4 05187 073

i-C5 00235 033

C5 0 027

For fixed temperature of 130F bubble point pressure is to be determined

4656 wtmolxid

9980 iDi xK

Pestimated = Pi-c4 = 120 lbin2

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 19

001

9980120calculatedP

= 1197 lbin2 (abs)

The result of distillate bubble point calculation is

T = 130 0F

P = 120 lbin2

The condition at the top of the column must be evaluated since the fractionator has a

total concentration and an equilibrium stage The criteria for evaluation of the dew

point condition are

Assumption of the pressure drop through the total condenser of 25 lbin2Thus the

pressure at the top of the column is established as

P = 120 lbin2 + 25 lbin2

P = 1225 lbin2

Dew point

01

i

i

k

y

Plk =1225 lbin2 T= 1320F

Components yi Ki1320

F Ki1450

F

C3 01397 220 240

i-C4 03181 100 115

C4 05187 073 085

i-C5 00235 035 042

C5 00000 028 033

For T =1320F

01

i

i

k

y

Kic4 = 1160 and Tcal =1450F

For T =1450F

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 20

01

i

i

k

y

The result of column top dew point calculation

T =1450F

P = 1225 lbin2

The column bottom condition Column ΔP =5 lbin2

The column bottom pressure

P = 1225 + 50 = 1275 lbin2

The bubble point design equation

ΣKiXi=10

Components B(mol) X

C3 0 0

i-C4 0 0

C4 0392 00124

i-C5 1085 03430

C5 20388 06446

3163 100

Average molecular wt = 6331

22750 =7193

The characteristic component is i-c5 an estimated bottom temperature is obtained

Components Xi Ki2380

F Ki2150

F

C3 0 38 45

i-C4 0 355 265

C4 00124 1925 205

i-C5 03430 10 1075

C5 06446 087 094

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 21

For T = 238 0F

ΣKiXi=0927

KHK = 108 Tcal =245 0F

For T =245 0F

ΣKiXi=100

The result of column bottom bubble point calculation

T =245 0F

P =1275 lbin2

53 Determination of the key component

Using the heavy key as column reference key The separation is clearly between

butane and isopentane

Reference component =i-C5

Key component

LK =C4

HK =iC5

The average relative volatility data for the column will be generated using three-point

geometric average

3321 avg

Point 1 ndash top of fractionation column

Point 2 ndash at the reboiler

Point 3 ndash arithmetic mean of condition at 1 amp 3

T2 = 05 [ T1 + T2 ] = 05 [ T1 + T2 ]

T2 = 05 [ 145 + 245 ] = 195 0F

P2 = 05 [ P1 + P3 ] = 05 [ 1225 +1275 ]

P2 = 125 lbin2

variable Point 1 Point 2 Point 3

T oF 145 195 245

P lbin2 1225 125 1275

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 22

Components Point 1 Point 2 Point 3

Ki αi Ki αi Ki αi αavg

C3 24 571 335 493 45 419 49

i-C4 115 274 175 257 25 237 256

C4 085 202 135 199 205 191 197

i-C5 024 100 068 100 1075 100 100

C5 033 079 058 085 094 087 084

54 Shortcut Method

541 Minimum stages at total reflux-the Fenske equation

LKavg

BLk

HK

DHK

LK

m

x

x

x

x

Nln

ln

Fi = bi + di

avgmeanavgiiir

rNavgi

i dbb

d

b

d for min

mN

avgHK

avgi

HK

ii

b

d

fb

1

or when ii db meanavgavgi

mN

avgi

avgLK

LK

ii

d

b

fd

1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 23

971ln

01240

3430

02350

51870ln

mN

4619mN

2

avgLKavgHKmean

2

001971

= 1485

For propaneC3

meanC 3

7624

904

3

3

C

C

f

4619

001

904

85010

80101

76243Cb

hmold

hmol

C 7624007624

1091

3

5

For isobutene(i-C4)

84310

562

4

4

4

iC

Ci

meanCi

f

4619

1

562

8500

80101

843104iCb

hmol 020

823104iCd

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 24

For butane (C4)

07218

971

4

4

C

C

meanavgi

f

4619

001

971

8510

80101

072184Cb

hmold

d

hmolb

C

C

C

68817

392007218

3920

4

4

4

For isopentane (i-C5)

meanavgiC

iCiC hmolf

5

5565111001

Hence

4619

001

971

6817

39201

651115iCd

hmolb

hmold

iC

iC

8510801065111

8010

5

5

For pentane (C5)

hmolb

hmold

d

C

C

C

meanavgC

C

105320

2850

840

971

6817

39201

38820

840

5

5

5

5

5

4619

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 25

The calculated data in the table

Components Fi(lbmolh) Di(lbmolh) Bi(lbmolh)

C3 4762 4762 0

i-C4 10834 10823 002

C4 18072 17680 0392

i-C5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Checking

Maximum 3wt of iC5 in the distillate

9772

1004656

172

35134

8010

wt

Maximum of 1 wt C4 in the bottom

011

1009371

158

36531

3920

wt

The set of specification were not met The parameter reevaluated

Again performing same calculations

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 1050-x x

i-C5 840 y 840-y

C5 1470 2055 144945

Total 190939-x+y 229061+x-y

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 26

3658

5522

612290100

1

391909100

3

y

x

yx

x

yx

y

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 102745 2255

i-C5 840 5836 78164

C5 1470 2055 144945

Total 4200 194520 224580

Components F(lbmolh) D(lbmolh) B(lbmolh)

C3 4762 4762 0

i-c4 10834 10823 002

C4 18072 17680 0392

i-c5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Column operating condition

Distillate bubble point calculation on with temperature specified at 130 0F

Components D (lbmolh) K120 (lbin2)

C3 4762 210

i-C4 10823 10

C4 17680 073

i-C5 0801 033

C5 0285 027

Total 34351

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 27

992036334

07634

001

ii

iiii

xK

D

dKxK

Condition of the distillatereflux before 130 0F amp 120 lbin2overhead or column top

conditions are found by dew point calculation at the specified pressure of 1225lbin2

Components D (lbmolh) K1450

F K148 0

F

C3 4762 24 2425

i-C4 10823 116 1175

C4 17680 084 087

i-C5 0801 042 0425

C5 0285 033 034

01D

K

d

K

y i

i

i

i

For T=145 0F

018136334

9934

i

i

K

y K=1175 Tcal=148 0F

For T=148 0F

997036334

24334

i

i

K

y

Conditions of column overhead are revised to 148 0F and 1225lbin2column bottom

conditions are found by way of bubble point calculation

Components B(lbmolh) K2450

F

C3 0 45

i-C4 002 255

C4 0392 205

i-C5 10850 1075

C5 20103 094

Total 31365

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 28

Design equation

001B

bKxK ii

ii

For T =245 0F

00139331

39831ii xK

At column midpoint condition

2

0

1255127512250

519624514850

inlbP

FT

Summery of operating condition

Point 1 Point 2 Point 3

Temperature 148 1965 245

Pressure lbin2 (abs) 1225 125 1275

Equilibrium K data for column midpoint condition

Point 1 Point 2 Point 3

Components Ki i Ki i Ki i avgi

C3 2425 571 34 486 45 419 488

i-C4 1175 276 18 257 255 237 256

C4 087 205 138 197 205 191 198

i-C5 0425 100 07 10 1075 10 10

C5 034 08 06 086 094 087 084

Fenske equation

3919

001

981ln

3880

84210

8090

68417ln

m

m

N

N

Separation of non key component

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 29

4912

100198

2

avgLKavgHK

mean

molh09220bmolh 2920d

molh38820f840

)(CPentane

molh8090dmolh 84210b

molh65111f001

)C-(itan

68417dmolh 3880b

molh07218f981

)(CButane

hmol 82210d h mol0210b

hmol84310f562

)C-(iIsobutane

molh76240007624d

molh000molh101882

001

884

84210

80901

7624

7624f884

)(Cropane

C5C5

C5C5

5

C5-iC5-i

C5-iiC5

5

C4C4

C4C4

4

iC4iC4

iC4iC4

4

33C3

5

39193

C3C3

3

lblb

lb

lblb

lb

eIsopen

hlbmollb

lblb

lb

lbbf

lblbb

hmol

P

CC

C

Components Feed (lbmolh) Distillate (lbmolh) Bottom (lbmolh)

C3 4762 4762 0000

i-C4 10843 10822 0021

C4 18072 17684 03880

i-C5 11651 0809 10842

C5 20388 0292 20096

Total 65716 34369 31347

Maximum value of 3 wt of i-C5 in distillate is required

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 30

Calculated value =

wt 3

1004956

172

36934

8090

Maximum value of 1 wt of C4 in bottom is required

Calculated value

wt 1

1009163

158

34731

3880

Conditions are satisfied

542 Component split by Winn equation

The Fenske equation has a weakness as the relative volatility difference between

column top and bottom increase the estimated minimum number of stages gets

increasingly too small

460

1

460

1

lnln

bottomtop

bottomitopi

i

TT

PKPKB

460

ln

T

BAPK i

ii

110 irHKi PAAi

r

ii B

B

Components KTop148 F Kbottom245 F

C3 2425 450

i-C4 1175 255

C4 087 205

i-C5 0425 1075

C5 034 094

For P=125 lbin2

For butane (C4)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 31

550594460148

)271263()42525122log(

271263

460245

1

460148

1545127log42525122log

4

4

C

C

A

B

Heavy component is iso-pentane( i-C5)

955824460148

)711857()42505122log(

680010717185

271263

711857

460245

1

460148

1

07515127log4250125log

5

4

5

Ci

C

Ci

A

A

B

311344

)125(10

10)1680010()955824550594(

1

irHKi PAAi

Components Bi Ai θi βi

C3 -126327 45509 068001 43113

i-C4 -156377 473016 084177 24069

C4 -172167 48593 092677 191988

i-C5 -185771 49558 100000 10000

C5 -202840 49558 109189 086704

5339

919881log

)369348090(

)3473484210(

)347313880(

)3693468417(log

m

m

N

N

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 32

abvg

1

bdcomponent

orlightif

D

B

d

bb

d

HK

N

i

im

d

b1

fd

2dbkeyheavy

1

avgHKLKif

b

df

b

componentlight propanefor

5

032068

9533

101976

09120713402

4311

b

d

7624

0001097611

76245

bfd

b

For isobutene (i-C4)

f =10843 θ =0842 β =2407 (light component)

lh10821lbmo

002210843d

h0022lbmol

494151

10843b

4941509120713402

2407

b

d08417108417

9533

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 33

For Butane (C4)

f =18072 β=191988θ=092677

h0388lbmol

455771

18072b

4557709120713402

191988

b

d0926771092677

9533

d=18072-0388

=17684 lbmolh

For Isopentane (C5)

f =11651 β =100 θ =100

111

5339

91207040213

00001

b

d

=007461

βltβavg

)0746101(1

65111

d

= 0809 lbmolh

b = 11651-0809

=10842 lbmolh

For Pentane (C5)

f =20388 lbmolh β= 086704 θ =109189

0918911091891

5339

91207040213

867040

b

d

=0014959

βltβavg

)01495901(1

38820

d

= 0300 lb molh

b=20388-03

=20088

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 34

Components Feed lbmolh Distillate lbmolh Bottom lbmolh

C3 4762 4762 000

i-C4 10843 10821 0022

C4 18072 17684 0388

i-C5 11651 0809 10842

C5 20388 03 20088

65716 34376 3134

Components Feed lbh Distillate lbh Bottom lbh

C3 210 210 000

i-C4 630 62872 128

C4 1050 102745 2257

i-C5 840 5836 78164

C5 1470 2163 1448348

4200 194602 2253818

543 Calculation of Rm

From Underwood equation

qx

i

iFi

1

Components Flbmolhr xif xid αi

C3 4762 00725 01386 488

i-C4 10843 01650 03149 256

C4 18072 02750 05145 198

i-C5 11651 01773 002335 100

C5 20388 03102 00085 084

65716 1000 1000

Feed is at boiling conditions since q =1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 35

0840

31020840

1

177301

981

27500981

562

16500562

884

07250884

θ =1284

from this value of θ

avgi

idavgim

xR

1

11284840

00850840

12841

023501

1284981

51450981

1284562

31490562

1284884

13860884

mR

Rm=1185

R=15 Rm

=15times1185

=17775

X=1

R

RR m

X=177751

185177751

=02133

From GillilandrsquoS correlation Y=1

N

NN m =042

We know the value of Nm 4201

5339

N

N

N=178 =18 stages

Feed location can be known by the use of Kirkbride equation

2

)376348090(

)34313880(

)07218(

)65111(

37634

34312060log

F

F

p

m

687890p

m

817 pm

m = 725=8

p =1054 =11

Feed is introduced on eight stage from top

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 36

Chapter- 6

PACKED COLUMN DESIGN

61 Stage AnalysisThe data shown in table are typical data generated by commercial simulation

Vapor liquidStage Temperature0F lbhr CFS

ft3sV

lbft3

Lbhr GPM

galminL

σ

dynecm

μ

cP

1 1349 00 00 00 3655 1423 3202 6867 0114

2 1474 5501 12050 12683 3720 1447 3204 6738 01132

3 1548 5566 12049 12831 3724 1447 3208 6699 01128

4 1609 5571 11987 12909 3707 1438 3214 6684 01130

5 1668 5553 11889 12974 3693 1430 3220 6665 01135

6 1726 5539 11794 13045 3689 1426 3224 6632 01142

7 1779 5535 11716 13122 3691 1426 3226 6590 01149

8 1824 5537 11650 13199 8032 310471 3226 6544 01156

9 1873 5678 11794 13373 8126 3142 3224 6507 01153

10 1917 5772 11871 13506 8201 3171 3224 6479 01151

11 1961 5847 11915 13631 8275 3201 3223 6447 01152

12 2010 5921 11946 13768 8360 3235 3222 6406 01156

13 2064 6006 12152 13928 8475 3274 3220 6348 01162

14 2122 6103 12013 14111 8574 3321 3218 6295 01170

15 2179 6220 12070 14310 8701 3374 3215 6236 01180

16 2232 6347 12148 14512 8829 3428 3211 6178 01191

17 2280 6475 12234 14701 8947 3477 3208 6128 01201

18 2321 6593 12317 14868 2354 91599 3204 6087 01212

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 37

62 Flood Point

15 inch pall ring will be used throughout the column for this packing the flood point can

be determined by interpolation

A-flood point by GPDC [generalized pressure drop correlation] interpolation

2

2

6593

5571

fthrlbA

G

fthrlbA

G

TBottom

TTop

Liquid flowrates ( 2 fthrlb )

LTop =TA

3724

LBottom = TA

8947

Vapor density( 3 ftlb )

48681

31991

BottomG

TopG

Liquid density ( 3 ftlb )

2432

2632

BottomL

TopL

1 Flow parameter

L

GLV ρ

ρ

G

LF

Top 05

LV 3228

13199

5571

3724F

1352110FLV

Bottom LVF =

2432

48681

6593

8947

= 029142

2 Capacity parameter from graphical correlation

Top =152

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 38

Bottom =119

3 Viscosity of the liquid L (cP)

Top L =01128 (cP)

Bottom L =01151 (cP)

4 Kinematic viscosity

=

L

L

462

Top =

2632

11280462

Top = 0218187

Bottom =

2432

11510462

Bottom = 022277

5 Packing factor ( 1ft )

Top FP = 40

Bottom FP = 40

6 Vapour capacity factor CSFI(fts)

Capacity parameter = CSFI FP05 005

Top 05050SFI 2181040

921C

Top SFIC =02593

Bottom 05050SFI 2181040

191C

Bottom 20280CSFI

63 Flood point by the Kister amp Gill correlation

1 FTP packed bed specific pressure drop at flood point

FTP =0115 70PF

Top FTP =0115 7040

=1521

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 39

Bottom FTP =1521 inch of H2O per ft

2 Flow parameter

Top FLV =0135211

Bottom FLV =029142

3 Capacity parameter at flood point

Top =152

Bottom = 119

4 CSFl vapor capacity factor at the flood point

CSFl = capacity parameter

05050

1

PF

Top CSFl =02593

Bottom CSFl =02028

64 Diameter calculation

1 Vapor capacity factor Cs design (nonderated) fts

The column will be designed for 75 flood capacity

SFlS CC 750

Top CS = 075 02593

=0194475

Bottom CS = 075 02028

Bottom CS = 01551

2 CS vapor capacity factor (derated )fts

= 09 CSdesign

Top CS = 09 01944

Top CS =017496

Bottom CS =09 01521

Bottom CS =013689

3 Vapor superficial velocity based on the cross section of empty column u (fts)

GL

G

ss

ρρ

ρ

(derated)Cu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 40

Top su =

319912632

31991

174960

Top su =084737

Bottom su =

486812432

48681

136890

Bottom su = 062257

4 Vapor flow rate CFS ft3s

Top CFS =1205 ft3s

Bottom CFS =12316 ft3shellipfrom table

5 Tower area ft2

AT = s

T u

CFSA

Top AT = 847370

2051

Top AT =1422 ft2

Bottom AT = 622570

23161

Bottom AT =19782 ft2

6 Tower diameter ft

1587ftD

π

197824D

13455ftD

π

14224D

π

A4

BottomT

BottomT

TopT

TopT

TT

D

65 Diameter calculation using the maximum pressure drop criterion

1 L

G

calculation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 41

Top L

G

=2632

31991

= 00409

Bottom L

G

=2432

48681

= 004611

2OH

L

2

calculation

Top ( OHL 2 )=

4362

2632

= 05167

Bottom ( OHL 2 ) =

4362

2432

= 05164

3 FP packing factor

Top FP = 40

Bottom FP =40

4 Maximum pressure drops recommended for packed column with random packing

1902

70max

OH

LPFP

helliphelliphelliphellipfor 006 20L

G

Top maxP = 019 5167040 70

Top maxP = 12984helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

Bottom maxP = 019 5164040 70

Bottom maxP =12977helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

5 Surface tension dyne

Top =6544 cmdyne

Bottom =6128 cmdyne

6 Vapor capacity factor Csmax (fts)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 42

P

s

FCP

3342maxmax

Top 12984 =

5446

403342maxsC

Top maxsC =02634

Bottom 12977 =

1286

403342maxsC

Bottom maxsC =025628

7 Maximum vapor superficial velocity usmax

maxsC = usmax

GL

G

Top usmax =

319912632

31991

26340

= 12752

Bottom usmax =

486812432

48681

25620

=11651 fts

8 Tower area AT (ft2)

AT =smaxu

CFS

Top AT =27521

2051

Top AT =09449

Bottom AT = 16511

23161

= 1057 ft2

9 Tower diameter (ft)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 9: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 9

componentheavy

componentlight

bd 1d

b

bfd

d

b1

d

bf

b

bd 1d

b

iii

iii

i

ii

i

iii

iii

i

ii

dfb

d

b

fd

1

Three basic energy inputoutput location within the fractionation column system The

energy associated with the feed preheats QF This energy requirement must be consistent

with the degree of feed vaporization and is obtained by enthalpy balance

FFF hHFQ

HF amp hF are in Btulb of feed The condenser duty Qc is obtained by writing an energy

balance around the condenserreflux drum

L = RD

V = D 1 R

Case 1 ndash all-liquid distillate

QC = D DV hHR 1

Case 2 ndash all vapor distillate

DVDVC HHDhHRDQ

Case -3 distillate is liquid and vapor

Qc = D R (Hv - hD) + Vapor (Hv - HD)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 10

Hv- enthalpy of vapor entering the condenser

HD - enthalpy of vapor leaving the drum accumulator

hD- enthalpy of liquid leaving the drum

with the condenser duty calculated the reboiler duty QR can be obtained as

QR=Qc+[DV HD+DLhD]+B hB-F HF

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 11

Chapter -4

Packed Tower

41 Packing Hydraulics

At low liquid flow rates the open cross sectional area of the packing is about the same as in

a dry bed The pressure drop is entirely by frictional losses through a series of opening and

proportional to the square of gas flow rate In random packing the pressure drop is due to

expansion contraction and changes of direction A portion of the gas kinetic energy is

used to support the liquid the column and the pressure drop becomes proportional to the gas

rate raised to power different The point where the packing voids fill up with liquid ie

when tower operation switches from vapor continuous to liquid continuous is termed phase

inversion For all liquid flow rates as gas flow rate is raised a point is reached when the gas

velocity begins to interfere with the free drainage of liquid The accumulation of liquid

reduces the cross section area available for gas flow and therefore accelerates the pressure

drop rise Further increase in gas rate more liquid accumulates until the liquid surface

becomes continuous across the top of packing

Efficiency flow regimes

When the liquid distribution is poor it will take more liquid to wet the entire bed Turbulent

liquid film produces good wetting of the packing and essentially contact efficiency As

liquid rate increases more vapor is entrained down the bed These drops efficiency

Because structured packing permits far less lateral movement of fluid than random

packings

Flood point

Appearance of liquid on top of the bed excessive entrainment a sharp rise in pressure

drop a sharp rise in liquid hold up and a sharp drop in efficiency flood point can be

predicted far more reliably than packing pressure drop and maximum operational capacity

Pressure drop

This is often used to specify packed tower capacity In small columns (lt3 ft in dia )

pressure drop varies with tower diameter With random packings smaller the tower

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 12

diameter the lower the pressures drop possibly due to enhancement of wall effects Dry

packed beds have a higher-pressure drop than wet ndash packed beds Pressure drop

measurement under deep vacuum (lt50 mmHg) is affected by the pressure drop and the

pressure gradient along the bed Pressure drop measurements in a pressure tower include

the static head of the vapor To obtain the actual packing pressure drop the static head

must be subtracted from pressure drop measurement Pressure drop for foaming systems

are higher than for non-foaming systems

42 Flood Point Prediction

421 Sherwood ndashEckert generalized pressure drop correlation (GPDC)

The Sherwood ndashEckert GPDC chart has been the standard of the industry for predicting

flood points and pressure drops

GPDC chart ordinate describes the balance between the vapor momentum force that acts

to entrain swarms of liquid droplets and the gravity force that resists the upward

entrainment GPDC chart abscissa is the flow parameter the ratio of liquid kinetic energy

to vapor kinetic energy

422 The Kister and Gill correlation

Zens discovered that packing pressure drop at the flood point decreases as the packing

capacity increases A simple flood point correlation

FLP =0115 70PF

this equation expresses pressure drop at the flood point as a function of packing factor

alone Once this pressure drop is known the flood velocity can be calculated The flood

velocity calculated by the Kister and Gill correlation is tolerant to inaquaracies in flood

pressure drop predictions

43 Pressure Drop Prediction By GPDC Interpolation

Interpolation of pressure drop data is more accurate than correlation prediction

Superimposing experimental data points on the curves of generalized pressure correlation

chart converts the GPDC chart into an interpolation chart Pressure drops are calculated by

interpolating the plotted pressure drop data For all charts (random structured or grid

packings) the abscissa of the correlation is the flow parameter given by

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 13

50

L

GLV G

LF

And the ordinate of correlation as the capacity parameter given by

GL

GSS uC

FP is the packing factor which is an empirical factor characteristics of the packing size

and shape

44 Packing factors

Several of the predictive methods above use a packing factor to account for the type and

size of packing With the evolutions of the general pressure drop correlation the packing

factor shifted away from the ratio ap ε3 to become an imperial constant that must be

experimentally determined for each packing

Loading point

The point of transition from the preloading regime to the loading regime is termed the

loading point It is the point where liquid hold up starts increasing with gas velocity rapid

deterioration in efficiency loading point where the flow rate at which the vapor phase

bagans to interact with the liquid phase to increase interfacial area in a packed column the

loading points occurs at 70 percent of the flood point

Pressure drop

Packed tower are designed so that the pressure drop at any point in the tower does not

exceed a recommended maximum value Maximum pressure drop criterioa for packed

tower are listed in table

Average pressure drop

Specific pressure drop can be calculated at the top of the bed and at the bottom of the bed

the average pressure drop is

25050 5050 bottomtop PPP

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 14

Type of system Maximum pressure drop in of water ft

packing

Atmospheric fractionator 05-100

Low to medium pressure fractioantor 07-10

High pressure distillation

006ltρG ρGlt 020

020lt ρGρL

019 )( 270

OHGPF

0099 )( 270

OHGPF

Vacuum distillation 001-06

Liquid holdup

Liquid holdup is the liquid present in the void spaces of packing At flooding

essentially all the voids are filled with liquids or froth Reasonable liquid holdup is

necessary for good mass transfer and efficient tower operation but beyond that it should

be kept low

Static holdup is liquid remaining on the packing after it has been fully wetted and

drained for long time The contributation of static holdup to mass transfer rates is limited

Operational holdup is liquid on the packing attributed to dynamic operation and is defined

as the difference between total holdup and static holdup

Minimum Wetting Rate

The minimum wetting rate (MWR) is the lower stability limit of packing It is liquid

below which the falling liquid film breaks up and the liquid storage causes wetting of the

packing surface Gravity and viscous forces resists dewetting the surface tension and vapor

shear forces tend to dewett the falling film The MWR therefore rises with an increase in

surface tension and liquid density and with decrease in liquid viscosity

A thumb rule cited by Ludwi

QMW =3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 15

Underwetting

Underwetting is a packing surface phenomenon which brakes up liquid film

The tendency of liquid film to break is expressed by a contact angle A contact angle of

zero indicates perfect wetting an angle of 1800 indicates no wetting

The contact angle depends both on surface and a liquid and is a strong function of

composition Changing a material and surface roughness of the packing may significantly

affect the efficiency in system susceptible to underwetting

45 The HETP concept

The concept of HETP (height equivalent to theoretical plates) was introduced to

enable to comparison of efficiency between packed and plate columns HETP is defined as

HETP = Hn

A similar HETP value can be obtained for plate column if the tray spacing is known

HETP (trayed column) = 100 timesSE

The HETP approach is suitable for multicomponent systems while HTU approach is

difficult to apply for this

HETP prediction

Because there are only few variables that significantly affect HETP of random

packings For small diameter column the rule of thumb presented by Frank Ludig Vital

et al are identical The more conservative cause predicted from

HETP =15 dp helliphellipfor Pall rings or similar high efficiency packing

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 16

Chapter -5

Distillation Design

Problem statement-

A butane-pentane splitter is to be designed to process 4200 lbhr of C3 ndashC5 feed subjected to

specifications of

1maximum 3 of i-C5 in the distillate

2maximum 1 of C4 in the bottom product

The feed sink will be air (process design temperature) to be 130 0F

Components Wt molwt lbh molh

C3 5 441 210 4762

i-C4 15 581 630 10843

C4 25 581 1050 18072

i-C5 20 721 840 11651

C5 35 721 1470 20388

4200 65716

Solution-

Feed composition

Components lbgal(60F) galh Vol mol

C3 422 4976 592 725

i-C4 469 13433 1397 165

C4 487 21501 2563 275

i-C5 520 16154 192 1773

C5 525 28000 328 3102

Total 84124 100 100

Average molecular weight 650716

4200

= 6391

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 17

Average liquid density = 420065716

= 4993lbgal

x = mass of c4 in the bottom(i-wt)

y =mass of i-c5 in the distillate(3 wt)

51 Component Split

Assuming that the C3 and i-C5 have negligible concentration in the bottom and C5 has

negligible concentration in the distillate

Components F D B

C3 210 210 0

i-C4 630 630 0

C4 1050 (1050-x) x

i-C5 840 y (840-y)

C5 1470 0 1470

Total 4200 1890-x+y 2310+x-y

F =B+D

4200 =2310 + x ndashy +1890 ndashx + y

Distillate specification 3 in of i-c5 in distillate

yx

y

18900030

567 ndash 003 x -097 y =0

003 x + 097 y =567

Bottom specification 1 C4 in the bottom

003 yx

x

2310

231 -001 x + 001 y = x

099 x + 001 y = 231

x = 2275

y = 5775

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 18

Components D lbh B lbh D lbmolh B lbmolh

C3 210 0 4762 0

i-C4 630 0 10843 0

C4 102725 2275 1768 039

i-C5 5725 78225 0801 1085

C5 0 1470 0 20388

Total 1925 2275 34086 3163

52 Dew Point and Bubble Point calculation

1 The distillate and reflux will be a bubble point liquid The criteria for evaluation of

the bubble point condition are

1 like an air fin condenser to liquefy the distillate and reflux The criteria of

drum temperature will be assumed to be 130F ( design temperature for air is

about 120F

2 the bubble point design equation with temperature specified

01 ii xK

Average molecular weight of distillate

Components xid Ki

C3 01397 21

i-C4 03181 10

C4 05187 073

i-C5 00235 033

C5 0 027

For fixed temperature of 130F bubble point pressure is to be determined

4656 wtmolxid

9980 iDi xK

Pestimated = Pi-c4 = 120 lbin2

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 19

001

9980120calculatedP

= 1197 lbin2 (abs)

The result of distillate bubble point calculation is

T = 130 0F

P = 120 lbin2

The condition at the top of the column must be evaluated since the fractionator has a

total concentration and an equilibrium stage The criteria for evaluation of the dew

point condition are

Assumption of the pressure drop through the total condenser of 25 lbin2Thus the

pressure at the top of the column is established as

P = 120 lbin2 + 25 lbin2

P = 1225 lbin2

Dew point

01

i

i

k

y

Plk =1225 lbin2 T= 1320F

Components yi Ki1320

F Ki1450

F

C3 01397 220 240

i-C4 03181 100 115

C4 05187 073 085

i-C5 00235 035 042

C5 00000 028 033

For T =1320F

01

i

i

k

y

Kic4 = 1160 and Tcal =1450F

For T =1450F

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 20

01

i

i

k

y

The result of column top dew point calculation

T =1450F

P = 1225 lbin2

The column bottom condition Column ΔP =5 lbin2

The column bottom pressure

P = 1225 + 50 = 1275 lbin2

The bubble point design equation

ΣKiXi=10

Components B(mol) X

C3 0 0

i-C4 0 0

C4 0392 00124

i-C5 1085 03430

C5 20388 06446

3163 100

Average molecular wt = 6331

22750 =7193

The characteristic component is i-c5 an estimated bottom temperature is obtained

Components Xi Ki2380

F Ki2150

F

C3 0 38 45

i-C4 0 355 265

C4 00124 1925 205

i-C5 03430 10 1075

C5 06446 087 094

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 21

For T = 238 0F

ΣKiXi=0927

KHK = 108 Tcal =245 0F

For T =245 0F

ΣKiXi=100

The result of column bottom bubble point calculation

T =245 0F

P =1275 lbin2

53 Determination of the key component

Using the heavy key as column reference key The separation is clearly between

butane and isopentane

Reference component =i-C5

Key component

LK =C4

HK =iC5

The average relative volatility data for the column will be generated using three-point

geometric average

3321 avg

Point 1 ndash top of fractionation column

Point 2 ndash at the reboiler

Point 3 ndash arithmetic mean of condition at 1 amp 3

T2 = 05 [ T1 + T2 ] = 05 [ T1 + T2 ]

T2 = 05 [ 145 + 245 ] = 195 0F

P2 = 05 [ P1 + P3 ] = 05 [ 1225 +1275 ]

P2 = 125 lbin2

variable Point 1 Point 2 Point 3

T oF 145 195 245

P lbin2 1225 125 1275

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 22

Components Point 1 Point 2 Point 3

Ki αi Ki αi Ki αi αavg

C3 24 571 335 493 45 419 49

i-C4 115 274 175 257 25 237 256

C4 085 202 135 199 205 191 197

i-C5 024 100 068 100 1075 100 100

C5 033 079 058 085 094 087 084

54 Shortcut Method

541 Minimum stages at total reflux-the Fenske equation

LKavg

BLk

HK

DHK

LK

m

x

x

x

x

Nln

ln

Fi = bi + di

avgmeanavgiiir

rNavgi

i dbb

d

b

d for min

mN

avgHK

avgi

HK

ii

b

d

fb

1

or when ii db meanavgavgi

mN

avgi

avgLK

LK

ii

d

b

fd

1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 23

971ln

01240

3430

02350

51870ln

mN

4619mN

2

avgLKavgHKmean

2

001971

= 1485

For propaneC3

meanC 3

7624

904

3

3

C

C

f

4619

001

904

85010

80101

76243Cb

hmold

hmol

C 7624007624

1091

3

5

For isobutene(i-C4)

84310

562

4

4

4

iC

Ci

meanCi

f

4619

1

562

8500

80101

843104iCb

hmol 020

823104iCd

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 24

For butane (C4)

07218

971

4

4

C

C

meanavgi

f

4619

001

971

8510

80101

072184Cb

hmold

d

hmolb

C

C

C

68817

392007218

3920

4

4

4

For isopentane (i-C5)

meanavgiC

iCiC hmolf

5

5565111001

Hence

4619

001

971

6817

39201

651115iCd

hmolb

hmold

iC

iC

8510801065111

8010

5

5

For pentane (C5)

hmolb

hmold

d

C

C

C

meanavgC

C

105320

2850

840

971

6817

39201

38820

840

5

5

5

5

5

4619

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 25

The calculated data in the table

Components Fi(lbmolh) Di(lbmolh) Bi(lbmolh)

C3 4762 4762 0

i-C4 10834 10823 002

C4 18072 17680 0392

i-C5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Checking

Maximum 3wt of iC5 in the distillate

9772

1004656

172

35134

8010

wt

Maximum of 1 wt C4 in the bottom

011

1009371

158

36531

3920

wt

The set of specification were not met The parameter reevaluated

Again performing same calculations

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 1050-x x

i-C5 840 y 840-y

C5 1470 2055 144945

Total 190939-x+y 229061+x-y

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 26

3658

5522

612290100

1

391909100

3

y

x

yx

x

yx

y

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 102745 2255

i-C5 840 5836 78164

C5 1470 2055 144945

Total 4200 194520 224580

Components F(lbmolh) D(lbmolh) B(lbmolh)

C3 4762 4762 0

i-c4 10834 10823 002

C4 18072 17680 0392

i-c5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Column operating condition

Distillate bubble point calculation on with temperature specified at 130 0F

Components D (lbmolh) K120 (lbin2)

C3 4762 210

i-C4 10823 10

C4 17680 073

i-C5 0801 033

C5 0285 027

Total 34351

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 27

992036334

07634

001

ii

iiii

xK

D

dKxK

Condition of the distillatereflux before 130 0F amp 120 lbin2overhead or column top

conditions are found by dew point calculation at the specified pressure of 1225lbin2

Components D (lbmolh) K1450

F K148 0

F

C3 4762 24 2425

i-C4 10823 116 1175

C4 17680 084 087

i-C5 0801 042 0425

C5 0285 033 034

01D

K

d

K

y i

i

i

i

For T=145 0F

018136334

9934

i

i

K

y K=1175 Tcal=148 0F

For T=148 0F

997036334

24334

i

i

K

y

Conditions of column overhead are revised to 148 0F and 1225lbin2column bottom

conditions are found by way of bubble point calculation

Components B(lbmolh) K2450

F

C3 0 45

i-C4 002 255

C4 0392 205

i-C5 10850 1075

C5 20103 094

Total 31365

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 28

Design equation

001B

bKxK ii

ii

For T =245 0F

00139331

39831ii xK

At column midpoint condition

2

0

1255127512250

519624514850

inlbP

FT

Summery of operating condition

Point 1 Point 2 Point 3

Temperature 148 1965 245

Pressure lbin2 (abs) 1225 125 1275

Equilibrium K data for column midpoint condition

Point 1 Point 2 Point 3

Components Ki i Ki i Ki i avgi

C3 2425 571 34 486 45 419 488

i-C4 1175 276 18 257 255 237 256

C4 087 205 138 197 205 191 198

i-C5 0425 100 07 10 1075 10 10

C5 034 08 06 086 094 087 084

Fenske equation

3919

001

981ln

3880

84210

8090

68417ln

m

m

N

N

Separation of non key component

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 29

4912

100198

2

avgLKavgHK

mean

molh09220bmolh 2920d

molh38820f840

)(CPentane

molh8090dmolh 84210b

molh65111f001

)C-(itan

68417dmolh 3880b

molh07218f981

)(CButane

hmol 82210d h mol0210b

hmol84310f562

)C-(iIsobutane

molh76240007624d

molh000molh101882

001

884

84210

80901

7624

7624f884

)(Cropane

C5C5

C5C5

5

C5-iC5-i

C5-iiC5

5

C4C4

C4C4

4

iC4iC4

iC4iC4

4

33C3

5

39193

C3C3

3

lblb

lb

lblb

lb

eIsopen

hlbmollb

lblb

lb

lbbf

lblbb

hmol

P

CC

C

Components Feed (lbmolh) Distillate (lbmolh) Bottom (lbmolh)

C3 4762 4762 0000

i-C4 10843 10822 0021

C4 18072 17684 03880

i-C5 11651 0809 10842

C5 20388 0292 20096

Total 65716 34369 31347

Maximum value of 3 wt of i-C5 in distillate is required

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 30

Calculated value =

wt 3

1004956

172

36934

8090

Maximum value of 1 wt of C4 in bottom is required

Calculated value

wt 1

1009163

158

34731

3880

Conditions are satisfied

542 Component split by Winn equation

The Fenske equation has a weakness as the relative volatility difference between

column top and bottom increase the estimated minimum number of stages gets

increasingly too small

460

1

460

1

lnln

bottomtop

bottomitopi

i

TT

PKPKB

460

ln

T

BAPK i

ii

110 irHKi PAAi

r

ii B

B

Components KTop148 F Kbottom245 F

C3 2425 450

i-C4 1175 255

C4 087 205

i-C5 0425 1075

C5 034 094

For P=125 lbin2

For butane (C4)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 31

550594460148

)271263()42525122log(

271263

460245

1

460148

1545127log42525122log

4

4

C

C

A

B

Heavy component is iso-pentane( i-C5)

955824460148

)711857()42505122log(

680010717185

271263

711857

460245

1

460148

1

07515127log4250125log

5

4

5

Ci

C

Ci

A

A

B

311344

)125(10

10)1680010()955824550594(

1

irHKi PAAi

Components Bi Ai θi βi

C3 -126327 45509 068001 43113

i-C4 -156377 473016 084177 24069

C4 -172167 48593 092677 191988

i-C5 -185771 49558 100000 10000

C5 -202840 49558 109189 086704

5339

919881log

)369348090(

)3473484210(

)347313880(

)3693468417(log

m

m

N

N

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 32

abvg

1

bdcomponent

orlightif

D

B

d

bb

d

HK

N

i

im

d

b1

fd

2dbkeyheavy

1

avgHKLKif

b

df

b

componentlight propanefor

5

032068

9533

101976

09120713402

4311

b

d

7624

0001097611

76245

bfd

b

For isobutene (i-C4)

f =10843 θ =0842 β =2407 (light component)

lh10821lbmo

002210843d

h0022lbmol

494151

10843b

4941509120713402

2407

b

d08417108417

9533

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 33

For Butane (C4)

f =18072 β=191988θ=092677

h0388lbmol

455771

18072b

4557709120713402

191988

b

d0926771092677

9533

d=18072-0388

=17684 lbmolh

For Isopentane (C5)

f =11651 β =100 θ =100

111

5339

91207040213

00001

b

d

=007461

βltβavg

)0746101(1

65111

d

= 0809 lbmolh

b = 11651-0809

=10842 lbmolh

For Pentane (C5)

f =20388 lbmolh β= 086704 θ =109189

0918911091891

5339

91207040213

867040

b

d

=0014959

βltβavg

)01495901(1

38820

d

= 0300 lb molh

b=20388-03

=20088

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 34

Components Feed lbmolh Distillate lbmolh Bottom lbmolh

C3 4762 4762 000

i-C4 10843 10821 0022

C4 18072 17684 0388

i-C5 11651 0809 10842

C5 20388 03 20088

65716 34376 3134

Components Feed lbh Distillate lbh Bottom lbh

C3 210 210 000

i-C4 630 62872 128

C4 1050 102745 2257

i-C5 840 5836 78164

C5 1470 2163 1448348

4200 194602 2253818

543 Calculation of Rm

From Underwood equation

qx

i

iFi

1

Components Flbmolhr xif xid αi

C3 4762 00725 01386 488

i-C4 10843 01650 03149 256

C4 18072 02750 05145 198

i-C5 11651 01773 002335 100

C5 20388 03102 00085 084

65716 1000 1000

Feed is at boiling conditions since q =1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 35

0840

31020840

1

177301

981

27500981

562

16500562

884

07250884

θ =1284

from this value of θ

avgi

idavgim

xR

1

11284840

00850840

12841

023501

1284981

51450981

1284562

31490562

1284884

13860884

mR

Rm=1185

R=15 Rm

=15times1185

=17775

X=1

R

RR m

X=177751

185177751

=02133

From GillilandrsquoS correlation Y=1

N

NN m =042

We know the value of Nm 4201

5339

N

N

N=178 =18 stages

Feed location can be known by the use of Kirkbride equation

2

)376348090(

)34313880(

)07218(

)65111(

37634

34312060log

F

F

p

m

687890p

m

817 pm

m = 725=8

p =1054 =11

Feed is introduced on eight stage from top

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 36

Chapter- 6

PACKED COLUMN DESIGN

61 Stage AnalysisThe data shown in table are typical data generated by commercial simulation

Vapor liquidStage Temperature0F lbhr CFS

ft3sV

lbft3

Lbhr GPM

galminL

σ

dynecm

μ

cP

1 1349 00 00 00 3655 1423 3202 6867 0114

2 1474 5501 12050 12683 3720 1447 3204 6738 01132

3 1548 5566 12049 12831 3724 1447 3208 6699 01128

4 1609 5571 11987 12909 3707 1438 3214 6684 01130

5 1668 5553 11889 12974 3693 1430 3220 6665 01135

6 1726 5539 11794 13045 3689 1426 3224 6632 01142

7 1779 5535 11716 13122 3691 1426 3226 6590 01149

8 1824 5537 11650 13199 8032 310471 3226 6544 01156

9 1873 5678 11794 13373 8126 3142 3224 6507 01153

10 1917 5772 11871 13506 8201 3171 3224 6479 01151

11 1961 5847 11915 13631 8275 3201 3223 6447 01152

12 2010 5921 11946 13768 8360 3235 3222 6406 01156

13 2064 6006 12152 13928 8475 3274 3220 6348 01162

14 2122 6103 12013 14111 8574 3321 3218 6295 01170

15 2179 6220 12070 14310 8701 3374 3215 6236 01180

16 2232 6347 12148 14512 8829 3428 3211 6178 01191

17 2280 6475 12234 14701 8947 3477 3208 6128 01201

18 2321 6593 12317 14868 2354 91599 3204 6087 01212

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 37

62 Flood Point

15 inch pall ring will be used throughout the column for this packing the flood point can

be determined by interpolation

A-flood point by GPDC [generalized pressure drop correlation] interpolation

2

2

6593

5571

fthrlbA

G

fthrlbA

G

TBottom

TTop

Liquid flowrates ( 2 fthrlb )

LTop =TA

3724

LBottom = TA

8947

Vapor density( 3 ftlb )

48681

31991

BottomG

TopG

Liquid density ( 3 ftlb )

2432

2632

BottomL

TopL

1 Flow parameter

L

GLV ρ

ρ

G

LF

Top 05

LV 3228

13199

5571

3724F

1352110FLV

Bottom LVF =

2432

48681

6593

8947

= 029142

2 Capacity parameter from graphical correlation

Top =152

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 38

Bottom =119

3 Viscosity of the liquid L (cP)

Top L =01128 (cP)

Bottom L =01151 (cP)

4 Kinematic viscosity

=

L

L

462

Top =

2632

11280462

Top = 0218187

Bottom =

2432

11510462

Bottom = 022277

5 Packing factor ( 1ft )

Top FP = 40

Bottom FP = 40

6 Vapour capacity factor CSFI(fts)

Capacity parameter = CSFI FP05 005

Top 05050SFI 2181040

921C

Top SFIC =02593

Bottom 05050SFI 2181040

191C

Bottom 20280CSFI

63 Flood point by the Kister amp Gill correlation

1 FTP packed bed specific pressure drop at flood point

FTP =0115 70PF

Top FTP =0115 7040

=1521

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 39

Bottom FTP =1521 inch of H2O per ft

2 Flow parameter

Top FLV =0135211

Bottom FLV =029142

3 Capacity parameter at flood point

Top =152

Bottom = 119

4 CSFl vapor capacity factor at the flood point

CSFl = capacity parameter

05050

1

PF

Top CSFl =02593

Bottom CSFl =02028

64 Diameter calculation

1 Vapor capacity factor Cs design (nonderated) fts

The column will be designed for 75 flood capacity

SFlS CC 750

Top CS = 075 02593

=0194475

Bottom CS = 075 02028

Bottom CS = 01551

2 CS vapor capacity factor (derated )fts

= 09 CSdesign

Top CS = 09 01944

Top CS =017496

Bottom CS =09 01521

Bottom CS =013689

3 Vapor superficial velocity based on the cross section of empty column u (fts)

GL

G

ss

ρρ

ρ

(derated)Cu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 40

Top su =

319912632

31991

174960

Top su =084737

Bottom su =

486812432

48681

136890

Bottom su = 062257

4 Vapor flow rate CFS ft3s

Top CFS =1205 ft3s

Bottom CFS =12316 ft3shellipfrom table

5 Tower area ft2

AT = s

T u

CFSA

Top AT = 847370

2051

Top AT =1422 ft2

Bottom AT = 622570

23161

Bottom AT =19782 ft2

6 Tower diameter ft

1587ftD

π

197824D

13455ftD

π

14224D

π

A4

BottomT

BottomT

TopT

TopT

TT

D

65 Diameter calculation using the maximum pressure drop criterion

1 L

G

calculation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 41

Top L

G

=2632

31991

= 00409

Bottom L

G

=2432

48681

= 004611

2OH

L

2

calculation

Top ( OHL 2 )=

4362

2632

= 05167

Bottom ( OHL 2 ) =

4362

2432

= 05164

3 FP packing factor

Top FP = 40

Bottom FP =40

4 Maximum pressure drops recommended for packed column with random packing

1902

70max

OH

LPFP

helliphelliphelliphellipfor 006 20L

G

Top maxP = 019 5167040 70

Top maxP = 12984helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

Bottom maxP = 019 5164040 70

Bottom maxP =12977helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

5 Surface tension dyne

Top =6544 cmdyne

Bottom =6128 cmdyne

6 Vapor capacity factor Csmax (fts)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 42

P

s

FCP

3342maxmax

Top 12984 =

5446

403342maxsC

Top maxsC =02634

Bottom 12977 =

1286

403342maxsC

Bottom maxsC =025628

7 Maximum vapor superficial velocity usmax

maxsC = usmax

GL

G

Top usmax =

319912632

31991

26340

= 12752

Bottom usmax =

486812432

48681

25620

=11651 fts

8 Tower area AT (ft2)

AT =smaxu

CFS

Top AT =27521

2051

Top AT =09449

Bottom AT = 16511

23161

= 1057 ft2

9 Tower diameter (ft)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 10: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 10

Hv- enthalpy of vapor entering the condenser

HD - enthalpy of vapor leaving the drum accumulator

hD- enthalpy of liquid leaving the drum

with the condenser duty calculated the reboiler duty QR can be obtained as

QR=Qc+[DV HD+DLhD]+B hB-F HF

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 11

Chapter -4

Packed Tower

41 Packing Hydraulics

At low liquid flow rates the open cross sectional area of the packing is about the same as in

a dry bed The pressure drop is entirely by frictional losses through a series of opening and

proportional to the square of gas flow rate In random packing the pressure drop is due to

expansion contraction and changes of direction A portion of the gas kinetic energy is

used to support the liquid the column and the pressure drop becomes proportional to the gas

rate raised to power different The point where the packing voids fill up with liquid ie

when tower operation switches from vapor continuous to liquid continuous is termed phase

inversion For all liquid flow rates as gas flow rate is raised a point is reached when the gas

velocity begins to interfere with the free drainage of liquid The accumulation of liquid

reduces the cross section area available for gas flow and therefore accelerates the pressure

drop rise Further increase in gas rate more liquid accumulates until the liquid surface

becomes continuous across the top of packing

Efficiency flow regimes

When the liquid distribution is poor it will take more liquid to wet the entire bed Turbulent

liquid film produces good wetting of the packing and essentially contact efficiency As

liquid rate increases more vapor is entrained down the bed These drops efficiency

Because structured packing permits far less lateral movement of fluid than random

packings

Flood point

Appearance of liquid on top of the bed excessive entrainment a sharp rise in pressure

drop a sharp rise in liquid hold up and a sharp drop in efficiency flood point can be

predicted far more reliably than packing pressure drop and maximum operational capacity

Pressure drop

This is often used to specify packed tower capacity In small columns (lt3 ft in dia )

pressure drop varies with tower diameter With random packings smaller the tower

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 12

diameter the lower the pressures drop possibly due to enhancement of wall effects Dry

packed beds have a higher-pressure drop than wet ndash packed beds Pressure drop

measurement under deep vacuum (lt50 mmHg) is affected by the pressure drop and the

pressure gradient along the bed Pressure drop measurements in a pressure tower include

the static head of the vapor To obtain the actual packing pressure drop the static head

must be subtracted from pressure drop measurement Pressure drop for foaming systems

are higher than for non-foaming systems

42 Flood Point Prediction

421 Sherwood ndashEckert generalized pressure drop correlation (GPDC)

The Sherwood ndashEckert GPDC chart has been the standard of the industry for predicting

flood points and pressure drops

GPDC chart ordinate describes the balance between the vapor momentum force that acts

to entrain swarms of liquid droplets and the gravity force that resists the upward

entrainment GPDC chart abscissa is the flow parameter the ratio of liquid kinetic energy

to vapor kinetic energy

422 The Kister and Gill correlation

Zens discovered that packing pressure drop at the flood point decreases as the packing

capacity increases A simple flood point correlation

FLP =0115 70PF

this equation expresses pressure drop at the flood point as a function of packing factor

alone Once this pressure drop is known the flood velocity can be calculated The flood

velocity calculated by the Kister and Gill correlation is tolerant to inaquaracies in flood

pressure drop predictions

43 Pressure Drop Prediction By GPDC Interpolation

Interpolation of pressure drop data is more accurate than correlation prediction

Superimposing experimental data points on the curves of generalized pressure correlation

chart converts the GPDC chart into an interpolation chart Pressure drops are calculated by

interpolating the plotted pressure drop data For all charts (random structured or grid

packings) the abscissa of the correlation is the flow parameter given by

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 13

50

L

GLV G

LF

And the ordinate of correlation as the capacity parameter given by

GL

GSS uC

FP is the packing factor which is an empirical factor characteristics of the packing size

and shape

44 Packing factors

Several of the predictive methods above use a packing factor to account for the type and

size of packing With the evolutions of the general pressure drop correlation the packing

factor shifted away from the ratio ap ε3 to become an imperial constant that must be

experimentally determined for each packing

Loading point

The point of transition from the preloading regime to the loading regime is termed the

loading point It is the point where liquid hold up starts increasing with gas velocity rapid

deterioration in efficiency loading point where the flow rate at which the vapor phase

bagans to interact with the liquid phase to increase interfacial area in a packed column the

loading points occurs at 70 percent of the flood point

Pressure drop

Packed tower are designed so that the pressure drop at any point in the tower does not

exceed a recommended maximum value Maximum pressure drop criterioa for packed

tower are listed in table

Average pressure drop

Specific pressure drop can be calculated at the top of the bed and at the bottom of the bed

the average pressure drop is

25050 5050 bottomtop PPP

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 14

Type of system Maximum pressure drop in of water ft

packing

Atmospheric fractionator 05-100

Low to medium pressure fractioantor 07-10

High pressure distillation

006ltρG ρGlt 020

020lt ρGρL

019 )( 270

OHGPF

0099 )( 270

OHGPF

Vacuum distillation 001-06

Liquid holdup

Liquid holdup is the liquid present in the void spaces of packing At flooding

essentially all the voids are filled with liquids or froth Reasonable liquid holdup is

necessary for good mass transfer and efficient tower operation but beyond that it should

be kept low

Static holdup is liquid remaining on the packing after it has been fully wetted and

drained for long time The contributation of static holdup to mass transfer rates is limited

Operational holdup is liquid on the packing attributed to dynamic operation and is defined

as the difference between total holdup and static holdup

Minimum Wetting Rate

The minimum wetting rate (MWR) is the lower stability limit of packing It is liquid

below which the falling liquid film breaks up and the liquid storage causes wetting of the

packing surface Gravity and viscous forces resists dewetting the surface tension and vapor

shear forces tend to dewett the falling film The MWR therefore rises with an increase in

surface tension and liquid density and with decrease in liquid viscosity

A thumb rule cited by Ludwi

QMW =3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 15

Underwetting

Underwetting is a packing surface phenomenon which brakes up liquid film

The tendency of liquid film to break is expressed by a contact angle A contact angle of

zero indicates perfect wetting an angle of 1800 indicates no wetting

The contact angle depends both on surface and a liquid and is a strong function of

composition Changing a material and surface roughness of the packing may significantly

affect the efficiency in system susceptible to underwetting

45 The HETP concept

The concept of HETP (height equivalent to theoretical plates) was introduced to

enable to comparison of efficiency between packed and plate columns HETP is defined as

HETP = Hn

A similar HETP value can be obtained for plate column if the tray spacing is known

HETP (trayed column) = 100 timesSE

The HETP approach is suitable for multicomponent systems while HTU approach is

difficult to apply for this

HETP prediction

Because there are only few variables that significantly affect HETP of random

packings For small diameter column the rule of thumb presented by Frank Ludig Vital

et al are identical The more conservative cause predicted from

HETP =15 dp helliphellipfor Pall rings or similar high efficiency packing

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 16

Chapter -5

Distillation Design

Problem statement-

A butane-pentane splitter is to be designed to process 4200 lbhr of C3 ndashC5 feed subjected to

specifications of

1maximum 3 of i-C5 in the distillate

2maximum 1 of C4 in the bottom product

The feed sink will be air (process design temperature) to be 130 0F

Components Wt molwt lbh molh

C3 5 441 210 4762

i-C4 15 581 630 10843

C4 25 581 1050 18072

i-C5 20 721 840 11651

C5 35 721 1470 20388

4200 65716

Solution-

Feed composition

Components lbgal(60F) galh Vol mol

C3 422 4976 592 725

i-C4 469 13433 1397 165

C4 487 21501 2563 275

i-C5 520 16154 192 1773

C5 525 28000 328 3102

Total 84124 100 100

Average molecular weight 650716

4200

= 6391

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 17

Average liquid density = 420065716

= 4993lbgal

x = mass of c4 in the bottom(i-wt)

y =mass of i-c5 in the distillate(3 wt)

51 Component Split

Assuming that the C3 and i-C5 have negligible concentration in the bottom and C5 has

negligible concentration in the distillate

Components F D B

C3 210 210 0

i-C4 630 630 0

C4 1050 (1050-x) x

i-C5 840 y (840-y)

C5 1470 0 1470

Total 4200 1890-x+y 2310+x-y

F =B+D

4200 =2310 + x ndashy +1890 ndashx + y

Distillate specification 3 in of i-c5 in distillate

yx

y

18900030

567 ndash 003 x -097 y =0

003 x + 097 y =567

Bottom specification 1 C4 in the bottom

003 yx

x

2310

231 -001 x + 001 y = x

099 x + 001 y = 231

x = 2275

y = 5775

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 18

Components D lbh B lbh D lbmolh B lbmolh

C3 210 0 4762 0

i-C4 630 0 10843 0

C4 102725 2275 1768 039

i-C5 5725 78225 0801 1085

C5 0 1470 0 20388

Total 1925 2275 34086 3163

52 Dew Point and Bubble Point calculation

1 The distillate and reflux will be a bubble point liquid The criteria for evaluation of

the bubble point condition are

1 like an air fin condenser to liquefy the distillate and reflux The criteria of

drum temperature will be assumed to be 130F ( design temperature for air is

about 120F

2 the bubble point design equation with temperature specified

01 ii xK

Average molecular weight of distillate

Components xid Ki

C3 01397 21

i-C4 03181 10

C4 05187 073

i-C5 00235 033

C5 0 027

For fixed temperature of 130F bubble point pressure is to be determined

4656 wtmolxid

9980 iDi xK

Pestimated = Pi-c4 = 120 lbin2

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 19

001

9980120calculatedP

= 1197 lbin2 (abs)

The result of distillate bubble point calculation is

T = 130 0F

P = 120 lbin2

The condition at the top of the column must be evaluated since the fractionator has a

total concentration and an equilibrium stage The criteria for evaluation of the dew

point condition are

Assumption of the pressure drop through the total condenser of 25 lbin2Thus the

pressure at the top of the column is established as

P = 120 lbin2 + 25 lbin2

P = 1225 lbin2

Dew point

01

i

i

k

y

Plk =1225 lbin2 T= 1320F

Components yi Ki1320

F Ki1450

F

C3 01397 220 240

i-C4 03181 100 115

C4 05187 073 085

i-C5 00235 035 042

C5 00000 028 033

For T =1320F

01

i

i

k

y

Kic4 = 1160 and Tcal =1450F

For T =1450F

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 20

01

i

i

k

y

The result of column top dew point calculation

T =1450F

P = 1225 lbin2

The column bottom condition Column ΔP =5 lbin2

The column bottom pressure

P = 1225 + 50 = 1275 lbin2

The bubble point design equation

ΣKiXi=10

Components B(mol) X

C3 0 0

i-C4 0 0

C4 0392 00124

i-C5 1085 03430

C5 20388 06446

3163 100

Average molecular wt = 6331

22750 =7193

The characteristic component is i-c5 an estimated bottom temperature is obtained

Components Xi Ki2380

F Ki2150

F

C3 0 38 45

i-C4 0 355 265

C4 00124 1925 205

i-C5 03430 10 1075

C5 06446 087 094

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 21

For T = 238 0F

ΣKiXi=0927

KHK = 108 Tcal =245 0F

For T =245 0F

ΣKiXi=100

The result of column bottom bubble point calculation

T =245 0F

P =1275 lbin2

53 Determination of the key component

Using the heavy key as column reference key The separation is clearly between

butane and isopentane

Reference component =i-C5

Key component

LK =C4

HK =iC5

The average relative volatility data for the column will be generated using three-point

geometric average

3321 avg

Point 1 ndash top of fractionation column

Point 2 ndash at the reboiler

Point 3 ndash arithmetic mean of condition at 1 amp 3

T2 = 05 [ T1 + T2 ] = 05 [ T1 + T2 ]

T2 = 05 [ 145 + 245 ] = 195 0F

P2 = 05 [ P1 + P3 ] = 05 [ 1225 +1275 ]

P2 = 125 lbin2

variable Point 1 Point 2 Point 3

T oF 145 195 245

P lbin2 1225 125 1275

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 22

Components Point 1 Point 2 Point 3

Ki αi Ki αi Ki αi αavg

C3 24 571 335 493 45 419 49

i-C4 115 274 175 257 25 237 256

C4 085 202 135 199 205 191 197

i-C5 024 100 068 100 1075 100 100

C5 033 079 058 085 094 087 084

54 Shortcut Method

541 Minimum stages at total reflux-the Fenske equation

LKavg

BLk

HK

DHK

LK

m

x

x

x

x

Nln

ln

Fi = bi + di

avgmeanavgiiir

rNavgi

i dbb

d

b

d for min

mN

avgHK

avgi

HK

ii

b

d

fb

1

or when ii db meanavgavgi

mN

avgi

avgLK

LK

ii

d

b

fd

1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 23

971ln

01240

3430

02350

51870ln

mN

4619mN

2

avgLKavgHKmean

2

001971

= 1485

For propaneC3

meanC 3

7624

904

3

3

C

C

f

4619

001

904

85010

80101

76243Cb

hmold

hmol

C 7624007624

1091

3

5

For isobutene(i-C4)

84310

562

4

4

4

iC

Ci

meanCi

f

4619

1

562

8500

80101

843104iCb

hmol 020

823104iCd

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 24

For butane (C4)

07218

971

4

4

C

C

meanavgi

f

4619

001

971

8510

80101

072184Cb

hmold

d

hmolb

C

C

C

68817

392007218

3920

4

4

4

For isopentane (i-C5)

meanavgiC

iCiC hmolf

5

5565111001

Hence

4619

001

971

6817

39201

651115iCd

hmolb

hmold

iC

iC

8510801065111

8010

5

5

For pentane (C5)

hmolb

hmold

d

C

C

C

meanavgC

C

105320

2850

840

971

6817

39201

38820

840

5

5

5

5

5

4619

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 25

The calculated data in the table

Components Fi(lbmolh) Di(lbmolh) Bi(lbmolh)

C3 4762 4762 0

i-C4 10834 10823 002

C4 18072 17680 0392

i-C5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Checking

Maximum 3wt of iC5 in the distillate

9772

1004656

172

35134

8010

wt

Maximum of 1 wt C4 in the bottom

011

1009371

158

36531

3920

wt

The set of specification were not met The parameter reevaluated

Again performing same calculations

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 1050-x x

i-C5 840 y 840-y

C5 1470 2055 144945

Total 190939-x+y 229061+x-y

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 26

3658

5522

612290100

1

391909100

3

y

x

yx

x

yx

y

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 102745 2255

i-C5 840 5836 78164

C5 1470 2055 144945

Total 4200 194520 224580

Components F(lbmolh) D(lbmolh) B(lbmolh)

C3 4762 4762 0

i-c4 10834 10823 002

C4 18072 17680 0392

i-c5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Column operating condition

Distillate bubble point calculation on with temperature specified at 130 0F

Components D (lbmolh) K120 (lbin2)

C3 4762 210

i-C4 10823 10

C4 17680 073

i-C5 0801 033

C5 0285 027

Total 34351

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 27

992036334

07634

001

ii

iiii

xK

D

dKxK

Condition of the distillatereflux before 130 0F amp 120 lbin2overhead or column top

conditions are found by dew point calculation at the specified pressure of 1225lbin2

Components D (lbmolh) K1450

F K148 0

F

C3 4762 24 2425

i-C4 10823 116 1175

C4 17680 084 087

i-C5 0801 042 0425

C5 0285 033 034

01D

K

d

K

y i

i

i

i

For T=145 0F

018136334

9934

i

i

K

y K=1175 Tcal=148 0F

For T=148 0F

997036334

24334

i

i

K

y

Conditions of column overhead are revised to 148 0F and 1225lbin2column bottom

conditions are found by way of bubble point calculation

Components B(lbmolh) K2450

F

C3 0 45

i-C4 002 255

C4 0392 205

i-C5 10850 1075

C5 20103 094

Total 31365

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 28

Design equation

001B

bKxK ii

ii

For T =245 0F

00139331

39831ii xK

At column midpoint condition

2

0

1255127512250

519624514850

inlbP

FT

Summery of operating condition

Point 1 Point 2 Point 3

Temperature 148 1965 245

Pressure lbin2 (abs) 1225 125 1275

Equilibrium K data for column midpoint condition

Point 1 Point 2 Point 3

Components Ki i Ki i Ki i avgi

C3 2425 571 34 486 45 419 488

i-C4 1175 276 18 257 255 237 256

C4 087 205 138 197 205 191 198

i-C5 0425 100 07 10 1075 10 10

C5 034 08 06 086 094 087 084

Fenske equation

3919

001

981ln

3880

84210

8090

68417ln

m

m

N

N

Separation of non key component

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 29

4912

100198

2

avgLKavgHK

mean

molh09220bmolh 2920d

molh38820f840

)(CPentane

molh8090dmolh 84210b

molh65111f001

)C-(itan

68417dmolh 3880b

molh07218f981

)(CButane

hmol 82210d h mol0210b

hmol84310f562

)C-(iIsobutane

molh76240007624d

molh000molh101882

001

884

84210

80901

7624

7624f884

)(Cropane

C5C5

C5C5

5

C5-iC5-i

C5-iiC5

5

C4C4

C4C4

4

iC4iC4

iC4iC4

4

33C3

5

39193

C3C3

3

lblb

lb

lblb

lb

eIsopen

hlbmollb

lblb

lb

lbbf

lblbb

hmol

P

CC

C

Components Feed (lbmolh) Distillate (lbmolh) Bottom (lbmolh)

C3 4762 4762 0000

i-C4 10843 10822 0021

C4 18072 17684 03880

i-C5 11651 0809 10842

C5 20388 0292 20096

Total 65716 34369 31347

Maximum value of 3 wt of i-C5 in distillate is required

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 30

Calculated value =

wt 3

1004956

172

36934

8090

Maximum value of 1 wt of C4 in bottom is required

Calculated value

wt 1

1009163

158

34731

3880

Conditions are satisfied

542 Component split by Winn equation

The Fenske equation has a weakness as the relative volatility difference between

column top and bottom increase the estimated minimum number of stages gets

increasingly too small

460

1

460

1

lnln

bottomtop

bottomitopi

i

TT

PKPKB

460

ln

T

BAPK i

ii

110 irHKi PAAi

r

ii B

B

Components KTop148 F Kbottom245 F

C3 2425 450

i-C4 1175 255

C4 087 205

i-C5 0425 1075

C5 034 094

For P=125 lbin2

For butane (C4)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 31

550594460148

)271263()42525122log(

271263

460245

1

460148

1545127log42525122log

4

4

C

C

A

B

Heavy component is iso-pentane( i-C5)

955824460148

)711857()42505122log(

680010717185

271263

711857

460245

1

460148

1

07515127log4250125log

5

4

5

Ci

C

Ci

A

A

B

311344

)125(10

10)1680010()955824550594(

1

irHKi PAAi

Components Bi Ai θi βi

C3 -126327 45509 068001 43113

i-C4 -156377 473016 084177 24069

C4 -172167 48593 092677 191988

i-C5 -185771 49558 100000 10000

C5 -202840 49558 109189 086704

5339

919881log

)369348090(

)3473484210(

)347313880(

)3693468417(log

m

m

N

N

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 32

abvg

1

bdcomponent

orlightif

D

B

d

bb

d

HK

N

i

im

d

b1

fd

2dbkeyheavy

1

avgHKLKif

b

df

b

componentlight propanefor

5

032068

9533

101976

09120713402

4311

b

d

7624

0001097611

76245

bfd

b

For isobutene (i-C4)

f =10843 θ =0842 β =2407 (light component)

lh10821lbmo

002210843d

h0022lbmol

494151

10843b

4941509120713402

2407

b

d08417108417

9533

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 33

For Butane (C4)

f =18072 β=191988θ=092677

h0388lbmol

455771

18072b

4557709120713402

191988

b

d0926771092677

9533

d=18072-0388

=17684 lbmolh

For Isopentane (C5)

f =11651 β =100 θ =100

111

5339

91207040213

00001

b

d

=007461

βltβavg

)0746101(1

65111

d

= 0809 lbmolh

b = 11651-0809

=10842 lbmolh

For Pentane (C5)

f =20388 lbmolh β= 086704 θ =109189

0918911091891

5339

91207040213

867040

b

d

=0014959

βltβavg

)01495901(1

38820

d

= 0300 lb molh

b=20388-03

=20088

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 34

Components Feed lbmolh Distillate lbmolh Bottom lbmolh

C3 4762 4762 000

i-C4 10843 10821 0022

C4 18072 17684 0388

i-C5 11651 0809 10842

C5 20388 03 20088

65716 34376 3134

Components Feed lbh Distillate lbh Bottom lbh

C3 210 210 000

i-C4 630 62872 128

C4 1050 102745 2257

i-C5 840 5836 78164

C5 1470 2163 1448348

4200 194602 2253818

543 Calculation of Rm

From Underwood equation

qx

i

iFi

1

Components Flbmolhr xif xid αi

C3 4762 00725 01386 488

i-C4 10843 01650 03149 256

C4 18072 02750 05145 198

i-C5 11651 01773 002335 100

C5 20388 03102 00085 084

65716 1000 1000

Feed is at boiling conditions since q =1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 35

0840

31020840

1

177301

981

27500981

562

16500562

884

07250884

θ =1284

from this value of θ

avgi

idavgim

xR

1

11284840

00850840

12841

023501

1284981

51450981

1284562

31490562

1284884

13860884

mR

Rm=1185

R=15 Rm

=15times1185

=17775

X=1

R

RR m

X=177751

185177751

=02133

From GillilandrsquoS correlation Y=1

N

NN m =042

We know the value of Nm 4201

5339

N

N

N=178 =18 stages

Feed location can be known by the use of Kirkbride equation

2

)376348090(

)34313880(

)07218(

)65111(

37634

34312060log

F

F

p

m

687890p

m

817 pm

m = 725=8

p =1054 =11

Feed is introduced on eight stage from top

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 36

Chapter- 6

PACKED COLUMN DESIGN

61 Stage AnalysisThe data shown in table are typical data generated by commercial simulation

Vapor liquidStage Temperature0F lbhr CFS

ft3sV

lbft3

Lbhr GPM

galminL

σ

dynecm

μ

cP

1 1349 00 00 00 3655 1423 3202 6867 0114

2 1474 5501 12050 12683 3720 1447 3204 6738 01132

3 1548 5566 12049 12831 3724 1447 3208 6699 01128

4 1609 5571 11987 12909 3707 1438 3214 6684 01130

5 1668 5553 11889 12974 3693 1430 3220 6665 01135

6 1726 5539 11794 13045 3689 1426 3224 6632 01142

7 1779 5535 11716 13122 3691 1426 3226 6590 01149

8 1824 5537 11650 13199 8032 310471 3226 6544 01156

9 1873 5678 11794 13373 8126 3142 3224 6507 01153

10 1917 5772 11871 13506 8201 3171 3224 6479 01151

11 1961 5847 11915 13631 8275 3201 3223 6447 01152

12 2010 5921 11946 13768 8360 3235 3222 6406 01156

13 2064 6006 12152 13928 8475 3274 3220 6348 01162

14 2122 6103 12013 14111 8574 3321 3218 6295 01170

15 2179 6220 12070 14310 8701 3374 3215 6236 01180

16 2232 6347 12148 14512 8829 3428 3211 6178 01191

17 2280 6475 12234 14701 8947 3477 3208 6128 01201

18 2321 6593 12317 14868 2354 91599 3204 6087 01212

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 37

62 Flood Point

15 inch pall ring will be used throughout the column for this packing the flood point can

be determined by interpolation

A-flood point by GPDC [generalized pressure drop correlation] interpolation

2

2

6593

5571

fthrlbA

G

fthrlbA

G

TBottom

TTop

Liquid flowrates ( 2 fthrlb )

LTop =TA

3724

LBottom = TA

8947

Vapor density( 3 ftlb )

48681

31991

BottomG

TopG

Liquid density ( 3 ftlb )

2432

2632

BottomL

TopL

1 Flow parameter

L

GLV ρ

ρ

G

LF

Top 05

LV 3228

13199

5571

3724F

1352110FLV

Bottom LVF =

2432

48681

6593

8947

= 029142

2 Capacity parameter from graphical correlation

Top =152

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 38

Bottom =119

3 Viscosity of the liquid L (cP)

Top L =01128 (cP)

Bottom L =01151 (cP)

4 Kinematic viscosity

=

L

L

462

Top =

2632

11280462

Top = 0218187

Bottom =

2432

11510462

Bottom = 022277

5 Packing factor ( 1ft )

Top FP = 40

Bottom FP = 40

6 Vapour capacity factor CSFI(fts)

Capacity parameter = CSFI FP05 005

Top 05050SFI 2181040

921C

Top SFIC =02593

Bottom 05050SFI 2181040

191C

Bottom 20280CSFI

63 Flood point by the Kister amp Gill correlation

1 FTP packed bed specific pressure drop at flood point

FTP =0115 70PF

Top FTP =0115 7040

=1521

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 39

Bottom FTP =1521 inch of H2O per ft

2 Flow parameter

Top FLV =0135211

Bottom FLV =029142

3 Capacity parameter at flood point

Top =152

Bottom = 119

4 CSFl vapor capacity factor at the flood point

CSFl = capacity parameter

05050

1

PF

Top CSFl =02593

Bottom CSFl =02028

64 Diameter calculation

1 Vapor capacity factor Cs design (nonderated) fts

The column will be designed for 75 flood capacity

SFlS CC 750

Top CS = 075 02593

=0194475

Bottom CS = 075 02028

Bottom CS = 01551

2 CS vapor capacity factor (derated )fts

= 09 CSdesign

Top CS = 09 01944

Top CS =017496

Bottom CS =09 01521

Bottom CS =013689

3 Vapor superficial velocity based on the cross section of empty column u (fts)

GL

G

ss

ρρ

ρ

(derated)Cu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 40

Top su =

319912632

31991

174960

Top su =084737

Bottom su =

486812432

48681

136890

Bottom su = 062257

4 Vapor flow rate CFS ft3s

Top CFS =1205 ft3s

Bottom CFS =12316 ft3shellipfrom table

5 Tower area ft2

AT = s

T u

CFSA

Top AT = 847370

2051

Top AT =1422 ft2

Bottom AT = 622570

23161

Bottom AT =19782 ft2

6 Tower diameter ft

1587ftD

π

197824D

13455ftD

π

14224D

π

A4

BottomT

BottomT

TopT

TopT

TT

D

65 Diameter calculation using the maximum pressure drop criterion

1 L

G

calculation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 41

Top L

G

=2632

31991

= 00409

Bottom L

G

=2432

48681

= 004611

2OH

L

2

calculation

Top ( OHL 2 )=

4362

2632

= 05167

Bottom ( OHL 2 ) =

4362

2432

= 05164

3 FP packing factor

Top FP = 40

Bottom FP =40

4 Maximum pressure drops recommended for packed column with random packing

1902

70max

OH

LPFP

helliphelliphelliphellipfor 006 20L

G

Top maxP = 019 5167040 70

Top maxP = 12984helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

Bottom maxP = 019 5164040 70

Bottom maxP =12977helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

5 Surface tension dyne

Top =6544 cmdyne

Bottom =6128 cmdyne

6 Vapor capacity factor Csmax (fts)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 42

P

s

FCP

3342maxmax

Top 12984 =

5446

403342maxsC

Top maxsC =02634

Bottom 12977 =

1286

403342maxsC

Bottom maxsC =025628

7 Maximum vapor superficial velocity usmax

maxsC = usmax

GL

G

Top usmax =

319912632

31991

26340

= 12752

Bottom usmax =

486812432

48681

25620

=11651 fts

8 Tower area AT (ft2)

AT =smaxu

CFS

Top AT =27521

2051

Top AT =09449

Bottom AT = 16511

23161

= 1057 ft2

9 Tower diameter (ft)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 11: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 11

Chapter -4

Packed Tower

41 Packing Hydraulics

At low liquid flow rates the open cross sectional area of the packing is about the same as in

a dry bed The pressure drop is entirely by frictional losses through a series of opening and

proportional to the square of gas flow rate In random packing the pressure drop is due to

expansion contraction and changes of direction A portion of the gas kinetic energy is

used to support the liquid the column and the pressure drop becomes proportional to the gas

rate raised to power different The point where the packing voids fill up with liquid ie

when tower operation switches from vapor continuous to liquid continuous is termed phase

inversion For all liquid flow rates as gas flow rate is raised a point is reached when the gas

velocity begins to interfere with the free drainage of liquid The accumulation of liquid

reduces the cross section area available for gas flow and therefore accelerates the pressure

drop rise Further increase in gas rate more liquid accumulates until the liquid surface

becomes continuous across the top of packing

Efficiency flow regimes

When the liquid distribution is poor it will take more liquid to wet the entire bed Turbulent

liquid film produces good wetting of the packing and essentially contact efficiency As

liquid rate increases more vapor is entrained down the bed These drops efficiency

Because structured packing permits far less lateral movement of fluid than random

packings

Flood point

Appearance of liquid on top of the bed excessive entrainment a sharp rise in pressure

drop a sharp rise in liquid hold up and a sharp drop in efficiency flood point can be

predicted far more reliably than packing pressure drop and maximum operational capacity

Pressure drop

This is often used to specify packed tower capacity In small columns (lt3 ft in dia )

pressure drop varies with tower diameter With random packings smaller the tower

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 12

diameter the lower the pressures drop possibly due to enhancement of wall effects Dry

packed beds have a higher-pressure drop than wet ndash packed beds Pressure drop

measurement under deep vacuum (lt50 mmHg) is affected by the pressure drop and the

pressure gradient along the bed Pressure drop measurements in a pressure tower include

the static head of the vapor To obtain the actual packing pressure drop the static head

must be subtracted from pressure drop measurement Pressure drop for foaming systems

are higher than for non-foaming systems

42 Flood Point Prediction

421 Sherwood ndashEckert generalized pressure drop correlation (GPDC)

The Sherwood ndashEckert GPDC chart has been the standard of the industry for predicting

flood points and pressure drops

GPDC chart ordinate describes the balance between the vapor momentum force that acts

to entrain swarms of liquid droplets and the gravity force that resists the upward

entrainment GPDC chart abscissa is the flow parameter the ratio of liquid kinetic energy

to vapor kinetic energy

422 The Kister and Gill correlation

Zens discovered that packing pressure drop at the flood point decreases as the packing

capacity increases A simple flood point correlation

FLP =0115 70PF

this equation expresses pressure drop at the flood point as a function of packing factor

alone Once this pressure drop is known the flood velocity can be calculated The flood

velocity calculated by the Kister and Gill correlation is tolerant to inaquaracies in flood

pressure drop predictions

43 Pressure Drop Prediction By GPDC Interpolation

Interpolation of pressure drop data is more accurate than correlation prediction

Superimposing experimental data points on the curves of generalized pressure correlation

chart converts the GPDC chart into an interpolation chart Pressure drops are calculated by

interpolating the plotted pressure drop data For all charts (random structured or grid

packings) the abscissa of the correlation is the flow parameter given by

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 13

50

L

GLV G

LF

And the ordinate of correlation as the capacity parameter given by

GL

GSS uC

FP is the packing factor which is an empirical factor characteristics of the packing size

and shape

44 Packing factors

Several of the predictive methods above use a packing factor to account for the type and

size of packing With the evolutions of the general pressure drop correlation the packing

factor shifted away from the ratio ap ε3 to become an imperial constant that must be

experimentally determined for each packing

Loading point

The point of transition from the preloading regime to the loading regime is termed the

loading point It is the point where liquid hold up starts increasing with gas velocity rapid

deterioration in efficiency loading point where the flow rate at which the vapor phase

bagans to interact with the liquid phase to increase interfacial area in a packed column the

loading points occurs at 70 percent of the flood point

Pressure drop

Packed tower are designed so that the pressure drop at any point in the tower does not

exceed a recommended maximum value Maximum pressure drop criterioa for packed

tower are listed in table

Average pressure drop

Specific pressure drop can be calculated at the top of the bed and at the bottom of the bed

the average pressure drop is

25050 5050 bottomtop PPP

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 14

Type of system Maximum pressure drop in of water ft

packing

Atmospheric fractionator 05-100

Low to medium pressure fractioantor 07-10

High pressure distillation

006ltρG ρGlt 020

020lt ρGρL

019 )( 270

OHGPF

0099 )( 270

OHGPF

Vacuum distillation 001-06

Liquid holdup

Liquid holdup is the liquid present in the void spaces of packing At flooding

essentially all the voids are filled with liquids or froth Reasonable liquid holdup is

necessary for good mass transfer and efficient tower operation but beyond that it should

be kept low

Static holdup is liquid remaining on the packing after it has been fully wetted and

drained for long time The contributation of static holdup to mass transfer rates is limited

Operational holdup is liquid on the packing attributed to dynamic operation and is defined

as the difference between total holdup and static holdup

Minimum Wetting Rate

The minimum wetting rate (MWR) is the lower stability limit of packing It is liquid

below which the falling liquid film breaks up and the liquid storage causes wetting of the

packing surface Gravity and viscous forces resists dewetting the surface tension and vapor

shear forces tend to dewett the falling film The MWR therefore rises with an increase in

surface tension and liquid density and with decrease in liquid viscosity

A thumb rule cited by Ludwi

QMW =3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 15

Underwetting

Underwetting is a packing surface phenomenon which brakes up liquid film

The tendency of liquid film to break is expressed by a contact angle A contact angle of

zero indicates perfect wetting an angle of 1800 indicates no wetting

The contact angle depends both on surface and a liquid and is a strong function of

composition Changing a material and surface roughness of the packing may significantly

affect the efficiency in system susceptible to underwetting

45 The HETP concept

The concept of HETP (height equivalent to theoretical plates) was introduced to

enable to comparison of efficiency between packed and plate columns HETP is defined as

HETP = Hn

A similar HETP value can be obtained for plate column if the tray spacing is known

HETP (trayed column) = 100 timesSE

The HETP approach is suitable for multicomponent systems while HTU approach is

difficult to apply for this

HETP prediction

Because there are only few variables that significantly affect HETP of random

packings For small diameter column the rule of thumb presented by Frank Ludig Vital

et al are identical The more conservative cause predicted from

HETP =15 dp helliphellipfor Pall rings or similar high efficiency packing

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 16

Chapter -5

Distillation Design

Problem statement-

A butane-pentane splitter is to be designed to process 4200 lbhr of C3 ndashC5 feed subjected to

specifications of

1maximum 3 of i-C5 in the distillate

2maximum 1 of C4 in the bottom product

The feed sink will be air (process design temperature) to be 130 0F

Components Wt molwt lbh molh

C3 5 441 210 4762

i-C4 15 581 630 10843

C4 25 581 1050 18072

i-C5 20 721 840 11651

C5 35 721 1470 20388

4200 65716

Solution-

Feed composition

Components lbgal(60F) galh Vol mol

C3 422 4976 592 725

i-C4 469 13433 1397 165

C4 487 21501 2563 275

i-C5 520 16154 192 1773

C5 525 28000 328 3102

Total 84124 100 100

Average molecular weight 650716

4200

= 6391

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 17

Average liquid density = 420065716

= 4993lbgal

x = mass of c4 in the bottom(i-wt)

y =mass of i-c5 in the distillate(3 wt)

51 Component Split

Assuming that the C3 and i-C5 have negligible concentration in the bottom and C5 has

negligible concentration in the distillate

Components F D B

C3 210 210 0

i-C4 630 630 0

C4 1050 (1050-x) x

i-C5 840 y (840-y)

C5 1470 0 1470

Total 4200 1890-x+y 2310+x-y

F =B+D

4200 =2310 + x ndashy +1890 ndashx + y

Distillate specification 3 in of i-c5 in distillate

yx

y

18900030

567 ndash 003 x -097 y =0

003 x + 097 y =567

Bottom specification 1 C4 in the bottom

003 yx

x

2310

231 -001 x + 001 y = x

099 x + 001 y = 231

x = 2275

y = 5775

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 18

Components D lbh B lbh D lbmolh B lbmolh

C3 210 0 4762 0

i-C4 630 0 10843 0

C4 102725 2275 1768 039

i-C5 5725 78225 0801 1085

C5 0 1470 0 20388

Total 1925 2275 34086 3163

52 Dew Point and Bubble Point calculation

1 The distillate and reflux will be a bubble point liquid The criteria for evaluation of

the bubble point condition are

1 like an air fin condenser to liquefy the distillate and reflux The criteria of

drum temperature will be assumed to be 130F ( design temperature for air is

about 120F

2 the bubble point design equation with temperature specified

01 ii xK

Average molecular weight of distillate

Components xid Ki

C3 01397 21

i-C4 03181 10

C4 05187 073

i-C5 00235 033

C5 0 027

For fixed temperature of 130F bubble point pressure is to be determined

4656 wtmolxid

9980 iDi xK

Pestimated = Pi-c4 = 120 lbin2

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 19

001

9980120calculatedP

= 1197 lbin2 (abs)

The result of distillate bubble point calculation is

T = 130 0F

P = 120 lbin2

The condition at the top of the column must be evaluated since the fractionator has a

total concentration and an equilibrium stage The criteria for evaluation of the dew

point condition are

Assumption of the pressure drop through the total condenser of 25 lbin2Thus the

pressure at the top of the column is established as

P = 120 lbin2 + 25 lbin2

P = 1225 lbin2

Dew point

01

i

i

k

y

Plk =1225 lbin2 T= 1320F

Components yi Ki1320

F Ki1450

F

C3 01397 220 240

i-C4 03181 100 115

C4 05187 073 085

i-C5 00235 035 042

C5 00000 028 033

For T =1320F

01

i

i

k

y

Kic4 = 1160 and Tcal =1450F

For T =1450F

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 20

01

i

i

k

y

The result of column top dew point calculation

T =1450F

P = 1225 lbin2

The column bottom condition Column ΔP =5 lbin2

The column bottom pressure

P = 1225 + 50 = 1275 lbin2

The bubble point design equation

ΣKiXi=10

Components B(mol) X

C3 0 0

i-C4 0 0

C4 0392 00124

i-C5 1085 03430

C5 20388 06446

3163 100

Average molecular wt = 6331

22750 =7193

The characteristic component is i-c5 an estimated bottom temperature is obtained

Components Xi Ki2380

F Ki2150

F

C3 0 38 45

i-C4 0 355 265

C4 00124 1925 205

i-C5 03430 10 1075

C5 06446 087 094

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 21

For T = 238 0F

ΣKiXi=0927

KHK = 108 Tcal =245 0F

For T =245 0F

ΣKiXi=100

The result of column bottom bubble point calculation

T =245 0F

P =1275 lbin2

53 Determination of the key component

Using the heavy key as column reference key The separation is clearly between

butane and isopentane

Reference component =i-C5

Key component

LK =C4

HK =iC5

The average relative volatility data for the column will be generated using three-point

geometric average

3321 avg

Point 1 ndash top of fractionation column

Point 2 ndash at the reboiler

Point 3 ndash arithmetic mean of condition at 1 amp 3

T2 = 05 [ T1 + T2 ] = 05 [ T1 + T2 ]

T2 = 05 [ 145 + 245 ] = 195 0F

P2 = 05 [ P1 + P3 ] = 05 [ 1225 +1275 ]

P2 = 125 lbin2

variable Point 1 Point 2 Point 3

T oF 145 195 245

P lbin2 1225 125 1275

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 22

Components Point 1 Point 2 Point 3

Ki αi Ki αi Ki αi αavg

C3 24 571 335 493 45 419 49

i-C4 115 274 175 257 25 237 256

C4 085 202 135 199 205 191 197

i-C5 024 100 068 100 1075 100 100

C5 033 079 058 085 094 087 084

54 Shortcut Method

541 Minimum stages at total reflux-the Fenske equation

LKavg

BLk

HK

DHK

LK

m

x

x

x

x

Nln

ln

Fi = bi + di

avgmeanavgiiir

rNavgi

i dbb

d

b

d for min

mN

avgHK

avgi

HK

ii

b

d

fb

1

or when ii db meanavgavgi

mN

avgi

avgLK

LK

ii

d

b

fd

1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 23

971ln

01240

3430

02350

51870ln

mN

4619mN

2

avgLKavgHKmean

2

001971

= 1485

For propaneC3

meanC 3

7624

904

3

3

C

C

f

4619

001

904

85010

80101

76243Cb

hmold

hmol

C 7624007624

1091

3

5

For isobutene(i-C4)

84310

562

4

4

4

iC

Ci

meanCi

f

4619

1

562

8500

80101

843104iCb

hmol 020

823104iCd

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 24

For butane (C4)

07218

971

4

4

C

C

meanavgi

f

4619

001

971

8510

80101

072184Cb

hmold

d

hmolb

C

C

C

68817

392007218

3920

4

4

4

For isopentane (i-C5)

meanavgiC

iCiC hmolf

5

5565111001

Hence

4619

001

971

6817

39201

651115iCd

hmolb

hmold

iC

iC

8510801065111

8010

5

5

For pentane (C5)

hmolb

hmold

d

C

C

C

meanavgC

C

105320

2850

840

971

6817

39201

38820

840

5

5

5

5

5

4619

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 25

The calculated data in the table

Components Fi(lbmolh) Di(lbmolh) Bi(lbmolh)

C3 4762 4762 0

i-C4 10834 10823 002

C4 18072 17680 0392

i-C5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Checking

Maximum 3wt of iC5 in the distillate

9772

1004656

172

35134

8010

wt

Maximum of 1 wt C4 in the bottom

011

1009371

158

36531

3920

wt

The set of specification were not met The parameter reevaluated

Again performing same calculations

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 1050-x x

i-C5 840 y 840-y

C5 1470 2055 144945

Total 190939-x+y 229061+x-y

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 26

3658

5522

612290100

1

391909100

3

y

x

yx

x

yx

y

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 102745 2255

i-C5 840 5836 78164

C5 1470 2055 144945

Total 4200 194520 224580

Components F(lbmolh) D(lbmolh) B(lbmolh)

C3 4762 4762 0

i-c4 10834 10823 002

C4 18072 17680 0392

i-c5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Column operating condition

Distillate bubble point calculation on with temperature specified at 130 0F

Components D (lbmolh) K120 (lbin2)

C3 4762 210

i-C4 10823 10

C4 17680 073

i-C5 0801 033

C5 0285 027

Total 34351

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 27

992036334

07634

001

ii

iiii

xK

D

dKxK

Condition of the distillatereflux before 130 0F amp 120 lbin2overhead or column top

conditions are found by dew point calculation at the specified pressure of 1225lbin2

Components D (lbmolh) K1450

F K148 0

F

C3 4762 24 2425

i-C4 10823 116 1175

C4 17680 084 087

i-C5 0801 042 0425

C5 0285 033 034

01D

K

d

K

y i

i

i

i

For T=145 0F

018136334

9934

i

i

K

y K=1175 Tcal=148 0F

For T=148 0F

997036334

24334

i

i

K

y

Conditions of column overhead are revised to 148 0F and 1225lbin2column bottom

conditions are found by way of bubble point calculation

Components B(lbmolh) K2450

F

C3 0 45

i-C4 002 255

C4 0392 205

i-C5 10850 1075

C5 20103 094

Total 31365

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 28

Design equation

001B

bKxK ii

ii

For T =245 0F

00139331

39831ii xK

At column midpoint condition

2

0

1255127512250

519624514850

inlbP

FT

Summery of operating condition

Point 1 Point 2 Point 3

Temperature 148 1965 245

Pressure lbin2 (abs) 1225 125 1275

Equilibrium K data for column midpoint condition

Point 1 Point 2 Point 3

Components Ki i Ki i Ki i avgi

C3 2425 571 34 486 45 419 488

i-C4 1175 276 18 257 255 237 256

C4 087 205 138 197 205 191 198

i-C5 0425 100 07 10 1075 10 10

C5 034 08 06 086 094 087 084

Fenske equation

3919

001

981ln

3880

84210

8090

68417ln

m

m

N

N

Separation of non key component

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 29

4912

100198

2

avgLKavgHK

mean

molh09220bmolh 2920d

molh38820f840

)(CPentane

molh8090dmolh 84210b

molh65111f001

)C-(itan

68417dmolh 3880b

molh07218f981

)(CButane

hmol 82210d h mol0210b

hmol84310f562

)C-(iIsobutane

molh76240007624d

molh000molh101882

001

884

84210

80901

7624

7624f884

)(Cropane

C5C5

C5C5

5

C5-iC5-i

C5-iiC5

5

C4C4

C4C4

4

iC4iC4

iC4iC4

4

33C3

5

39193

C3C3

3

lblb

lb

lblb

lb

eIsopen

hlbmollb

lblb

lb

lbbf

lblbb

hmol

P

CC

C

Components Feed (lbmolh) Distillate (lbmolh) Bottom (lbmolh)

C3 4762 4762 0000

i-C4 10843 10822 0021

C4 18072 17684 03880

i-C5 11651 0809 10842

C5 20388 0292 20096

Total 65716 34369 31347

Maximum value of 3 wt of i-C5 in distillate is required

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 30

Calculated value =

wt 3

1004956

172

36934

8090

Maximum value of 1 wt of C4 in bottom is required

Calculated value

wt 1

1009163

158

34731

3880

Conditions are satisfied

542 Component split by Winn equation

The Fenske equation has a weakness as the relative volatility difference between

column top and bottom increase the estimated minimum number of stages gets

increasingly too small

460

1

460

1

lnln

bottomtop

bottomitopi

i

TT

PKPKB

460

ln

T

BAPK i

ii

110 irHKi PAAi

r

ii B

B

Components KTop148 F Kbottom245 F

C3 2425 450

i-C4 1175 255

C4 087 205

i-C5 0425 1075

C5 034 094

For P=125 lbin2

For butane (C4)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 31

550594460148

)271263()42525122log(

271263

460245

1

460148

1545127log42525122log

4

4

C

C

A

B

Heavy component is iso-pentane( i-C5)

955824460148

)711857()42505122log(

680010717185

271263

711857

460245

1

460148

1

07515127log4250125log

5

4

5

Ci

C

Ci

A

A

B

311344

)125(10

10)1680010()955824550594(

1

irHKi PAAi

Components Bi Ai θi βi

C3 -126327 45509 068001 43113

i-C4 -156377 473016 084177 24069

C4 -172167 48593 092677 191988

i-C5 -185771 49558 100000 10000

C5 -202840 49558 109189 086704

5339

919881log

)369348090(

)3473484210(

)347313880(

)3693468417(log

m

m

N

N

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 32

abvg

1

bdcomponent

orlightif

D

B

d

bb

d

HK

N

i

im

d

b1

fd

2dbkeyheavy

1

avgHKLKif

b

df

b

componentlight propanefor

5

032068

9533

101976

09120713402

4311

b

d

7624

0001097611

76245

bfd

b

For isobutene (i-C4)

f =10843 θ =0842 β =2407 (light component)

lh10821lbmo

002210843d

h0022lbmol

494151

10843b

4941509120713402

2407

b

d08417108417

9533

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 33

For Butane (C4)

f =18072 β=191988θ=092677

h0388lbmol

455771

18072b

4557709120713402

191988

b

d0926771092677

9533

d=18072-0388

=17684 lbmolh

For Isopentane (C5)

f =11651 β =100 θ =100

111

5339

91207040213

00001

b

d

=007461

βltβavg

)0746101(1

65111

d

= 0809 lbmolh

b = 11651-0809

=10842 lbmolh

For Pentane (C5)

f =20388 lbmolh β= 086704 θ =109189

0918911091891

5339

91207040213

867040

b

d

=0014959

βltβavg

)01495901(1

38820

d

= 0300 lb molh

b=20388-03

=20088

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 34

Components Feed lbmolh Distillate lbmolh Bottom lbmolh

C3 4762 4762 000

i-C4 10843 10821 0022

C4 18072 17684 0388

i-C5 11651 0809 10842

C5 20388 03 20088

65716 34376 3134

Components Feed lbh Distillate lbh Bottom lbh

C3 210 210 000

i-C4 630 62872 128

C4 1050 102745 2257

i-C5 840 5836 78164

C5 1470 2163 1448348

4200 194602 2253818

543 Calculation of Rm

From Underwood equation

qx

i

iFi

1

Components Flbmolhr xif xid αi

C3 4762 00725 01386 488

i-C4 10843 01650 03149 256

C4 18072 02750 05145 198

i-C5 11651 01773 002335 100

C5 20388 03102 00085 084

65716 1000 1000

Feed is at boiling conditions since q =1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 35

0840

31020840

1

177301

981

27500981

562

16500562

884

07250884

θ =1284

from this value of θ

avgi

idavgim

xR

1

11284840

00850840

12841

023501

1284981

51450981

1284562

31490562

1284884

13860884

mR

Rm=1185

R=15 Rm

=15times1185

=17775

X=1

R

RR m

X=177751

185177751

=02133

From GillilandrsquoS correlation Y=1

N

NN m =042

We know the value of Nm 4201

5339

N

N

N=178 =18 stages

Feed location can be known by the use of Kirkbride equation

2

)376348090(

)34313880(

)07218(

)65111(

37634

34312060log

F

F

p

m

687890p

m

817 pm

m = 725=8

p =1054 =11

Feed is introduced on eight stage from top

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 36

Chapter- 6

PACKED COLUMN DESIGN

61 Stage AnalysisThe data shown in table are typical data generated by commercial simulation

Vapor liquidStage Temperature0F lbhr CFS

ft3sV

lbft3

Lbhr GPM

galminL

σ

dynecm

μ

cP

1 1349 00 00 00 3655 1423 3202 6867 0114

2 1474 5501 12050 12683 3720 1447 3204 6738 01132

3 1548 5566 12049 12831 3724 1447 3208 6699 01128

4 1609 5571 11987 12909 3707 1438 3214 6684 01130

5 1668 5553 11889 12974 3693 1430 3220 6665 01135

6 1726 5539 11794 13045 3689 1426 3224 6632 01142

7 1779 5535 11716 13122 3691 1426 3226 6590 01149

8 1824 5537 11650 13199 8032 310471 3226 6544 01156

9 1873 5678 11794 13373 8126 3142 3224 6507 01153

10 1917 5772 11871 13506 8201 3171 3224 6479 01151

11 1961 5847 11915 13631 8275 3201 3223 6447 01152

12 2010 5921 11946 13768 8360 3235 3222 6406 01156

13 2064 6006 12152 13928 8475 3274 3220 6348 01162

14 2122 6103 12013 14111 8574 3321 3218 6295 01170

15 2179 6220 12070 14310 8701 3374 3215 6236 01180

16 2232 6347 12148 14512 8829 3428 3211 6178 01191

17 2280 6475 12234 14701 8947 3477 3208 6128 01201

18 2321 6593 12317 14868 2354 91599 3204 6087 01212

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 37

62 Flood Point

15 inch pall ring will be used throughout the column for this packing the flood point can

be determined by interpolation

A-flood point by GPDC [generalized pressure drop correlation] interpolation

2

2

6593

5571

fthrlbA

G

fthrlbA

G

TBottom

TTop

Liquid flowrates ( 2 fthrlb )

LTop =TA

3724

LBottom = TA

8947

Vapor density( 3 ftlb )

48681

31991

BottomG

TopG

Liquid density ( 3 ftlb )

2432

2632

BottomL

TopL

1 Flow parameter

L

GLV ρ

ρ

G

LF

Top 05

LV 3228

13199

5571

3724F

1352110FLV

Bottom LVF =

2432

48681

6593

8947

= 029142

2 Capacity parameter from graphical correlation

Top =152

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 38

Bottom =119

3 Viscosity of the liquid L (cP)

Top L =01128 (cP)

Bottom L =01151 (cP)

4 Kinematic viscosity

=

L

L

462

Top =

2632

11280462

Top = 0218187

Bottom =

2432

11510462

Bottom = 022277

5 Packing factor ( 1ft )

Top FP = 40

Bottom FP = 40

6 Vapour capacity factor CSFI(fts)

Capacity parameter = CSFI FP05 005

Top 05050SFI 2181040

921C

Top SFIC =02593

Bottom 05050SFI 2181040

191C

Bottom 20280CSFI

63 Flood point by the Kister amp Gill correlation

1 FTP packed bed specific pressure drop at flood point

FTP =0115 70PF

Top FTP =0115 7040

=1521

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 39

Bottom FTP =1521 inch of H2O per ft

2 Flow parameter

Top FLV =0135211

Bottom FLV =029142

3 Capacity parameter at flood point

Top =152

Bottom = 119

4 CSFl vapor capacity factor at the flood point

CSFl = capacity parameter

05050

1

PF

Top CSFl =02593

Bottom CSFl =02028

64 Diameter calculation

1 Vapor capacity factor Cs design (nonderated) fts

The column will be designed for 75 flood capacity

SFlS CC 750

Top CS = 075 02593

=0194475

Bottom CS = 075 02028

Bottom CS = 01551

2 CS vapor capacity factor (derated )fts

= 09 CSdesign

Top CS = 09 01944

Top CS =017496

Bottom CS =09 01521

Bottom CS =013689

3 Vapor superficial velocity based on the cross section of empty column u (fts)

GL

G

ss

ρρ

ρ

(derated)Cu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 40

Top su =

319912632

31991

174960

Top su =084737

Bottom su =

486812432

48681

136890

Bottom su = 062257

4 Vapor flow rate CFS ft3s

Top CFS =1205 ft3s

Bottom CFS =12316 ft3shellipfrom table

5 Tower area ft2

AT = s

T u

CFSA

Top AT = 847370

2051

Top AT =1422 ft2

Bottom AT = 622570

23161

Bottom AT =19782 ft2

6 Tower diameter ft

1587ftD

π

197824D

13455ftD

π

14224D

π

A4

BottomT

BottomT

TopT

TopT

TT

D

65 Diameter calculation using the maximum pressure drop criterion

1 L

G

calculation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 41

Top L

G

=2632

31991

= 00409

Bottom L

G

=2432

48681

= 004611

2OH

L

2

calculation

Top ( OHL 2 )=

4362

2632

= 05167

Bottom ( OHL 2 ) =

4362

2432

= 05164

3 FP packing factor

Top FP = 40

Bottom FP =40

4 Maximum pressure drops recommended for packed column with random packing

1902

70max

OH

LPFP

helliphelliphelliphellipfor 006 20L

G

Top maxP = 019 5167040 70

Top maxP = 12984helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

Bottom maxP = 019 5164040 70

Bottom maxP =12977helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

5 Surface tension dyne

Top =6544 cmdyne

Bottom =6128 cmdyne

6 Vapor capacity factor Csmax (fts)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 42

P

s

FCP

3342maxmax

Top 12984 =

5446

403342maxsC

Top maxsC =02634

Bottom 12977 =

1286

403342maxsC

Bottom maxsC =025628

7 Maximum vapor superficial velocity usmax

maxsC = usmax

GL

G

Top usmax =

319912632

31991

26340

= 12752

Bottom usmax =

486812432

48681

25620

=11651 fts

8 Tower area AT (ft2)

AT =smaxu

CFS

Top AT =27521

2051

Top AT =09449

Bottom AT = 16511

23161

= 1057 ft2

9 Tower diameter (ft)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 12: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 12

diameter the lower the pressures drop possibly due to enhancement of wall effects Dry

packed beds have a higher-pressure drop than wet ndash packed beds Pressure drop

measurement under deep vacuum (lt50 mmHg) is affected by the pressure drop and the

pressure gradient along the bed Pressure drop measurements in a pressure tower include

the static head of the vapor To obtain the actual packing pressure drop the static head

must be subtracted from pressure drop measurement Pressure drop for foaming systems

are higher than for non-foaming systems

42 Flood Point Prediction

421 Sherwood ndashEckert generalized pressure drop correlation (GPDC)

The Sherwood ndashEckert GPDC chart has been the standard of the industry for predicting

flood points and pressure drops

GPDC chart ordinate describes the balance between the vapor momentum force that acts

to entrain swarms of liquid droplets and the gravity force that resists the upward

entrainment GPDC chart abscissa is the flow parameter the ratio of liquid kinetic energy

to vapor kinetic energy

422 The Kister and Gill correlation

Zens discovered that packing pressure drop at the flood point decreases as the packing

capacity increases A simple flood point correlation

FLP =0115 70PF

this equation expresses pressure drop at the flood point as a function of packing factor

alone Once this pressure drop is known the flood velocity can be calculated The flood

velocity calculated by the Kister and Gill correlation is tolerant to inaquaracies in flood

pressure drop predictions

43 Pressure Drop Prediction By GPDC Interpolation

Interpolation of pressure drop data is more accurate than correlation prediction

Superimposing experimental data points on the curves of generalized pressure correlation

chart converts the GPDC chart into an interpolation chart Pressure drops are calculated by

interpolating the plotted pressure drop data For all charts (random structured or grid

packings) the abscissa of the correlation is the flow parameter given by

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 13

50

L

GLV G

LF

And the ordinate of correlation as the capacity parameter given by

GL

GSS uC

FP is the packing factor which is an empirical factor characteristics of the packing size

and shape

44 Packing factors

Several of the predictive methods above use a packing factor to account for the type and

size of packing With the evolutions of the general pressure drop correlation the packing

factor shifted away from the ratio ap ε3 to become an imperial constant that must be

experimentally determined for each packing

Loading point

The point of transition from the preloading regime to the loading regime is termed the

loading point It is the point where liquid hold up starts increasing with gas velocity rapid

deterioration in efficiency loading point where the flow rate at which the vapor phase

bagans to interact with the liquid phase to increase interfacial area in a packed column the

loading points occurs at 70 percent of the flood point

Pressure drop

Packed tower are designed so that the pressure drop at any point in the tower does not

exceed a recommended maximum value Maximum pressure drop criterioa for packed

tower are listed in table

Average pressure drop

Specific pressure drop can be calculated at the top of the bed and at the bottom of the bed

the average pressure drop is

25050 5050 bottomtop PPP

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 14

Type of system Maximum pressure drop in of water ft

packing

Atmospheric fractionator 05-100

Low to medium pressure fractioantor 07-10

High pressure distillation

006ltρG ρGlt 020

020lt ρGρL

019 )( 270

OHGPF

0099 )( 270

OHGPF

Vacuum distillation 001-06

Liquid holdup

Liquid holdup is the liquid present in the void spaces of packing At flooding

essentially all the voids are filled with liquids or froth Reasonable liquid holdup is

necessary for good mass transfer and efficient tower operation but beyond that it should

be kept low

Static holdup is liquid remaining on the packing after it has been fully wetted and

drained for long time The contributation of static holdup to mass transfer rates is limited

Operational holdup is liquid on the packing attributed to dynamic operation and is defined

as the difference between total holdup and static holdup

Minimum Wetting Rate

The minimum wetting rate (MWR) is the lower stability limit of packing It is liquid

below which the falling liquid film breaks up and the liquid storage causes wetting of the

packing surface Gravity and viscous forces resists dewetting the surface tension and vapor

shear forces tend to dewett the falling film The MWR therefore rises with an increase in

surface tension and liquid density and with decrease in liquid viscosity

A thumb rule cited by Ludwi

QMW =3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 15

Underwetting

Underwetting is a packing surface phenomenon which brakes up liquid film

The tendency of liquid film to break is expressed by a contact angle A contact angle of

zero indicates perfect wetting an angle of 1800 indicates no wetting

The contact angle depends both on surface and a liquid and is a strong function of

composition Changing a material and surface roughness of the packing may significantly

affect the efficiency in system susceptible to underwetting

45 The HETP concept

The concept of HETP (height equivalent to theoretical plates) was introduced to

enable to comparison of efficiency between packed and plate columns HETP is defined as

HETP = Hn

A similar HETP value can be obtained for plate column if the tray spacing is known

HETP (trayed column) = 100 timesSE

The HETP approach is suitable for multicomponent systems while HTU approach is

difficult to apply for this

HETP prediction

Because there are only few variables that significantly affect HETP of random

packings For small diameter column the rule of thumb presented by Frank Ludig Vital

et al are identical The more conservative cause predicted from

HETP =15 dp helliphellipfor Pall rings or similar high efficiency packing

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 16

Chapter -5

Distillation Design

Problem statement-

A butane-pentane splitter is to be designed to process 4200 lbhr of C3 ndashC5 feed subjected to

specifications of

1maximum 3 of i-C5 in the distillate

2maximum 1 of C4 in the bottom product

The feed sink will be air (process design temperature) to be 130 0F

Components Wt molwt lbh molh

C3 5 441 210 4762

i-C4 15 581 630 10843

C4 25 581 1050 18072

i-C5 20 721 840 11651

C5 35 721 1470 20388

4200 65716

Solution-

Feed composition

Components lbgal(60F) galh Vol mol

C3 422 4976 592 725

i-C4 469 13433 1397 165

C4 487 21501 2563 275

i-C5 520 16154 192 1773

C5 525 28000 328 3102

Total 84124 100 100

Average molecular weight 650716

4200

= 6391

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 17

Average liquid density = 420065716

= 4993lbgal

x = mass of c4 in the bottom(i-wt)

y =mass of i-c5 in the distillate(3 wt)

51 Component Split

Assuming that the C3 and i-C5 have negligible concentration in the bottom and C5 has

negligible concentration in the distillate

Components F D B

C3 210 210 0

i-C4 630 630 0

C4 1050 (1050-x) x

i-C5 840 y (840-y)

C5 1470 0 1470

Total 4200 1890-x+y 2310+x-y

F =B+D

4200 =2310 + x ndashy +1890 ndashx + y

Distillate specification 3 in of i-c5 in distillate

yx

y

18900030

567 ndash 003 x -097 y =0

003 x + 097 y =567

Bottom specification 1 C4 in the bottom

003 yx

x

2310

231 -001 x + 001 y = x

099 x + 001 y = 231

x = 2275

y = 5775

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 18

Components D lbh B lbh D lbmolh B lbmolh

C3 210 0 4762 0

i-C4 630 0 10843 0

C4 102725 2275 1768 039

i-C5 5725 78225 0801 1085

C5 0 1470 0 20388

Total 1925 2275 34086 3163

52 Dew Point and Bubble Point calculation

1 The distillate and reflux will be a bubble point liquid The criteria for evaluation of

the bubble point condition are

1 like an air fin condenser to liquefy the distillate and reflux The criteria of

drum temperature will be assumed to be 130F ( design temperature for air is

about 120F

2 the bubble point design equation with temperature specified

01 ii xK

Average molecular weight of distillate

Components xid Ki

C3 01397 21

i-C4 03181 10

C4 05187 073

i-C5 00235 033

C5 0 027

For fixed temperature of 130F bubble point pressure is to be determined

4656 wtmolxid

9980 iDi xK

Pestimated = Pi-c4 = 120 lbin2

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 19

001

9980120calculatedP

= 1197 lbin2 (abs)

The result of distillate bubble point calculation is

T = 130 0F

P = 120 lbin2

The condition at the top of the column must be evaluated since the fractionator has a

total concentration and an equilibrium stage The criteria for evaluation of the dew

point condition are

Assumption of the pressure drop through the total condenser of 25 lbin2Thus the

pressure at the top of the column is established as

P = 120 lbin2 + 25 lbin2

P = 1225 lbin2

Dew point

01

i

i

k

y

Plk =1225 lbin2 T= 1320F

Components yi Ki1320

F Ki1450

F

C3 01397 220 240

i-C4 03181 100 115

C4 05187 073 085

i-C5 00235 035 042

C5 00000 028 033

For T =1320F

01

i

i

k

y

Kic4 = 1160 and Tcal =1450F

For T =1450F

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 20

01

i

i

k

y

The result of column top dew point calculation

T =1450F

P = 1225 lbin2

The column bottom condition Column ΔP =5 lbin2

The column bottom pressure

P = 1225 + 50 = 1275 lbin2

The bubble point design equation

ΣKiXi=10

Components B(mol) X

C3 0 0

i-C4 0 0

C4 0392 00124

i-C5 1085 03430

C5 20388 06446

3163 100

Average molecular wt = 6331

22750 =7193

The characteristic component is i-c5 an estimated bottom temperature is obtained

Components Xi Ki2380

F Ki2150

F

C3 0 38 45

i-C4 0 355 265

C4 00124 1925 205

i-C5 03430 10 1075

C5 06446 087 094

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 21

For T = 238 0F

ΣKiXi=0927

KHK = 108 Tcal =245 0F

For T =245 0F

ΣKiXi=100

The result of column bottom bubble point calculation

T =245 0F

P =1275 lbin2

53 Determination of the key component

Using the heavy key as column reference key The separation is clearly between

butane and isopentane

Reference component =i-C5

Key component

LK =C4

HK =iC5

The average relative volatility data for the column will be generated using three-point

geometric average

3321 avg

Point 1 ndash top of fractionation column

Point 2 ndash at the reboiler

Point 3 ndash arithmetic mean of condition at 1 amp 3

T2 = 05 [ T1 + T2 ] = 05 [ T1 + T2 ]

T2 = 05 [ 145 + 245 ] = 195 0F

P2 = 05 [ P1 + P3 ] = 05 [ 1225 +1275 ]

P2 = 125 lbin2

variable Point 1 Point 2 Point 3

T oF 145 195 245

P lbin2 1225 125 1275

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 22

Components Point 1 Point 2 Point 3

Ki αi Ki αi Ki αi αavg

C3 24 571 335 493 45 419 49

i-C4 115 274 175 257 25 237 256

C4 085 202 135 199 205 191 197

i-C5 024 100 068 100 1075 100 100

C5 033 079 058 085 094 087 084

54 Shortcut Method

541 Minimum stages at total reflux-the Fenske equation

LKavg

BLk

HK

DHK

LK

m

x

x

x

x

Nln

ln

Fi = bi + di

avgmeanavgiiir

rNavgi

i dbb

d

b

d for min

mN

avgHK

avgi

HK

ii

b

d

fb

1

or when ii db meanavgavgi

mN

avgi

avgLK

LK

ii

d

b

fd

1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 23

971ln

01240

3430

02350

51870ln

mN

4619mN

2

avgLKavgHKmean

2

001971

= 1485

For propaneC3

meanC 3

7624

904

3

3

C

C

f

4619

001

904

85010

80101

76243Cb

hmold

hmol

C 7624007624

1091

3

5

For isobutene(i-C4)

84310

562

4

4

4

iC

Ci

meanCi

f

4619

1

562

8500

80101

843104iCb

hmol 020

823104iCd

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 24

For butane (C4)

07218

971

4

4

C

C

meanavgi

f

4619

001

971

8510

80101

072184Cb

hmold

d

hmolb

C

C

C

68817

392007218

3920

4

4

4

For isopentane (i-C5)

meanavgiC

iCiC hmolf

5

5565111001

Hence

4619

001

971

6817

39201

651115iCd

hmolb

hmold

iC

iC

8510801065111

8010

5

5

For pentane (C5)

hmolb

hmold

d

C

C

C

meanavgC

C

105320

2850

840

971

6817

39201

38820

840

5

5

5

5

5

4619

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 25

The calculated data in the table

Components Fi(lbmolh) Di(lbmolh) Bi(lbmolh)

C3 4762 4762 0

i-C4 10834 10823 002

C4 18072 17680 0392

i-C5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Checking

Maximum 3wt of iC5 in the distillate

9772

1004656

172

35134

8010

wt

Maximum of 1 wt C4 in the bottom

011

1009371

158

36531

3920

wt

The set of specification were not met The parameter reevaluated

Again performing same calculations

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 1050-x x

i-C5 840 y 840-y

C5 1470 2055 144945

Total 190939-x+y 229061+x-y

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 26

3658

5522

612290100

1

391909100

3

y

x

yx

x

yx

y

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 102745 2255

i-C5 840 5836 78164

C5 1470 2055 144945

Total 4200 194520 224580

Components F(lbmolh) D(lbmolh) B(lbmolh)

C3 4762 4762 0

i-c4 10834 10823 002

C4 18072 17680 0392

i-c5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Column operating condition

Distillate bubble point calculation on with temperature specified at 130 0F

Components D (lbmolh) K120 (lbin2)

C3 4762 210

i-C4 10823 10

C4 17680 073

i-C5 0801 033

C5 0285 027

Total 34351

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 27

992036334

07634

001

ii

iiii

xK

D

dKxK

Condition of the distillatereflux before 130 0F amp 120 lbin2overhead or column top

conditions are found by dew point calculation at the specified pressure of 1225lbin2

Components D (lbmolh) K1450

F K148 0

F

C3 4762 24 2425

i-C4 10823 116 1175

C4 17680 084 087

i-C5 0801 042 0425

C5 0285 033 034

01D

K

d

K

y i

i

i

i

For T=145 0F

018136334

9934

i

i

K

y K=1175 Tcal=148 0F

For T=148 0F

997036334

24334

i

i

K

y

Conditions of column overhead are revised to 148 0F and 1225lbin2column bottom

conditions are found by way of bubble point calculation

Components B(lbmolh) K2450

F

C3 0 45

i-C4 002 255

C4 0392 205

i-C5 10850 1075

C5 20103 094

Total 31365

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 28

Design equation

001B

bKxK ii

ii

For T =245 0F

00139331

39831ii xK

At column midpoint condition

2

0

1255127512250

519624514850

inlbP

FT

Summery of operating condition

Point 1 Point 2 Point 3

Temperature 148 1965 245

Pressure lbin2 (abs) 1225 125 1275

Equilibrium K data for column midpoint condition

Point 1 Point 2 Point 3

Components Ki i Ki i Ki i avgi

C3 2425 571 34 486 45 419 488

i-C4 1175 276 18 257 255 237 256

C4 087 205 138 197 205 191 198

i-C5 0425 100 07 10 1075 10 10

C5 034 08 06 086 094 087 084

Fenske equation

3919

001

981ln

3880

84210

8090

68417ln

m

m

N

N

Separation of non key component

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 29

4912

100198

2

avgLKavgHK

mean

molh09220bmolh 2920d

molh38820f840

)(CPentane

molh8090dmolh 84210b

molh65111f001

)C-(itan

68417dmolh 3880b

molh07218f981

)(CButane

hmol 82210d h mol0210b

hmol84310f562

)C-(iIsobutane

molh76240007624d

molh000molh101882

001

884

84210

80901

7624

7624f884

)(Cropane

C5C5

C5C5

5

C5-iC5-i

C5-iiC5

5

C4C4

C4C4

4

iC4iC4

iC4iC4

4

33C3

5

39193

C3C3

3

lblb

lb

lblb

lb

eIsopen

hlbmollb

lblb

lb

lbbf

lblbb

hmol

P

CC

C

Components Feed (lbmolh) Distillate (lbmolh) Bottom (lbmolh)

C3 4762 4762 0000

i-C4 10843 10822 0021

C4 18072 17684 03880

i-C5 11651 0809 10842

C5 20388 0292 20096

Total 65716 34369 31347

Maximum value of 3 wt of i-C5 in distillate is required

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 30

Calculated value =

wt 3

1004956

172

36934

8090

Maximum value of 1 wt of C4 in bottom is required

Calculated value

wt 1

1009163

158

34731

3880

Conditions are satisfied

542 Component split by Winn equation

The Fenske equation has a weakness as the relative volatility difference between

column top and bottom increase the estimated minimum number of stages gets

increasingly too small

460

1

460

1

lnln

bottomtop

bottomitopi

i

TT

PKPKB

460

ln

T

BAPK i

ii

110 irHKi PAAi

r

ii B

B

Components KTop148 F Kbottom245 F

C3 2425 450

i-C4 1175 255

C4 087 205

i-C5 0425 1075

C5 034 094

For P=125 lbin2

For butane (C4)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 31

550594460148

)271263()42525122log(

271263

460245

1

460148

1545127log42525122log

4

4

C

C

A

B

Heavy component is iso-pentane( i-C5)

955824460148

)711857()42505122log(

680010717185

271263

711857

460245

1

460148

1

07515127log4250125log

5

4

5

Ci

C

Ci

A

A

B

311344

)125(10

10)1680010()955824550594(

1

irHKi PAAi

Components Bi Ai θi βi

C3 -126327 45509 068001 43113

i-C4 -156377 473016 084177 24069

C4 -172167 48593 092677 191988

i-C5 -185771 49558 100000 10000

C5 -202840 49558 109189 086704

5339

919881log

)369348090(

)3473484210(

)347313880(

)3693468417(log

m

m

N

N

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 32

abvg

1

bdcomponent

orlightif

D

B

d

bb

d

HK

N

i

im

d

b1

fd

2dbkeyheavy

1

avgHKLKif

b

df

b

componentlight propanefor

5

032068

9533

101976

09120713402

4311

b

d

7624

0001097611

76245

bfd

b

For isobutene (i-C4)

f =10843 θ =0842 β =2407 (light component)

lh10821lbmo

002210843d

h0022lbmol

494151

10843b

4941509120713402

2407

b

d08417108417

9533

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 33

For Butane (C4)

f =18072 β=191988θ=092677

h0388lbmol

455771

18072b

4557709120713402

191988

b

d0926771092677

9533

d=18072-0388

=17684 lbmolh

For Isopentane (C5)

f =11651 β =100 θ =100

111

5339

91207040213

00001

b

d

=007461

βltβavg

)0746101(1

65111

d

= 0809 lbmolh

b = 11651-0809

=10842 lbmolh

For Pentane (C5)

f =20388 lbmolh β= 086704 θ =109189

0918911091891

5339

91207040213

867040

b

d

=0014959

βltβavg

)01495901(1

38820

d

= 0300 lb molh

b=20388-03

=20088

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 34

Components Feed lbmolh Distillate lbmolh Bottom lbmolh

C3 4762 4762 000

i-C4 10843 10821 0022

C4 18072 17684 0388

i-C5 11651 0809 10842

C5 20388 03 20088

65716 34376 3134

Components Feed lbh Distillate lbh Bottom lbh

C3 210 210 000

i-C4 630 62872 128

C4 1050 102745 2257

i-C5 840 5836 78164

C5 1470 2163 1448348

4200 194602 2253818

543 Calculation of Rm

From Underwood equation

qx

i

iFi

1

Components Flbmolhr xif xid αi

C3 4762 00725 01386 488

i-C4 10843 01650 03149 256

C4 18072 02750 05145 198

i-C5 11651 01773 002335 100

C5 20388 03102 00085 084

65716 1000 1000

Feed is at boiling conditions since q =1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 35

0840

31020840

1

177301

981

27500981

562

16500562

884

07250884

θ =1284

from this value of θ

avgi

idavgim

xR

1

11284840

00850840

12841

023501

1284981

51450981

1284562

31490562

1284884

13860884

mR

Rm=1185

R=15 Rm

=15times1185

=17775

X=1

R

RR m

X=177751

185177751

=02133

From GillilandrsquoS correlation Y=1

N

NN m =042

We know the value of Nm 4201

5339

N

N

N=178 =18 stages

Feed location can be known by the use of Kirkbride equation

2

)376348090(

)34313880(

)07218(

)65111(

37634

34312060log

F

F

p

m

687890p

m

817 pm

m = 725=8

p =1054 =11

Feed is introduced on eight stage from top

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 36

Chapter- 6

PACKED COLUMN DESIGN

61 Stage AnalysisThe data shown in table are typical data generated by commercial simulation

Vapor liquidStage Temperature0F lbhr CFS

ft3sV

lbft3

Lbhr GPM

galminL

σ

dynecm

μ

cP

1 1349 00 00 00 3655 1423 3202 6867 0114

2 1474 5501 12050 12683 3720 1447 3204 6738 01132

3 1548 5566 12049 12831 3724 1447 3208 6699 01128

4 1609 5571 11987 12909 3707 1438 3214 6684 01130

5 1668 5553 11889 12974 3693 1430 3220 6665 01135

6 1726 5539 11794 13045 3689 1426 3224 6632 01142

7 1779 5535 11716 13122 3691 1426 3226 6590 01149

8 1824 5537 11650 13199 8032 310471 3226 6544 01156

9 1873 5678 11794 13373 8126 3142 3224 6507 01153

10 1917 5772 11871 13506 8201 3171 3224 6479 01151

11 1961 5847 11915 13631 8275 3201 3223 6447 01152

12 2010 5921 11946 13768 8360 3235 3222 6406 01156

13 2064 6006 12152 13928 8475 3274 3220 6348 01162

14 2122 6103 12013 14111 8574 3321 3218 6295 01170

15 2179 6220 12070 14310 8701 3374 3215 6236 01180

16 2232 6347 12148 14512 8829 3428 3211 6178 01191

17 2280 6475 12234 14701 8947 3477 3208 6128 01201

18 2321 6593 12317 14868 2354 91599 3204 6087 01212

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 37

62 Flood Point

15 inch pall ring will be used throughout the column for this packing the flood point can

be determined by interpolation

A-flood point by GPDC [generalized pressure drop correlation] interpolation

2

2

6593

5571

fthrlbA

G

fthrlbA

G

TBottom

TTop

Liquid flowrates ( 2 fthrlb )

LTop =TA

3724

LBottom = TA

8947

Vapor density( 3 ftlb )

48681

31991

BottomG

TopG

Liquid density ( 3 ftlb )

2432

2632

BottomL

TopL

1 Flow parameter

L

GLV ρ

ρ

G

LF

Top 05

LV 3228

13199

5571

3724F

1352110FLV

Bottom LVF =

2432

48681

6593

8947

= 029142

2 Capacity parameter from graphical correlation

Top =152

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 38

Bottom =119

3 Viscosity of the liquid L (cP)

Top L =01128 (cP)

Bottom L =01151 (cP)

4 Kinematic viscosity

=

L

L

462

Top =

2632

11280462

Top = 0218187

Bottom =

2432

11510462

Bottom = 022277

5 Packing factor ( 1ft )

Top FP = 40

Bottom FP = 40

6 Vapour capacity factor CSFI(fts)

Capacity parameter = CSFI FP05 005

Top 05050SFI 2181040

921C

Top SFIC =02593

Bottom 05050SFI 2181040

191C

Bottom 20280CSFI

63 Flood point by the Kister amp Gill correlation

1 FTP packed bed specific pressure drop at flood point

FTP =0115 70PF

Top FTP =0115 7040

=1521

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 39

Bottom FTP =1521 inch of H2O per ft

2 Flow parameter

Top FLV =0135211

Bottom FLV =029142

3 Capacity parameter at flood point

Top =152

Bottom = 119

4 CSFl vapor capacity factor at the flood point

CSFl = capacity parameter

05050

1

PF

Top CSFl =02593

Bottom CSFl =02028

64 Diameter calculation

1 Vapor capacity factor Cs design (nonderated) fts

The column will be designed for 75 flood capacity

SFlS CC 750

Top CS = 075 02593

=0194475

Bottom CS = 075 02028

Bottom CS = 01551

2 CS vapor capacity factor (derated )fts

= 09 CSdesign

Top CS = 09 01944

Top CS =017496

Bottom CS =09 01521

Bottom CS =013689

3 Vapor superficial velocity based on the cross section of empty column u (fts)

GL

G

ss

ρρ

ρ

(derated)Cu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 40

Top su =

319912632

31991

174960

Top su =084737

Bottom su =

486812432

48681

136890

Bottom su = 062257

4 Vapor flow rate CFS ft3s

Top CFS =1205 ft3s

Bottom CFS =12316 ft3shellipfrom table

5 Tower area ft2

AT = s

T u

CFSA

Top AT = 847370

2051

Top AT =1422 ft2

Bottom AT = 622570

23161

Bottom AT =19782 ft2

6 Tower diameter ft

1587ftD

π

197824D

13455ftD

π

14224D

π

A4

BottomT

BottomT

TopT

TopT

TT

D

65 Diameter calculation using the maximum pressure drop criterion

1 L

G

calculation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 41

Top L

G

=2632

31991

= 00409

Bottom L

G

=2432

48681

= 004611

2OH

L

2

calculation

Top ( OHL 2 )=

4362

2632

= 05167

Bottom ( OHL 2 ) =

4362

2432

= 05164

3 FP packing factor

Top FP = 40

Bottom FP =40

4 Maximum pressure drops recommended for packed column with random packing

1902

70max

OH

LPFP

helliphelliphelliphellipfor 006 20L

G

Top maxP = 019 5167040 70

Top maxP = 12984helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

Bottom maxP = 019 5164040 70

Bottom maxP =12977helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

5 Surface tension dyne

Top =6544 cmdyne

Bottom =6128 cmdyne

6 Vapor capacity factor Csmax (fts)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 42

P

s

FCP

3342maxmax

Top 12984 =

5446

403342maxsC

Top maxsC =02634

Bottom 12977 =

1286

403342maxsC

Bottom maxsC =025628

7 Maximum vapor superficial velocity usmax

maxsC = usmax

GL

G

Top usmax =

319912632

31991

26340

= 12752

Bottom usmax =

486812432

48681

25620

=11651 fts

8 Tower area AT (ft2)

AT =smaxu

CFS

Top AT =27521

2051

Top AT =09449

Bottom AT = 16511

23161

= 1057 ft2

9 Tower diameter (ft)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 13: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 13

50

L

GLV G

LF

And the ordinate of correlation as the capacity parameter given by

GL

GSS uC

FP is the packing factor which is an empirical factor characteristics of the packing size

and shape

44 Packing factors

Several of the predictive methods above use a packing factor to account for the type and

size of packing With the evolutions of the general pressure drop correlation the packing

factor shifted away from the ratio ap ε3 to become an imperial constant that must be

experimentally determined for each packing

Loading point

The point of transition from the preloading regime to the loading regime is termed the

loading point It is the point where liquid hold up starts increasing with gas velocity rapid

deterioration in efficiency loading point where the flow rate at which the vapor phase

bagans to interact with the liquid phase to increase interfacial area in a packed column the

loading points occurs at 70 percent of the flood point

Pressure drop

Packed tower are designed so that the pressure drop at any point in the tower does not

exceed a recommended maximum value Maximum pressure drop criterioa for packed

tower are listed in table

Average pressure drop

Specific pressure drop can be calculated at the top of the bed and at the bottom of the bed

the average pressure drop is

25050 5050 bottomtop PPP

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 14

Type of system Maximum pressure drop in of water ft

packing

Atmospheric fractionator 05-100

Low to medium pressure fractioantor 07-10

High pressure distillation

006ltρG ρGlt 020

020lt ρGρL

019 )( 270

OHGPF

0099 )( 270

OHGPF

Vacuum distillation 001-06

Liquid holdup

Liquid holdup is the liquid present in the void spaces of packing At flooding

essentially all the voids are filled with liquids or froth Reasonable liquid holdup is

necessary for good mass transfer and efficient tower operation but beyond that it should

be kept low

Static holdup is liquid remaining on the packing after it has been fully wetted and

drained for long time The contributation of static holdup to mass transfer rates is limited

Operational holdup is liquid on the packing attributed to dynamic operation and is defined

as the difference between total holdup and static holdup

Minimum Wetting Rate

The minimum wetting rate (MWR) is the lower stability limit of packing It is liquid

below which the falling liquid film breaks up and the liquid storage causes wetting of the

packing surface Gravity and viscous forces resists dewetting the surface tension and vapor

shear forces tend to dewett the falling film The MWR therefore rises with an increase in

surface tension and liquid density and with decrease in liquid viscosity

A thumb rule cited by Ludwi

QMW =3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 15

Underwetting

Underwetting is a packing surface phenomenon which brakes up liquid film

The tendency of liquid film to break is expressed by a contact angle A contact angle of

zero indicates perfect wetting an angle of 1800 indicates no wetting

The contact angle depends both on surface and a liquid and is a strong function of

composition Changing a material and surface roughness of the packing may significantly

affect the efficiency in system susceptible to underwetting

45 The HETP concept

The concept of HETP (height equivalent to theoretical plates) was introduced to

enable to comparison of efficiency between packed and plate columns HETP is defined as

HETP = Hn

A similar HETP value can be obtained for plate column if the tray spacing is known

HETP (trayed column) = 100 timesSE

The HETP approach is suitable for multicomponent systems while HTU approach is

difficult to apply for this

HETP prediction

Because there are only few variables that significantly affect HETP of random

packings For small diameter column the rule of thumb presented by Frank Ludig Vital

et al are identical The more conservative cause predicted from

HETP =15 dp helliphellipfor Pall rings or similar high efficiency packing

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 16

Chapter -5

Distillation Design

Problem statement-

A butane-pentane splitter is to be designed to process 4200 lbhr of C3 ndashC5 feed subjected to

specifications of

1maximum 3 of i-C5 in the distillate

2maximum 1 of C4 in the bottom product

The feed sink will be air (process design temperature) to be 130 0F

Components Wt molwt lbh molh

C3 5 441 210 4762

i-C4 15 581 630 10843

C4 25 581 1050 18072

i-C5 20 721 840 11651

C5 35 721 1470 20388

4200 65716

Solution-

Feed composition

Components lbgal(60F) galh Vol mol

C3 422 4976 592 725

i-C4 469 13433 1397 165

C4 487 21501 2563 275

i-C5 520 16154 192 1773

C5 525 28000 328 3102

Total 84124 100 100

Average molecular weight 650716

4200

= 6391

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 17

Average liquid density = 420065716

= 4993lbgal

x = mass of c4 in the bottom(i-wt)

y =mass of i-c5 in the distillate(3 wt)

51 Component Split

Assuming that the C3 and i-C5 have negligible concentration in the bottom and C5 has

negligible concentration in the distillate

Components F D B

C3 210 210 0

i-C4 630 630 0

C4 1050 (1050-x) x

i-C5 840 y (840-y)

C5 1470 0 1470

Total 4200 1890-x+y 2310+x-y

F =B+D

4200 =2310 + x ndashy +1890 ndashx + y

Distillate specification 3 in of i-c5 in distillate

yx

y

18900030

567 ndash 003 x -097 y =0

003 x + 097 y =567

Bottom specification 1 C4 in the bottom

003 yx

x

2310

231 -001 x + 001 y = x

099 x + 001 y = 231

x = 2275

y = 5775

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 18

Components D lbh B lbh D lbmolh B lbmolh

C3 210 0 4762 0

i-C4 630 0 10843 0

C4 102725 2275 1768 039

i-C5 5725 78225 0801 1085

C5 0 1470 0 20388

Total 1925 2275 34086 3163

52 Dew Point and Bubble Point calculation

1 The distillate and reflux will be a bubble point liquid The criteria for evaluation of

the bubble point condition are

1 like an air fin condenser to liquefy the distillate and reflux The criteria of

drum temperature will be assumed to be 130F ( design temperature for air is

about 120F

2 the bubble point design equation with temperature specified

01 ii xK

Average molecular weight of distillate

Components xid Ki

C3 01397 21

i-C4 03181 10

C4 05187 073

i-C5 00235 033

C5 0 027

For fixed temperature of 130F bubble point pressure is to be determined

4656 wtmolxid

9980 iDi xK

Pestimated = Pi-c4 = 120 lbin2

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 19

001

9980120calculatedP

= 1197 lbin2 (abs)

The result of distillate bubble point calculation is

T = 130 0F

P = 120 lbin2

The condition at the top of the column must be evaluated since the fractionator has a

total concentration and an equilibrium stage The criteria for evaluation of the dew

point condition are

Assumption of the pressure drop through the total condenser of 25 lbin2Thus the

pressure at the top of the column is established as

P = 120 lbin2 + 25 lbin2

P = 1225 lbin2

Dew point

01

i

i

k

y

Plk =1225 lbin2 T= 1320F

Components yi Ki1320

F Ki1450

F

C3 01397 220 240

i-C4 03181 100 115

C4 05187 073 085

i-C5 00235 035 042

C5 00000 028 033

For T =1320F

01

i

i

k

y

Kic4 = 1160 and Tcal =1450F

For T =1450F

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 20

01

i

i

k

y

The result of column top dew point calculation

T =1450F

P = 1225 lbin2

The column bottom condition Column ΔP =5 lbin2

The column bottom pressure

P = 1225 + 50 = 1275 lbin2

The bubble point design equation

ΣKiXi=10

Components B(mol) X

C3 0 0

i-C4 0 0

C4 0392 00124

i-C5 1085 03430

C5 20388 06446

3163 100

Average molecular wt = 6331

22750 =7193

The characteristic component is i-c5 an estimated bottom temperature is obtained

Components Xi Ki2380

F Ki2150

F

C3 0 38 45

i-C4 0 355 265

C4 00124 1925 205

i-C5 03430 10 1075

C5 06446 087 094

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 21

For T = 238 0F

ΣKiXi=0927

KHK = 108 Tcal =245 0F

For T =245 0F

ΣKiXi=100

The result of column bottom bubble point calculation

T =245 0F

P =1275 lbin2

53 Determination of the key component

Using the heavy key as column reference key The separation is clearly between

butane and isopentane

Reference component =i-C5

Key component

LK =C4

HK =iC5

The average relative volatility data for the column will be generated using three-point

geometric average

3321 avg

Point 1 ndash top of fractionation column

Point 2 ndash at the reboiler

Point 3 ndash arithmetic mean of condition at 1 amp 3

T2 = 05 [ T1 + T2 ] = 05 [ T1 + T2 ]

T2 = 05 [ 145 + 245 ] = 195 0F

P2 = 05 [ P1 + P3 ] = 05 [ 1225 +1275 ]

P2 = 125 lbin2

variable Point 1 Point 2 Point 3

T oF 145 195 245

P lbin2 1225 125 1275

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 22

Components Point 1 Point 2 Point 3

Ki αi Ki αi Ki αi αavg

C3 24 571 335 493 45 419 49

i-C4 115 274 175 257 25 237 256

C4 085 202 135 199 205 191 197

i-C5 024 100 068 100 1075 100 100

C5 033 079 058 085 094 087 084

54 Shortcut Method

541 Minimum stages at total reflux-the Fenske equation

LKavg

BLk

HK

DHK

LK

m

x

x

x

x

Nln

ln

Fi = bi + di

avgmeanavgiiir

rNavgi

i dbb

d

b

d for min

mN

avgHK

avgi

HK

ii

b

d

fb

1

or when ii db meanavgavgi

mN

avgi

avgLK

LK

ii

d

b

fd

1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 23

971ln

01240

3430

02350

51870ln

mN

4619mN

2

avgLKavgHKmean

2

001971

= 1485

For propaneC3

meanC 3

7624

904

3

3

C

C

f

4619

001

904

85010

80101

76243Cb

hmold

hmol

C 7624007624

1091

3

5

For isobutene(i-C4)

84310

562

4

4

4

iC

Ci

meanCi

f

4619

1

562

8500

80101

843104iCb

hmol 020

823104iCd

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 24

For butane (C4)

07218

971

4

4

C

C

meanavgi

f

4619

001

971

8510

80101

072184Cb

hmold

d

hmolb

C

C

C

68817

392007218

3920

4

4

4

For isopentane (i-C5)

meanavgiC

iCiC hmolf

5

5565111001

Hence

4619

001

971

6817

39201

651115iCd

hmolb

hmold

iC

iC

8510801065111

8010

5

5

For pentane (C5)

hmolb

hmold

d

C

C

C

meanavgC

C

105320

2850

840

971

6817

39201

38820

840

5

5

5

5

5

4619

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 25

The calculated data in the table

Components Fi(lbmolh) Di(lbmolh) Bi(lbmolh)

C3 4762 4762 0

i-C4 10834 10823 002

C4 18072 17680 0392

i-C5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Checking

Maximum 3wt of iC5 in the distillate

9772

1004656

172

35134

8010

wt

Maximum of 1 wt C4 in the bottom

011

1009371

158

36531

3920

wt

The set of specification were not met The parameter reevaluated

Again performing same calculations

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 1050-x x

i-C5 840 y 840-y

C5 1470 2055 144945

Total 190939-x+y 229061+x-y

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 26

3658

5522

612290100

1

391909100

3

y

x

yx

x

yx

y

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 102745 2255

i-C5 840 5836 78164

C5 1470 2055 144945

Total 4200 194520 224580

Components F(lbmolh) D(lbmolh) B(lbmolh)

C3 4762 4762 0

i-c4 10834 10823 002

C4 18072 17680 0392

i-c5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Column operating condition

Distillate bubble point calculation on with temperature specified at 130 0F

Components D (lbmolh) K120 (lbin2)

C3 4762 210

i-C4 10823 10

C4 17680 073

i-C5 0801 033

C5 0285 027

Total 34351

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 27

992036334

07634

001

ii

iiii

xK

D

dKxK

Condition of the distillatereflux before 130 0F amp 120 lbin2overhead or column top

conditions are found by dew point calculation at the specified pressure of 1225lbin2

Components D (lbmolh) K1450

F K148 0

F

C3 4762 24 2425

i-C4 10823 116 1175

C4 17680 084 087

i-C5 0801 042 0425

C5 0285 033 034

01D

K

d

K

y i

i

i

i

For T=145 0F

018136334

9934

i

i

K

y K=1175 Tcal=148 0F

For T=148 0F

997036334

24334

i

i

K

y

Conditions of column overhead are revised to 148 0F and 1225lbin2column bottom

conditions are found by way of bubble point calculation

Components B(lbmolh) K2450

F

C3 0 45

i-C4 002 255

C4 0392 205

i-C5 10850 1075

C5 20103 094

Total 31365

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 28

Design equation

001B

bKxK ii

ii

For T =245 0F

00139331

39831ii xK

At column midpoint condition

2

0

1255127512250

519624514850

inlbP

FT

Summery of operating condition

Point 1 Point 2 Point 3

Temperature 148 1965 245

Pressure lbin2 (abs) 1225 125 1275

Equilibrium K data for column midpoint condition

Point 1 Point 2 Point 3

Components Ki i Ki i Ki i avgi

C3 2425 571 34 486 45 419 488

i-C4 1175 276 18 257 255 237 256

C4 087 205 138 197 205 191 198

i-C5 0425 100 07 10 1075 10 10

C5 034 08 06 086 094 087 084

Fenske equation

3919

001

981ln

3880

84210

8090

68417ln

m

m

N

N

Separation of non key component

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 29

4912

100198

2

avgLKavgHK

mean

molh09220bmolh 2920d

molh38820f840

)(CPentane

molh8090dmolh 84210b

molh65111f001

)C-(itan

68417dmolh 3880b

molh07218f981

)(CButane

hmol 82210d h mol0210b

hmol84310f562

)C-(iIsobutane

molh76240007624d

molh000molh101882

001

884

84210

80901

7624

7624f884

)(Cropane

C5C5

C5C5

5

C5-iC5-i

C5-iiC5

5

C4C4

C4C4

4

iC4iC4

iC4iC4

4

33C3

5

39193

C3C3

3

lblb

lb

lblb

lb

eIsopen

hlbmollb

lblb

lb

lbbf

lblbb

hmol

P

CC

C

Components Feed (lbmolh) Distillate (lbmolh) Bottom (lbmolh)

C3 4762 4762 0000

i-C4 10843 10822 0021

C4 18072 17684 03880

i-C5 11651 0809 10842

C5 20388 0292 20096

Total 65716 34369 31347

Maximum value of 3 wt of i-C5 in distillate is required

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 30

Calculated value =

wt 3

1004956

172

36934

8090

Maximum value of 1 wt of C4 in bottom is required

Calculated value

wt 1

1009163

158

34731

3880

Conditions are satisfied

542 Component split by Winn equation

The Fenske equation has a weakness as the relative volatility difference between

column top and bottom increase the estimated minimum number of stages gets

increasingly too small

460

1

460

1

lnln

bottomtop

bottomitopi

i

TT

PKPKB

460

ln

T

BAPK i

ii

110 irHKi PAAi

r

ii B

B

Components KTop148 F Kbottom245 F

C3 2425 450

i-C4 1175 255

C4 087 205

i-C5 0425 1075

C5 034 094

For P=125 lbin2

For butane (C4)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 31

550594460148

)271263()42525122log(

271263

460245

1

460148

1545127log42525122log

4

4

C

C

A

B

Heavy component is iso-pentane( i-C5)

955824460148

)711857()42505122log(

680010717185

271263

711857

460245

1

460148

1

07515127log4250125log

5

4

5

Ci

C

Ci

A

A

B

311344

)125(10

10)1680010()955824550594(

1

irHKi PAAi

Components Bi Ai θi βi

C3 -126327 45509 068001 43113

i-C4 -156377 473016 084177 24069

C4 -172167 48593 092677 191988

i-C5 -185771 49558 100000 10000

C5 -202840 49558 109189 086704

5339

919881log

)369348090(

)3473484210(

)347313880(

)3693468417(log

m

m

N

N

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 32

abvg

1

bdcomponent

orlightif

D

B

d

bb

d

HK

N

i

im

d

b1

fd

2dbkeyheavy

1

avgHKLKif

b

df

b

componentlight propanefor

5

032068

9533

101976

09120713402

4311

b

d

7624

0001097611

76245

bfd

b

For isobutene (i-C4)

f =10843 θ =0842 β =2407 (light component)

lh10821lbmo

002210843d

h0022lbmol

494151

10843b

4941509120713402

2407

b

d08417108417

9533

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 33

For Butane (C4)

f =18072 β=191988θ=092677

h0388lbmol

455771

18072b

4557709120713402

191988

b

d0926771092677

9533

d=18072-0388

=17684 lbmolh

For Isopentane (C5)

f =11651 β =100 θ =100

111

5339

91207040213

00001

b

d

=007461

βltβavg

)0746101(1

65111

d

= 0809 lbmolh

b = 11651-0809

=10842 lbmolh

For Pentane (C5)

f =20388 lbmolh β= 086704 θ =109189

0918911091891

5339

91207040213

867040

b

d

=0014959

βltβavg

)01495901(1

38820

d

= 0300 lb molh

b=20388-03

=20088

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 34

Components Feed lbmolh Distillate lbmolh Bottom lbmolh

C3 4762 4762 000

i-C4 10843 10821 0022

C4 18072 17684 0388

i-C5 11651 0809 10842

C5 20388 03 20088

65716 34376 3134

Components Feed lbh Distillate lbh Bottom lbh

C3 210 210 000

i-C4 630 62872 128

C4 1050 102745 2257

i-C5 840 5836 78164

C5 1470 2163 1448348

4200 194602 2253818

543 Calculation of Rm

From Underwood equation

qx

i

iFi

1

Components Flbmolhr xif xid αi

C3 4762 00725 01386 488

i-C4 10843 01650 03149 256

C4 18072 02750 05145 198

i-C5 11651 01773 002335 100

C5 20388 03102 00085 084

65716 1000 1000

Feed is at boiling conditions since q =1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 35

0840

31020840

1

177301

981

27500981

562

16500562

884

07250884

θ =1284

from this value of θ

avgi

idavgim

xR

1

11284840

00850840

12841

023501

1284981

51450981

1284562

31490562

1284884

13860884

mR

Rm=1185

R=15 Rm

=15times1185

=17775

X=1

R

RR m

X=177751

185177751

=02133

From GillilandrsquoS correlation Y=1

N

NN m =042

We know the value of Nm 4201

5339

N

N

N=178 =18 stages

Feed location can be known by the use of Kirkbride equation

2

)376348090(

)34313880(

)07218(

)65111(

37634

34312060log

F

F

p

m

687890p

m

817 pm

m = 725=8

p =1054 =11

Feed is introduced on eight stage from top

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 36

Chapter- 6

PACKED COLUMN DESIGN

61 Stage AnalysisThe data shown in table are typical data generated by commercial simulation

Vapor liquidStage Temperature0F lbhr CFS

ft3sV

lbft3

Lbhr GPM

galminL

σ

dynecm

μ

cP

1 1349 00 00 00 3655 1423 3202 6867 0114

2 1474 5501 12050 12683 3720 1447 3204 6738 01132

3 1548 5566 12049 12831 3724 1447 3208 6699 01128

4 1609 5571 11987 12909 3707 1438 3214 6684 01130

5 1668 5553 11889 12974 3693 1430 3220 6665 01135

6 1726 5539 11794 13045 3689 1426 3224 6632 01142

7 1779 5535 11716 13122 3691 1426 3226 6590 01149

8 1824 5537 11650 13199 8032 310471 3226 6544 01156

9 1873 5678 11794 13373 8126 3142 3224 6507 01153

10 1917 5772 11871 13506 8201 3171 3224 6479 01151

11 1961 5847 11915 13631 8275 3201 3223 6447 01152

12 2010 5921 11946 13768 8360 3235 3222 6406 01156

13 2064 6006 12152 13928 8475 3274 3220 6348 01162

14 2122 6103 12013 14111 8574 3321 3218 6295 01170

15 2179 6220 12070 14310 8701 3374 3215 6236 01180

16 2232 6347 12148 14512 8829 3428 3211 6178 01191

17 2280 6475 12234 14701 8947 3477 3208 6128 01201

18 2321 6593 12317 14868 2354 91599 3204 6087 01212

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 37

62 Flood Point

15 inch pall ring will be used throughout the column for this packing the flood point can

be determined by interpolation

A-flood point by GPDC [generalized pressure drop correlation] interpolation

2

2

6593

5571

fthrlbA

G

fthrlbA

G

TBottom

TTop

Liquid flowrates ( 2 fthrlb )

LTop =TA

3724

LBottom = TA

8947

Vapor density( 3 ftlb )

48681

31991

BottomG

TopG

Liquid density ( 3 ftlb )

2432

2632

BottomL

TopL

1 Flow parameter

L

GLV ρ

ρ

G

LF

Top 05

LV 3228

13199

5571

3724F

1352110FLV

Bottom LVF =

2432

48681

6593

8947

= 029142

2 Capacity parameter from graphical correlation

Top =152

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 38

Bottom =119

3 Viscosity of the liquid L (cP)

Top L =01128 (cP)

Bottom L =01151 (cP)

4 Kinematic viscosity

=

L

L

462

Top =

2632

11280462

Top = 0218187

Bottom =

2432

11510462

Bottom = 022277

5 Packing factor ( 1ft )

Top FP = 40

Bottom FP = 40

6 Vapour capacity factor CSFI(fts)

Capacity parameter = CSFI FP05 005

Top 05050SFI 2181040

921C

Top SFIC =02593

Bottom 05050SFI 2181040

191C

Bottom 20280CSFI

63 Flood point by the Kister amp Gill correlation

1 FTP packed bed specific pressure drop at flood point

FTP =0115 70PF

Top FTP =0115 7040

=1521

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 39

Bottom FTP =1521 inch of H2O per ft

2 Flow parameter

Top FLV =0135211

Bottom FLV =029142

3 Capacity parameter at flood point

Top =152

Bottom = 119

4 CSFl vapor capacity factor at the flood point

CSFl = capacity parameter

05050

1

PF

Top CSFl =02593

Bottom CSFl =02028

64 Diameter calculation

1 Vapor capacity factor Cs design (nonderated) fts

The column will be designed for 75 flood capacity

SFlS CC 750

Top CS = 075 02593

=0194475

Bottom CS = 075 02028

Bottom CS = 01551

2 CS vapor capacity factor (derated )fts

= 09 CSdesign

Top CS = 09 01944

Top CS =017496

Bottom CS =09 01521

Bottom CS =013689

3 Vapor superficial velocity based on the cross section of empty column u (fts)

GL

G

ss

ρρ

ρ

(derated)Cu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 40

Top su =

319912632

31991

174960

Top su =084737

Bottom su =

486812432

48681

136890

Bottom su = 062257

4 Vapor flow rate CFS ft3s

Top CFS =1205 ft3s

Bottom CFS =12316 ft3shellipfrom table

5 Tower area ft2

AT = s

T u

CFSA

Top AT = 847370

2051

Top AT =1422 ft2

Bottom AT = 622570

23161

Bottom AT =19782 ft2

6 Tower diameter ft

1587ftD

π

197824D

13455ftD

π

14224D

π

A4

BottomT

BottomT

TopT

TopT

TT

D

65 Diameter calculation using the maximum pressure drop criterion

1 L

G

calculation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 41

Top L

G

=2632

31991

= 00409

Bottom L

G

=2432

48681

= 004611

2OH

L

2

calculation

Top ( OHL 2 )=

4362

2632

= 05167

Bottom ( OHL 2 ) =

4362

2432

= 05164

3 FP packing factor

Top FP = 40

Bottom FP =40

4 Maximum pressure drops recommended for packed column with random packing

1902

70max

OH

LPFP

helliphelliphelliphellipfor 006 20L

G

Top maxP = 019 5167040 70

Top maxP = 12984helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

Bottom maxP = 019 5164040 70

Bottom maxP =12977helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

5 Surface tension dyne

Top =6544 cmdyne

Bottom =6128 cmdyne

6 Vapor capacity factor Csmax (fts)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 42

P

s

FCP

3342maxmax

Top 12984 =

5446

403342maxsC

Top maxsC =02634

Bottom 12977 =

1286

403342maxsC

Bottom maxsC =025628

7 Maximum vapor superficial velocity usmax

maxsC = usmax

GL

G

Top usmax =

319912632

31991

26340

= 12752

Bottom usmax =

486812432

48681

25620

=11651 fts

8 Tower area AT (ft2)

AT =smaxu

CFS

Top AT =27521

2051

Top AT =09449

Bottom AT = 16511

23161

= 1057 ft2

9 Tower diameter (ft)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 14: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 14

Type of system Maximum pressure drop in of water ft

packing

Atmospheric fractionator 05-100

Low to medium pressure fractioantor 07-10

High pressure distillation

006ltρG ρGlt 020

020lt ρGρL

019 )( 270

OHGPF

0099 )( 270

OHGPF

Vacuum distillation 001-06

Liquid holdup

Liquid holdup is the liquid present in the void spaces of packing At flooding

essentially all the voids are filled with liquids or froth Reasonable liquid holdup is

necessary for good mass transfer and efficient tower operation but beyond that it should

be kept low

Static holdup is liquid remaining on the packing after it has been fully wetted and

drained for long time The contributation of static holdup to mass transfer rates is limited

Operational holdup is liquid on the packing attributed to dynamic operation and is defined

as the difference between total holdup and static holdup

Minimum Wetting Rate

The minimum wetting rate (MWR) is the lower stability limit of packing It is liquid

below which the falling liquid film breaks up and the liquid storage causes wetting of the

packing surface Gravity and viscous forces resists dewetting the surface tension and vapor

shear forces tend to dewett the falling film The MWR therefore rises with an increase in

surface tension and liquid density and with decrease in liquid viscosity

A thumb rule cited by Ludwi

QMW =3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 15

Underwetting

Underwetting is a packing surface phenomenon which brakes up liquid film

The tendency of liquid film to break is expressed by a contact angle A contact angle of

zero indicates perfect wetting an angle of 1800 indicates no wetting

The contact angle depends both on surface and a liquid and is a strong function of

composition Changing a material and surface roughness of the packing may significantly

affect the efficiency in system susceptible to underwetting

45 The HETP concept

The concept of HETP (height equivalent to theoretical plates) was introduced to

enable to comparison of efficiency between packed and plate columns HETP is defined as

HETP = Hn

A similar HETP value can be obtained for plate column if the tray spacing is known

HETP (trayed column) = 100 timesSE

The HETP approach is suitable for multicomponent systems while HTU approach is

difficult to apply for this

HETP prediction

Because there are only few variables that significantly affect HETP of random

packings For small diameter column the rule of thumb presented by Frank Ludig Vital

et al are identical The more conservative cause predicted from

HETP =15 dp helliphellipfor Pall rings or similar high efficiency packing

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 16

Chapter -5

Distillation Design

Problem statement-

A butane-pentane splitter is to be designed to process 4200 lbhr of C3 ndashC5 feed subjected to

specifications of

1maximum 3 of i-C5 in the distillate

2maximum 1 of C4 in the bottom product

The feed sink will be air (process design temperature) to be 130 0F

Components Wt molwt lbh molh

C3 5 441 210 4762

i-C4 15 581 630 10843

C4 25 581 1050 18072

i-C5 20 721 840 11651

C5 35 721 1470 20388

4200 65716

Solution-

Feed composition

Components lbgal(60F) galh Vol mol

C3 422 4976 592 725

i-C4 469 13433 1397 165

C4 487 21501 2563 275

i-C5 520 16154 192 1773

C5 525 28000 328 3102

Total 84124 100 100

Average molecular weight 650716

4200

= 6391

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 17

Average liquid density = 420065716

= 4993lbgal

x = mass of c4 in the bottom(i-wt)

y =mass of i-c5 in the distillate(3 wt)

51 Component Split

Assuming that the C3 and i-C5 have negligible concentration in the bottom and C5 has

negligible concentration in the distillate

Components F D B

C3 210 210 0

i-C4 630 630 0

C4 1050 (1050-x) x

i-C5 840 y (840-y)

C5 1470 0 1470

Total 4200 1890-x+y 2310+x-y

F =B+D

4200 =2310 + x ndashy +1890 ndashx + y

Distillate specification 3 in of i-c5 in distillate

yx

y

18900030

567 ndash 003 x -097 y =0

003 x + 097 y =567

Bottom specification 1 C4 in the bottom

003 yx

x

2310

231 -001 x + 001 y = x

099 x + 001 y = 231

x = 2275

y = 5775

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 18

Components D lbh B lbh D lbmolh B lbmolh

C3 210 0 4762 0

i-C4 630 0 10843 0

C4 102725 2275 1768 039

i-C5 5725 78225 0801 1085

C5 0 1470 0 20388

Total 1925 2275 34086 3163

52 Dew Point and Bubble Point calculation

1 The distillate and reflux will be a bubble point liquid The criteria for evaluation of

the bubble point condition are

1 like an air fin condenser to liquefy the distillate and reflux The criteria of

drum temperature will be assumed to be 130F ( design temperature for air is

about 120F

2 the bubble point design equation with temperature specified

01 ii xK

Average molecular weight of distillate

Components xid Ki

C3 01397 21

i-C4 03181 10

C4 05187 073

i-C5 00235 033

C5 0 027

For fixed temperature of 130F bubble point pressure is to be determined

4656 wtmolxid

9980 iDi xK

Pestimated = Pi-c4 = 120 lbin2

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 19

001

9980120calculatedP

= 1197 lbin2 (abs)

The result of distillate bubble point calculation is

T = 130 0F

P = 120 lbin2

The condition at the top of the column must be evaluated since the fractionator has a

total concentration and an equilibrium stage The criteria for evaluation of the dew

point condition are

Assumption of the pressure drop through the total condenser of 25 lbin2Thus the

pressure at the top of the column is established as

P = 120 lbin2 + 25 lbin2

P = 1225 lbin2

Dew point

01

i

i

k

y

Plk =1225 lbin2 T= 1320F

Components yi Ki1320

F Ki1450

F

C3 01397 220 240

i-C4 03181 100 115

C4 05187 073 085

i-C5 00235 035 042

C5 00000 028 033

For T =1320F

01

i

i

k

y

Kic4 = 1160 and Tcal =1450F

For T =1450F

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 20

01

i

i

k

y

The result of column top dew point calculation

T =1450F

P = 1225 lbin2

The column bottom condition Column ΔP =5 lbin2

The column bottom pressure

P = 1225 + 50 = 1275 lbin2

The bubble point design equation

ΣKiXi=10

Components B(mol) X

C3 0 0

i-C4 0 0

C4 0392 00124

i-C5 1085 03430

C5 20388 06446

3163 100

Average molecular wt = 6331

22750 =7193

The characteristic component is i-c5 an estimated bottom temperature is obtained

Components Xi Ki2380

F Ki2150

F

C3 0 38 45

i-C4 0 355 265

C4 00124 1925 205

i-C5 03430 10 1075

C5 06446 087 094

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 21

For T = 238 0F

ΣKiXi=0927

KHK = 108 Tcal =245 0F

For T =245 0F

ΣKiXi=100

The result of column bottom bubble point calculation

T =245 0F

P =1275 lbin2

53 Determination of the key component

Using the heavy key as column reference key The separation is clearly between

butane and isopentane

Reference component =i-C5

Key component

LK =C4

HK =iC5

The average relative volatility data for the column will be generated using three-point

geometric average

3321 avg

Point 1 ndash top of fractionation column

Point 2 ndash at the reboiler

Point 3 ndash arithmetic mean of condition at 1 amp 3

T2 = 05 [ T1 + T2 ] = 05 [ T1 + T2 ]

T2 = 05 [ 145 + 245 ] = 195 0F

P2 = 05 [ P1 + P3 ] = 05 [ 1225 +1275 ]

P2 = 125 lbin2

variable Point 1 Point 2 Point 3

T oF 145 195 245

P lbin2 1225 125 1275

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 22

Components Point 1 Point 2 Point 3

Ki αi Ki αi Ki αi αavg

C3 24 571 335 493 45 419 49

i-C4 115 274 175 257 25 237 256

C4 085 202 135 199 205 191 197

i-C5 024 100 068 100 1075 100 100

C5 033 079 058 085 094 087 084

54 Shortcut Method

541 Minimum stages at total reflux-the Fenske equation

LKavg

BLk

HK

DHK

LK

m

x

x

x

x

Nln

ln

Fi = bi + di

avgmeanavgiiir

rNavgi

i dbb

d

b

d for min

mN

avgHK

avgi

HK

ii

b

d

fb

1

or when ii db meanavgavgi

mN

avgi

avgLK

LK

ii

d

b

fd

1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 23

971ln

01240

3430

02350

51870ln

mN

4619mN

2

avgLKavgHKmean

2

001971

= 1485

For propaneC3

meanC 3

7624

904

3

3

C

C

f

4619

001

904

85010

80101

76243Cb

hmold

hmol

C 7624007624

1091

3

5

For isobutene(i-C4)

84310

562

4

4

4

iC

Ci

meanCi

f

4619

1

562

8500

80101

843104iCb

hmol 020

823104iCd

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 24

For butane (C4)

07218

971

4

4

C

C

meanavgi

f

4619

001

971

8510

80101

072184Cb

hmold

d

hmolb

C

C

C

68817

392007218

3920

4

4

4

For isopentane (i-C5)

meanavgiC

iCiC hmolf

5

5565111001

Hence

4619

001

971

6817

39201

651115iCd

hmolb

hmold

iC

iC

8510801065111

8010

5

5

For pentane (C5)

hmolb

hmold

d

C

C

C

meanavgC

C

105320

2850

840

971

6817

39201

38820

840

5

5

5

5

5

4619

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 25

The calculated data in the table

Components Fi(lbmolh) Di(lbmolh) Bi(lbmolh)

C3 4762 4762 0

i-C4 10834 10823 002

C4 18072 17680 0392

i-C5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Checking

Maximum 3wt of iC5 in the distillate

9772

1004656

172

35134

8010

wt

Maximum of 1 wt C4 in the bottom

011

1009371

158

36531

3920

wt

The set of specification were not met The parameter reevaluated

Again performing same calculations

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 1050-x x

i-C5 840 y 840-y

C5 1470 2055 144945

Total 190939-x+y 229061+x-y

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 26

3658

5522

612290100

1

391909100

3

y

x

yx

x

yx

y

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 102745 2255

i-C5 840 5836 78164

C5 1470 2055 144945

Total 4200 194520 224580

Components F(lbmolh) D(lbmolh) B(lbmolh)

C3 4762 4762 0

i-c4 10834 10823 002

C4 18072 17680 0392

i-c5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Column operating condition

Distillate bubble point calculation on with temperature specified at 130 0F

Components D (lbmolh) K120 (lbin2)

C3 4762 210

i-C4 10823 10

C4 17680 073

i-C5 0801 033

C5 0285 027

Total 34351

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 27

992036334

07634

001

ii

iiii

xK

D

dKxK

Condition of the distillatereflux before 130 0F amp 120 lbin2overhead or column top

conditions are found by dew point calculation at the specified pressure of 1225lbin2

Components D (lbmolh) K1450

F K148 0

F

C3 4762 24 2425

i-C4 10823 116 1175

C4 17680 084 087

i-C5 0801 042 0425

C5 0285 033 034

01D

K

d

K

y i

i

i

i

For T=145 0F

018136334

9934

i

i

K

y K=1175 Tcal=148 0F

For T=148 0F

997036334

24334

i

i

K

y

Conditions of column overhead are revised to 148 0F and 1225lbin2column bottom

conditions are found by way of bubble point calculation

Components B(lbmolh) K2450

F

C3 0 45

i-C4 002 255

C4 0392 205

i-C5 10850 1075

C5 20103 094

Total 31365

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 28

Design equation

001B

bKxK ii

ii

For T =245 0F

00139331

39831ii xK

At column midpoint condition

2

0

1255127512250

519624514850

inlbP

FT

Summery of operating condition

Point 1 Point 2 Point 3

Temperature 148 1965 245

Pressure lbin2 (abs) 1225 125 1275

Equilibrium K data for column midpoint condition

Point 1 Point 2 Point 3

Components Ki i Ki i Ki i avgi

C3 2425 571 34 486 45 419 488

i-C4 1175 276 18 257 255 237 256

C4 087 205 138 197 205 191 198

i-C5 0425 100 07 10 1075 10 10

C5 034 08 06 086 094 087 084

Fenske equation

3919

001

981ln

3880

84210

8090

68417ln

m

m

N

N

Separation of non key component

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 29

4912

100198

2

avgLKavgHK

mean

molh09220bmolh 2920d

molh38820f840

)(CPentane

molh8090dmolh 84210b

molh65111f001

)C-(itan

68417dmolh 3880b

molh07218f981

)(CButane

hmol 82210d h mol0210b

hmol84310f562

)C-(iIsobutane

molh76240007624d

molh000molh101882

001

884

84210

80901

7624

7624f884

)(Cropane

C5C5

C5C5

5

C5-iC5-i

C5-iiC5

5

C4C4

C4C4

4

iC4iC4

iC4iC4

4

33C3

5

39193

C3C3

3

lblb

lb

lblb

lb

eIsopen

hlbmollb

lblb

lb

lbbf

lblbb

hmol

P

CC

C

Components Feed (lbmolh) Distillate (lbmolh) Bottom (lbmolh)

C3 4762 4762 0000

i-C4 10843 10822 0021

C4 18072 17684 03880

i-C5 11651 0809 10842

C5 20388 0292 20096

Total 65716 34369 31347

Maximum value of 3 wt of i-C5 in distillate is required

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 30

Calculated value =

wt 3

1004956

172

36934

8090

Maximum value of 1 wt of C4 in bottom is required

Calculated value

wt 1

1009163

158

34731

3880

Conditions are satisfied

542 Component split by Winn equation

The Fenske equation has a weakness as the relative volatility difference between

column top and bottom increase the estimated minimum number of stages gets

increasingly too small

460

1

460

1

lnln

bottomtop

bottomitopi

i

TT

PKPKB

460

ln

T

BAPK i

ii

110 irHKi PAAi

r

ii B

B

Components KTop148 F Kbottom245 F

C3 2425 450

i-C4 1175 255

C4 087 205

i-C5 0425 1075

C5 034 094

For P=125 lbin2

For butane (C4)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 31

550594460148

)271263()42525122log(

271263

460245

1

460148

1545127log42525122log

4

4

C

C

A

B

Heavy component is iso-pentane( i-C5)

955824460148

)711857()42505122log(

680010717185

271263

711857

460245

1

460148

1

07515127log4250125log

5

4

5

Ci

C

Ci

A

A

B

311344

)125(10

10)1680010()955824550594(

1

irHKi PAAi

Components Bi Ai θi βi

C3 -126327 45509 068001 43113

i-C4 -156377 473016 084177 24069

C4 -172167 48593 092677 191988

i-C5 -185771 49558 100000 10000

C5 -202840 49558 109189 086704

5339

919881log

)369348090(

)3473484210(

)347313880(

)3693468417(log

m

m

N

N

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 32

abvg

1

bdcomponent

orlightif

D

B

d

bb

d

HK

N

i

im

d

b1

fd

2dbkeyheavy

1

avgHKLKif

b

df

b

componentlight propanefor

5

032068

9533

101976

09120713402

4311

b

d

7624

0001097611

76245

bfd

b

For isobutene (i-C4)

f =10843 θ =0842 β =2407 (light component)

lh10821lbmo

002210843d

h0022lbmol

494151

10843b

4941509120713402

2407

b

d08417108417

9533

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 33

For Butane (C4)

f =18072 β=191988θ=092677

h0388lbmol

455771

18072b

4557709120713402

191988

b

d0926771092677

9533

d=18072-0388

=17684 lbmolh

For Isopentane (C5)

f =11651 β =100 θ =100

111

5339

91207040213

00001

b

d

=007461

βltβavg

)0746101(1

65111

d

= 0809 lbmolh

b = 11651-0809

=10842 lbmolh

For Pentane (C5)

f =20388 lbmolh β= 086704 θ =109189

0918911091891

5339

91207040213

867040

b

d

=0014959

βltβavg

)01495901(1

38820

d

= 0300 lb molh

b=20388-03

=20088

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 34

Components Feed lbmolh Distillate lbmolh Bottom lbmolh

C3 4762 4762 000

i-C4 10843 10821 0022

C4 18072 17684 0388

i-C5 11651 0809 10842

C5 20388 03 20088

65716 34376 3134

Components Feed lbh Distillate lbh Bottom lbh

C3 210 210 000

i-C4 630 62872 128

C4 1050 102745 2257

i-C5 840 5836 78164

C5 1470 2163 1448348

4200 194602 2253818

543 Calculation of Rm

From Underwood equation

qx

i

iFi

1

Components Flbmolhr xif xid αi

C3 4762 00725 01386 488

i-C4 10843 01650 03149 256

C4 18072 02750 05145 198

i-C5 11651 01773 002335 100

C5 20388 03102 00085 084

65716 1000 1000

Feed is at boiling conditions since q =1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 35

0840

31020840

1

177301

981

27500981

562

16500562

884

07250884

θ =1284

from this value of θ

avgi

idavgim

xR

1

11284840

00850840

12841

023501

1284981

51450981

1284562

31490562

1284884

13860884

mR

Rm=1185

R=15 Rm

=15times1185

=17775

X=1

R

RR m

X=177751

185177751

=02133

From GillilandrsquoS correlation Y=1

N

NN m =042

We know the value of Nm 4201

5339

N

N

N=178 =18 stages

Feed location can be known by the use of Kirkbride equation

2

)376348090(

)34313880(

)07218(

)65111(

37634

34312060log

F

F

p

m

687890p

m

817 pm

m = 725=8

p =1054 =11

Feed is introduced on eight stage from top

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 36

Chapter- 6

PACKED COLUMN DESIGN

61 Stage AnalysisThe data shown in table are typical data generated by commercial simulation

Vapor liquidStage Temperature0F lbhr CFS

ft3sV

lbft3

Lbhr GPM

galminL

σ

dynecm

μ

cP

1 1349 00 00 00 3655 1423 3202 6867 0114

2 1474 5501 12050 12683 3720 1447 3204 6738 01132

3 1548 5566 12049 12831 3724 1447 3208 6699 01128

4 1609 5571 11987 12909 3707 1438 3214 6684 01130

5 1668 5553 11889 12974 3693 1430 3220 6665 01135

6 1726 5539 11794 13045 3689 1426 3224 6632 01142

7 1779 5535 11716 13122 3691 1426 3226 6590 01149

8 1824 5537 11650 13199 8032 310471 3226 6544 01156

9 1873 5678 11794 13373 8126 3142 3224 6507 01153

10 1917 5772 11871 13506 8201 3171 3224 6479 01151

11 1961 5847 11915 13631 8275 3201 3223 6447 01152

12 2010 5921 11946 13768 8360 3235 3222 6406 01156

13 2064 6006 12152 13928 8475 3274 3220 6348 01162

14 2122 6103 12013 14111 8574 3321 3218 6295 01170

15 2179 6220 12070 14310 8701 3374 3215 6236 01180

16 2232 6347 12148 14512 8829 3428 3211 6178 01191

17 2280 6475 12234 14701 8947 3477 3208 6128 01201

18 2321 6593 12317 14868 2354 91599 3204 6087 01212

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 37

62 Flood Point

15 inch pall ring will be used throughout the column for this packing the flood point can

be determined by interpolation

A-flood point by GPDC [generalized pressure drop correlation] interpolation

2

2

6593

5571

fthrlbA

G

fthrlbA

G

TBottom

TTop

Liquid flowrates ( 2 fthrlb )

LTop =TA

3724

LBottom = TA

8947

Vapor density( 3 ftlb )

48681

31991

BottomG

TopG

Liquid density ( 3 ftlb )

2432

2632

BottomL

TopL

1 Flow parameter

L

GLV ρ

ρ

G

LF

Top 05

LV 3228

13199

5571

3724F

1352110FLV

Bottom LVF =

2432

48681

6593

8947

= 029142

2 Capacity parameter from graphical correlation

Top =152

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 38

Bottom =119

3 Viscosity of the liquid L (cP)

Top L =01128 (cP)

Bottom L =01151 (cP)

4 Kinematic viscosity

=

L

L

462

Top =

2632

11280462

Top = 0218187

Bottom =

2432

11510462

Bottom = 022277

5 Packing factor ( 1ft )

Top FP = 40

Bottom FP = 40

6 Vapour capacity factor CSFI(fts)

Capacity parameter = CSFI FP05 005

Top 05050SFI 2181040

921C

Top SFIC =02593

Bottom 05050SFI 2181040

191C

Bottom 20280CSFI

63 Flood point by the Kister amp Gill correlation

1 FTP packed bed specific pressure drop at flood point

FTP =0115 70PF

Top FTP =0115 7040

=1521

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 39

Bottom FTP =1521 inch of H2O per ft

2 Flow parameter

Top FLV =0135211

Bottom FLV =029142

3 Capacity parameter at flood point

Top =152

Bottom = 119

4 CSFl vapor capacity factor at the flood point

CSFl = capacity parameter

05050

1

PF

Top CSFl =02593

Bottom CSFl =02028

64 Diameter calculation

1 Vapor capacity factor Cs design (nonderated) fts

The column will be designed for 75 flood capacity

SFlS CC 750

Top CS = 075 02593

=0194475

Bottom CS = 075 02028

Bottom CS = 01551

2 CS vapor capacity factor (derated )fts

= 09 CSdesign

Top CS = 09 01944

Top CS =017496

Bottom CS =09 01521

Bottom CS =013689

3 Vapor superficial velocity based on the cross section of empty column u (fts)

GL

G

ss

ρρ

ρ

(derated)Cu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 40

Top su =

319912632

31991

174960

Top su =084737

Bottom su =

486812432

48681

136890

Bottom su = 062257

4 Vapor flow rate CFS ft3s

Top CFS =1205 ft3s

Bottom CFS =12316 ft3shellipfrom table

5 Tower area ft2

AT = s

T u

CFSA

Top AT = 847370

2051

Top AT =1422 ft2

Bottom AT = 622570

23161

Bottom AT =19782 ft2

6 Tower diameter ft

1587ftD

π

197824D

13455ftD

π

14224D

π

A4

BottomT

BottomT

TopT

TopT

TT

D

65 Diameter calculation using the maximum pressure drop criterion

1 L

G

calculation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 41

Top L

G

=2632

31991

= 00409

Bottom L

G

=2432

48681

= 004611

2OH

L

2

calculation

Top ( OHL 2 )=

4362

2632

= 05167

Bottom ( OHL 2 ) =

4362

2432

= 05164

3 FP packing factor

Top FP = 40

Bottom FP =40

4 Maximum pressure drops recommended for packed column with random packing

1902

70max

OH

LPFP

helliphelliphelliphellipfor 006 20L

G

Top maxP = 019 5167040 70

Top maxP = 12984helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

Bottom maxP = 019 5164040 70

Bottom maxP =12977helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

5 Surface tension dyne

Top =6544 cmdyne

Bottom =6128 cmdyne

6 Vapor capacity factor Csmax (fts)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 42

P

s

FCP

3342maxmax

Top 12984 =

5446

403342maxsC

Top maxsC =02634

Bottom 12977 =

1286

403342maxsC

Bottom maxsC =025628

7 Maximum vapor superficial velocity usmax

maxsC = usmax

GL

G

Top usmax =

319912632

31991

26340

= 12752

Bottom usmax =

486812432

48681

25620

=11651 fts

8 Tower area AT (ft2)

AT =smaxu

CFS

Top AT =27521

2051

Top AT =09449

Bottom AT = 16511

23161

= 1057 ft2

9 Tower diameter (ft)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 15: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 15

Underwetting

Underwetting is a packing surface phenomenon which brakes up liquid film

The tendency of liquid film to break is expressed by a contact angle A contact angle of

zero indicates perfect wetting an angle of 1800 indicates no wetting

The contact angle depends both on surface and a liquid and is a strong function of

composition Changing a material and surface roughness of the packing may significantly

affect the efficiency in system susceptible to underwetting

45 The HETP concept

The concept of HETP (height equivalent to theoretical plates) was introduced to

enable to comparison of efficiency between packed and plate columns HETP is defined as

HETP = Hn

A similar HETP value can be obtained for plate column if the tray spacing is known

HETP (trayed column) = 100 timesSE

The HETP approach is suitable for multicomponent systems while HTU approach is

difficult to apply for this

HETP prediction

Because there are only few variables that significantly affect HETP of random

packings For small diameter column the rule of thumb presented by Frank Ludig Vital

et al are identical The more conservative cause predicted from

HETP =15 dp helliphellipfor Pall rings or similar high efficiency packing

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 16

Chapter -5

Distillation Design

Problem statement-

A butane-pentane splitter is to be designed to process 4200 lbhr of C3 ndashC5 feed subjected to

specifications of

1maximum 3 of i-C5 in the distillate

2maximum 1 of C4 in the bottom product

The feed sink will be air (process design temperature) to be 130 0F

Components Wt molwt lbh molh

C3 5 441 210 4762

i-C4 15 581 630 10843

C4 25 581 1050 18072

i-C5 20 721 840 11651

C5 35 721 1470 20388

4200 65716

Solution-

Feed composition

Components lbgal(60F) galh Vol mol

C3 422 4976 592 725

i-C4 469 13433 1397 165

C4 487 21501 2563 275

i-C5 520 16154 192 1773

C5 525 28000 328 3102

Total 84124 100 100

Average molecular weight 650716

4200

= 6391

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 17

Average liquid density = 420065716

= 4993lbgal

x = mass of c4 in the bottom(i-wt)

y =mass of i-c5 in the distillate(3 wt)

51 Component Split

Assuming that the C3 and i-C5 have negligible concentration in the bottom and C5 has

negligible concentration in the distillate

Components F D B

C3 210 210 0

i-C4 630 630 0

C4 1050 (1050-x) x

i-C5 840 y (840-y)

C5 1470 0 1470

Total 4200 1890-x+y 2310+x-y

F =B+D

4200 =2310 + x ndashy +1890 ndashx + y

Distillate specification 3 in of i-c5 in distillate

yx

y

18900030

567 ndash 003 x -097 y =0

003 x + 097 y =567

Bottom specification 1 C4 in the bottom

003 yx

x

2310

231 -001 x + 001 y = x

099 x + 001 y = 231

x = 2275

y = 5775

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 18

Components D lbh B lbh D lbmolh B lbmolh

C3 210 0 4762 0

i-C4 630 0 10843 0

C4 102725 2275 1768 039

i-C5 5725 78225 0801 1085

C5 0 1470 0 20388

Total 1925 2275 34086 3163

52 Dew Point and Bubble Point calculation

1 The distillate and reflux will be a bubble point liquid The criteria for evaluation of

the bubble point condition are

1 like an air fin condenser to liquefy the distillate and reflux The criteria of

drum temperature will be assumed to be 130F ( design temperature for air is

about 120F

2 the bubble point design equation with temperature specified

01 ii xK

Average molecular weight of distillate

Components xid Ki

C3 01397 21

i-C4 03181 10

C4 05187 073

i-C5 00235 033

C5 0 027

For fixed temperature of 130F bubble point pressure is to be determined

4656 wtmolxid

9980 iDi xK

Pestimated = Pi-c4 = 120 lbin2

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 19

001

9980120calculatedP

= 1197 lbin2 (abs)

The result of distillate bubble point calculation is

T = 130 0F

P = 120 lbin2

The condition at the top of the column must be evaluated since the fractionator has a

total concentration and an equilibrium stage The criteria for evaluation of the dew

point condition are

Assumption of the pressure drop through the total condenser of 25 lbin2Thus the

pressure at the top of the column is established as

P = 120 lbin2 + 25 lbin2

P = 1225 lbin2

Dew point

01

i

i

k

y

Plk =1225 lbin2 T= 1320F

Components yi Ki1320

F Ki1450

F

C3 01397 220 240

i-C4 03181 100 115

C4 05187 073 085

i-C5 00235 035 042

C5 00000 028 033

For T =1320F

01

i

i

k

y

Kic4 = 1160 and Tcal =1450F

For T =1450F

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 20

01

i

i

k

y

The result of column top dew point calculation

T =1450F

P = 1225 lbin2

The column bottom condition Column ΔP =5 lbin2

The column bottom pressure

P = 1225 + 50 = 1275 lbin2

The bubble point design equation

ΣKiXi=10

Components B(mol) X

C3 0 0

i-C4 0 0

C4 0392 00124

i-C5 1085 03430

C5 20388 06446

3163 100

Average molecular wt = 6331

22750 =7193

The characteristic component is i-c5 an estimated bottom temperature is obtained

Components Xi Ki2380

F Ki2150

F

C3 0 38 45

i-C4 0 355 265

C4 00124 1925 205

i-C5 03430 10 1075

C5 06446 087 094

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 21

For T = 238 0F

ΣKiXi=0927

KHK = 108 Tcal =245 0F

For T =245 0F

ΣKiXi=100

The result of column bottom bubble point calculation

T =245 0F

P =1275 lbin2

53 Determination of the key component

Using the heavy key as column reference key The separation is clearly between

butane and isopentane

Reference component =i-C5

Key component

LK =C4

HK =iC5

The average relative volatility data for the column will be generated using three-point

geometric average

3321 avg

Point 1 ndash top of fractionation column

Point 2 ndash at the reboiler

Point 3 ndash arithmetic mean of condition at 1 amp 3

T2 = 05 [ T1 + T2 ] = 05 [ T1 + T2 ]

T2 = 05 [ 145 + 245 ] = 195 0F

P2 = 05 [ P1 + P3 ] = 05 [ 1225 +1275 ]

P2 = 125 lbin2

variable Point 1 Point 2 Point 3

T oF 145 195 245

P lbin2 1225 125 1275

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 22

Components Point 1 Point 2 Point 3

Ki αi Ki αi Ki αi αavg

C3 24 571 335 493 45 419 49

i-C4 115 274 175 257 25 237 256

C4 085 202 135 199 205 191 197

i-C5 024 100 068 100 1075 100 100

C5 033 079 058 085 094 087 084

54 Shortcut Method

541 Minimum stages at total reflux-the Fenske equation

LKavg

BLk

HK

DHK

LK

m

x

x

x

x

Nln

ln

Fi = bi + di

avgmeanavgiiir

rNavgi

i dbb

d

b

d for min

mN

avgHK

avgi

HK

ii

b

d

fb

1

or when ii db meanavgavgi

mN

avgi

avgLK

LK

ii

d

b

fd

1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 23

971ln

01240

3430

02350

51870ln

mN

4619mN

2

avgLKavgHKmean

2

001971

= 1485

For propaneC3

meanC 3

7624

904

3

3

C

C

f

4619

001

904

85010

80101

76243Cb

hmold

hmol

C 7624007624

1091

3

5

For isobutene(i-C4)

84310

562

4

4

4

iC

Ci

meanCi

f

4619

1

562

8500

80101

843104iCb

hmol 020

823104iCd

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 24

For butane (C4)

07218

971

4

4

C

C

meanavgi

f

4619

001

971

8510

80101

072184Cb

hmold

d

hmolb

C

C

C

68817

392007218

3920

4

4

4

For isopentane (i-C5)

meanavgiC

iCiC hmolf

5

5565111001

Hence

4619

001

971

6817

39201

651115iCd

hmolb

hmold

iC

iC

8510801065111

8010

5

5

For pentane (C5)

hmolb

hmold

d

C

C

C

meanavgC

C

105320

2850

840

971

6817

39201

38820

840

5

5

5

5

5

4619

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 25

The calculated data in the table

Components Fi(lbmolh) Di(lbmolh) Bi(lbmolh)

C3 4762 4762 0

i-C4 10834 10823 002

C4 18072 17680 0392

i-C5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Checking

Maximum 3wt of iC5 in the distillate

9772

1004656

172

35134

8010

wt

Maximum of 1 wt C4 in the bottom

011

1009371

158

36531

3920

wt

The set of specification were not met The parameter reevaluated

Again performing same calculations

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 1050-x x

i-C5 840 y 840-y

C5 1470 2055 144945

Total 190939-x+y 229061+x-y

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 26

3658

5522

612290100

1

391909100

3

y

x

yx

x

yx

y

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 102745 2255

i-C5 840 5836 78164

C5 1470 2055 144945

Total 4200 194520 224580

Components F(lbmolh) D(lbmolh) B(lbmolh)

C3 4762 4762 0

i-c4 10834 10823 002

C4 18072 17680 0392

i-c5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Column operating condition

Distillate bubble point calculation on with temperature specified at 130 0F

Components D (lbmolh) K120 (lbin2)

C3 4762 210

i-C4 10823 10

C4 17680 073

i-C5 0801 033

C5 0285 027

Total 34351

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 27

992036334

07634

001

ii

iiii

xK

D

dKxK

Condition of the distillatereflux before 130 0F amp 120 lbin2overhead or column top

conditions are found by dew point calculation at the specified pressure of 1225lbin2

Components D (lbmolh) K1450

F K148 0

F

C3 4762 24 2425

i-C4 10823 116 1175

C4 17680 084 087

i-C5 0801 042 0425

C5 0285 033 034

01D

K

d

K

y i

i

i

i

For T=145 0F

018136334

9934

i

i

K

y K=1175 Tcal=148 0F

For T=148 0F

997036334

24334

i

i

K

y

Conditions of column overhead are revised to 148 0F and 1225lbin2column bottom

conditions are found by way of bubble point calculation

Components B(lbmolh) K2450

F

C3 0 45

i-C4 002 255

C4 0392 205

i-C5 10850 1075

C5 20103 094

Total 31365

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 28

Design equation

001B

bKxK ii

ii

For T =245 0F

00139331

39831ii xK

At column midpoint condition

2

0

1255127512250

519624514850

inlbP

FT

Summery of operating condition

Point 1 Point 2 Point 3

Temperature 148 1965 245

Pressure lbin2 (abs) 1225 125 1275

Equilibrium K data for column midpoint condition

Point 1 Point 2 Point 3

Components Ki i Ki i Ki i avgi

C3 2425 571 34 486 45 419 488

i-C4 1175 276 18 257 255 237 256

C4 087 205 138 197 205 191 198

i-C5 0425 100 07 10 1075 10 10

C5 034 08 06 086 094 087 084

Fenske equation

3919

001

981ln

3880

84210

8090

68417ln

m

m

N

N

Separation of non key component

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 29

4912

100198

2

avgLKavgHK

mean

molh09220bmolh 2920d

molh38820f840

)(CPentane

molh8090dmolh 84210b

molh65111f001

)C-(itan

68417dmolh 3880b

molh07218f981

)(CButane

hmol 82210d h mol0210b

hmol84310f562

)C-(iIsobutane

molh76240007624d

molh000molh101882

001

884

84210

80901

7624

7624f884

)(Cropane

C5C5

C5C5

5

C5-iC5-i

C5-iiC5

5

C4C4

C4C4

4

iC4iC4

iC4iC4

4

33C3

5

39193

C3C3

3

lblb

lb

lblb

lb

eIsopen

hlbmollb

lblb

lb

lbbf

lblbb

hmol

P

CC

C

Components Feed (lbmolh) Distillate (lbmolh) Bottom (lbmolh)

C3 4762 4762 0000

i-C4 10843 10822 0021

C4 18072 17684 03880

i-C5 11651 0809 10842

C5 20388 0292 20096

Total 65716 34369 31347

Maximum value of 3 wt of i-C5 in distillate is required

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 30

Calculated value =

wt 3

1004956

172

36934

8090

Maximum value of 1 wt of C4 in bottom is required

Calculated value

wt 1

1009163

158

34731

3880

Conditions are satisfied

542 Component split by Winn equation

The Fenske equation has a weakness as the relative volatility difference between

column top and bottom increase the estimated minimum number of stages gets

increasingly too small

460

1

460

1

lnln

bottomtop

bottomitopi

i

TT

PKPKB

460

ln

T

BAPK i

ii

110 irHKi PAAi

r

ii B

B

Components KTop148 F Kbottom245 F

C3 2425 450

i-C4 1175 255

C4 087 205

i-C5 0425 1075

C5 034 094

For P=125 lbin2

For butane (C4)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 31

550594460148

)271263()42525122log(

271263

460245

1

460148

1545127log42525122log

4

4

C

C

A

B

Heavy component is iso-pentane( i-C5)

955824460148

)711857()42505122log(

680010717185

271263

711857

460245

1

460148

1

07515127log4250125log

5

4

5

Ci

C

Ci

A

A

B

311344

)125(10

10)1680010()955824550594(

1

irHKi PAAi

Components Bi Ai θi βi

C3 -126327 45509 068001 43113

i-C4 -156377 473016 084177 24069

C4 -172167 48593 092677 191988

i-C5 -185771 49558 100000 10000

C5 -202840 49558 109189 086704

5339

919881log

)369348090(

)3473484210(

)347313880(

)3693468417(log

m

m

N

N

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 32

abvg

1

bdcomponent

orlightif

D

B

d

bb

d

HK

N

i

im

d

b1

fd

2dbkeyheavy

1

avgHKLKif

b

df

b

componentlight propanefor

5

032068

9533

101976

09120713402

4311

b

d

7624

0001097611

76245

bfd

b

For isobutene (i-C4)

f =10843 θ =0842 β =2407 (light component)

lh10821lbmo

002210843d

h0022lbmol

494151

10843b

4941509120713402

2407

b

d08417108417

9533

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 33

For Butane (C4)

f =18072 β=191988θ=092677

h0388lbmol

455771

18072b

4557709120713402

191988

b

d0926771092677

9533

d=18072-0388

=17684 lbmolh

For Isopentane (C5)

f =11651 β =100 θ =100

111

5339

91207040213

00001

b

d

=007461

βltβavg

)0746101(1

65111

d

= 0809 lbmolh

b = 11651-0809

=10842 lbmolh

For Pentane (C5)

f =20388 lbmolh β= 086704 θ =109189

0918911091891

5339

91207040213

867040

b

d

=0014959

βltβavg

)01495901(1

38820

d

= 0300 lb molh

b=20388-03

=20088

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 34

Components Feed lbmolh Distillate lbmolh Bottom lbmolh

C3 4762 4762 000

i-C4 10843 10821 0022

C4 18072 17684 0388

i-C5 11651 0809 10842

C5 20388 03 20088

65716 34376 3134

Components Feed lbh Distillate lbh Bottom lbh

C3 210 210 000

i-C4 630 62872 128

C4 1050 102745 2257

i-C5 840 5836 78164

C5 1470 2163 1448348

4200 194602 2253818

543 Calculation of Rm

From Underwood equation

qx

i

iFi

1

Components Flbmolhr xif xid αi

C3 4762 00725 01386 488

i-C4 10843 01650 03149 256

C4 18072 02750 05145 198

i-C5 11651 01773 002335 100

C5 20388 03102 00085 084

65716 1000 1000

Feed is at boiling conditions since q =1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 35

0840

31020840

1

177301

981

27500981

562

16500562

884

07250884

θ =1284

from this value of θ

avgi

idavgim

xR

1

11284840

00850840

12841

023501

1284981

51450981

1284562

31490562

1284884

13860884

mR

Rm=1185

R=15 Rm

=15times1185

=17775

X=1

R

RR m

X=177751

185177751

=02133

From GillilandrsquoS correlation Y=1

N

NN m =042

We know the value of Nm 4201

5339

N

N

N=178 =18 stages

Feed location can be known by the use of Kirkbride equation

2

)376348090(

)34313880(

)07218(

)65111(

37634

34312060log

F

F

p

m

687890p

m

817 pm

m = 725=8

p =1054 =11

Feed is introduced on eight stage from top

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 36

Chapter- 6

PACKED COLUMN DESIGN

61 Stage AnalysisThe data shown in table are typical data generated by commercial simulation

Vapor liquidStage Temperature0F lbhr CFS

ft3sV

lbft3

Lbhr GPM

galminL

σ

dynecm

μ

cP

1 1349 00 00 00 3655 1423 3202 6867 0114

2 1474 5501 12050 12683 3720 1447 3204 6738 01132

3 1548 5566 12049 12831 3724 1447 3208 6699 01128

4 1609 5571 11987 12909 3707 1438 3214 6684 01130

5 1668 5553 11889 12974 3693 1430 3220 6665 01135

6 1726 5539 11794 13045 3689 1426 3224 6632 01142

7 1779 5535 11716 13122 3691 1426 3226 6590 01149

8 1824 5537 11650 13199 8032 310471 3226 6544 01156

9 1873 5678 11794 13373 8126 3142 3224 6507 01153

10 1917 5772 11871 13506 8201 3171 3224 6479 01151

11 1961 5847 11915 13631 8275 3201 3223 6447 01152

12 2010 5921 11946 13768 8360 3235 3222 6406 01156

13 2064 6006 12152 13928 8475 3274 3220 6348 01162

14 2122 6103 12013 14111 8574 3321 3218 6295 01170

15 2179 6220 12070 14310 8701 3374 3215 6236 01180

16 2232 6347 12148 14512 8829 3428 3211 6178 01191

17 2280 6475 12234 14701 8947 3477 3208 6128 01201

18 2321 6593 12317 14868 2354 91599 3204 6087 01212

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 37

62 Flood Point

15 inch pall ring will be used throughout the column for this packing the flood point can

be determined by interpolation

A-flood point by GPDC [generalized pressure drop correlation] interpolation

2

2

6593

5571

fthrlbA

G

fthrlbA

G

TBottom

TTop

Liquid flowrates ( 2 fthrlb )

LTop =TA

3724

LBottom = TA

8947

Vapor density( 3 ftlb )

48681

31991

BottomG

TopG

Liquid density ( 3 ftlb )

2432

2632

BottomL

TopL

1 Flow parameter

L

GLV ρ

ρ

G

LF

Top 05

LV 3228

13199

5571

3724F

1352110FLV

Bottom LVF =

2432

48681

6593

8947

= 029142

2 Capacity parameter from graphical correlation

Top =152

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 38

Bottom =119

3 Viscosity of the liquid L (cP)

Top L =01128 (cP)

Bottom L =01151 (cP)

4 Kinematic viscosity

=

L

L

462

Top =

2632

11280462

Top = 0218187

Bottom =

2432

11510462

Bottom = 022277

5 Packing factor ( 1ft )

Top FP = 40

Bottom FP = 40

6 Vapour capacity factor CSFI(fts)

Capacity parameter = CSFI FP05 005

Top 05050SFI 2181040

921C

Top SFIC =02593

Bottom 05050SFI 2181040

191C

Bottom 20280CSFI

63 Flood point by the Kister amp Gill correlation

1 FTP packed bed specific pressure drop at flood point

FTP =0115 70PF

Top FTP =0115 7040

=1521

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 39

Bottom FTP =1521 inch of H2O per ft

2 Flow parameter

Top FLV =0135211

Bottom FLV =029142

3 Capacity parameter at flood point

Top =152

Bottom = 119

4 CSFl vapor capacity factor at the flood point

CSFl = capacity parameter

05050

1

PF

Top CSFl =02593

Bottom CSFl =02028

64 Diameter calculation

1 Vapor capacity factor Cs design (nonderated) fts

The column will be designed for 75 flood capacity

SFlS CC 750

Top CS = 075 02593

=0194475

Bottom CS = 075 02028

Bottom CS = 01551

2 CS vapor capacity factor (derated )fts

= 09 CSdesign

Top CS = 09 01944

Top CS =017496

Bottom CS =09 01521

Bottom CS =013689

3 Vapor superficial velocity based on the cross section of empty column u (fts)

GL

G

ss

ρρ

ρ

(derated)Cu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 40

Top su =

319912632

31991

174960

Top su =084737

Bottom su =

486812432

48681

136890

Bottom su = 062257

4 Vapor flow rate CFS ft3s

Top CFS =1205 ft3s

Bottom CFS =12316 ft3shellipfrom table

5 Tower area ft2

AT = s

T u

CFSA

Top AT = 847370

2051

Top AT =1422 ft2

Bottom AT = 622570

23161

Bottom AT =19782 ft2

6 Tower diameter ft

1587ftD

π

197824D

13455ftD

π

14224D

π

A4

BottomT

BottomT

TopT

TopT

TT

D

65 Diameter calculation using the maximum pressure drop criterion

1 L

G

calculation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 41

Top L

G

=2632

31991

= 00409

Bottom L

G

=2432

48681

= 004611

2OH

L

2

calculation

Top ( OHL 2 )=

4362

2632

= 05167

Bottom ( OHL 2 ) =

4362

2432

= 05164

3 FP packing factor

Top FP = 40

Bottom FP =40

4 Maximum pressure drops recommended for packed column with random packing

1902

70max

OH

LPFP

helliphelliphelliphellipfor 006 20L

G

Top maxP = 019 5167040 70

Top maxP = 12984helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

Bottom maxP = 019 5164040 70

Bottom maxP =12977helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

5 Surface tension dyne

Top =6544 cmdyne

Bottom =6128 cmdyne

6 Vapor capacity factor Csmax (fts)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 42

P

s

FCP

3342maxmax

Top 12984 =

5446

403342maxsC

Top maxsC =02634

Bottom 12977 =

1286

403342maxsC

Bottom maxsC =025628

7 Maximum vapor superficial velocity usmax

maxsC = usmax

GL

G

Top usmax =

319912632

31991

26340

= 12752

Bottom usmax =

486812432

48681

25620

=11651 fts

8 Tower area AT (ft2)

AT =smaxu

CFS

Top AT =27521

2051

Top AT =09449

Bottom AT = 16511

23161

= 1057 ft2

9 Tower diameter (ft)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 16: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 16

Chapter -5

Distillation Design

Problem statement-

A butane-pentane splitter is to be designed to process 4200 lbhr of C3 ndashC5 feed subjected to

specifications of

1maximum 3 of i-C5 in the distillate

2maximum 1 of C4 in the bottom product

The feed sink will be air (process design temperature) to be 130 0F

Components Wt molwt lbh molh

C3 5 441 210 4762

i-C4 15 581 630 10843

C4 25 581 1050 18072

i-C5 20 721 840 11651

C5 35 721 1470 20388

4200 65716

Solution-

Feed composition

Components lbgal(60F) galh Vol mol

C3 422 4976 592 725

i-C4 469 13433 1397 165

C4 487 21501 2563 275

i-C5 520 16154 192 1773

C5 525 28000 328 3102

Total 84124 100 100

Average molecular weight 650716

4200

= 6391

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 17

Average liquid density = 420065716

= 4993lbgal

x = mass of c4 in the bottom(i-wt)

y =mass of i-c5 in the distillate(3 wt)

51 Component Split

Assuming that the C3 and i-C5 have negligible concentration in the bottom and C5 has

negligible concentration in the distillate

Components F D B

C3 210 210 0

i-C4 630 630 0

C4 1050 (1050-x) x

i-C5 840 y (840-y)

C5 1470 0 1470

Total 4200 1890-x+y 2310+x-y

F =B+D

4200 =2310 + x ndashy +1890 ndashx + y

Distillate specification 3 in of i-c5 in distillate

yx

y

18900030

567 ndash 003 x -097 y =0

003 x + 097 y =567

Bottom specification 1 C4 in the bottom

003 yx

x

2310

231 -001 x + 001 y = x

099 x + 001 y = 231

x = 2275

y = 5775

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 18

Components D lbh B lbh D lbmolh B lbmolh

C3 210 0 4762 0

i-C4 630 0 10843 0

C4 102725 2275 1768 039

i-C5 5725 78225 0801 1085

C5 0 1470 0 20388

Total 1925 2275 34086 3163

52 Dew Point and Bubble Point calculation

1 The distillate and reflux will be a bubble point liquid The criteria for evaluation of

the bubble point condition are

1 like an air fin condenser to liquefy the distillate and reflux The criteria of

drum temperature will be assumed to be 130F ( design temperature for air is

about 120F

2 the bubble point design equation with temperature specified

01 ii xK

Average molecular weight of distillate

Components xid Ki

C3 01397 21

i-C4 03181 10

C4 05187 073

i-C5 00235 033

C5 0 027

For fixed temperature of 130F bubble point pressure is to be determined

4656 wtmolxid

9980 iDi xK

Pestimated = Pi-c4 = 120 lbin2

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 19

001

9980120calculatedP

= 1197 lbin2 (abs)

The result of distillate bubble point calculation is

T = 130 0F

P = 120 lbin2

The condition at the top of the column must be evaluated since the fractionator has a

total concentration and an equilibrium stage The criteria for evaluation of the dew

point condition are

Assumption of the pressure drop through the total condenser of 25 lbin2Thus the

pressure at the top of the column is established as

P = 120 lbin2 + 25 lbin2

P = 1225 lbin2

Dew point

01

i

i

k

y

Plk =1225 lbin2 T= 1320F

Components yi Ki1320

F Ki1450

F

C3 01397 220 240

i-C4 03181 100 115

C4 05187 073 085

i-C5 00235 035 042

C5 00000 028 033

For T =1320F

01

i

i

k

y

Kic4 = 1160 and Tcal =1450F

For T =1450F

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 20

01

i

i

k

y

The result of column top dew point calculation

T =1450F

P = 1225 lbin2

The column bottom condition Column ΔP =5 lbin2

The column bottom pressure

P = 1225 + 50 = 1275 lbin2

The bubble point design equation

ΣKiXi=10

Components B(mol) X

C3 0 0

i-C4 0 0

C4 0392 00124

i-C5 1085 03430

C5 20388 06446

3163 100

Average molecular wt = 6331

22750 =7193

The characteristic component is i-c5 an estimated bottom temperature is obtained

Components Xi Ki2380

F Ki2150

F

C3 0 38 45

i-C4 0 355 265

C4 00124 1925 205

i-C5 03430 10 1075

C5 06446 087 094

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 21

For T = 238 0F

ΣKiXi=0927

KHK = 108 Tcal =245 0F

For T =245 0F

ΣKiXi=100

The result of column bottom bubble point calculation

T =245 0F

P =1275 lbin2

53 Determination of the key component

Using the heavy key as column reference key The separation is clearly between

butane and isopentane

Reference component =i-C5

Key component

LK =C4

HK =iC5

The average relative volatility data for the column will be generated using three-point

geometric average

3321 avg

Point 1 ndash top of fractionation column

Point 2 ndash at the reboiler

Point 3 ndash arithmetic mean of condition at 1 amp 3

T2 = 05 [ T1 + T2 ] = 05 [ T1 + T2 ]

T2 = 05 [ 145 + 245 ] = 195 0F

P2 = 05 [ P1 + P3 ] = 05 [ 1225 +1275 ]

P2 = 125 lbin2

variable Point 1 Point 2 Point 3

T oF 145 195 245

P lbin2 1225 125 1275

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 22

Components Point 1 Point 2 Point 3

Ki αi Ki αi Ki αi αavg

C3 24 571 335 493 45 419 49

i-C4 115 274 175 257 25 237 256

C4 085 202 135 199 205 191 197

i-C5 024 100 068 100 1075 100 100

C5 033 079 058 085 094 087 084

54 Shortcut Method

541 Minimum stages at total reflux-the Fenske equation

LKavg

BLk

HK

DHK

LK

m

x

x

x

x

Nln

ln

Fi = bi + di

avgmeanavgiiir

rNavgi

i dbb

d

b

d for min

mN

avgHK

avgi

HK

ii

b

d

fb

1

or when ii db meanavgavgi

mN

avgi

avgLK

LK

ii

d

b

fd

1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 23

971ln

01240

3430

02350

51870ln

mN

4619mN

2

avgLKavgHKmean

2

001971

= 1485

For propaneC3

meanC 3

7624

904

3

3

C

C

f

4619

001

904

85010

80101

76243Cb

hmold

hmol

C 7624007624

1091

3

5

For isobutene(i-C4)

84310

562

4

4

4

iC

Ci

meanCi

f

4619

1

562

8500

80101

843104iCb

hmol 020

823104iCd

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 24

For butane (C4)

07218

971

4

4

C

C

meanavgi

f

4619

001

971

8510

80101

072184Cb

hmold

d

hmolb

C

C

C

68817

392007218

3920

4

4

4

For isopentane (i-C5)

meanavgiC

iCiC hmolf

5

5565111001

Hence

4619

001

971

6817

39201

651115iCd

hmolb

hmold

iC

iC

8510801065111

8010

5

5

For pentane (C5)

hmolb

hmold

d

C

C

C

meanavgC

C

105320

2850

840

971

6817

39201

38820

840

5

5

5

5

5

4619

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 25

The calculated data in the table

Components Fi(lbmolh) Di(lbmolh) Bi(lbmolh)

C3 4762 4762 0

i-C4 10834 10823 002

C4 18072 17680 0392

i-C5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Checking

Maximum 3wt of iC5 in the distillate

9772

1004656

172

35134

8010

wt

Maximum of 1 wt C4 in the bottom

011

1009371

158

36531

3920

wt

The set of specification were not met The parameter reevaluated

Again performing same calculations

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 1050-x x

i-C5 840 y 840-y

C5 1470 2055 144945

Total 190939-x+y 229061+x-y

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 26

3658

5522

612290100

1

391909100

3

y

x

yx

x

yx

y

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 102745 2255

i-C5 840 5836 78164

C5 1470 2055 144945

Total 4200 194520 224580

Components F(lbmolh) D(lbmolh) B(lbmolh)

C3 4762 4762 0

i-c4 10834 10823 002

C4 18072 17680 0392

i-c5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Column operating condition

Distillate bubble point calculation on with temperature specified at 130 0F

Components D (lbmolh) K120 (lbin2)

C3 4762 210

i-C4 10823 10

C4 17680 073

i-C5 0801 033

C5 0285 027

Total 34351

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 27

992036334

07634

001

ii

iiii

xK

D

dKxK

Condition of the distillatereflux before 130 0F amp 120 lbin2overhead or column top

conditions are found by dew point calculation at the specified pressure of 1225lbin2

Components D (lbmolh) K1450

F K148 0

F

C3 4762 24 2425

i-C4 10823 116 1175

C4 17680 084 087

i-C5 0801 042 0425

C5 0285 033 034

01D

K

d

K

y i

i

i

i

For T=145 0F

018136334

9934

i

i

K

y K=1175 Tcal=148 0F

For T=148 0F

997036334

24334

i

i

K

y

Conditions of column overhead are revised to 148 0F and 1225lbin2column bottom

conditions are found by way of bubble point calculation

Components B(lbmolh) K2450

F

C3 0 45

i-C4 002 255

C4 0392 205

i-C5 10850 1075

C5 20103 094

Total 31365

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 28

Design equation

001B

bKxK ii

ii

For T =245 0F

00139331

39831ii xK

At column midpoint condition

2

0

1255127512250

519624514850

inlbP

FT

Summery of operating condition

Point 1 Point 2 Point 3

Temperature 148 1965 245

Pressure lbin2 (abs) 1225 125 1275

Equilibrium K data for column midpoint condition

Point 1 Point 2 Point 3

Components Ki i Ki i Ki i avgi

C3 2425 571 34 486 45 419 488

i-C4 1175 276 18 257 255 237 256

C4 087 205 138 197 205 191 198

i-C5 0425 100 07 10 1075 10 10

C5 034 08 06 086 094 087 084

Fenske equation

3919

001

981ln

3880

84210

8090

68417ln

m

m

N

N

Separation of non key component

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 29

4912

100198

2

avgLKavgHK

mean

molh09220bmolh 2920d

molh38820f840

)(CPentane

molh8090dmolh 84210b

molh65111f001

)C-(itan

68417dmolh 3880b

molh07218f981

)(CButane

hmol 82210d h mol0210b

hmol84310f562

)C-(iIsobutane

molh76240007624d

molh000molh101882

001

884

84210

80901

7624

7624f884

)(Cropane

C5C5

C5C5

5

C5-iC5-i

C5-iiC5

5

C4C4

C4C4

4

iC4iC4

iC4iC4

4

33C3

5

39193

C3C3

3

lblb

lb

lblb

lb

eIsopen

hlbmollb

lblb

lb

lbbf

lblbb

hmol

P

CC

C

Components Feed (lbmolh) Distillate (lbmolh) Bottom (lbmolh)

C3 4762 4762 0000

i-C4 10843 10822 0021

C4 18072 17684 03880

i-C5 11651 0809 10842

C5 20388 0292 20096

Total 65716 34369 31347

Maximum value of 3 wt of i-C5 in distillate is required

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 30

Calculated value =

wt 3

1004956

172

36934

8090

Maximum value of 1 wt of C4 in bottom is required

Calculated value

wt 1

1009163

158

34731

3880

Conditions are satisfied

542 Component split by Winn equation

The Fenske equation has a weakness as the relative volatility difference between

column top and bottom increase the estimated minimum number of stages gets

increasingly too small

460

1

460

1

lnln

bottomtop

bottomitopi

i

TT

PKPKB

460

ln

T

BAPK i

ii

110 irHKi PAAi

r

ii B

B

Components KTop148 F Kbottom245 F

C3 2425 450

i-C4 1175 255

C4 087 205

i-C5 0425 1075

C5 034 094

For P=125 lbin2

For butane (C4)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 31

550594460148

)271263()42525122log(

271263

460245

1

460148

1545127log42525122log

4

4

C

C

A

B

Heavy component is iso-pentane( i-C5)

955824460148

)711857()42505122log(

680010717185

271263

711857

460245

1

460148

1

07515127log4250125log

5

4

5

Ci

C

Ci

A

A

B

311344

)125(10

10)1680010()955824550594(

1

irHKi PAAi

Components Bi Ai θi βi

C3 -126327 45509 068001 43113

i-C4 -156377 473016 084177 24069

C4 -172167 48593 092677 191988

i-C5 -185771 49558 100000 10000

C5 -202840 49558 109189 086704

5339

919881log

)369348090(

)3473484210(

)347313880(

)3693468417(log

m

m

N

N

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 32

abvg

1

bdcomponent

orlightif

D

B

d

bb

d

HK

N

i

im

d

b1

fd

2dbkeyheavy

1

avgHKLKif

b

df

b

componentlight propanefor

5

032068

9533

101976

09120713402

4311

b

d

7624

0001097611

76245

bfd

b

For isobutene (i-C4)

f =10843 θ =0842 β =2407 (light component)

lh10821lbmo

002210843d

h0022lbmol

494151

10843b

4941509120713402

2407

b

d08417108417

9533

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 33

For Butane (C4)

f =18072 β=191988θ=092677

h0388lbmol

455771

18072b

4557709120713402

191988

b

d0926771092677

9533

d=18072-0388

=17684 lbmolh

For Isopentane (C5)

f =11651 β =100 θ =100

111

5339

91207040213

00001

b

d

=007461

βltβavg

)0746101(1

65111

d

= 0809 lbmolh

b = 11651-0809

=10842 lbmolh

For Pentane (C5)

f =20388 lbmolh β= 086704 θ =109189

0918911091891

5339

91207040213

867040

b

d

=0014959

βltβavg

)01495901(1

38820

d

= 0300 lb molh

b=20388-03

=20088

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 34

Components Feed lbmolh Distillate lbmolh Bottom lbmolh

C3 4762 4762 000

i-C4 10843 10821 0022

C4 18072 17684 0388

i-C5 11651 0809 10842

C5 20388 03 20088

65716 34376 3134

Components Feed lbh Distillate lbh Bottom lbh

C3 210 210 000

i-C4 630 62872 128

C4 1050 102745 2257

i-C5 840 5836 78164

C5 1470 2163 1448348

4200 194602 2253818

543 Calculation of Rm

From Underwood equation

qx

i

iFi

1

Components Flbmolhr xif xid αi

C3 4762 00725 01386 488

i-C4 10843 01650 03149 256

C4 18072 02750 05145 198

i-C5 11651 01773 002335 100

C5 20388 03102 00085 084

65716 1000 1000

Feed is at boiling conditions since q =1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 35

0840

31020840

1

177301

981

27500981

562

16500562

884

07250884

θ =1284

from this value of θ

avgi

idavgim

xR

1

11284840

00850840

12841

023501

1284981

51450981

1284562

31490562

1284884

13860884

mR

Rm=1185

R=15 Rm

=15times1185

=17775

X=1

R

RR m

X=177751

185177751

=02133

From GillilandrsquoS correlation Y=1

N

NN m =042

We know the value of Nm 4201

5339

N

N

N=178 =18 stages

Feed location can be known by the use of Kirkbride equation

2

)376348090(

)34313880(

)07218(

)65111(

37634

34312060log

F

F

p

m

687890p

m

817 pm

m = 725=8

p =1054 =11

Feed is introduced on eight stage from top

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 36

Chapter- 6

PACKED COLUMN DESIGN

61 Stage AnalysisThe data shown in table are typical data generated by commercial simulation

Vapor liquidStage Temperature0F lbhr CFS

ft3sV

lbft3

Lbhr GPM

galminL

σ

dynecm

μ

cP

1 1349 00 00 00 3655 1423 3202 6867 0114

2 1474 5501 12050 12683 3720 1447 3204 6738 01132

3 1548 5566 12049 12831 3724 1447 3208 6699 01128

4 1609 5571 11987 12909 3707 1438 3214 6684 01130

5 1668 5553 11889 12974 3693 1430 3220 6665 01135

6 1726 5539 11794 13045 3689 1426 3224 6632 01142

7 1779 5535 11716 13122 3691 1426 3226 6590 01149

8 1824 5537 11650 13199 8032 310471 3226 6544 01156

9 1873 5678 11794 13373 8126 3142 3224 6507 01153

10 1917 5772 11871 13506 8201 3171 3224 6479 01151

11 1961 5847 11915 13631 8275 3201 3223 6447 01152

12 2010 5921 11946 13768 8360 3235 3222 6406 01156

13 2064 6006 12152 13928 8475 3274 3220 6348 01162

14 2122 6103 12013 14111 8574 3321 3218 6295 01170

15 2179 6220 12070 14310 8701 3374 3215 6236 01180

16 2232 6347 12148 14512 8829 3428 3211 6178 01191

17 2280 6475 12234 14701 8947 3477 3208 6128 01201

18 2321 6593 12317 14868 2354 91599 3204 6087 01212

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 37

62 Flood Point

15 inch pall ring will be used throughout the column for this packing the flood point can

be determined by interpolation

A-flood point by GPDC [generalized pressure drop correlation] interpolation

2

2

6593

5571

fthrlbA

G

fthrlbA

G

TBottom

TTop

Liquid flowrates ( 2 fthrlb )

LTop =TA

3724

LBottom = TA

8947

Vapor density( 3 ftlb )

48681

31991

BottomG

TopG

Liquid density ( 3 ftlb )

2432

2632

BottomL

TopL

1 Flow parameter

L

GLV ρ

ρ

G

LF

Top 05

LV 3228

13199

5571

3724F

1352110FLV

Bottom LVF =

2432

48681

6593

8947

= 029142

2 Capacity parameter from graphical correlation

Top =152

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 38

Bottom =119

3 Viscosity of the liquid L (cP)

Top L =01128 (cP)

Bottom L =01151 (cP)

4 Kinematic viscosity

=

L

L

462

Top =

2632

11280462

Top = 0218187

Bottom =

2432

11510462

Bottom = 022277

5 Packing factor ( 1ft )

Top FP = 40

Bottom FP = 40

6 Vapour capacity factor CSFI(fts)

Capacity parameter = CSFI FP05 005

Top 05050SFI 2181040

921C

Top SFIC =02593

Bottom 05050SFI 2181040

191C

Bottom 20280CSFI

63 Flood point by the Kister amp Gill correlation

1 FTP packed bed specific pressure drop at flood point

FTP =0115 70PF

Top FTP =0115 7040

=1521

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 39

Bottom FTP =1521 inch of H2O per ft

2 Flow parameter

Top FLV =0135211

Bottom FLV =029142

3 Capacity parameter at flood point

Top =152

Bottom = 119

4 CSFl vapor capacity factor at the flood point

CSFl = capacity parameter

05050

1

PF

Top CSFl =02593

Bottom CSFl =02028

64 Diameter calculation

1 Vapor capacity factor Cs design (nonderated) fts

The column will be designed for 75 flood capacity

SFlS CC 750

Top CS = 075 02593

=0194475

Bottom CS = 075 02028

Bottom CS = 01551

2 CS vapor capacity factor (derated )fts

= 09 CSdesign

Top CS = 09 01944

Top CS =017496

Bottom CS =09 01521

Bottom CS =013689

3 Vapor superficial velocity based on the cross section of empty column u (fts)

GL

G

ss

ρρ

ρ

(derated)Cu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 40

Top su =

319912632

31991

174960

Top su =084737

Bottom su =

486812432

48681

136890

Bottom su = 062257

4 Vapor flow rate CFS ft3s

Top CFS =1205 ft3s

Bottom CFS =12316 ft3shellipfrom table

5 Tower area ft2

AT = s

T u

CFSA

Top AT = 847370

2051

Top AT =1422 ft2

Bottom AT = 622570

23161

Bottom AT =19782 ft2

6 Tower diameter ft

1587ftD

π

197824D

13455ftD

π

14224D

π

A4

BottomT

BottomT

TopT

TopT

TT

D

65 Diameter calculation using the maximum pressure drop criterion

1 L

G

calculation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 41

Top L

G

=2632

31991

= 00409

Bottom L

G

=2432

48681

= 004611

2OH

L

2

calculation

Top ( OHL 2 )=

4362

2632

= 05167

Bottom ( OHL 2 ) =

4362

2432

= 05164

3 FP packing factor

Top FP = 40

Bottom FP =40

4 Maximum pressure drops recommended for packed column with random packing

1902

70max

OH

LPFP

helliphelliphelliphellipfor 006 20L

G

Top maxP = 019 5167040 70

Top maxP = 12984helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

Bottom maxP = 019 5164040 70

Bottom maxP =12977helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

5 Surface tension dyne

Top =6544 cmdyne

Bottom =6128 cmdyne

6 Vapor capacity factor Csmax (fts)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 42

P

s

FCP

3342maxmax

Top 12984 =

5446

403342maxsC

Top maxsC =02634

Bottom 12977 =

1286

403342maxsC

Bottom maxsC =025628

7 Maximum vapor superficial velocity usmax

maxsC = usmax

GL

G

Top usmax =

319912632

31991

26340

= 12752

Bottom usmax =

486812432

48681

25620

=11651 fts

8 Tower area AT (ft2)

AT =smaxu

CFS

Top AT =27521

2051

Top AT =09449

Bottom AT = 16511

23161

= 1057 ft2

9 Tower diameter (ft)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 17: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 17

Average liquid density = 420065716

= 4993lbgal

x = mass of c4 in the bottom(i-wt)

y =mass of i-c5 in the distillate(3 wt)

51 Component Split

Assuming that the C3 and i-C5 have negligible concentration in the bottom and C5 has

negligible concentration in the distillate

Components F D B

C3 210 210 0

i-C4 630 630 0

C4 1050 (1050-x) x

i-C5 840 y (840-y)

C5 1470 0 1470

Total 4200 1890-x+y 2310+x-y

F =B+D

4200 =2310 + x ndashy +1890 ndashx + y

Distillate specification 3 in of i-c5 in distillate

yx

y

18900030

567 ndash 003 x -097 y =0

003 x + 097 y =567

Bottom specification 1 C4 in the bottom

003 yx

x

2310

231 -001 x + 001 y = x

099 x + 001 y = 231

x = 2275

y = 5775

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 18

Components D lbh B lbh D lbmolh B lbmolh

C3 210 0 4762 0

i-C4 630 0 10843 0

C4 102725 2275 1768 039

i-C5 5725 78225 0801 1085

C5 0 1470 0 20388

Total 1925 2275 34086 3163

52 Dew Point and Bubble Point calculation

1 The distillate and reflux will be a bubble point liquid The criteria for evaluation of

the bubble point condition are

1 like an air fin condenser to liquefy the distillate and reflux The criteria of

drum temperature will be assumed to be 130F ( design temperature for air is

about 120F

2 the bubble point design equation with temperature specified

01 ii xK

Average molecular weight of distillate

Components xid Ki

C3 01397 21

i-C4 03181 10

C4 05187 073

i-C5 00235 033

C5 0 027

For fixed temperature of 130F bubble point pressure is to be determined

4656 wtmolxid

9980 iDi xK

Pestimated = Pi-c4 = 120 lbin2

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 19

001

9980120calculatedP

= 1197 lbin2 (abs)

The result of distillate bubble point calculation is

T = 130 0F

P = 120 lbin2

The condition at the top of the column must be evaluated since the fractionator has a

total concentration and an equilibrium stage The criteria for evaluation of the dew

point condition are

Assumption of the pressure drop through the total condenser of 25 lbin2Thus the

pressure at the top of the column is established as

P = 120 lbin2 + 25 lbin2

P = 1225 lbin2

Dew point

01

i

i

k

y

Plk =1225 lbin2 T= 1320F

Components yi Ki1320

F Ki1450

F

C3 01397 220 240

i-C4 03181 100 115

C4 05187 073 085

i-C5 00235 035 042

C5 00000 028 033

For T =1320F

01

i

i

k

y

Kic4 = 1160 and Tcal =1450F

For T =1450F

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 20

01

i

i

k

y

The result of column top dew point calculation

T =1450F

P = 1225 lbin2

The column bottom condition Column ΔP =5 lbin2

The column bottom pressure

P = 1225 + 50 = 1275 lbin2

The bubble point design equation

ΣKiXi=10

Components B(mol) X

C3 0 0

i-C4 0 0

C4 0392 00124

i-C5 1085 03430

C5 20388 06446

3163 100

Average molecular wt = 6331

22750 =7193

The characteristic component is i-c5 an estimated bottom temperature is obtained

Components Xi Ki2380

F Ki2150

F

C3 0 38 45

i-C4 0 355 265

C4 00124 1925 205

i-C5 03430 10 1075

C5 06446 087 094

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 21

For T = 238 0F

ΣKiXi=0927

KHK = 108 Tcal =245 0F

For T =245 0F

ΣKiXi=100

The result of column bottom bubble point calculation

T =245 0F

P =1275 lbin2

53 Determination of the key component

Using the heavy key as column reference key The separation is clearly between

butane and isopentane

Reference component =i-C5

Key component

LK =C4

HK =iC5

The average relative volatility data for the column will be generated using three-point

geometric average

3321 avg

Point 1 ndash top of fractionation column

Point 2 ndash at the reboiler

Point 3 ndash arithmetic mean of condition at 1 amp 3

T2 = 05 [ T1 + T2 ] = 05 [ T1 + T2 ]

T2 = 05 [ 145 + 245 ] = 195 0F

P2 = 05 [ P1 + P3 ] = 05 [ 1225 +1275 ]

P2 = 125 lbin2

variable Point 1 Point 2 Point 3

T oF 145 195 245

P lbin2 1225 125 1275

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 22

Components Point 1 Point 2 Point 3

Ki αi Ki αi Ki αi αavg

C3 24 571 335 493 45 419 49

i-C4 115 274 175 257 25 237 256

C4 085 202 135 199 205 191 197

i-C5 024 100 068 100 1075 100 100

C5 033 079 058 085 094 087 084

54 Shortcut Method

541 Minimum stages at total reflux-the Fenske equation

LKavg

BLk

HK

DHK

LK

m

x

x

x

x

Nln

ln

Fi = bi + di

avgmeanavgiiir

rNavgi

i dbb

d

b

d for min

mN

avgHK

avgi

HK

ii

b

d

fb

1

or when ii db meanavgavgi

mN

avgi

avgLK

LK

ii

d

b

fd

1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 23

971ln

01240

3430

02350

51870ln

mN

4619mN

2

avgLKavgHKmean

2

001971

= 1485

For propaneC3

meanC 3

7624

904

3

3

C

C

f

4619

001

904

85010

80101

76243Cb

hmold

hmol

C 7624007624

1091

3

5

For isobutene(i-C4)

84310

562

4

4

4

iC

Ci

meanCi

f

4619

1

562

8500

80101

843104iCb

hmol 020

823104iCd

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 24

For butane (C4)

07218

971

4

4

C

C

meanavgi

f

4619

001

971

8510

80101

072184Cb

hmold

d

hmolb

C

C

C

68817

392007218

3920

4

4

4

For isopentane (i-C5)

meanavgiC

iCiC hmolf

5

5565111001

Hence

4619

001

971

6817

39201

651115iCd

hmolb

hmold

iC

iC

8510801065111

8010

5

5

For pentane (C5)

hmolb

hmold

d

C

C

C

meanavgC

C

105320

2850

840

971

6817

39201

38820

840

5

5

5

5

5

4619

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 25

The calculated data in the table

Components Fi(lbmolh) Di(lbmolh) Bi(lbmolh)

C3 4762 4762 0

i-C4 10834 10823 002

C4 18072 17680 0392

i-C5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Checking

Maximum 3wt of iC5 in the distillate

9772

1004656

172

35134

8010

wt

Maximum of 1 wt C4 in the bottom

011

1009371

158

36531

3920

wt

The set of specification were not met The parameter reevaluated

Again performing same calculations

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 1050-x x

i-C5 840 y 840-y

C5 1470 2055 144945

Total 190939-x+y 229061+x-y

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 26

3658

5522

612290100

1

391909100

3

y

x

yx

x

yx

y

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 102745 2255

i-C5 840 5836 78164

C5 1470 2055 144945

Total 4200 194520 224580

Components F(lbmolh) D(lbmolh) B(lbmolh)

C3 4762 4762 0

i-c4 10834 10823 002

C4 18072 17680 0392

i-c5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Column operating condition

Distillate bubble point calculation on with temperature specified at 130 0F

Components D (lbmolh) K120 (lbin2)

C3 4762 210

i-C4 10823 10

C4 17680 073

i-C5 0801 033

C5 0285 027

Total 34351

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 27

992036334

07634

001

ii

iiii

xK

D

dKxK

Condition of the distillatereflux before 130 0F amp 120 lbin2overhead or column top

conditions are found by dew point calculation at the specified pressure of 1225lbin2

Components D (lbmolh) K1450

F K148 0

F

C3 4762 24 2425

i-C4 10823 116 1175

C4 17680 084 087

i-C5 0801 042 0425

C5 0285 033 034

01D

K

d

K

y i

i

i

i

For T=145 0F

018136334

9934

i

i

K

y K=1175 Tcal=148 0F

For T=148 0F

997036334

24334

i

i

K

y

Conditions of column overhead are revised to 148 0F and 1225lbin2column bottom

conditions are found by way of bubble point calculation

Components B(lbmolh) K2450

F

C3 0 45

i-C4 002 255

C4 0392 205

i-C5 10850 1075

C5 20103 094

Total 31365

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 28

Design equation

001B

bKxK ii

ii

For T =245 0F

00139331

39831ii xK

At column midpoint condition

2

0

1255127512250

519624514850

inlbP

FT

Summery of operating condition

Point 1 Point 2 Point 3

Temperature 148 1965 245

Pressure lbin2 (abs) 1225 125 1275

Equilibrium K data for column midpoint condition

Point 1 Point 2 Point 3

Components Ki i Ki i Ki i avgi

C3 2425 571 34 486 45 419 488

i-C4 1175 276 18 257 255 237 256

C4 087 205 138 197 205 191 198

i-C5 0425 100 07 10 1075 10 10

C5 034 08 06 086 094 087 084

Fenske equation

3919

001

981ln

3880

84210

8090

68417ln

m

m

N

N

Separation of non key component

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 29

4912

100198

2

avgLKavgHK

mean

molh09220bmolh 2920d

molh38820f840

)(CPentane

molh8090dmolh 84210b

molh65111f001

)C-(itan

68417dmolh 3880b

molh07218f981

)(CButane

hmol 82210d h mol0210b

hmol84310f562

)C-(iIsobutane

molh76240007624d

molh000molh101882

001

884

84210

80901

7624

7624f884

)(Cropane

C5C5

C5C5

5

C5-iC5-i

C5-iiC5

5

C4C4

C4C4

4

iC4iC4

iC4iC4

4

33C3

5

39193

C3C3

3

lblb

lb

lblb

lb

eIsopen

hlbmollb

lblb

lb

lbbf

lblbb

hmol

P

CC

C

Components Feed (lbmolh) Distillate (lbmolh) Bottom (lbmolh)

C3 4762 4762 0000

i-C4 10843 10822 0021

C4 18072 17684 03880

i-C5 11651 0809 10842

C5 20388 0292 20096

Total 65716 34369 31347

Maximum value of 3 wt of i-C5 in distillate is required

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 30

Calculated value =

wt 3

1004956

172

36934

8090

Maximum value of 1 wt of C4 in bottom is required

Calculated value

wt 1

1009163

158

34731

3880

Conditions are satisfied

542 Component split by Winn equation

The Fenske equation has a weakness as the relative volatility difference between

column top and bottom increase the estimated minimum number of stages gets

increasingly too small

460

1

460

1

lnln

bottomtop

bottomitopi

i

TT

PKPKB

460

ln

T

BAPK i

ii

110 irHKi PAAi

r

ii B

B

Components KTop148 F Kbottom245 F

C3 2425 450

i-C4 1175 255

C4 087 205

i-C5 0425 1075

C5 034 094

For P=125 lbin2

For butane (C4)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 31

550594460148

)271263()42525122log(

271263

460245

1

460148

1545127log42525122log

4

4

C

C

A

B

Heavy component is iso-pentane( i-C5)

955824460148

)711857()42505122log(

680010717185

271263

711857

460245

1

460148

1

07515127log4250125log

5

4

5

Ci

C

Ci

A

A

B

311344

)125(10

10)1680010()955824550594(

1

irHKi PAAi

Components Bi Ai θi βi

C3 -126327 45509 068001 43113

i-C4 -156377 473016 084177 24069

C4 -172167 48593 092677 191988

i-C5 -185771 49558 100000 10000

C5 -202840 49558 109189 086704

5339

919881log

)369348090(

)3473484210(

)347313880(

)3693468417(log

m

m

N

N

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 32

abvg

1

bdcomponent

orlightif

D

B

d

bb

d

HK

N

i

im

d

b1

fd

2dbkeyheavy

1

avgHKLKif

b

df

b

componentlight propanefor

5

032068

9533

101976

09120713402

4311

b

d

7624

0001097611

76245

bfd

b

For isobutene (i-C4)

f =10843 θ =0842 β =2407 (light component)

lh10821lbmo

002210843d

h0022lbmol

494151

10843b

4941509120713402

2407

b

d08417108417

9533

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 33

For Butane (C4)

f =18072 β=191988θ=092677

h0388lbmol

455771

18072b

4557709120713402

191988

b

d0926771092677

9533

d=18072-0388

=17684 lbmolh

For Isopentane (C5)

f =11651 β =100 θ =100

111

5339

91207040213

00001

b

d

=007461

βltβavg

)0746101(1

65111

d

= 0809 lbmolh

b = 11651-0809

=10842 lbmolh

For Pentane (C5)

f =20388 lbmolh β= 086704 θ =109189

0918911091891

5339

91207040213

867040

b

d

=0014959

βltβavg

)01495901(1

38820

d

= 0300 lb molh

b=20388-03

=20088

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 34

Components Feed lbmolh Distillate lbmolh Bottom lbmolh

C3 4762 4762 000

i-C4 10843 10821 0022

C4 18072 17684 0388

i-C5 11651 0809 10842

C5 20388 03 20088

65716 34376 3134

Components Feed lbh Distillate lbh Bottom lbh

C3 210 210 000

i-C4 630 62872 128

C4 1050 102745 2257

i-C5 840 5836 78164

C5 1470 2163 1448348

4200 194602 2253818

543 Calculation of Rm

From Underwood equation

qx

i

iFi

1

Components Flbmolhr xif xid αi

C3 4762 00725 01386 488

i-C4 10843 01650 03149 256

C4 18072 02750 05145 198

i-C5 11651 01773 002335 100

C5 20388 03102 00085 084

65716 1000 1000

Feed is at boiling conditions since q =1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 35

0840

31020840

1

177301

981

27500981

562

16500562

884

07250884

θ =1284

from this value of θ

avgi

idavgim

xR

1

11284840

00850840

12841

023501

1284981

51450981

1284562

31490562

1284884

13860884

mR

Rm=1185

R=15 Rm

=15times1185

=17775

X=1

R

RR m

X=177751

185177751

=02133

From GillilandrsquoS correlation Y=1

N

NN m =042

We know the value of Nm 4201

5339

N

N

N=178 =18 stages

Feed location can be known by the use of Kirkbride equation

2

)376348090(

)34313880(

)07218(

)65111(

37634

34312060log

F

F

p

m

687890p

m

817 pm

m = 725=8

p =1054 =11

Feed is introduced on eight stage from top

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 36

Chapter- 6

PACKED COLUMN DESIGN

61 Stage AnalysisThe data shown in table are typical data generated by commercial simulation

Vapor liquidStage Temperature0F lbhr CFS

ft3sV

lbft3

Lbhr GPM

galminL

σ

dynecm

μ

cP

1 1349 00 00 00 3655 1423 3202 6867 0114

2 1474 5501 12050 12683 3720 1447 3204 6738 01132

3 1548 5566 12049 12831 3724 1447 3208 6699 01128

4 1609 5571 11987 12909 3707 1438 3214 6684 01130

5 1668 5553 11889 12974 3693 1430 3220 6665 01135

6 1726 5539 11794 13045 3689 1426 3224 6632 01142

7 1779 5535 11716 13122 3691 1426 3226 6590 01149

8 1824 5537 11650 13199 8032 310471 3226 6544 01156

9 1873 5678 11794 13373 8126 3142 3224 6507 01153

10 1917 5772 11871 13506 8201 3171 3224 6479 01151

11 1961 5847 11915 13631 8275 3201 3223 6447 01152

12 2010 5921 11946 13768 8360 3235 3222 6406 01156

13 2064 6006 12152 13928 8475 3274 3220 6348 01162

14 2122 6103 12013 14111 8574 3321 3218 6295 01170

15 2179 6220 12070 14310 8701 3374 3215 6236 01180

16 2232 6347 12148 14512 8829 3428 3211 6178 01191

17 2280 6475 12234 14701 8947 3477 3208 6128 01201

18 2321 6593 12317 14868 2354 91599 3204 6087 01212

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 37

62 Flood Point

15 inch pall ring will be used throughout the column for this packing the flood point can

be determined by interpolation

A-flood point by GPDC [generalized pressure drop correlation] interpolation

2

2

6593

5571

fthrlbA

G

fthrlbA

G

TBottom

TTop

Liquid flowrates ( 2 fthrlb )

LTop =TA

3724

LBottom = TA

8947

Vapor density( 3 ftlb )

48681

31991

BottomG

TopG

Liquid density ( 3 ftlb )

2432

2632

BottomL

TopL

1 Flow parameter

L

GLV ρ

ρ

G

LF

Top 05

LV 3228

13199

5571

3724F

1352110FLV

Bottom LVF =

2432

48681

6593

8947

= 029142

2 Capacity parameter from graphical correlation

Top =152

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 38

Bottom =119

3 Viscosity of the liquid L (cP)

Top L =01128 (cP)

Bottom L =01151 (cP)

4 Kinematic viscosity

=

L

L

462

Top =

2632

11280462

Top = 0218187

Bottom =

2432

11510462

Bottom = 022277

5 Packing factor ( 1ft )

Top FP = 40

Bottom FP = 40

6 Vapour capacity factor CSFI(fts)

Capacity parameter = CSFI FP05 005

Top 05050SFI 2181040

921C

Top SFIC =02593

Bottom 05050SFI 2181040

191C

Bottom 20280CSFI

63 Flood point by the Kister amp Gill correlation

1 FTP packed bed specific pressure drop at flood point

FTP =0115 70PF

Top FTP =0115 7040

=1521

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 39

Bottom FTP =1521 inch of H2O per ft

2 Flow parameter

Top FLV =0135211

Bottom FLV =029142

3 Capacity parameter at flood point

Top =152

Bottom = 119

4 CSFl vapor capacity factor at the flood point

CSFl = capacity parameter

05050

1

PF

Top CSFl =02593

Bottom CSFl =02028

64 Diameter calculation

1 Vapor capacity factor Cs design (nonderated) fts

The column will be designed for 75 flood capacity

SFlS CC 750

Top CS = 075 02593

=0194475

Bottom CS = 075 02028

Bottom CS = 01551

2 CS vapor capacity factor (derated )fts

= 09 CSdesign

Top CS = 09 01944

Top CS =017496

Bottom CS =09 01521

Bottom CS =013689

3 Vapor superficial velocity based on the cross section of empty column u (fts)

GL

G

ss

ρρ

ρ

(derated)Cu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 40

Top su =

319912632

31991

174960

Top su =084737

Bottom su =

486812432

48681

136890

Bottom su = 062257

4 Vapor flow rate CFS ft3s

Top CFS =1205 ft3s

Bottom CFS =12316 ft3shellipfrom table

5 Tower area ft2

AT = s

T u

CFSA

Top AT = 847370

2051

Top AT =1422 ft2

Bottom AT = 622570

23161

Bottom AT =19782 ft2

6 Tower diameter ft

1587ftD

π

197824D

13455ftD

π

14224D

π

A4

BottomT

BottomT

TopT

TopT

TT

D

65 Diameter calculation using the maximum pressure drop criterion

1 L

G

calculation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 41

Top L

G

=2632

31991

= 00409

Bottom L

G

=2432

48681

= 004611

2OH

L

2

calculation

Top ( OHL 2 )=

4362

2632

= 05167

Bottom ( OHL 2 ) =

4362

2432

= 05164

3 FP packing factor

Top FP = 40

Bottom FP =40

4 Maximum pressure drops recommended for packed column with random packing

1902

70max

OH

LPFP

helliphelliphelliphellipfor 006 20L

G

Top maxP = 019 5167040 70

Top maxP = 12984helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

Bottom maxP = 019 5164040 70

Bottom maxP =12977helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

5 Surface tension dyne

Top =6544 cmdyne

Bottom =6128 cmdyne

6 Vapor capacity factor Csmax (fts)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 42

P

s

FCP

3342maxmax

Top 12984 =

5446

403342maxsC

Top maxsC =02634

Bottom 12977 =

1286

403342maxsC

Bottom maxsC =025628

7 Maximum vapor superficial velocity usmax

maxsC = usmax

GL

G

Top usmax =

319912632

31991

26340

= 12752

Bottom usmax =

486812432

48681

25620

=11651 fts

8 Tower area AT (ft2)

AT =smaxu

CFS

Top AT =27521

2051

Top AT =09449

Bottom AT = 16511

23161

= 1057 ft2

9 Tower diameter (ft)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 18: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 18

Components D lbh B lbh D lbmolh B lbmolh

C3 210 0 4762 0

i-C4 630 0 10843 0

C4 102725 2275 1768 039

i-C5 5725 78225 0801 1085

C5 0 1470 0 20388

Total 1925 2275 34086 3163

52 Dew Point and Bubble Point calculation

1 The distillate and reflux will be a bubble point liquid The criteria for evaluation of

the bubble point condition are

1 like an air fin condenser to liquefy the distillate and reflux The criteria of

drum temperature will be assumed to be 130F ( design temperature for air is

about 120F

2 the bubble point design equation with temperature specified

01 ii xK

Average molecular weight of distillate

Components xid Ki

C3 01397 21

i-C4 03181 10

C4 05187 073

i-C5 00235 033

C5 0 027

For fixed temperature of 130F bubble point pressure is to be determined

4656 wtmolxid

9980 iDi xK

Pestimated = Pi-c4 = 120 lbin2

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 19

001

9980120calculatedP

= 1197 lbin2 (abs)

The result of distillate bubble point calculation is

T = 130 0F

P = 120 lbin2

The condition at the top of the column must be evaluated since the fractionator has a

total concentration and an equilibrium stage The criteria for evaluation of the dew

point condition are

Assumption of the pressure drop through the total condenser of 25 lbin2Thus the

pressure at the top of the column is established as

P = 120 lbin2 + 25 lbin2

P = 1225 lbin2

Dew point

01

i

i

k

y

Plk =1225 lbin2 T= 1320F

Components yi Ki1320

F Ki1450

F

C3 01397 220 240

i-C4 03181 100 115

C4 05187 073 085

i-C5 00235 035 042

C5 00000 028 033

For T =1320F

01

i

i

k

y

Kic4 = 1160 and Tcal =1450F

For T =1450F

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 20

01

i

i

k

y

The result of column top dew point calculation

T =1450F

P = 1225 lbin2

The column bottom condition Column ΔP =5 lbin2

The column bottom pressure

P = 1225 + 50 = 1275 lbin2

The bubble point design equation

ΣKiXi=10

Components B(mol) X

C3 0 0

i-C4 0 0

C4 0392 00124

i-C5 1085 03430

C5 20388 06446

3163 100

Average molecular wt = 6331

22750 =7193

The characteristic component is i-c5 an estimated bottom temperature is obtained

Components Xi Ki2380

F Ki2150

F

C3 0 38 45

i-C4 0 355 265

C4 00124 1925 205

i-C5 03430 10 1075

C5 06446 087 094

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 21

For T = 238 0F

ΣKiXi=0927

KHK = 108 Tcal =245 0F

For T =245 0F

ΣKiXi=100

The result of column bottom bubble point calculation

T =245 0F

P =1275 lbin2

53 Determination of the key component

Using the heavy key as column reference key The separation is clearly between

butane and isopentane

Reference component =i-C5

Key component

LK =C4

HK =iC5

The average relative volatility data for the column will be generated using three-point

geometric average

3321 avg

Point 1 ndash top of fractionation column

Point 2 ndash at the reboiler

Point 3 ndash arithmetic mean of condition at 1 amp 3

T2 = 05 [ T1 + T2 ] = 05 [ T1 + T2 ]

T2 = 05 [ 145 + 245 ] = 195 0F

P2 = 05 [ P1 + P3 ] = 05 [ 1225 +1275 ]

P2 = 125 lbin2

variable Point 1 Point 2 Point 3

T oF 145 195 245

P lbin2 1225 125 1275

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 22

Components Point 1 Point 2 Point 3

Ki αi Ki αi Ki αi αavg

C3 24 571 335 493 45 419 49

i-C4 115 274 175 257 25 237 256

C4 085 202 135 199 205 191 197

i-C5 024 100 068 100 1075 100 100

C5 033 079 058 085 094 087 084

54 Shortcut Method

541 Minimum stages at total reflux-the Fenske equation

LKavg

BLk

HK

DHK

LK

m

x

x

x

x

Nln

ln

Fi = bi + di

avgmeanavgiiir

rNavgi

i dbb

d

b

d for min

mN

avgHK

avgi

HK

ii

b

d

fb

1

or when ii db meanavgavgi

mN

avgi

avgLK

LK

ii

d

b

fd

1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 23

971ln

01240

3430

02350

51870ln

mN

4619mN

2

avgLKavgHKmean

2

001971

= 1485

For propaneC3

meanC 3

7624

904

3

3

C

C

f

4619

001

904

85010

80101

76243Cb

hmold

hmol

C 7624007624

1091

3

5

For isobutene(i-C4)

84310

562

4

4

4

iC

Ci

meanCi

f

4619

1

562

8500

80101

843104iCb

hmol 020

823104iCd

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 24

For butane (C4)

07218

971

4

4

C

C

meanavgi

f

4619

001

971

8510

80101

072184Cb

hmold

d

hmolb

C

C

C

68817

392007218

3920

4

4

4

For isopentane (i-C5)

meanavgiC

iCiC hmolf

5

5565111001

Hence

4619

001

971

6817

39201

651115iCd

hmolb

hmold

iC

iC

8510801065111

8010

5

5

For pentane (C5)

hmolb

hmold

d

C

C

C

meanavgC

C

105320

2850

840

971

6817

39201

38820

840

5

5

5

5

5

4619

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 25

The calculated data in the table

Components Fi(lbmolh) Di(lbmolh) Bi(lbmolh)

C3 4762 4762 0

i-C4 10834 10823 002

C4 18072 17680 0392

i-C5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Checking

Maximum 3wt of iC5 in the distillate

9772

1004656

172

35134

8010

wt

Maximum of 1 wt C4 in the bottom

011

1009371

158

36531

3920

wt

The set of specification were not met The parameter reevaluated

Again performing same calculations

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 1050-x x

i-C5 840 y 840-y

C5 1470 2055 144945

Total 190939-x+y 229061+x-y

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 26

3658

5522

612290100

1

391909100

3

y

x

yx

x

yx

y

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 102745 2255

i-C5 840 5836 78164

C5 1470 2055 144945

Total 4200 194520 224580

Components F(lbmolh) D(lbmolh) B(lbmolh)

C3 4762 4762 0

i-c4 10834 10823 002

C4 18072 17680 0392

i-c5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Column operating condition

Distillate bubble point calculation on with temperature specified at 130 0F

Components D (lbmolh) K120 (lbin2)

C3 4762 210

i-C4 10823 10

C4 17680 073

i-C5 0801 033

C5 0285 027

Total 34351

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 27

992036334

07634

001

ii

iiii

xK

D

dKxK

Condition of the distillatereflux before 130 0F amp 120 lbin2overhead or column top

conditions are found by dew point calculation at the specified pressure of 1225lbin2

Components D (lbmolh) K1450

F K148 0

F

C3 4762 24 2425

i-C4 10823 116 1175

C4 17680 084 087

i-C5 0801 042 0425

C5 0285 033 034

01D

K

d

K

y i

i

i

i

For T=145 0F

018136334

9934

i

i

K

y K=1175 Tcal=148 0F

For T=148 0F

997036334

24334

i

i

K

y

Conditions of column overhead are revised to 148 0F and 1225lbin2column bottom

conditions are found by way of bubble point calculation

Components B(lbmolh) K2450

F

C3 0 45

i-C4 002 255

C4 0392 205

i-C5 10850 1075

C5 20103 094

Total 31365

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 28

Design equation

001B

bKxK ii

ii

For T =245 0F

00139331

39831ii xK

At column midpoint condition

2

0

1255127512250

519624514850

inlbP

FT

Summery of operating condition

Point 1 Point 2 Point 3

Temperature 148 1965 245

Pressure lbin2 (abs) 1225 125 1275

Equilibrium K data for column midpoint condition

Point 1 Point 2 Point 3

Components Ki i Ki i Ki i avgi

C3 2425 571 34 486 45 419 488

i-C4 1175 276 18 257 255 237 256

C4 087 205 138 197 205 191 198

i-C5 0425 100 07 10 1075 10 10

C5 034 08 06 086 094 087 084

Fenske equation

3919

001

981ln

3880

84210

8090

68417ln

m

m

N

N

Separation of non key component

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 29

4912

100198

2

avgLKavgHK

mean

molh09220bmolh 2920d

molh38820f840

)(CPentane

molh8090dmolh 84210b

molh65111f001

)C-(itan

68417dmolh 3880b

molh07218f981

)(CButane

hmol 82210d h mol0210b

hmol84310f562

)C-(iIsobutane

molh76240007624d

molh000molh101882

001

884

84210

80901

7624

7624f884

)(Cropane

C5C5

C5C5

5

C5-iC5-i

C5-iiC5

5

C4C4

C4C4

4

iC4iC4

iC4iC4

4

33C3

5

39193

C3C3

3

lblb

lb

lblb

lb

eIsopen

hlbmollb

lblb

lb

lbbf

lblbb

hmol

P

CC

C

Components Feed (lbmolh) Distillate (lbmolh) Bottom (lbmolh)

C3 4762 4762 0000

i-C4 10843 10822 0021

C4 18072 17684 03880

i-C5 11651 0809 10842

C5 20388 0292 20096

Total 65716 34369 31347

Maximum value of 3 wt of i-C5 in distillate is required

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 30

Calculated value =

wt 3

1004956

172

36934

8090

Maximum value of 1 wt of C4 in bottom is required

Calculated value

wt 1

1009163

158

34731

3880

Conditions are satisfied

542 Component split by Winn equation

The Fenske equation has a weakness as the relative volatility difference between

column top and bottom increase the estimated minimum number of stages gets

increasingly too small

460

1

460

1

lnln

bottomtop

bottomitopi

i

TT

PKPKB

460

ln

T

BAPK i

ii

110 irHKi PAAi

r

ii B

B

Components KTop148 F Kbottom245 F

C3 2425 450

i-C4 1175 255

C4 087 205

i-C5 0425 1075

C5 034 094

For P=125 lbin2

For butane (C4)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 31

550594460148

)271263()42525122log(

271263

460245

1

460148

1545127log42525122log

4

4

C

C

A

B

Heavy component is iso-pentane( i-C5)

955824460148

)711857()42505122log(

680010717185

271263

711857

460245

1

460148

1

07515127log4250125log

5

4

5

Ci

C

Ci

A

A

B

311344

)125(10

10)1680010()955824550594(

1

irHKi PAAi

Components Bi Ai θi βi

C3 -126327 45509 068001 43113

i-C4 -156377 473016 084177 24069

C4 -172167 48593 092677 191988

i-C5 -185771 49558 100000 10000

C5 -202840 49558 109189 086704

5339

919881log

)369348090(

)3473484210(

)347313880(

)3693468417(log

m

m

N

N

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 32

abvg

1

bdcomponent

orlightif

D

B

d

bb

d

HK

N

i

im

d

b1

fd

2dbkeyheavy

1

avgHKLKif

b

df

b

componentlight propanefor

5

032068

9533

101976

09120713402

4311

b

d

7624

0001097611

76245

bfd

b

For isobutene (i-C4)

f =10843 θ =0842 β =2407 (light component)

lh10821lbmo

002210843d

h0022lbmol

494151

10843b

4941509120713402

2407

b

d08417108417

9533

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 33

For Butane (C4)

f =18072 β=191988θ=092677

h0388lbmol

455771

18072b

4557709120713402

191988

b

d0926771092677

9533

d=18072-0388

=17684 lbmolh

For Isopentane (C5)

f =11651 β =100 θ =100

111

5339

91207040213

00001

b

d

=007461

βltβavg

)0746101(1

65111

d

= 0809 lbmolh

b = 11651-0809

=10842 lbmolh

For Pentane (C5)

f =20388 lbmolh β= 086704 θ =109189

0918911091891

5339

91207040213

867040

b

d

=0014959

βltβavg

)01495901(1

38820

d

= 0300 lb molh

b=20388-03

=20088

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 34

Components Feed lbmolh Distillate lbmolh Bottom lbmolh

C3 4762 4762 000

i-C4 10843 10821 0022

C4 18072 17684 0388

i-C5 11651 0809 10842

C5 20388 03 20088

65716 34376 3134

Components Feed lbh Distillate lbh Bottom lbh

C3 210 210 000

i-C4 630 62872 128

C4 1050 102745 2257

i-C5 840 5836 78164

C5 1470 2163 1448348

4200 194602 2253818

543 Calculation of Rm

From Underwood equation

qx

i

iFi

1

Components Flbmolhr xif xid αi

C3 4762 00725 01386 488

i-C4 10843 01650 03149 256

C4 18072 02750 05145 198

i-C5 11651 01773 002335 100

C5 20388 03102 00085 084

65716 1000 1000

Feed is at boiling conditions since q =1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 35

0840

31020840

1

177301

981

27500981

562

16500562

884

07250884

θ =1284

from this value of θ

avgi

idavgim

xR

1

11284840

00850840

12841

023501

1284981

51450981

1284562

31490562

1284884

13860884

mR

Rm=1185

R=15 Rm

=15times1185

=17775

X=1

R

RR m

X=177751

185177751

=02133

From GillilandrsquoS correlation Y=1

N

NN m =042

We know the value of Nm 4201

5339

N

N

N=178 =18 stages

Feed location can be known by the use of Kirkbride equation

2

)376348090(

)34313880(

)07218(

)65111(

37634

34312060log

F

F

p

m

687890p

m

817 pm

m = 725=8

p =1054 =11

Feed is introduced on eight stage from top

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 36

Chapter- 6

PACKED COLUMN DESIGN

61 Stage AnalysisThe data shown in table are typical data generated by commercial simulation

Vapor liquidStage Temperature0F lbhr CFS

ft3sV

lbft3

Lbhr GPM

galminL

σ

dynecm

μ

cP

1 1349 00 00 00 3655 1423 3202 6867 0114

2 1474 5501 12050 12683 3720 1447 3204 6738 01132

3 1548 5566 12049 12831 3724 1447 3208 6699 01128

4 1609 5571 11987 12909 3707 1438 3214 6684 01130

5 1668 5553 11889 12974 3693 1430 3220 6665 01135

6 1726 5539 11794 13045 3689 1426 3224 6632 01142

7 1779 5535 11716 13122 3691 1426 3226 6590 01149

8 1824 5537 11650 13199 8032 310471 3226 6544 01156

9 1873 5678 11794 13373 8126 3142 3224 6507 01153

10 1917 5772 11871 13506 8201 3171 3224 6479 01151

11 1961 5847 11915 13631 8275 3201 3223 6447 01152

12 2010 5921 11946 13768 8360 3235 3222 6406 01156

13 2064 6006 12152 13928 8475 3274 3220 6348 01162

14 2122 6103 12013 14111 8574 3321 3218 6295 01170

15 2179 6220 12070 14310 8701 3374 3215 6236 01180

16 2232 6347 12148 14512 8829 3428 3211 6178 01191

17 2280 6475 12234 14701 8947 3477 3208 6128 01201

18 2321 6593 12317 14868 2354 91599 3204 6087 01212

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 37

62 Flood Point

15 inch pall ring will be used throughout the column for this packing the flood point can

be determined by interpolation

A-flood point by GPDC [generalized pressure drop correlation] interpolation

2

2

6593

5571

fthrlbA

G

fthrlbA

G

TBottom

TTop

Liquid flowrates ( 2 fthrlb )

LTop =TA

3724

LBottom = TA

8947

Vapor density( 3 ftlb )

48681

31991

BottomG

TopG

Liquid density ( 3 ftlb )

2432

2632

BottomL

TopL

1 Flow parameter

L

GLV ρ

ρ

G

LF

Top 05

LV 3228

13199

5571

3724F

1352110FLV

Bottom LVF =

2432

48681

6593

8947

= 029142

2 Capacity parameter from graphical correlation

Top =152

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 38

Bottom =119

3 Viscosity of the liquid L (cP)

Top L =01128 (cP)

Bottom L =01151 (cP)

4 Kinematic viscosity

=

L

L

462

Top =

2632

11280462

Top = 0218187

Bottom =

2432

11510462

Bottom = 022277

5 Packing factor ( 1ft )

Top FP = 40

Bottom FP = 40

6 Vapour capacity factor CSFI(fts)

Capacity parameter = CSFI FP05 005

Top 05050SFI 2181040

921C

Top SFIC =02593

Bottom 05050SFI 2181040

191C

Bottom 20280CSFI

63 Flood point by the Kister amp Gill correlation

1 FTP packed bed specific pressure drop at flood point

FTP =0115 70PF

Top FTP =0115 7040

=1521

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 39

Bottom FTP =1521 inch of H2O per ft

2 Flow parameter

Top FLV =0135211

Bottom FLV =029142

3 Capacity parameter at flood point

Top =152

Bottom = 119

4 CSFl vapor capacity factor at the flood point

CSFl = capacity parameter

05050

1

PF

Top CSFl =02593

Bottom CSFl =02028

64 Diameter calculation

1 Vapor capacity factor Cs design (nonderated) fts

The column will be designed for 75 flood capacity

SFlS CC 750

Top CS = 075 02593

=0194475

Bottom CS = 075 02028

Bottom CS = 01551

2 CS vapor capacity factor (derated )fts

= 09 CSdesign

Top CS = 09 01944

Top CS =017496

Bottom CS =09 01521

Bottom CS =013689

3 Vapor superficial velocity based on the cross section of empty column u (fts)

GL

G

ss

ρρ

ρ

(derated)Cu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 40

Top su =

319912632

31991

174960

Top su =084737

Bottom su =

486812432

48681

136890

Bottom su = 062257

4 Vapor flow rate CFS ft3s

Top CFS =1205 ft3s

Bottom CFS =12316 ft3shellipfrom table

5 Tower area ft2

AT = s

T u

CFSA

Top AT = 847370

2051

Top AT =1422 ft2

Bottom AT = 622570

23161

Bottom AT =19782 ft2

6 Tower diameter ft

1587ftD

π

197824D

13455ftD

π

14224D

π

A4

BottomT

BottomT

TopT

TopT

TT

D

65 Diameter calculation using the maximum pressure drop criterion

1 L

G

calculation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 41

Top L

G

=2632

31991

= 00409

Bottom L

G

=2432

48681

= 004611

2OH

L

2

calculation

Top ( OHL 2 )=

4362

2632

= 05167

Bottom ( OHL 2 ) =

4362

2432

= 05164

3 FP packing factor

Top FP = 40

Bottom FP =40

4 Maximum pressure drops recommended for packed column with random packing

1902

70max

OH

LPFP

helliphelliphelliphellipfor 006 20L

G

Top maxP = 019 5167040 70

Top maxP = 12984helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

Bottom maxP = 019 5164040 70

Bottom maxP =12977helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

5 Surface tension dyne

Top =6544 cmdyne

Bottom =6128 cmdyne

6 Vapor capacity factor Csmax (fts)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 42

P

s

FCP

3342maxmax

Top 12984 =

5446

403342maxsC

Top maxsC =02634

Bottom 12977 =

1286

403342maxsC

Bottom maxsC =025628

7 Maximum vapor superficial velocity usmax

maxsC = usmax

GL

G

Top usmax =

319912632

31991

26340

= 12752

Bottom usmax =

486812432

48681

25620

=11651 fts

8 Tower area AT (ft2)

AT =smaxu

CFS

Top AT =27521

2051

Top AT =09449

Bottom AT = 16511

23161

= 1057 ft2

9 Tower diameter (ft)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 19: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 19

001

9980120calculatedP

= 1197 lbin2 (abs)

The result of distillate bubble point calculation is

T = 130 0F

P = 120 lbin2

The condition at the top of the column must be evaluated since the fractionator has a

total concentration and an equilibrium stage The criteria for evaluation of the dew

point condition are

Assumption of the pressure drop through the total condenser of 25 lbin2Thus the

pressure at the top of the column is established as

P = 120 lbin2 + 25 lbin2

P = 1225 lbin2

Dew point

01

i

i

k

y

Plk =1225 lbin2 T= 1320F

Components yi Ki1320

F Ki1450

F

C3 01397 220 240

i-C4 03181 100 115

C4 05187 073 085

i-C5 00235 035 042

C5 00000 028 033

For T =1320F

01

i

i

k

y

Kic4 = 1160 and Tcal =1450F

For T =1450F

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 20

01

i

i

k

y

The result of column top dew point calculation

T =1450F

P = 1225 lbin2

The column bottom condition Column ΔP =5 lbin2

The column bottom pressure

P = 1225 + 50 = 1275 lbin2

The bubble point design equation

ΣKiXi=10

Components B(mol) X

C3 0 0

i-C4 0 0

C4 0392 00124

i-C5 1085 03430

C5 20388 06446

3163 100

Average molecular wt = 6331

22750 =7193

The characteristic component is i-c5 an estimated bottom temperature is obtained

Components Xi Ki2380

F Ki2150

F

C3 0 38 45

i-C4 0 355 265

C4 00124 1925 205

i-C5 03430 10 1075

C5 06446 087 094

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 21

For T = 238 0F

ΣKiXi=0927

KHK = 108 Tcal =245 0F

For T =245 0F

ΣKiXi=100

The result of column bottom bubble point calculation

T =245 0F

P =1275 lbin2

53 Determination of the key component

Using the heavy key as column reference key The separation is clearly between

butane and isopentane

Reference component =i-C5

Key component

LK =C4

HK =iC5

The average relative volatility data for the column will be generated using three-point

geometric average

3321 avg

Point 1 ndash top of fractionation column

Point 2 ndash at the reboiler

Point 3 ndash arithmetic mean of condition at 1 amp 3

T2 = 05 [ T1 + T2 ] = 05 [ T1 + T2 ]

T2 = 05 [ 145 + 245 ] = 195 0F

P2 = 05 [ P1 + P3 ] = 05 [ 1225 +1275 ]

P2 = 125 lbin2

variable Point 1 Point 2 Point 3

T oF 145 195 245

P lbin2 1225 125 1275

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 22

Components Point 1 Point 2 Point 3

Ki αi Ki αi Ki αi αavg

C3 24 571 335 493 45 419 49

i-C4 115 274 175 257 25 237 256

C4 085 202 135 199 205 191 197

i-C5 024 100 068 100 1075 100 100

C5 033 079 058 085 094 087 084

54 Shortcut Method

541 Minimum stages at total reflux-the Fenske equation

LKavg

BLk

HK

DHK

LK

m

x

x

x

x

Nln

ln

Fi = bi + di

avgmeanavgiiir

rNavgi

i dbb

d

b

d for min

mN

avgHK

avgi

HK

ii

b

d

fb

1

or when ii db meanavgavgi

mN

avgi

avgLK

LK

ii

d

b

fd

1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 23

971ln

01240

3430

02350

51870ln

mN

4619mN

2

avgLKavgHKmean

2

001971

= 1485

For propaneC3

meanC 3

7624

904

3

3

C

C

f

4619

001

904

85010

80101

76243Cb

hmold

hmol

C 7624007624

1091

3

5

For isobutene(i-C4)

84310

562

4

4

4

iC

Ci

meanCi

f

4619

1

562

8500

80101

843104iCb

hmol 020

823104iCd

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 24

For butane (C4)

07218

971

4

4

C

C

meanavgi

f

4619

001

971

8510

80101

072184Cb

hmold

d

hmolb

C

C

C

68817

392007218

3920

4

4

4

For isopentane (i-C5)

meanavgiC

iCiC hmolf

5

5565111001

Hence

4619

001

971

6817

39201

651115iCd

hmolb

hmold

iC

iC

8510801065111

8010

5

5

For pentane (C5)

hmolb

hmold

d

C

C

C

meanavgC

C

105320

2850

840

971

6817

39201

38820

840

5

5

5

5

5

4619

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 25

The calculated data in the table

Components Fi(lbmolh) Di(lbmolh) Bi(lbmolh)

C3 4762 4762 0

i-C4 10834 10823 002

C4 18072 17680 0392

i-C5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Checking

Maximum 3wt of iC5 in the distillate

9772

1004656

172

35134

8010

wt

Maximum of 1 wt C4 in the bottom

011

1009371

158

36531

3920

wt

The set of specification were not met The parameter reevaluated

Again performing same calculations

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 1050-x x

i-C5 840 y 840-y

C5 1470 2055 144945

Total 190939-x+y 229061+x-y

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 26

3658

5522

612290100

1

391909100

3

y

x

yx

x

yx

y

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 102745 2255

i-C5 840 5836 78164

C5 1470 2055 144945

Total 4200 194520 224580

Components F(lbmolh) D(lbmolh) B(lbmolh)

C3 4762 4762 0

i-c4 10834 10823 002

C4 18072 17680 0392

i-c5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Column operating condition

Distillate bubble point calculation on with temperature specified at 130 0F

Components D (lbmolh) K120 (lbin2)

C3 4762 210

i-C4 10823 10

C4 17680 073

i-C5 0801 033

C5 0285 027

Total 34351

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 27

992036334

07634

001

ii

iiii

xK

D

dKxK

Condition of the distillatereflux before 130 0F amp 120 lbin2overhead or column top

conditions are found by dew point calculation at the specified pressure of 1225lbin2

Components D (lbmolh) K1450

F K148 0

F

C3 4762 24 2425

i-C4 10823 116 1175

C4 17680 084 087

i-C5 0801 042 0425

C5 0285 033 034

01D

K

d

K

y i

i

i

i

For T=145 0F

018136334

9934

i

i

K

y K=1175 Tcal=148 0F

For T=148 0F

997036334

24334

i

i

K

y

Conditions of column overhead are revised to 148 0F and 1225lbin2column bottom

conditions are found by way of bubble point calculation

Components B(lbmolh) K2450

F

C3 0 45

i-C4 002 255

C4 0392 205

i-C5 10850 1075

C5 20103 094

Total 31365

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 28

Design equation

001B

bKxK ii

ii

For T =245 0F

00139331

39831ii xK

At column midpoint condition

2

0

1255127512250

519624514850

inlbP

FT

Summery of operating condition

Point 1 Point 2 Point 3

Temperature 148 1965 245

Pressure lbin2 (abs) 1225 125 1275

Equilibrium K data for column midpoint condition

Point 1 Point 2 Point 3

Components Ki i Ki i Ki i avgi

C3 2425 571 34 486 45 419 488

i-C4 1175 276 18 257 255 237 256

C4 087 205 138 197 205 191 198

i-C5 0425 100 07 10 1075 10 10

C5 034 08 06 086 094 087 084

Fenske equation

3919

001

981ln

3880

84210

8090

68417ln

m

m

N

N

Separation of non key component

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 29

4912

100198

2

avgLKavgHK

mean

molh09220bmolh 2920d

molh38820f840

)(CPentane

molh8090dmolh 84210b

molh65111f001

)C-(itan

68417dmolh 3880b

molh07218f981

)(CButane

hmol 82210d h mol0210b

hmol84310f562

)C-(iIsobutane

molh76240007624d

molh000molh101882

001

884

84210

80901

7624

7624f884

)(Cropane

C5C5

C5C5

5

C5-iC5-i

C5-iiC5

5

C4C4

C4C4

4

iC4iC4

iC4iC4

4

33C3

5

39193

C3C3

3

lblb

lb

lblb

lb

eIsopen

hlbmollb

lblb

lb

lbbf

lblbb

hmol

P

CC

C

Components Feed (lbmolh) Distillate (lbmolh) Bottom (lbmolh)

C3 4762 4762 0000

i-C4 10843 10822 0021

C4 18072 17684 03880

i-C5 11651 0809 10842

C5 20388 0292 20096

Total 65716 34369 31347

Maximum value of 3 wt of i-C5 in distillate is required

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 30

Calculated value =

wt 3

1004956

172

36934

8090

Maximum value of 1 wt of C4 in bottom is required

Calculated value

wt 1

1009163

158

34731

3880

Conditions are satisfied

542 Component split by Winn equation

The Fenske equation has a weakness as the relative volatility difference between

column top and bottom increase the estimated minimum number of stages gets

increasingly too small

460

1

460

1

lnln

bottomtop

bottomitopi

i

TT

PKPKB

460

ln

T

BAPK i

ii

110 irHKi PAAi

r

ii B

B

Components KTop148 F Kbottom245 F

C3 2425 450

i-C4 1175 255

C4 087 205

i-C5 0425 1075

C5 034 094

For P=125 lbin2

For butane (C4)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 31

550594460148

)271263()42525122log(

271263

460245

1

460148

1545127log42525122log

4

4

C

C

A

B

Heavy component is iso-pentane( i-C5)

955824460148

)711857()42505122log(

680010717185

271263

711857

460245

1

460148

1

07515127log4250125log

5

4

5

Ci

C

Ci

A

A

B

311344

)125(10

10)1680010()955824550594(

1

irHKi PAAi

Components Bi Ai θi βi

C3 -126327 45509 068001 43113

i-C4 -156377 473016 084177 24069

C4 -172167 48593 092677 191988

i-C5 -185771 49558 100000 10000

C5 -202840 49558 109189 086704

5339

919881log

)369348090(

)3473484210(

)347313880(

)3693468417(log

m

m

N

N

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 32

abvg

1

bdcomponent

orlightif

D

B

d

bb

d

HK

N

i

im

d

b1

fd

2dbkeyheavy

1

avgHKLKif

b

df

b

componentlight propanefor

5

032068

9533

101976

09120713402

4311

b

d

7624

0001097611

76245

bfd

b

For isobutene (i-C4)

f =10843 θ =0842 β =2407 (light component)

lh10821lbmo

002210843d

h0022lbmol

494151

10843b

4941509120713402

2407

b

d08417108417

9533

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 33

For Butane (C4)

f =18072 β=191988θ=092677

h0388lbmol

455771

18072b

4557709120713402

191988

b

d0926771092677

9533

d=18072-0388

=17684 lbmolh

For Isopentane (C5)

f =11651 β =100 θ =100

111

5339

91207040213

00001

b

d

=007461

βltβavg

)0746101(1

65111

d

= 0809 lbmolh

b = 11651-0809

=10842 lbmolh

For Pentane (C5)

f =20388 lbmolh β= 086704 θ =109189

0918911091891

5339

91207040213

867040

b

d

=0014959

βltβavg

)01495901(1

38820

d

= 0300 lb molh

b=20388-03

=20088

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 34

Components Feed lbmolh Distillate lbmolh Bottom lbmolh

C3 4762 4762 000

i-C4 10843 10821 0022

C4 18072 17684 0388

i-C5 11651 0809 10842

C5 20388 03 20088

65716 34376 3134

Components Feed lbh Distillate lbh Bottom lbh

C3 210 210 000

i-C4 630 62872 128

C4 1050 102745 2257

i-C5 840 5836 78164

C5 1470 2163 1448348

4200 194602 2253818

543 Calculation of Rm

From Underwood equation

qx

i

iFi

1

Components Flbmolhr xif xid αi

C3 4762 00725 01386 488

i-C4 10843 01650 03149 256

C4 18072 02750 05145 198

i-C5 11651 01773 002335 100

C5 20388 03102 00085 084

65716 1000 1000

Feed is at boiling conditions since q =1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 35

0840

31020840

1

177301

981

27500981

562

16500562

884

07250884

θ =1284

from this value of θ

avgi

idavgim

xR

1

11284840

00850840

12841

023501

1284981

51450981

1284562

31490562

1284884

13860884

mR

Rm=1185

R=15 Rm

=15times1185

=17775

X=1

R

RR m

X=177751

185177751

=02133

From GillilandrsquoS correlation Y=1

N

NN m =042

We know the value of Nm 4201

5339

N

N

N=178 =18 stages

Feed location can be known by the use of Kirkbride equation

2

)376348090(

)34313880(

)07218(

)65111(

37634

34312060log

F

F

p

m

687890p

m

817 pm

m = 725=8

p =1054 =11

Feed is introduced on eight stage from top

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 36

Chapter- 6

PACKED COLUMN DESIGN

61 Stage AnalysisThe data shown in table are typical data generated by commercial simulation

Vapor liquidStage Temperature0F lbhr CFS

ft3sV

lbft3

Lbhr GPM

galminL

σ

dynecm

μ

cP

1 1349 00 00 00 3655 1423 3202 6867 0114

2 1474 5501 12050 12683 3720 1447 3204 6738 01132

3 1548 5566 12049 12831 3724 1447 3208 6699 01128

4 1609 5571 11987 12909 3707 1438 3214 6684 01130

5 1668 5553 11889 12974 3693 1430 3220 6665 01135

6 1726 5539 11794 13045 3689 1426 3224 6632 01142

7 1779 5535 11716 13122 3691 1426 3226 6590 01149

8 1824 5537 11650 13199 8032 310471 3226 6544 01156

9 1873 5678 11794 13373 8126 3142 3224 6507 01153

10 1917 5772 11871 13506 8201 3171 3224 6479 01151

11 1961 5847 11915 13631 8275 3201 3223 6447 01152

12 2010 5921 11946 13768 8360 3235 3222 6406 01156

13 2064 6006 12152 13928 8475 3274 3220 6348 01162

14 2122 6103 12013 14111 8574 3321 3218 6295 01170

15 2179 6220 12070 14310 8701 3374 3215 6236 01180

16 2232 6347 12148 14512 8829 3428 3211 6178 01191

17 2280 6475 12234 14701 8947 3477 3208 6128 01201

18 2321 6593 12317 14868 2354 91599 3204 6087 01212

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 37

62 Flood Point

15 inch pall ring will be used throughout the column for this packing the flood point can

be determined by interpolation

A-flood point by GPDC [generalized pressure drop correlation] interpolation

2

2

6593

5571

fthrlbA

G

fthrlbA

G

TBottom

TTop

Liquid flowrates ( 2 fthrlb )

LTop =TA

3724

LBottom = TA

8947

Vapor density( 3 ftlb )

48681

31991

BottomG

TopG

Liquid density ( 3 ftlb )

2432

2632

BottomL

TopL

1 Flow parameter

L

GLV ρ

ρ

G

LF

Top 05

LV 3228

13199

5571

3724F

1352110FLV

Bottom LVF =

2432

48681

6593

8947

= 029142

2 Capacity parameter from graphical correlation

Top =152

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 38

Bottom =119

3 Viscosity of the liquid L (cP)

Top L =01128 (cP)

Bottom L =01151 (cP)

4 Kinematic viscosity

=

L

L

462

Top =

2632

11280462

Top = 0218187

Bottom =

2432

11510462

Bottom = 022277

5 Packing factor ( 1ft )

Top FP = 40

Bottom FP = 40

6 Vapour capacity factor CSFI(fts)

Capacity parameter = CSFI FP05 005

Top 05050SFI 2181040

921C

Top SFIC =02593

Bottom 05050SFI 2181040

191C

Bottom 20280CSFI

63 Flood point by the Kister amp Gill correlation

1 FTP packed bed specific pressure drop at flood point

FTP =0115 70PF

Top FTP =0115 7040

=1521

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 39

Bottom FTP =1521 inch of H2O per ft

2 Flow parameter

Top FLV =0135211

Bottom FLV =029142

3 Capacity parameter at flood point

Top =152

Bottom = 119

4 CSFl vapor capacity factor at the flood point

CSFl = capacity parameter

05050

1

PF

Top CSFl =02593

Bottom CSFl =02028

64 Diameter calculation

1 Vapor capacity factor Cs design (nonderated) fts

The column will be designed for 75 flood capacity

SFlS CC 750

Top CS = 075 02593

=0194475

Bottom CS = 075 02028

Bottom CS = 01551

2 CS vapor capacity factor (derated )fts

= 09 CSdesign

Top CS = 09 01944

Top CS =017496

Bottom CS =09 01521

Bottom CS =013689

3 Vapor superficial velocity based on the cross section of empty column u (fts)

GL

G

ss

ρρ

ρ

(derated)Cu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 40

Top su =

319912632

31991

174960

Top su =084737

Bottom su =

486812432

48681

136890

Bottom su = 062257

4 Vapor flow rate CFS ft3s

Top CFS =1205 ft3s

Bottom CFS =12316 ft3shellipfrom table

5 Tower area ft2

AT = s

T u

CFSA

Top AT = 847370

2051

Top AT =1422 ft2

Bottom AT = 622570

23161

Bottom AT =19782 ft2

6 Tower diameter ft

1587ftD

π

197824D

13455ftD

π

14224D

π

A4

BottomT

BottomT

TopT

TopT

TT

D

65 Diameter calculation using the maximum pressure drop criterion

1 L

G

calculation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 41

Top L

G

=2632

31991

= 00409

Bottom L

G

=2432

48681

= 004611

2OH

L

2

calculation

Top ( OHL 2 )=

4362

2632

= 05167

Bottom ( OHL 2 ) =

4362

2432

= 05164

3 FP packing factor

Top FP = 40

Bottom FP =40

4 Maximum pressure drops recommended for packed column with random packing

1902

70max

OH

LPFP

helliphelliphelliphellipfor 006 20L

G

Top maxP = 019 5167040 70

Top maxP = 12984helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

Bottom maxP = 019 5164040 70

Bottom maxP =12977helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

5 Surface tension dyne

Top =6544 cmdyne

Bottom =6128 cmdyne

6 Vapor capacity factor Csmax (fts)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 42

P

s

FCP

3342maxmax

Top 12984 =

5446

403342maxsC

Top maxsC =02634

Bottom 12977 =

1286

403342maxsC

Bottom maxsC =025628

7 Maximum vapor superficial velocity usmax

maxsC = usmax

GL

G

Top usmax =

319912632

31991

26340

= 12752

Bottom usmax =

486812432

48681

25620

=11651 fts

8 Tower area AT (ft2)

AT =smaxu

CFS

Top AT =27521

2051

Top AT =09449

Bottom AT = 16511

23161

= 1057 ft2

9 Tower diameter (ft)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 20: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 20

01

i

i

k

y

The result of column top dew point calculation

T =1450F

P = 1225 lbin2

The column bottom condition Column ΔP =5 lbin2

The column bottom pressure

P = 1225 + 50 = 1275 lbin2

The bubble point design equation

ΣKiXi=10

Components B(mol) X

C3 0 0

i-C4 0 0

C4 0392 00124

i-C5 1085 03430

C5 20388 06446

3163 100

Average molecular wt = 6331

22750 =7193

The characteristic component is i-c5 an estimated bottom temperature is obtained

Components Xi Ki2380

F Ki2150

F

C3 0 38 45

i-C4 0 355 265

C4 00124 1925 205

i-C5 03430 10 1075

C5 06446 087 094

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 21

For T = 238 0F

ΣKiXi=0927

KHK = 108 Tcal =245 0F

For T =245 0F

ΣKiXi=100

The result of column bottom bubble point calculation

T =245 0F

P =1275 lbin2

53 Determination of the key component

Using the heavy key as column reference key The separation is clearly between

butane and isopentane

Reference component =i-C5

Key component

LK =C4

HK =iC5

The average relative volatility data for the column will be generated using three-point

geometric average

3321 avg

Point 1 ndash top of fractionation column

Point 2 ndash at the reboiler

Point 3 ndash arithmetic mean of condition at 1 amp 3

T2 = 05 [ T1 + T2 ] = 05 [ T1 + T2 ]

T2 = 05 [ 145 + 245 ] = 195 0F

P2 = 05 [ P1 + P3 ] = 05 [ 1225 +1275 ]

P2 = 125 lbin2

variable Point 1 Point 2 Point 3

T oF 145 195 245

P lbin2 1225 125 1275

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 22

Components Point 1 Point 2 Point 3

Ki αi Ki αi Ki αi αavg

C3 24 571 335 493 45 419 49

i-C4 115 274 175 257 25 237 256

C4 085 202 135 199 205 191 197

i-C5 024 100 068 100 1075 100 100

C5 033 079 058 085 094 087 084

54 Shortcut Method

541 Minimum stages at total reflux-the Fenske equation

LKavg

BLk

HK

DHK

LK

m

x

x

x

x

Nln

ln

Fi = bi + di

avgmeanavgiiir

rNavgi

i dbb

d

b

d for min

mN

avgHK

avgi

HK

ii

b

d

fb

1

or when ii db meanavgavgi

mN

avgi

avgLK

LK

ii

d

b

fd

1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 23

971ln

01240

3430

02350

51870ln

mN

4619mN

2

avgLKavgHKmean

2

001971

= 1485

For propaneC3

meanC 3

7624

904

3

3

C

C

f

4619

001

904

85010

80101

76243Cb

hmold

hmol

C 7624007624

1091

3

5

For isobutene(i-C4)

84310

562

4

4

4

iC

Ci

meanCi

f

4619

1

562

8500

80101

843104iCb

hmol 020

823104iCd

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 24

For butane (C4)

07218

971

4

4

C

C

meanavgi

f

4619

001

971

8510

80101

072184Cb

hmold

d

hmolb

C

C

C

68817

392007218

3920

4

4

4

For isopentane (i-C5)

meanavgiC

iCiC hmolf

5

5565111001

Hence

4619

001

971

6817

39201

651115iCd

hmolb

hmold

iC

iC

8510801065111

8010

5

5

For pentane (C5)

hmolb

hmold

d

C

C

C

meanavgC

C

105320

2850

840

971

6817

39201

38820

840

5

5

5

5

5

4619

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 25

The calculated data in the table

Components Fi(lbmolh) Di(lbmolh) Bi(lbmolh)

C3 4762 4762 0

i-C4 10834 10823 002

C4 18072 17680 0392

i-C5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Checking

Maximum 3wt of iC5 in the distillate

9772

1004656

172

35134

8010

wt

Maximum of 1 wt C4 in the bottom

011

1009371

158

36531

3920

wt

The set of specification were not met The parameter reevaluated

Again performing same calculations

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 1050-x x

i-C5 840 y 840-y

C5 1470 2055 144945

Total 190939-x+y 229061+x-y

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 26

3658

5522

612290100

1

391909100

3

y

x

yx

x

yx

y

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 102745 2255

i-C5 840 5836 78164

C5 1470 2055 144945

Total 4200 194520 224580

Components F(lbmolh) D(lbmolh) B(lbmolh)

C3 4762 4762 0

i-c4 10834 10823 002

C4 18072 17680 0392

i-c5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Column operating condition

Distillate bubble point calculation on with temperature specified at 130 0F

Components D (lbmolh) K120 (lbin2)

C3 4762 210

i-C4 10823 10

C4 17680 073

i-C5 0801 033

C5 0285 027

Total 34351

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 27

992036334

07634

001

ii

iiii

xK

D

dKxK

Condition of the distillatereflux before 130 0F amp 120 lbin2overhead or column top

conditions are found by dew point calculation at the specified pressure of 1225lbin2

Components D (lbmolh) K1450

F K148 0

F

C3 4762 24 2425

i-C4 10823 116 1175

C4 17680 084 087

i-C5 0801 042 0425

C5 0285 033 034

01D

K

d

K

y i

i

i

i

For T=145 0F

018136334

9934

i

i

K

y K=1175 Tcal=148 0F

For T=148 0F

997036334

24334

i

i

K

y

Conditions of column overhead are revised to 148 0F and 1225lbin2column bottom

conditions are found by way of bubble point calculation

Components B(lbmolh) K2450

F

C3 0 45

i-C4 002 255

C4 0392 205

i-C5 10850 1075

C5 20103 094

Total 31365

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 28

Design equation

001B

bKxK ii

ii

For T =245 0F

00139331

39831ii xK

At column midpoint condition

2

0

1255127512250

519624514850

inlbP

FT

Summery of operating condition

Point 1 Point 2 Point 3

Temperature 148 1965 245

Pressure lbin2 (abs) 1225 125 1275

Equilibrium K data for column midpoint condition

Point 1 Point 2 Point 3

Components Ki i Ki i Ki i avgi

C3 2425 571 34 486 45 419 488

i-C4 1175 276 18 257 255 237 256

C4 087 205 138 197 205 191 198

i-C5 0425 100 07 10 1075 10 10

C5 034 08 06 086 094 087 084

Fenske equation

3919

001

981ln

3880

84210

8090

68417ln

m

m

N

N

Separation of non key component

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 29

4912

100198

2

avgLKavgHK

mean

molh09220bmolh 2920d

molh38820f840

)(CPentane

molh8090dmolh 84210b

molh65111f001

)C-(itan

68417dmolh 3880b

molh07218f981

)(CButane

hmol 82210d h mol0210b

hmol84310f562

)C-(iIsobutane

molh76240007624d

molh000molh101882

001

884

84210

80901

7624

7624f884

)(Cropane

C5C5

C5C5

5

C5-iC5-i

C5-iiC5

5

C4C4

C4C4

4

iC4iC4

iC4iC4

4

33C3

5

39193

C3C3

3

lblb

lb

lblb

lb

eIsopen

hlbmollb

lblb

lb

lbbf

lblbb

hmol

P

CC

C

Components Feed (lbmolh) Distillate (lbmolh) Bottom (lbmolh)

C3 4762 4762 0000

i-C4 10843 10822 0021

C4 18072 17684 03880

i-C5 11651 0809 10842

C5 20388 0292 20096

Total 65716 34369 31347

Maximum value of 3 wt of i-C5 in distillate is required

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 30

Calculated value =

wt 3

1004956

172

36934

8090

Maximum value of 1 wt of C4 in bottom is required

Calculated value

wt 1

1009163

158

34731

3880

Conditions are satisfied

542 Component split by Winn equation

The Fenske equation has a weakness as the relative volatility difference between

column top and bottom increase the estimated minimum number of stages gets

increasingly too small

460

1

460

1

lnln

bottomtop

bottomitopi

i

TT

PKPKB

460

ln

T

BAPK i

ii

110 irHKi PAAi

r

ii B

B

Components KTop148 F Kbottom245 F

C3 2425 450

i-C4 1175 255

C4 087 205

i-C5 0425 1075

C5 034 094

For P=125 lbin2

For butane (C4)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 31

550594460148

)271263()42525122log(

271263

460245

1

460148

1545127log42525122log

4

4

C

C

A

B

Heavy component is iso-pentane( i-C5)

955824460148

)711857()42505122log(

680010717185

271263

711857

460245

1

460148

1

07515127log4250125log

5

4

5

Ci

C

Ci

A

A

B

311344

)125(10

10)1680010()955824550594(

1

irHKi PAAi

Components Bi Ai θi βi

C3 -126327 45509 068001 43113

i-C4 -156377 473016 084177 24069

C4 -172167 48593 092677 191988

i-C5 -185771 49558 100000 10000

C5 -202840 49558 109189 086704

5339

919881log

)369348090(

)3473484210(

)347313880(

)3693468417(log

m

m

N

N

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 32

abvg

1

bdcomponent

orlightif

D

B

d

bb

d

HK

N

i

im

d

b1

fd

2dbkeyheavy

1

avgHKLKif

b

df

b

componentlight propanefor

5

032068

9533

101976

09120713402

4311

b

d

7624

0001097611

76245

bfd

b

For isobutene (i-C4)

f =10843 θ =0842 β =2407 (light component)

lh10821lbmo

002210843d

h0022lbmol

494151

10843b

4941509120713402

2407

b

d08417108417

9533

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 33

For Butane (C4)

f =18072 β=191988θ=092677

h0388lbmol

455771

18072b

4557709120713402

191988

b

d0926771092677

9533

d=18072-0388

=17684 lbmolh

For Isopentane (C5)

f =11651 β =100 θ =100

111

5339

91207040213

00001

b

d

=007461

βltβavg

)0746101(1

65111

d

= 0809 lbmolh

b = 11651-0809

=10842 lbmolh

For Pentane (C5)

f =20388 lbmolh β= 086704 θ =109189

0918911091891

5339

91207040213

867040

b

d

=0014959

βltβavg

)01495901(1

38820

d

= 0300 lb molh

b=20388-03

=20088

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 34

Components Feed lbmolh Distillate lbmolh Bottom lbmolh

C3 4762 4762 000

i-C4 10843 10821 0022

C4 18072 17684 0388

i-C5 11651 0809 10842

C5 20388 03 20088

65716 34376 3134

Components Feed lbh Distillate lbh Bottom lbh

C3 210 210 000

i-C4 630 62872 128

C4 1050 102745 2257

i-C5 840 5836 78164

C5 1470 2163 1448348

4200 194602 2253818

543 Calculation of Rm

From Underwood equation

qx

i

iFi

1

Components Flbmolhr xif xid αi

C3 4762 00725 01386 488

i-C4 10843 01650 03149 256

C4 18072 02750 05145 198

i-C5 11651 01773 002335 100

C5 20388 03102 00085 084

65716 1000 1000

Feed is at boiling conditions since q =1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 35

0840

31020840

1

177301

981

27500981

562

16500562

884

07250884

θ =1284

from this value of θ

avgi

idavgim

xR

1

11284840

00850840

12841

023501

1284981

51450981

1284562

31490562

1284884

13860884

mR

Rm=1185

R=15 Rm

=15times1185

=17775

X=1

R

RR m

X=177751

185177751

=02133

From GillilandrsquoS correlation Y=1

N

NN m =042

We know the value of Nm 4201

5339

N

N

N=178 =18 stages

Feed location can be known by the use of Kirkbride equation

2

)376348090(

)34313880(

)07218(

)65111(

37634

34312060log

F

F

p

m

687890p

m

817 pm

m = 725=8

p =1054 =11

Feed is introduced on eight stage from top

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 36

Chapter- 6

PACKED COLUMN DESIGN

61 Stage AnalysisThe data shown in table are typical data generated by commercial simulation

Vapor liquidStage Temperature0F lbhr CFS

ft3sV

lbft3

Lbhr GPM

galminL

σ

dynecm

μ

cP

1 1349 00 00 00 3655 1423 3202 6867 0114

2 1474 5501 12050 12683 3720 1447 3204 6738 01132

3 1548 5566 12049 12831 3724 1447 3208 6699 01128

4 1609 5571 11987 12909 3707 1438 3214 6684 01130

5 1668 5553 11889 12974 3693 1430 3220 6665 01135

6 1726 5539 11794 13045 3689 1426 3224 6632 01142

7 1779 5535 11716 13122 3691 1426 3226 6590 01149

8 1824 5537 11650 13199 8032 310471 3226 6544 01156

9 1873 5678 11794 13373 8126 3142 3224 6507 01153

10 1917 5772 11871 13506 8201 3171 3224 6479 01151

11 1961 5847 11915 13631 8275 3201 3223 6447 01152

12 2010 5921 11946 13768 8360 3235 3222 6406 01156

13 2064 6006 12152 13928 8475 3274 3220 6348 01162

14 2122 6103 12013 14111 8574 3321 3218 6295 01170

15 2179 6220 12070 14310 8701 3374 3215 6236 01180

16 2232 6347 12148 14512 8829 3428 3211 6178 01191

17 2280 6475 12234 14701 8947 3477 3208 6128 01201

18 2321 6593 12317 14868 2354 91599 3204 6087 01212

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 37

62 Flood Point

15 inch pall ring will be used throughout the column for this packing the flood point can

be determined by interpolation

A-flood point by GPDC [generalized pressure drop correlation] interpolation

2

2

6593

5571

fthrlbA

G

fthrlbA

G

TBottom

TTop

Liquid flowrates ( 2 fthrlb )

LTop =TA

3724

LBottom = TA

8947

Vapor density( 3 ftlb )

48681

31991

BottomG

TopG

Liquid density ( 3 ftlb )

2432

2632

BottomL

TopL

1 Flow parameter

L

GLV ρ

ρ

G

LF

Top 05

LV 3228

13199

5571

3724F

1352110FLV

Bottom LVF =

2432

48681

6593

8947

= 029142

2 Capacity parameter from graphical correlation

Top =152

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 38

Bottom =119

3 Viscosity of the liquid L (cP)

Top L =01128 (cP)

Bottom L =01151 (cP)

4 Kinematic viscosity

=

L

L

462

Top =

2632

11280462

Top = 0218187

Bottom =

2432

11510462

Bottom = 022277

5 Packing factor ( 1ft )

Top FP = 40

Bottom FP = 40

6 Vapour capacity factor CSFI(fts)

Capacity parameter = CSFI FP05 005

Top 05050SFI 2181040

921C

Top SFIC =02593

Bottom 05050SFI 2181040

191C

Bottom 20280CSFI

63 Flood point by the Kister amp Gill correlation

1 FTP packed bed specific pressure drop at flood point

FTP =0115 70PF

Top FTP =0115 7040

=1521

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 39

Bottom FTP =1521 inch of H2O per ft

2 Flow parameter

Top FLV =0135211

Bottom FLV =029142

3 Capacity parameter at flood point

Top =152

Bottom = 119

4 CSFl vapor capacity factor at the flood point

CSFl = capacity parameter

05050

1

PF

Top CSFl =02593

Bottom CSFl =02028

64 Diameter calculation

1 Vapor capacity factor Cs design (nonderated) fts

The column will be designed for 75 flood capacity

SFlS CC 750

Top CS = 075 02593

=0194475

Bottom CS = 075 02028

Bottom CS = 01551

2 CS vapor capacity factor (derated )fts

= 09 CSdesign

Top CS = 09 01944

Top CS =017496

Bottom CS =09 01521

Bottom CS =013689

3 Vapor superficial velocity based on the cross section of empty column u (fts)

GL

G

ss

ρρ

ρ

(derated)Cu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 40

Top su =

319912632

31991

174960

Top su =084737

Bottom su =

486812432

48681

136890

Bottom su = 062257

4 Vapor flow rate CFS ft3s

Top CFS =1205 ft3s

Bottom CFS =12316 ft3shellipfrom table

5 Tower area ft2

AT = s

T u

CFSA

Top AT = 847370

2051

Top AT =1422 ft2

Bottom AT = 622570

23161

Bottom AT =19782 ft2

6 Tower diameter ft

1587ftD

π

197824D

13455ftD

π

14224D

π

A4

BottomT

BottomT

TopT

TopT

TT

D

65 Diameter calculation using the maximum pressure drop criterion

1 L

G

calculation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 41

Top L

G

=2632

31991

= 00409

Bottom L

G

=2432

48681

= 004611

2OH

L

2

calculation

Top ( OHL 2 )=

4362

2632

= 05167

Bottom ( OHL 2 ) =

4362

2432

= 05164

3 FP packing factor

Top FP = 40

Bottom FP =40

4 Maximum pressure drops recommended for packed column with random packing

1902

70max

OH

LPFP

helliphelliphelliphellipfor 006 20L

G

Top maxP = 019 5167040 70

Top maxP = 12984helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

Bottom maxP = 019 5164040 70

Bottom maxP =12977helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

5 Surface tension dyne

Top =6544 cmdyne

Bottom =6128 cmdyne

6 Vapor capacity factor Csmax (fts)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 42

P

s

FCP

3342maxmax

Top 12984 =

5446

403342maxsC

Top maxsC =02634

Bottom 12977 =

1286

403342maxsC

Bottom maxsC =025628

7 Maximum vapor superficial velocity usmax

maxsC = usmax

GL

G

Top usmax =

319912632

31991

26340

= 12752

Bottom usmax =

486812432

48681

25620

=11651 fts

8 Tower area AT (ft2)

AT =smaxu

CFS

Top AT =27521

2051

Top AT =09449

Bottom AT = 16511

23161

= 1057 ft2

9 Tower diameter (ft)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 21: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 21

For T = 238 0F

ΣKiXi=0927

KHK = 108 Tcal =245 0F

For T =245 0F

ΣKiXi=100

The result of column bottom bubble point calculation

T =245 0F

P =1275 lbin2

53 Determination of the key component

Using the heavy key as column reference key The separation is clearly between

butane and isopentane

Reference component =i-C5

Key component

LK =C4

HK =iC5

The average relative volatility data for the column will be generated using three-point

geometric average

3321 avg

Point 1 ndash top of fractionation column

Point 2 ndash at the reboiler

Point 3 ndash arithmetic mean of condition at 1 amp 3

T2 = 05 [ T1 + T2 ] = 05 [ T1 + T2 ]

T2 = 05 [ 145 + 245 ] = 195 0F

P2 = 05 [ P1 + P3 ] = 05 [ 1225 +1275 ]

P2 = 125 lbin2

variable Point 1 Point 2 Point 3

T oF 145 195 245

P lbin2 1225 125 1275

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 22

Components Point 1 Point 2 Point 3

Ki αi Ki αi Ki αi αavg

C3 24 571 335 493 45 419 49

i-C4 115 274 175 257 25 237 256

C4 085 202 135 199 205 191 197

i-C5 024 100 068 100 1075 100 100

C5 033 079 058 085 094 087 084

54 Shortcut Method

541 Minimum stages at total reflux-the Fenske equation

LKavg

BLk

HK

DHK

LK

m

x

x

x

x

Nln

ln

Fi = bi + di

avgmeanavgiiir

rNavgi

i dbb

d

b

d for min

mN

avgHK

avgi

HK

ii

b

d

fb

1

or when ii db meanavgavgi

mN

avgi

avgLK

LK

ii

d

b

fd

1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 23

971ln

01240

3430

02350

51870ln

mN

4619mN

2

avgLKavgHKmean

2

001971

= 1485

For propaneC3

meanC 3

7624

904

3

3

C

C

f

4619

001

904

85010

80101

76243Cb

hmold

hmol

C 7624007624

1091

3

5

For isobutene(i-C4)

84310

562

4

4

4

iC

Ci

meanCi

f

4619

1

562

8500

80101

843104iCb

hmol 020

823104iCd

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 24

For butane (C4)

07218

971

4

4

C

C

meanavgi

f

4619

001

971

8510

80101

072184Cb

hmold

d

hmolb

C

C

C

68817

392007218

3920

4

4

4

For isopentane (i-C5)

meanavgiC

iCiC hmolf

5

5565111001

Hence

4619

001

971

6817

39201

651115iCd

hmolb

hmold

iC

iC

8510801065111

8010

5

5

For pentane (C5)

hmolb

hmold

d

C

C

C

meanavgC

C

105320

2850

840

971

6817

39201

38820

840

5

5

5

5

5

4619

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 25

The calculated data in the table

Components Fi(lbmolh) Di(lbmolh) Bi(lbmolh)

C3 4762 4762 0

i-C4 10834 10823 002

C4 18072 17680 0392

i-C5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Checking

Maximum 3wt of iC5 in the distillate

9772

1004656

172

35134

8010

wt

Maximum of 1 wt C4 in the bottom

011

1009371

158

36531

3920

wt

The set of specification were not met The parameter reevaluated

Again performing same calculations

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 1050-x x

i-C5 840 y 840-y

C5 1470 2055 144945

Total 190939-x+y 229061+x-y

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 26

3658

5522

612290100

1

391909100

3

y

x

yx

x

yx

y

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 102745 2255

i-C5 840 5836 78164

C5 1470 2055 144945

Total 4200 194520 224580

Components F(lbmolh) D(lbmolh) B(lbmolh)

C3 4762 4762 0

i-c4 10834 10823 002

C4 18072 17680 0392

i-c5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Column operating condition

Distillate bubble point calculation on with temperature specified at 130 0F

Components D (lbmolh) K120 (lbin2)

C3 4762 210

i-C4 10823 10

C4 17680 073

i-C5 0801 033

C5 0285 027

Total 34351

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 27

992036334

07634

001

ii

iiii

xK

D

dKxK

Condition of the distillatereflux before 130 0F amp 120 lbin2overhead or column top

conditions are found by dew point calculation at the specified pressure of 1225lbin2

Components D (lbmolh) K1450

F K148 0

F

C3 4762 24 2425

i-C4 10823 116 1175

C4 17680 084 087

i-C5 0801 042 0425

C5 0285 033 034

01D

K

d

K

y i

i

i

i

For T=145 0F

018136334

9934

i

i

K

y K=1175 Tcal=148 0F

For T=148 0F

997036334

24334

i

i

K

y

Conditions of column overhead are revised to 148 0F and 1225lbin2column bottom

conditions are found by way of bubble point calculation

Components B(lbmolh) K2450

F

C3 0 45

i-C4 002 255

C4 0392 205

i-C5 10850 1075

C5 20103 094

Total 31365

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 28

Design equation

001B

bKxK ii

ii

For T =245 0F

00139331

39831ii xK

At column midpoint condition

2

0

1255127512250

519624514850

inlbP

FT

Summery of operating condition

Point 1 Point 2 Point 3

Temperature 148 1965 245

Pressure lbin2 (abs) 1225 125 1275

Equilibrium K data for column midpoint condition

Point 1 Point 2 Point 3

Components Ki i Ki i Ki i avgi

C3 2425 571 34 486 45 419 488

i-C4 1175 276 18 257 255 237 256

C4 087 205 138 197 205 191 198

i-C5 0425 100 07 10 1075 10 10

C5 034 08 06 086 094 087 084

Fenske equation

3919

001

981ln

3880

84210

8090

68417ln

m

m

N

N

Separation of non key component

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 29

4912

100198

2

avgLKavgHK

mean

molh09220bmolh 2920d

molh38820f840

)(CPentane

molh8090dmolh 84210b

molh65111f001

)C-(itan

68417dmolh 3880b

molh07218f981

)(CButane

hmol 82210d h mol0210b

hmol84310f562

)C-(iIsobutane

molh76240007624d

molh000molh101882

001

884

84210

80901

7624

7624f884

)(Cropane

C5C5

C5C5

5

C5-iC5-i

C5-iiC5

5

C4C4

C4C4

4

iC4iC4

iC4iC4

4

33C3

5

39193

C3C3

3

lblb

lb

lblb

lb

eIsopen

hlbmollb

lblb

lb

lbbf

lblbb

hmol

P

CC

C

Components Feed (lbmolh) Distillate (lbmolh) Bottom (lbmolh)

C3 4762 4762 0000

i-C4 10843 10822 0021

C4 18072 17684 03880

i-C5 11651 0809 10842

C5 20388 0292 20096

Total 65716 34369 31347

Maximum value of 3 wt of i-C5 in distillate is required

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 30

Calculated value =

wt 3

1004956

172

36934

8090

Maximum value of 1 wt of C4 in bottom is required

Calculated value

wt 1

1009163

158

34731

3880

Conditions are satisfied

542 Component split by Winn equation

The Fenske equation has a weakness as the relative volatility difference between

column top and bottom increase the estimated minimum number of stages gets

increasingly too small

460

1

460

1

lnln

bottomtop

bottomitopi

i

TT

PKPKB

460

ln

T

BAPK i

ii

110 irHKi PAAi

r

ii B

B

Components KTop148 F Kbottom245 F

C3 2425 450

i-C4 1175 255

C4 087 205

i-C5 0425 1075

C5 034 094

For P=125 lbin2

For butane (C4)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 31

550594460148

)271263()42525122log(

271263

460245

1

460148

1545127log42525122log

4

4

C

C

A

B

Heavy component is iso-pentane( i-C5)

955824460148

)711857()42505122log(

680010717185

271263

711857

460245

1

460148

1

07515127log4250125log

5

4

5

Ci

C

Ci

A

A

B

311344

)125(10

10)1680010()955824550594(

1

irHKi PAAi

Components Bi Ai θi βi

C3 -126327 45509 068001 43113

i-C4 -156377 473016 084177 24069

C4 -172167 48593 092677 191988

i-C5 -185771 49558 100000 10000

C5 -202840 49558 109189 086704

5339

919881log

)369348090(

)3473484210(

)347313880(

)3693468417(log

m

m

N

N

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 32

abvg

1

bdcomponent

orlightif

D

B

d

bb

d

HK

N

i

im

d

b1

fd

2dbkeyheavy

1

avgHKLKif

b

df

b

componentlight propanefor

5

032068

9533

101976

09120713402

4311

b

d

7624

0001097611

76245

bfd

b

For isobutene (i-C4)

f =10843 θ =0842 β =2407 (light component)

lh10821lbmo

002210843d

h0022lbmol

494151

10843b

4941509120713402

2407

b

d08417108417

9533

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 33

For Butane (C4)

f =18072 β=191988θ=092677

h0388lbmol

455771

18072b

4557709120713402

191988

b

d0926771092677

9533

d=18072-0388

=17684 lbmolh

For Isopentane (C5)

f =11651 β =100 θ =100

111

5339

91207040213

00001

b

d

=007461

βltβavg

)0746101(1

65111

d

= 0809 lbmolh

b = 11651-0809

=10842 lbmolh

For Pentane (C5)

f =20388 lbmolh β= 086704 θ =109189

0918911091891

5339

91207040213

867040

b

d

=0014959

βltβavg

)01495901(1

38820

d

= 0300 lb molh

b=20388-03

=20088

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 34

Components Feed lbmolh Distillate lbmolh Bottom lbmolh

C3 4762 4762 000

i-C4 10843 10821 0022

C4 18072 17684 0388

i-C5 11651 0809 10842

C5 20388 03 20088

65716 34376 3134

Components Feed lbh Distillate lbh Bottom lbh

C3 210 210 000

i-C4 630 62872 128

C4 1050 102745 2257

i-C5 840 5836 78164

C5 1470 2163 1448348

4200 194602 2253818

543 Calculation of Rm

From Underwood equation

qx

i

iFi

1

Components Flbmolhr xif xid αi

C3 4762 00725 01386 488

i-C4 10843 01650 03149 256

C4 18072 02750 05145 198

i-C5 11651 01773 002335 100

C5 20388 03102 00085 084

65716 1000 1000

Feed is at boiling conditions since q =1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 35

0840

31020840

1

177301

981

27500981

562

16500562

884

07250884

θ =1284

from this value of θ

avgi

idavgim

xR

1

11284840

00850840

12841

023501

1284981

51450981

1284562

31490562

1284884

13860884

mR

Rm=1185

R=15 Rm

=15times1185

=17775

X=1

R

RR m

X=177751

185177751

=02133

From GillilandrsquoS correlation Y=1

N

NN m =042

We know the value of Nm 4201

5339

N

N

N=178 =18 stages

Feed location can be known by the use of Kirkbride equation

2

)376348090(

)34313880(

)07218(

)65111(

37634

34312060log

F

F

p

m

687890p

m

817 pm

m = 725=8

p =1054 =11

Feed is introduced on eight stage from top

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 36

Chapter- 6

PACKED COLUMN DESIGN

61 Stage AnalysisThe data shown in table are typical data generated by commercial simulation

Vapor liquidStage Temperature0F lbhr CFS

ft3sV

lbft3

Lbhr GPM

galminL

σ

dynecm

μ

cP

1 1349 00 00 00 3655 1423 3202 6867 0114

2 1474 5501 12050 12683 3720 1447 3204 6738 01132

3 1548 5566 12049 12831 3724 1447 3208 6699 01128

4 1609 5571 11987 12909 3707 1438 3214 6684 01130

5 1668 5553 11889 12974 3693 1430 3220 6665 01135

6 1726 5539 11794 13045 3689 1426 3224 6632 01142

7 1779 5535 11716 13122 3691 1426 3226 6590 01149

8 1824 5537 11650 13199 8032 310471 3226 6544 01156

9 1873 5678 11794 13373 8126 3142 3224 6507 01153

10 1917 5772 11871 13506 8201 3171 3224 6479 01151

11 1961 5847 11915 13631 8275 3201 3223 6447 01152

12 2010 5921 11946 13768 8360 3235 3222 6406 01156

13 2064 6006 12152 13928 8475 3274 3220 6348 01162

14 2122 6103 12013 14111 8574 3321 3218 6295 01170

15 2179 6220 12070 14310 8701 3374 3215 6236 01180

16 2232 6347 12148 14512 8829 3428 3211 6178 01191

17 2280 6475 12234 14701 8947 3477 3208 6128 01201

18 2321 6593 12317 14868 2354 91599 3204 6087 01212

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 37

62 Flood Point

15 inch pall ring will be used throughout the column for this packing the flood point can

be determined by interpolation

A-flood point by GPDC [generalized pressure drop correlation] interpolation

2

2

6593

5571

fthrlbA

G

fthrlbA

G

TBottom

TTop

Liquid flowrates ( 2 fthrlb )

LTop =TA

3724

LBottom = TA

8947

Vapor density( 3 ftlb )

48681

31991

BottomG

TopG

Liquid density ( 3 ftlb )

2432

2632

BottomL

TopL

1 Flow parameter

L

GLV ρ

ρ

G

LF

Top 05

LV 3228

13199

5571

3724F

1352110FLV

Bottom LVF =

2432

48681

6593

8947

= 029142

2 Capacity parameter from graphical correlation

Top =152

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 38

Bottom =119

3 Viscosity of the liquid L (cP)

Top L =01128 (cP)

Bottom L =01151 (cP)

4 Kinematic viscosity

=

L

L

462

Top =

2632

11280462

Top = 0218187

Bottom =

2432

11510462

Bottom = 022277

5 Packing factor ( 1ft )

Top FP = 40

Bottom FP = 40

6 Vapour capacity factor CSFI(fts)

Capacity parameter = CSFI FP05 005

Top 05050SFI 2181040

921C

Top SFIC =02593

Bottom 05050SFI 2181040

191C

Bottom 20280CSFI

63 Flood point by the Kister amp Gill correlation

1 FTP packed bed specific pressure drop at flood point

FTP =0115 70PF

Top FTP =0115 7040

=1521

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 39

Bottom FTP =1521 inch of H2O per ft

2 Flow parameter

Top FLV =0135211

Bottom FLV =029142

3 Capacity parameter at flood point

Top =152

Bottom = 119

4 CSFl vapor capacity factor at the flood point

CSFl = capacity parameter

05050

1

PF

Top CSFl =02593

Bottom CSFl =02028

64 Diameter calculation

1 Vapor capacity factor Cs design (nonderated) fts

The column will be designed for 75 flood capacity

SFlS CC 750

Top CS = 075 02593

=0194475

Bottom CS = 075 02028

Bottom CS = 01551

2 CS vapor capacity factor (derated )fts

= 09 CSdesign

Top CS = 09 01944

Top CS =017496

Bottom CS =09 01521

Bottom CS =013689

3 Vapor superficial velocity based on the cross section of empty column u (fts)

GL

G

ss

ρρ

ρ

(derated)Cu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 40

Top su =

319912632

31991

174960

Top su =084737

Bottom su =

486812432

48681

136890

Bottom su = 062257

4 Vapor flow rate CFS ft3s

Top CFS =1205 ft3s

Bottom CFS =12316 ft3shellipfrom table

5 Tower area ft2

AT = s

T u

CFSA

Top AT = 847370

2051

Top AT =1422 ft2

Bottom AT = 622570

23161

Bottom AT =19782 ft2

6 Tower diameter ft

1587ftD

π

197824D

13455ftD

π

14224D

π

A4

BottomT

BottomT

TopT

TopT

TT

D

65 Diameter calculation using the maximum pressure drop criterion

1 L

G

calculation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 41

Top L

G

=2632

31991

= 00409

Bottom L

G

=2432

48681

= 004611

2OH

L

2

calculation

Top ( OHL 2 )=

4362

2632

= 05167

Bottom ( OHL 2 ) =

4362

2432

= 05164

3 FP packing factor

Top FP = 40

Bottom FP =40

4 Maximum pressure drops recommended for packed column with random packing

1902

70max

OH

LPFP

helliphelliphelliphellipfor 006 20L

G

Top maxP = 019 5167040 70

Top maxP = 12984helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

Bottom maxP = 019 5164040 70

Bottom maxP =12977helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

5 Surface tension dyne

Top =6544 cmdyne

Bottom =6128 cmdyne

6 Vapor capacity factor Csmax (fts)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 42

P

s

FCP

3342maxmax

Top 12984 =

5446

403342maxsC

Top maxsC =02634

Bottom 12977 =

1286

403342maxsC

Bottom maxsC =025628

7 Maximum vapor superficial velocity usmax

maxsC = usmax

GL

G

Top usmax =

319912632

31991

26340

= 12752

Bottom usmax =

486812432

48681

25620

=11651 fts

8 Tower area AT (ft2)

AT =smaxu

CFS

Top AT =27521

2051

Top AT =09449

Bottom AT = 16511

23161

= 1057 ft2

9 Tower diameter (ft)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 22: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 22

Components Point 1 Point 2 Point 3

Ki αi Ki αi Ki αi αavg

C3 24 571 335 493 45 419 49

i-C4 115 274 175 257 25 237 256

C4 085 202 135 199 205 191 197

i-C5 024 100 068 100 1075 100 100

C5 033 079 058 085 094 087 084

54 Shortcut Method

541 Minimum stages at total reflux-the Fenske equation

LKavg

BLk

HK

DHK

LK

m

x

x

x

x

Nln

ln

Fi = bi + di

avgmeanavgiiir

rNavgi

i dbb

d

b

d for min

mN

avgHK

avgi

HK

ii

b

d

fb

1

or when ii db meanavgavgi

mN

avgi

avgLK

LK

ii

d

b

fd

1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 23

971ln

01240

3430

02350

51870ln

mN

4619mN

2

avgLKavgHKmean

2

001971

= 1485

For propaneC3

meanC 3

7624

904

3

3

C

C

f

4619

001

904

85010

80101

76243Cb

hmold

hmol

C 7624007624

1091

3

5

For isobutene(i-C4)

84310

562

4

4

4

iC

Ci

meanCi

f

4619

1

562

8500

80101

843104iCb

hmol 020

823104iCd

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 24

For butane (C4)

07218

971

4

4

C

C

meanavgi

f

4619

001

971

8510

80101

072184Cb

hmold

d

hmolb

C

C

C

68817

392007218

3920

4

4

4

For isopentane (i-C5)

meanavgiC

iCiC hmolf

5

5565111001

Hence

4619

001

971

6817

39201

651115iCd

hmolb

hmold

iC

iC

8510801065111

8010

5

5

For pentane (C5)

hmolb

hmold

d

C

C

C

meanavgC

C

105320

2850

840

971

6817

39201

38820

840

5

5

5

5

5

4619

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 25

The calculated data in the table

Components Fi(lbmolh) Di(lbmolh) Bi(lbmolh)

C3 4762 4762 0

i-C4 10834 10823 002

C4 18072 17680 0392

i-C5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Checking

Maximum 3wt of iC5 in the distillate

9772

1004656

172

35134

8010

wt

Maximum of 1 wt C4 in the bottom

011

1009371

158

36531

3920

wt

The set of specification were not met The parameter reevaluated

Again performing same calculations

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 1050-x x

i-C5 840 y 840-y

C5 1470 2055 144945

Total 190939-x+y 229061+x-y

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 26

3658

5522

612290100

1

391909100

3

y

x

yx

x

yx

y

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 102745 2255

i-C5 840 5836 78164

C5 1470 2055 144945

Total 4200 194520 224580

Components F(lbmolh) D(lbmolh) B(lbmolh)

C3 4762 4762 0

i-c4 10834 10823 002

C4 18072 17680 0392

i-c5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Column operating condition

Distillate bubble point calculation on with temperature specified at 130 0F

Components D (lbmolh) K120 (lbin2)

C3 4762 210

i-C4 10823 10

C4 17680 073

i-C5 0801 033

C5 0285 027

Total 34351

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 27

992036334

07634

001

ii

iiii

xK

D

dKxK

Condition of the distillatereflux before 130 0F amp 120 lbin2overhead or column top

conditions are found by dew point calculation at the specified pressure of 1225lbin2

Components D (lbmolh) K1450

F K148 0

F

C3 4762 24 2425

i-C4 10823 116 1175

C4 17680 084 087

i-C5 0801 042 0425

C5 0285 033 034

01D

K

d

K

y i

i

i

i

For T=145 0F

018136334

9934

i

i

K

y K=1175 Tcal=148 0F

For T=148 0F

997036334

24334

i

i

K

y

Conditions of column overhead are revised to 148 0F and 1225lbin2column bottom

conditions are found by way of bubble point calculation

Components B(lbmolh) K2450

F

C3 0 45

i-C4 002 255

C4 0392 205

i-C5 10850 1075

C5 20103 094

Total 31365

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 28

Design equation

001B

bKxK ii

ii

For T =245 0F

00139331

39831ii xK

At column midpoint condition

2

0

1255127512250

519624514850

inlbP

FT

Summery of operating condition

Point 1 Point 2 Point 3

Temperature 148 1965 245

Pressure lbin2 (abs) 1225 125 1275

Equilibrium K data for column midpoint condition

Point 1 Point 2 Point 3

Components Ki i Ki i Ki i avgi

C3 2425 571 34 486 45 419 488

i-C4 1175 276 18 257 255 237 256

C4 087 205 138 197 205 191 198

i-C5 0425 100 07 10 1075 10 10

C5 034 08 06 086 094 087 084

Fenske equation

3919

001

981ln

3880

84210

8090

68417ln

m

m

N

N

Separation of non key component

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 29

4912

100198

2

avgLKavgHK

mean

molh09220bmolh 2920d

molh38820f840

)(CPentane

molh8090dmolh 84210b

molh65111f001

)C-(itan

68417dmolh 3880b

molh07218f981

)(CButane

hmol 82210d h mol0210b

hmol84310f562

)C-(iIsobutane

molh76240007624d

molh000molh101882

001

884

84210

80901

7624

7624f884

)(Cropane

C5C5

C5C5

5

C5-iC5-i

C5-iiC5

5

C4C4

C4C4

4

iC4iC4

iC4iC4

4

33C3

5

39193

C3C3

3

lblb

lb

lblb

lb

eIsopen

hlbmollb

lblb

lb

lbbf

lblbb

hmol

P

CC

C

Components Feed (lbmolh) Distillate (lbmolh) Bottom (lbmolh)

C3 4762 4762 0000

i-C4 10843 10822 0021

C4 18072 17684 03880

i-C5 11651 0809 10842

C5 20388 0292 20096

Total 65716 34369 31347

Maximum value of 3 wt of i-C5 in distillate is required

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 30

Calculated value =

wt 3

1004956

172

36934

8090

Maximum value of 1 wt of C4 in bottom is required

Calculated value

wt 1

1009163

158

34731

3880

Conditions are satisfied

542 Component split by Winn equation

The Fenske equation has a weakness as the relative volatility difference between

column top and bottom increase the estimated minimum number of stages gets

increasingly too small

460

1

460

1

lnln

bottomtop

bottomitopi

i

TT

PKPKB

460

ln

T

BAPK i

ii

110 irHKi PAAi

r

ii B

B

Components KTop148 F Kbottom245 F

C3 2425 450

i-C4 1175 255

C4 087 205

i-C5 0425 1075

C5 034 094

For P=125 lbin2

For butane (C4)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 31

550594460148

)271263()42525122log(

271263

460245

1

460148

1545127log42525122log

4

4

C

C

A

B

Heavy component is iso-pentane( i-C5)

955824460148

)711857()42505122log(

680010717185

271263

711857

460245

1

460148

1

07515127log4250125log

5

4

5

Ci

C

Ci

A

A

B

311344

)125(10

10)1680010()955824550594(

1

irHKi PAAi

Components Bi Ai θi βi

C3 -126327 45509 068001 43113

i-C4 -156377 473016 084177 24069

C4 -172167 48593 092677 191988

i-C5 -185771 49558 100000 10000

C5 -202840 49558 109189 086704

5339

919881log

)369348090(

)3473484210(

)347313880(

)3693468417(log

m

m

N

N

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 32

abvg

1

bdcomponent

orlightif

D

B

d

bb

d

HK

N

i

im

d

b1

fd

2dbkeyheavy

1

avgHKLKif

b

df

b

componentlight propanefor

5

032068

9533

101976

09120713402

4311

b

d

7624

0001097611

76245

bfd

b

For isobutene (i-C4)

f =10843 θ =0842 β =2407 (light component)

lh10821lbmo

002210843d

h0022lbmol

494151

10843b

4941509120713402

2407

b

d08417108417

9533

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 33

For Butane (C4)

f =18072 β=191988θ=092677

h0388lbmol

455771

18072b

4557709120713402

191988

b

d0926771092677

9533

d=18072-0388

=17684 lbmolh

For Isopentane (C5)

f =11651 β =100 θ =100

111

5339

91207040213

00001

b

d

=007461

βltβavg

)0746101(1

65111

d

= 0809 lbmolh

b = 11651-0809

=10842 lbmolh

For Pentane (C5)

f =20388 lbmolh β= 086704 θ =109189

0918911091891

5339

91207040213

867040

b

d

=0014959

βltβavg

)01495901(1

38820

d

= 0300 lb molh

b=20388-03

=20088

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 34

Components Feed lbmolh Distillate lbmolh Bottom lbmolh

C3 4762 4762 000

i-C4 10843 10821 0022

C4 18072 17684 0388

i-C5 11651 0809 10842

C5 20388 03 20088

65716 34376 3134

Components Feed lbh Distillate lbh Bottom lbh

C3 210 210 000

i-C4 630 62872 128

C4 1050 102745 2257

i-C5 840 5836 78164

C5 1470 2163 1448348

4200 194602 2253818

543 Calculation of Rm

From Underwood equation

qx

i

iFi

1

Components Flbmolhr xif xid αi

C3 4762 00725 01386 488

i-C4 10843 01650 03149 256

C4 18072 02750 05145 198

i-C5 11651 01773 002335 100

C5 20388 03102 00085 084

65716 1000 1000

Feed is at boiling conditions since q =1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 35

0840

31020840

1

177301

981

27500981

562

16500562

884

07250884

θ =1284

from this value of θ

avgi

idavgim

xR

1

11284840

00850840

12841

023501

1284981

51450981

1284562

31490562

1284884

13860884

mR

Rm=1185

R=15 Rm

=15times1185

=17775

X=1

R

RR m

X=177751

185177751

=02133

From GillilandrsquoS correlation Y=1

N

NN m =042

We know the value of Nm 4201

5339

N

N

N=178 =18 stages

Feed location can be known by the use of Kirkbride equation

2

)376348090(

)34313880(

)07218(

)65111(

37634

34312060log

F

F

p

m

687890p

m

817 pm

m = 725=8

p =1054 =11

Feed is introduced on eight stage from top

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 36

Chapter- 6

PACKED COLUMN DESIGN

61 Stage AnalysisThe data shown in table are typical data generated by commercial simulation

Vapor liquidStage Temperature0F lbhr CFS

ft3sV

lbft3

Lbhr GPM

galminL

σ

dynecm

μ

cP

1 1349 00 00 00 3655 1423 3202 6867 0114

2 1474 5501 12050 12683 3720 1447 3204 6738 01132

3 1548 5566 12049 12831 3724 1447 3208 6699 01128

4 1609 5571 11987 12909 3707 1438 3214 6684 01130

5 1668 5553 11889 12974 3693 1430 3220 6665 01135

6 1726 5539 11794 13045 3689 1426 3224 6632 01142

7 1779 5535 11716 13122 3691 1426 3226 6590 01149

8 1824 5537 11650 13199 8032 310471 3226 6544 01156

9 1873 5678 11794 13373 8126 3142 3224 6507 01153

10 1917 5772 11871 13506 8201 3171 3224 6479 01151

11 1961 5847 11915 13631 8275 3201 3223 6447 01152

12 2010 5921 11946 13768 8360 3235 3222 6406 01156

13 2064 6006 12152 13928 8475 3274 3220 6348 01162

14 2122 6103 12013 14111 8574 3321 3218 6295 01170

15 2179 6220 12070 14310 8701 3374 3215 6236 01180

16 2232 6347 12148 14512 8829 3428 3211 6178 01191

17 2280 6475 12234 14701 8947 3477 3208 6128 01201

18 2321 6593 12317 14868 2354 91599 3204 6087 01212

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 37

62 Flood Point

15 inch pall ring will be used throughout the column for this packing the flood point can

be determined by interpolation

A-flood point by GPDC [generalized pressure drop correlation] interpolation

2

2

6593

5571

fthrlbA

G

fthrlbA

G

TBottom

TTop

Liquid flowrates ( 2 fthrlb )

LTop =TA

3724

LBottom = TA

8947

Vapor density( 3 ftlb )

48681

31991

BottomG

TopG

Liquid density ( 3 ftlb )

2432

2632

BottomL

TopL

1 Flow parameter

L

GLV ρ

ρ

G

LF

Top 05

LV 3228

13199

5571

3724F

1352110FLV

Bottom LVF =

2432

48681

6593

8947

= 029142

2 Capacity parameter from graphical correlation

Top =152

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 38

Bottom =119

3 Viscosity of the liquid L (cP)

Top L =01128 (cP)

Bottom L =01151 (cP)

4 Kinematic viscosity

=

L

L

462

Top =

2632

11280462

Top = 0218187

Bottom =

2432

11510462

Bottom = 022277

5 Packing factor ( 1ft )

Top FP = 40

Bottom FP = 40

6 Vapour capacity factor CSFI(fts)

Capacity parameter = CSFI FP05 005

Top 05050SFI 2181040

921C

Top SFIC =02593

Bottom 05050SFI 2181040

191C

Bottom 20280CSFI

63 Flood point by the Kister amp Gill correlation

1 FTP packed bed specific pressure drop at flood point

FTP =0115 70PF

Top FTP =0115 7040

=1521

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 39

Bottom FTP =1521 inch of H2O per ft

2 Flow parameter

Top FLV =0135211

Bottom FLV =029142

3 Capacity parameter at flood point

Top =152

Bottom = 119

4 CSFl vapor capacity factor at the flood point

CSFl = capacity parameter

05050

1

PF

Top CSFl =02593

Bottom CSFl =02028

64 Diameter calculation

1 Vapor capacity factor Cs design (nonderated) fts

The column will be designed for 75 flood capacity

SFlS CC 750

Top CS = 075 02593

=0194475

Bottom CS = 075 02028

Bottom CS = 01551

2 CS vapor capacity factor (derated )fts

= 09 CSdesign

Top CS = 09 01944

Top CS =017496

Bottom CS =09 01521

Bottom CS =013689

3 Vapor superficial velocity based on the cross section of empty column u (fts)

GL

G

ss

ρρ

ρ

(derated)Cu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 40

Top su =

319912632

31991

174960

Top su =084737

Bottom su =

486812432

48681

136890

Bottom su = 062257

4 Vapor flow rate CFS ft3s

Top CFS =1205 ft3s

Bottom CFS =12316 ft3shellipfrom table

5 Tower area ft2

AT = s

T u

CFSA

Top AT = 847370

2051

Top AT =1422 ft2

Bottom AT = 622570

23161

Bottom AT =19782 ft2

6 Tower diameter ft

1587ftD

π

197824D

13455ftD

π

14224D

π

A4

BottomT

BottomT

TopT

TopT

TT

D

65 Diameter calculation using the maximum pressure drop criterion

1 L

G

calculation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 41

Top L

G

=2632

31991

= 00409

Bottom L

G

=2432

48681

= 004611

2OH

L

2

calculation

Top ( OHL 2 )=

4362

2632

= 05167

Bottom ( OHL 2 ) =

4362

2432

= 05164

3 FP packing factor

Top FP = 40

Bottom FP =40

4 Maximum pressure drops recommended for packed column with random packing

1902

70max

OH

LPFP

helliphelliphelliphellipfor 006 20L

G

Top maxP = 019 5167040 70

Top maxP = 12984helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

Bottom maxP = 019 5164040 70

Bottom maxP =12977helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

5 Surface tension dyne

Top =6544 cmdyne

Bottom =6128 cmdyne

6 Vapor capacity factor Csmax (fts)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 42

P

s

FCP

3342maxmax

Top 12984 =

5446

403342maxsC

Top maxsC =02634

Bottom 12977 =

1286

403342maxsC

Bottom maxsC =025628

7 Maximum vapor superficial velocity usmax

maxsC = usmax

GL

G

Top usmax =

319912632

31991

26340

= 12752

Bottom usmax =

486812432

48681

25620

=11651 fts

8 Tower area AT (ft2)

AT =smaxu

CFS

Top AT =27521

2051

Top AT =09449

Bottom AT = 16511

23161

= 1057 ft2

9 Tower diameter (ft)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 23: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 23

971ln

01240

3430

02350

51870ln

mN

4619mN

2

avgLKavgHKmean

2

001971

= 1485

For propaneC3

meanC 3

7624

904

3

3

C

C

f

4619

001

904

85010

80101

76243Cb

hmold

hmol

C 7624007624

1091

3

5

For isobutene(i-C4)

84310

562

4

4

4

iC

Ci

meanCi

f

4619

1

562

8500

80101

843104iCb

hmol 020

823104iCd

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 24

For butane (C4)

07218

971

4

4

C

C

meanavgi

f

4619

001

971

8510

80101

072184Cb

hmold

d

hmolb

C

C

C

68817

392007218

3920

4

4

4

For isopentane (i-C5)

meanavgiC

iCiC hmolf

5

5565111001

Hence

4619

001

971

6817

39201

651115iCd

hmolb

hmold

iC

iC

8510801065111

8010

5

5

For pentane (C5)

hmolb

hmold

d

C

C

C

meanavgC

C

105320

2850

840

971

6817

39201

38820

840

5

5

5

5

5

4619

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 25

The calculated data in the table

Components Fi(lbmolh) Di(lbmolh) Bi(lbmolh)

C3 4762 4762 0

i-C4 10834 10823 002

C4 18072 17680 0392

i-C5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Checking

Maximum 3wt of iC5 in the distillate

9772

1004656

172

35134

8010

wt

Maximum of 1 wt C4 in the bottom

011

1009371

158

36531

3920

wt

The set of specification were not met The parameter reevaluated

Again performing same calculations

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 1050-x x

i-C5 840 y 840-y

C5 1470 2055 144945

Total 190939-x+y 229061+x-y

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 26

3658

5522

612290100

1

391909100

3

y

x

yx

x

yx

y

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 102745 2255

i-C5 840 5836 78164

C5 1470 2055 144945

Total 4200 194520 224580

Components F(lbmolh) D(lbmolh) B(lbmolh)

C3 4762 4762 0

i-c4 10834 10823 002

C4 18072 17680 0392

i-c5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Column operating condition

Distillate bubble point calculation on with temperature specified at 130 0F

Components D (lbmolh) K120 (lbin2)

C3 4762 210

i-C4 10823 10

C4 17680 073

i-C5 0801 033

C5 0285 027

Total 34351

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 27

992036334

07634

001

ii

iiii

xK

D

dKxK

Condition of the distillatereflux before 130 0F amp 120 lbin2overhead or column top

conditions are found by dew point calculation at the specified pressure of 1225lbin2

Components D (lbmolh) K1450

F K148 0

F

C3 4762 24 2425

i-C4 10823 116 1175

C4 17680 084 087

i-C5 0801 042 0425

C5 0285 033 034

01D

K

d

K

y i

i

i

i

For T=145 0F

018136334

9934

i

i

K

y K=1175 Tcal=148 0F

For T=148 0F

997036334

24334

i

i

K

y

Conditions of column overhead are revised to 148 0F and 1225lbin2column bottom

conditions are found by way of bubble point calculation

Components B(lbmolh) K2450

F

C3 0 45

i-C4 002 255

C4 0392 205

i-C5 10850 1075

C5 20103 094

Total 31365

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 28

Design equation

001B

bKxK ii

ii

For T =245 0F

00139331

39831ii xK

At column midpoint condition

2

0

1255127512250

519624514850

inlbP

FT

Summery of operating condition

Point 1 Point 2 Point 3

Temperature 148 1965 245

Pressure lbin2 (abs) 1225 125 1275

Equilibrium K data for column midpoint condition

Point 1 Point 2 Point 3

Components Ki i Ki i Ki i avgi

C3 2425 571 34 486 45 419 488

i-C4 1175 276 18 257 255 237 256

C4 087 205 138 197 205 191 198

i-C5 0425 100 07 10 1075 10 10

C5 034 08 06 086 094 087 084

Fenske equation

3919

001

981ln

3880

84210

8090

68417ln

m

m

N

N

Separation of non key component

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 29

4912

100198

2

avgLKavgHK

mean

molh09220bmolh 2920d

molh38820f840

)(CPentane

molh8090dmolh 84210b

molh65111f001

)C-(itan

68417dmolh 3880b

molh07218f981

)(CButane

hmol 82210d h mol0210b

hmol84310f562

)C-(iIsobutane

molh76240007624d

molh000molh101882

001

884

84210

80901

7624

7624f884

)(Cropane

C5C5

C5C5

5

C5-iC5-i

C5-iiC5

5

C4C4

C4C4

4

iC4iC4

iC4iC4

4

33C3

5

39193

C3C3

3

lblb

lb

lblb

lb

eIsopen

hlbmollb

lblb

lb

lbbf

lblbb

hmol

P

CC

C

Components Feed (lbmolh) Distillate (lbmolh) Bottom (lbmolh)

C3 4762 4762 0000

i-C4 10843 10822 0021

C4 18072 17684 03880

i-C5 11651 0809 10842

C5 20388 0292 20096

Total 65716 34369 31347

Maximum value of 3 wt of i-C5 in distillate is required

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 30

Calculated value =

wt 3

1004956

172

36934

8090

Maximum value of 1 wt of C4 in bottom is required

Calculated value

wt 1

1009163

158

34731

3880

Conditions are satisfied

542 Component split by Winn equation

The Fenske equation has a weakness as the relative volatility difference between

column top and bottom increase the estimated minimum number of stages gets

increasingly too small

460

1

460

1

lnln

bottomtop

bottomitopi

i

TT

PKPKB

460

ln

T

BAPK i

ii

110 irHKi PAAi

r

ii B

B

Components KTop148 F Kbottom245 F

C3 2425 450

i-C4 1175 255

C4 087 205

i-C5 0425 1075

C5 034 094

For P=125 lbin2

For butane (C4)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 31

550594460148

)271263()42525122log(

271263

460245

1

460148

1545127log42525122log

4

4

C

C

A

B

Heavy component is iso-pentane( i-C5)

955824460148

)711857()42505122log(

680010717185

271263

711857

460245

1

460148

1

07515127log4250125log

5

4

5

Ci

C

Ci

A

A

B

311344

)125(10

10)1680010()955824550594(

1

irHKi PAAi

Components Bi Ai θi βi

C3 -126327 45509 068001 43113

i-C4 -156377 473016 084177 24069

C4 -172167 48593 092677 191988

i-C5 -185771 49558 100000 10000

C5 -202840 49558 109189 086704

5339

919881log

)369348090(

)3473484210(

)347313880(

)3693468417(log

m

m

N

N

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 32

abvg

1

bdcomponent

orlightif

D

B

d

bb

d

HK

N

i

im

d

b1

fd

2dbkeyheavy

1

avgHKLKif

b

df

b

componentlight propanefor

5

032068

9533

101976

09120713402

4311

b

d

7624

0001097611

76245

bfd

b

For isobutene (i-C4)

f =10843 θ =0842 β =2407 (light component)

lh10821lbmo

002210843d

h0022lbmol

494151

10843b

4941509120713402

2407

b

d08417108417

9533

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 33

For Butane (C4)

f =18072 β=191988θ=092677

h0388lbmol

455771

18072b

4557709120713402

191988

b

d0926771092677

9533

d=18072-0388

=17684 lbmolh

For Isopentane (C5)

f =11651 β =100 θ =100

111

5339

91207040213

00001

b

d

=007461

βltβavg

)0746101(1

65111

d

= 0809 lbmolh

b = 11651-0809

=10842 lbmolh

For Pentane (C5)

f =20388 lbmolh β= 086704 θ =109189

0918911091891

5339

91207040213

867040

b

d

=0014959

βltβavg

)01495901(1

38820

d

= 0300 lb molh

b=20388-03

=20088

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 34

Components Feed lbmolh Distillate lbmolh Bottom lbmolh

C3 4762 4762 000

i-C4 10843 10821 0022

C4 18072 17684 0388

i-C5 11651 0809 10842

C5 20388 03 20088

65716 34376 3134

Components Feed lbh Distillate lbh Bottom lbh

C3 210 210 000

i-C4 630 62872 128

C4 1050 102745 2257

i-C5 840 5836 78164

C5 1470 2163 1448348

4200 194602 2253818

543 Calculation of Rm

From Underwood equation

qx

i

iFi

1

Components Flbmolhr xif xid αi

C3 4762 00725 01386 488

i-C4 10843 01650 03149 256

C4 18072 02750 05145 198

i-C5 11651 01773 002335 100

C5 20388 03102 00085 084

65716 1000 1000

Feed is at boiling conditions since q =1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 35

0840

31020840

1

177301

981

27500981

562

16500562

884

07250884

θ =1284

from this value of θ

avgi

idavgim

xR

1

11284840

00850840

12841

023501

1284981

51450981

1284562

31490562

1284884

13860884

mR

Rm=1185

R=15 Rm

=15times1185

=17775

X=1

R

RR m

X=177751

185177751

=02133

From GillilandrsquoS correlation Y=1

N

NN m =042

We know the value of Nm 4201

5339

N

N

N=178 =18 stages

Feed location can be known by the use of Kirkbride equation

2

)376348090(

)34313880(

)07218(

)65111(

37634

34312060log

F

F

p

m

687890p

m

817 pm

m = 725=8

p =1054 =11

Feed is introduced on eight stage from top

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 36

Chapter- 6

PACKED COLUMN DESIGN

61 Stage AnalysisThe data shown in table are typical data generated by commercial simulation

Vapor liquidStage Temperature0F lbhr CFS

ft3sV

lbft3

Lbhr GPM

galminL

σ

dynecm

μ

cP

1 1349 00 00 00 3655 1423 3202 6867 0114

2 1474 5501 12050 12683 3720 1447 3204 6738 01132

3 1548 5566 12049 12831 3724 1447 3208 6699 01128

4 1609 5571 11987 12909 3707 1438 3214 6684 01130

5 1668 5553 11889 12974 3693 1430 3220 6665 01135

6 1726 5539 11794 13045 3689 1426 3224 6632 01142

7 1779 5535 11716 13122 3691 1426 3226 6590 01149

8 1824 5537 11650 13199 8032 310471 3226 6544 01156

9 1873 5678 11794 13373 8126 3142 3224 6507 01153

10 1917 5772 11871 13506 8201 3171 3224 6479 01151

11 1961 5847 11915 13631 8275 3201 3223 6447 01152

12 2010 5921 11946 13768 8360 3235 3222 6406 01156

13 2064 6006 12152 13928 8475 3274 3220 6348 01162

14 2122 6103 12013 14111 8574 3321 3218 6295 01170

15 2179 6220 12070 14310 8701 3374 3215 6236 01180

16 2232 6347 12148 14512 8829 3428 3211 6178 01191

17 2280 6475 12234 14701 8947 3477 3208 6128 01201

18 2321 6593 12317 14868 2354 91599 3204 6087 01212

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 37

62 Flood Point

15 inch pall ring will be used throughout the column for this packing the flood point can

be determined by interpolation

A-flood point by GPDC [generalized pressure drop correlation] interpolation

2

2

6593

5571

fthrlbA

G

fthrlbA

G

TBottom

TTop

Liquid flowrates ( 2 fthrlb )

LTop =TA

3724

LBottom = TA

8947

Vapor density( 3 ftlb )

48681

31991

BottomG

TopG

Liquid density ( 3 ftlb )

2432

2632

BottomL

TopL

1 Flow parameter

L

GLV ρ

ρ

G

LF

Top 05

LV 3228

13199

5571

3724F

1352110FLV

Bottom LVF =

2432

48681

6593

8947

= 029142

2 Capacity parameter from graphical correlation

Top =152

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 38

Bottom =119

3 Viscosity of the liquid L (cP)

Top L =01128 (cP)

Bottom L =01151 (cP)

4 Kinematic viscosity

=

L

L

462

Top =

2632

11280462

Top = 0218187

Bottom =

2432

11510462

Bottom = 022277

5 Packing factor ( 1ft )

Top FP = 40

Bottom FP = 40

6 Vapour capacity factor CSFI(fts)

Capacity parameter = CSFI FP05 005

Top 05050SFI 2181040

921C

Top SFIC =02593

Bottom 05050SFI 2181040

191C

Bottom 20280CSFI

63 Flood point by the Kister amp Gill correlation

1 FTP packed bed specific pressure drop at flood point

FTP =0115 70PF

Top FTP =0115 7040

=1521

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 39

Bottom FTP =1521 inch of H2O per ft

2 Flow parameter

Top FLV =0135211

Bottom FLV =029142

3 Capacity parameter at flood point

Top =152

Bottom = 119

4 CSFl vapor capacity factor at the flood point

CSFl = capacity parameter

05050

1

PF

Top CSFl =02593

Bottom CSFl =02028

64 Diameter calculation

1 Vapor capacity factor Cs design (nonderated) fts

The column will be designed for 75 flood capacity

SFlS CC 750

Top CS = 075 02593

=0194475

Bottom CS = 075 02028

Bottom CS = 01551

2 CS vapor capacity factor (derated )fts

= 09 CSdesign

Top CS = 09 01944

Top CS =017496

Bottom CS =09 01521

Bottom CS =013689

3 Vapor superficial velocity based on the cross section of empty column u (fts)

GL

G

ss

ρρ

ρ

(derated)Cu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 40

Top su =

319912632

31991

174960

Top su =084737

Bottom su =

486812432

48681

136890

Bottom su = 062257

4 Vapor flow rate CFS ft3s

Top CFS =1205 ft3s

Bottom CFS =12316 ft3shellipfrom table

5 Tower area ft2

AT = s

T u

CFSA

Top AT = 847370

2051

Top AT =1422 ft2

Bottom AT = 622570

23161

Bottom AT =19782 ft2

6 Tower diameter ft

1587ftD

π

197824D

13455ftD

π

14224D

π

A4

BottomT

BottomT

TopT

TopT

TT

D

65 Diameter calculation using the maximum pressure drop criterion

1 L

G

calculation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 41

Top L

G

=2632

31991

= 00409

Bottom L

G

=2432

48681

= 004611

2OH

L

2

calculation

Top ( OHL 2 )=

4362

2632

= 05167

Bottom ( OHL 2 ) =

4362

2432

= 05164

3 FP packing factor

Top FP = 40

Bottom FP =40

4 Maximum pressure drops recommended for packed column with random packing

1902

70max

OH

LPFP

helliphelliphelliphellipfor 006 20L

G

Top maxP = 019 5167040 70

Top maxP = 12984helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

Bottom maxP = 019 5164040 70

Bottom maxP =12977helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

5 Surface tension dyne

Top =6544 cmdyne

Bottom =6128 cmdyne

6 Vapor capacity factor Csmax (fts)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 42

P

s

FCP

3342maxmax

Top 12984 =

5446

403342maxsC

Top maxsC =02634

Bottom 12977 =

1286

403342maxsC

Bottom maxsC =025628

7 Maximum vapor superficial velocity usmax

maxsC = usmax

GL

G

Top usmax =

319912632

31991

26340

= 12752

Bottom usmax =

486812432

48681

25620

=11651 fts

8 Tower area AT (ft2)

AT =smaxu

CFS

Top AT =27521

2051

Top AT =09449

Bottom AT = 16511

23161

= 1057 ft2

9 Tower diameter (ft)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 24: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 24

For butane (C4)

07218

971

4

4

C

C

meanavgi

f

4619

001

971

8510

80101

072184Cb

hmold

d

hmolb

C

C

C

68817

392007218

3920

4

4

4

For isopentane (i-C5)

meanavgiC

iCiC hmolf

5

5565111001

Hence

4619

001

971

6817

39201

651115iCd

hmolb

hmold

iC

iC

8510801065111

8010

5

5

For pentane (C5)

hmolb

hmold

d

C

C

C

meanavgC

C

105320

2850

840

971

6817

39201

38820

840

5

5

5

5

5

4619

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 25

The calculated data in the table

Components Fi(lbmolh) Di(lbmolh) Bi(lbmolh)

C3 4762 4762 0

i-C4 10834 10823 002

C4 18072 17680 0392

i-C5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Checking

Maximum 3wt of iC5 in the distillate

9772

1004656

172

35134

8010

wt

Maximum of 1 wt C4 in the bottom

011

1009371

158

36531

3920

wt

The set of specification were not met The parameter reevaluated

Again performing same calculations

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 1050-x x

i-C5 840 y 840-y

C5 1470 2055 144945

Total 190939-x+y 229061+x-y

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 26

3658

5522

612290100

1

391909100

3

y

x

yx

x

yx

y

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 102745 2255

i-C5 840 5836 78164

C5 1470 2055 144945

Total 4200 194520 224580

Components F(lbmolh) D(lbmolh) B(lbmolh)

C3 4762 4762 0

i-c4 10834 10823 002

C4 18072 17680 0392

i-c5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Column operating condition

Distillate bubble point calculation on with temperature specified at 130 0F

Components D (lbmolh) K120 (lbin2)

C3 4762 210

i-C4 10823 10

C4 17680 073

i-C5 0801 033

C5 0285 027

Total 34351

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 27

992036334

07634

001

ii

iiii

xK

D

dKxK

Condition of the distillatereflux before 130 0F amp 120 lbin2overhead or column top

conditions are found by dew point calculation at the specified pressure of 1225lbin2

Components D (lbmolh) K1450

F K148 0

F

C3 4762 24 2425

i-C4 10823 116 1175

C4 17680 084 087

i-C5 0801 042 0425

C5 0285 033 034

01D

K

d

K

y i

i

i

i

For T=145 0F

018136334

9934

i

i

K

y K=1175 Tcal=148 0F

For T=148 0F

997036334

24334

i

i

K

y

Conditions of column overhead are revised to 148 0F and 1225lbin2column bottom

conditions are found by way of bubble point calculation

Components B(lbmolh) K2450

F

C3 0 45

i-C4 002 255

C4 0392 205

i-C5 10850 1075

C5 20103 094

Total 31365

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 28

Design equation

001B

bKxK ii

ii

For T =245 0F

00139331

39831ii xK

At column midpoint condition

2

0

1255127512250

519624514850

inlbP

FT

Summery of operating condition

Point 1 Point 2 Point 3

Temperature 148 1965 245

Pressure lbin2 (abs) 1225 125 1275

Equilibrium K data for column midpoint condition

Point 1 Point 2 Point 3

Components Ki i Ki i Ki i avgi

C3 2425 571 34 486 45 419 488

i-C4 1175 276 18 257 255 237 256

C4 087 205 138 197 205 191 198

i-C5 0425 100 07 10 1075 10 10

C5 034 08 06 086 094 087 084

Fenske equation

3919

001

981ln

3880

84210

8090

68417ln

m

m

N

N

Separation of non key component

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 29

4912

100198

2

avgLKavgHK

mean

molh09220bmolh 2920d

molh38820f840

)(CPentane

molh8090dmolh 84210b

molh65111f001

)C-(itan

68417dmolh 3880b

molh07218f981

)(CButane

hmol 82210d h mol0210b

hmol84310f562

)C-(iIsobutane

molh76240007624d

molh000molh101882

001

884

84210

80901

7624

7624f884

)(Cropane

C5C5

C5C5

5

C5-iC5-i

C5-iiC5

5

C4C4

C4C4

4

iC4iC4

iC4iC4

4

33C3

5

39193

C3C3

3

lblb

lb

lblb

lb

eIsopen

hlbmollb

lblb

lb

lbbf

lblbb

hmol

P

CC

C

Components Feed (lbmolh) Distillate (lbmolh) Bottom (lbmolh)

C3 4762 4762 0000

i-C4 10843 10822 0021

C4 18072 17684 03880

i-C5 11651 0809 10842

C5 20388 0292 20096

Total 65716 34369 31347

Maximum value of 3 wt of i-C5 in distillate is required

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 30

Calculated value =

wt 3

1004956

172

36934

8090

Maximum value of 1 wt of C4 in bottom is required

Calculated value

wt 1

1009163

158

34731

3880

Conditions are satisfied

542 Component split by Winn equation

The Fenske equation has a weakness as the relative volatility difference between

column top and bottom increase the estimated minimum number of stages gets

increasingly too small

460

1

460

1

lnln

bottomtop

bottomitopi

i

TT

PKPKB

460

ln

T

BAPK i

ii

110 irHKi PAAi

r

ii B

B

Components KTop148 F Kbottom245 F

C3 2425 450

i-C4 1175 255

C4 087 205

i-C5 0425 1075

C5 034 094

For P=125 lbin2

For butane (C4)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 31

550594460148

)271263()42525122log(

271263

460245

1

460148

1545127log42525122log

4

4

C

C

A

B

Heavy component is iso-pentane( i-C5)

955824460148

)711857()42505122log(

680010717185

271263

711857

460245

1

460148

1

07515127log4250125log

5

4

5

Ci

C

Ci

A

A

B

311344

)125(10

10)1680010()955824550594(

1

irHKi PAAi

Components Bi Ai θi βi

C3 -126327 45509 068001 43113

i-C4 -156377 473016 084177 24069

C4 -172167 48593 092677 191988

i-C5 -185771 49558 100000 10000

C5 -202840 49558 109189 086704

5339

919881log

)369348090(

)3473484210(

)347313880(

)3693468417(log

m

m

N

N

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 32

abvg

1

bdcomponent

orlightif

D

B

d

bb

d

HK

N

i

im

d

b1

fd

2dbkeyheavy

1

avgHKLKif

b

df

b

componentlight propanefor

5

032068

9533

101976

09120713402

4311

b

d

7624

0001097611

76245

bfd

b

For isobutene (i-C4)

f =10843 θ =0842 β =2407 (light component)

lh10821lbmo

002210843d

h0022lbmol

494151

10843b

4941509120713402

2407

b

d08417108417

9533

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 33

For Butane (C4)

f =18072 β=191988θ=092677

h0388lbmol

455771

18072b

4557709120713402

191988

b

d0926771092677

9533

d=18072-0388

=17684 lbmolh

For Isopentane (C5)

f =11651 β =100 θ =100

111

5339

91207040213

00001

b

d

=007461

βltβavg

)0746101(1

65111

d

= 0809 lbmolh

b = 11651-0809

=10842 lbmolh

For Pentane (C5)

f =20388 lbmolh β= 086704 θ =109189

0918911091891

5339

91207040213

867040

b

d

=0014959

βltβavg

)01495901(1

38820

d

= 0300 lb molh

b=20388-03

=20088

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 34

Components Feed lbmolh Distillate lbmolh Bottom lbmolh

C3 4762 4762 000

i-C4 10843 10821 0022

C4 18072 17684 0388

i-C5 11651 0809 10842

C5 20388 03 20088

65716 34376 3134

Components Feed lbh Distillate lbh Bottom lbh

C3 210 210 000

i-C4 630 62872 128

C4 1050 102745 2257

i-C5 840 5836 78164

C5 1470 2163 1448348

4200 194602 2253818

543 Calculation of Rm

From Underwood equation

qx

i

iFi

1

Components Flbmolhr xif xid αi

C3 4762 00725 01386 488

i-C4 10843 01650 03149 256

C4 18072 02750 05145 198

i-C5 11651 01773 002335 100

C5 20388 03102 00085 084

65716 1000 1000

Feed is at boiling conditions since q =1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 35

0840

31020840

1

177301

981

27500981

562

16500562

884

07250884

θ =1284

from this value of θ

avgi

idavgim

xR

1

11284840

00850840

12841

023501

1284981

51450981

1284562

31490562

1284884

13860884

mR

Rm=1185

R=15 Rm

=15times1185

=17775

X=1

R

RR m

X=177751

185177751

=02133

From GillilandrsquoS correlation Y=1

N

NN m =042

We know the value of Nm 4201

5339

N

N

N=178 =18 stages

Feed location can be known by the use of Kirkbride equation

2

)376348090(

)34313880(

)07218(

)65111(

37634

34312060log

F

F

p

m

687890p

m

817 pm

m = 725=8

p =1054 =11

Feed is introduced on eight stage from top

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 36

Chapter- 6

PACKED COLUMN DESIGN

61 Stage AnalysisThe data shown in table are typical data generated by commercial simulation

Vapor liquidStage Temperature0F lbhr CFS

ft3sV

lbft3

Lbhr GPM

galminL

σ

dynecm

μ

cP

1 1349 00 00 00 3655 1423 3202 6867 0114

2 1474 5501 12050 12683 3720 1447 3204 6738 01132

3 1548 5566 12049 12831 3724 1447 3208 6699 01128

4 1609 5571 11987 12909 3707 1438 3214 6684 01130

5 1668 5553 11889 12974 3693 1430 3220 6665 01135

6 1726 5539 11794 13045 3689 1426 3224 6632 01142

7 1779 5535 11716 13122 3691 1426 3226 6590 01149

8 1824 5537 11650 13199 8032 310471 3226 6544 01156

9 1873 5678 11794 13373 8126 3142 3224 6507 01153

10 1917 5772 11871 13506 8201 3171 3224 6479 01151

11 1961 5847 11915 13631 8275 3201 3223 6447 01152

12 2010 5921 11946 13768 8360 3235 3222 6406 01156

13 2064 6006 12152 13928 8475 3274 3220 6348 01162

14 2122 6103 12013 14111 8574 3321 3218 6295 01170

15 2179 6220 12070 14310 8701 3374 3215 6236 01180

16 2232 6347 12148 14512 8829 3428 3211 6178 01191

17 2280 6475 12234 14701 8947 3477 3208 6128 01201

18 2321 6593 12317 14868 2354 91599 3204 6087 01212

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 37

62 Flood Point

15 inch pall ring will be used throughout the column for this packing the flood point can

be determined by interpolation

A-flood point by GPDC [generalized pressure drop correlation] interpolation

2

2

6593

5571

fthrlbA

G

fthrlbA

G

TBottom

TTop

Liquid flowrates ( 2 fthrlb )

LTop =TA

3724

LBottom = TA

8947

Vapor density( 3 ftlb )

48681

31991

BottomG

TopG

Liquid density ( 3 ftlb )

2432

2632

BottomL

TopL

1 Flow parameter

L

GLV ρ

ρ

G

LF

Top 05

LV 3228

13199

5571

3724F

1352110FLV

Bottom LVF =

2432

48681

6593

8947

= 029142

2 Capacity parameter from graphical correlation

Top =152

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 38

Bottom =119

3 Viscosity of the liquid L (cP)

Top L =01128 (cP)

Bottom L =01151 (cP)

4 Kinematic viscosity

=

L

L

462

Top =

2632

11280462

Top = 0218187

Bottom =

2432

11510462

Bottom = 022277

5 Packing factor ( 1ft )

Top FP = 40

Bottom FP = 40

6 Vapour capacity factor CSFI(fts)

Capacity parameter = CSFI FP05 005

Top 05050SFI 2181040

921C

Top SFIC =02593

Bottom 05050SFI 2181040

191C

Bottom 20280CSFI

63 Flood point by the Kister amp Gill correlation

1 FTP packed bed specific pressure drop at flood point

FTP =0115 70PF

Top FTP =0115 7040

=1521

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 39

Bottom FTP =1521 inch of H2O per ft

2 Flow parameter

Top FLV =0135211

Bottom FLV =029142

3 Capacity parameter at flood point

Top =152

Bottom = 119

4 CSFl vapor capacity factor at the flood point

CSFl = capacity parameter

05050

1

PF

Top CSFl =02593

Bottom CSFl =02028

64 Diameter calculation

1 Vapor capacity factor Cs design (nonderated) fts

The column will be designed for 75 flood capacity

SFlS CC 750

Top CS = 075 02593

=0194475

Bottom CS = 075 02028

Bottom CS = 01551

2 CS vapor capacity factor (derated )fts

= 09 CSdesign

Top CS = 09 01944

Top CS =017496

Bottom CS =09 01521

Bottom CS =013689

3 Vapor superficial velocity based on the cross section of empty column u (fts)

GL

G

ss

ρρ

ρ

(derated)Cu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 40

Top su =

319912632

31991

174960

Top su =084737

Bottom su =

486812432

48681

136890

Bottom su = 062257

4 Vapor flow rate CFS ft3s

Top CFS =1205 ft3s

Bottom CFS =12316 ft3shellipfrom table

5 Tower area ft2

AT = s

T u

CFSA

Top AT = 847370

2051

Top AT =1422 ft2

Bottom AT = 622570

23161

Bottom AT =19782 ft2

6 Tower diameter ft

1587ftD

π

197824D

13455ftD

π

14224D

π

A4

BottomT

BottomT

TopT

TopT

TT

D

65 Diameter calculation using the maximum pressure drop criterion

1 L

G

calculation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 41

Top L

G

=2632

31991

= 00409

Bottom L

G

=2432

48681

= 004611

2OH

L

2

calculation

Top ( OHL 2 )=

4362

2632

= 05167

Bottom ( OHL 2 ) =

4362

2432

= 05164

3 FP packing factor

Top FP = 40

Bottom FP =40

4 Maximum pressure drops recommended for packed column with random packing

1902

70max

OH

LPFP

helliphelliphelliphellipfor 006 20L

G

Top maxP = 019 5167040 70

Top maxP = 12984helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

Bottom maxP = 019 5164040 70

Bottom maxP =12977helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

5 Surface tension dyne

Top =6544 cmdyne

Bottom =6128 cmdyne

6 Vapor capacity factor Csmax (fts)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 42

P

s

FCP

3342maxmax

Top 12984 =

5446

403342maxsC

Top maxsC =02634

Bottom 12977 =

1286

403342maxsC

Bottom maxsC =025628

7 Maximum vapor superficial velocity usmax

maxsC = usmax

GL

G

Top usmax =

319912632

31991

26340

= 12752

Bottom usmax =

486812432

48681

25620

=11651 fts

8 Tower area AT (ft2)

AT =smaxu

CFS

Top AT =27521

2051

Top AT =09449

Bottom AT = 16511

23161

= 1057 ft2

9 Tower diameter (ft)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 25: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 25

The calculated data in the table

Components Fi(lbmolh) Di(lbmolh) Bi(lbmolh)

C3 4762 4762 0

i-C4 10834 10823 002

C4 18072 17680 0392

i-C5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Checking

Maximum 3wt of iC5 in the distillate

9772

1004656

172

35134

8010

wt

Maximum of 1 wt C4 in the bottom

011

1009371

158

36531

3920

wt

The set of specification were not met The parameter reevaluated

Again performing same calculations

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 1050-x x

i-C5 840 y 840-y

C5 1470 2055 144945

Total 190939-x+y 229061+x-y

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 26

3658

5522

612290100

1

391909100

3

y

x

yx

x

yx

y

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 102745 2255

i-C5 840 5836 78164

C5 1470 2055 144945

Total 4200 194520 224580

Components F(lbmolh) D(lbmolh) B(lbmolh)

C3 4762 4762 0

i-c4 10834 10823 002

C4 18072 17680 0392

i-c5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Column operating condition

Distillate bubble point calculation on with temperature specified at 130 0F

Components D (lbmolh) K120 (lbin2)

C3 4762 210

i-C4 10823 10

C4 17680 073

i-C5 0801 033

C5 0285 027

Total 34351

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 27

992036334

07634

001

ii

iiii

xK

D

dKxK

Condition of the distillatereflux before 130 0F amp 120 lbin2overhead or column top

conditions are found by dew point calculation at the specified pressure of 1225lbin2

Components D (lbmolh) K1450

F K148 0

F

C3 4762 24 2425

i-C4 10823 116 1175

C4 17680 084 087

i-C5 0801 042 0425

C5 0285 033 034

01D

K

d

K

y i

i

i

i

For T=145 0F

018136334

9934

i

i

K

y K=1175 Tcal=148 0F

For T=148 0F

997036334

24334

i

i

K

y

Conditions of column overhead are revised to 148 0F and 1225lbin2column bottom

conditions are found by way of bubble point calculation

Components B(lbmolh) K2450

F

C3 0 45

i-C4 002 255

C4 0392 205

i-C5 10850 1075

C5 20103 094

Total 31365

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 28

Design equation

001B

bKxK ii

ii

For T =245 0F

00139331

39831ii xK

At column midpoint condition

2

0

1255127512250

519624514850

inlbP

FT

Summery of operating condition

Point 1 Point 2 Point 3

Temperature 148 1965 245

Pressure lbin2 (abs) 1225 125 1275

Equilibrium K data for column midpoint condition

Point 1 Point 2 Point 3

Components Ki i Ki i Ki i avgi

C3 2425 571 34 486 45 419 488

i-C4 1175 276 18 257 255 237 256

C4 087 205 138 197 205 191 198

i-C5 0425 100 07 10 1075 10 10

C5 034 08 06 086 094 087 084

Fenske equation

3919

001

981ln

3880

84210

8090

68417ln

m

m

N

N

Separation of non key component

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 29

4912

100198

2

avgLKavgHK

mean

molh09220bmolh 2920d

molh38820f840

)(CPentane

molh8090dmolh 84210b

molh65111f001

)C-(itan

68417dmolh 3880b

molh07218f981

)(CButane

hmol 82210d h mol0210b

hmol84310f562

)C-(iIsobutane

molh76240007624d

molh000molh101882

001

884

84210

80901

7624

7624f884

)(Cropane

C5C5

C5C5

5

C5-iC5-i

C5-iiC5

5

C4C4

C4C4

4

iC4iC4

iC4iC4

4

33C3

5

39193

C3C3

3

lblb

lb

lblb

lb

eIsopen

hlbmollb

lblb

lb

lbbf

lblbb

hmol

P

CC

C

Components Feed (lbmolh) Distillate (lbmolh) Bottom (lbmolh)

C3 4762 4762 0000

i-C4 10843 10822 0021

C4 18072 17684 03880

i-C5 11651 0809 10842

C5 20388 0292 20096

Total 65716 34369 31347

Maximum value of 3 wt of i-C5 in distillate is required

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 30

Calculated value =

wt 3

1004956

172

36934

8090

Maximum value of 1 wt of C4 in bottom is required

Calculated value

wt 1

1009163

158

34731

3880

Conditions are satisfied

542 Component split by Winn equation

The Fenske equation has a weakness as the relative volatility difference between

column top and bottom increase the estimated minimum number of stages gets

increasingly too small

460

1

460

1

lnln

bottomtop

bottomitopi

i

TT

PKPKB

460

ln

T

BAPK i

ii

110 irHKi PAAi

r

ii B

B

Components KTop148 F Kbottom245 F

C3 2425 450

i-C4 1175 255

C4 087 205

i-C5 0425 1075

C5 034 094

For P=125 lbin2

For butane (C4)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 31

550594460148

)271263()42525122log(

271263

460245

1

460148

1545127log42525122log

4

4

C

C

A

B

Heavy component is iso-pentane( i-C5)

955824460148

)711857()42505122log(

680010717185

271263

711857

460245

1

460148

1

07515127log4250125log

5

4

5

Ci

C

Ci

A

A

B

311344

)125(10

10)1680010()955824550594(

1

irHKi PAAi

Components Bi Ai θi βi

C3 -126327 45509 068001 43113

i-C4 -156377 473016 084177 24069

C4 -172167 48593 092677 191988

i-C5 -185771 49558 100000 10000

C5 -202840 49558 109189 086704

5339

919881log

)369348090(

)3473484210(

)347313880(

)3693468417(log

m

m

N

N

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 32

abvg

1

bdcomponent

orlightif

D

B

d

bb

d

HK

N

i

im

d

b1

fd

2dbkeyheavy

1

avgHKLKif

b

df

b

componentlight propanefor

5

032068

9533

101976

09120713402

4311

b

d

7624

0001097611

76245

bfd

b

For isobutene (i-C4)

f =10843 θ =0842 β =2407 (light component)

lh10821lbmo

002210843d

h0022lbmol

494151

10843b

4941509120713402

2407

b

d08417108417

9533

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 33

For Butane (C4)

f =18072 β=191988θ=092677

h0388lbmol

455771

18072b

4557709120713402

191988

b

d0926771092677

9533

d=18072-0388

=17684 lbmolh

For Isopentane (C5)

f =11651 β =100 θ =100

111

5339

91207040213

00001

b

d

=007461

βltβavg

)0746101(1

65111

d

= 0809 lbmolh

b = 11651-0809

=10842 lbmolh

For Pentane (C5)

f =20388 lbmolh β= 086704 θ =109189

0918911091891

5339

91207040213

867040

b

d

=0014959

βltβavg

)01495901(1

38820

d

= 0300 lb molh

b=20388-03

=20088

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 34

Components Feed lbmolh Distillate lbmolh Bottom lbmolh

C3 4762 4762 000

i-C4 10843 10821 0022

C4 18072 17684 0388

i-C5 11651 0809 10842

C5 20388 03 20088

65716 34376 3134

Components Feed lbh Distillate lbh Bottom lbh

C3 210 210 000

i-C4 630 62872 128

C4 1050 102745 2257

i-C5 840 5836 78164

C5 1470 2163 1448348

4200 194602 2253818

543 Calculation of Rm

From Underwood equation

qx

i

iFi

1

Components Flbmolhr xif xid αi

C3 4762 00725 01386 488

i-C4 10843 01650 03149 256

C4 18072 02750 05145 198

i-C5 11651 01773 002335 100

C5 20388 03102 00085 084

65716 1000 1000

Feed is at boiling conditions since q =1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 35

0840

31020840

1

177301

981

27500981

562

16500562

884

07250884

θ =1284

from this value of θ

avgi

idavgim

xR

1

11284840

00850840

12841

023501

1284981

51450981

1284562

31490562

1284884

13860884

mR

Rm=1185

R=15 Rm

=15times1185

=17775

X=1

R

RR m

X=177751

185177751

=02133

From GillilandrsquoS correlation Y=1

N

NN m =042

We know the value of Nm 4201

5339

N

N

N=178 =18 stages

Feed location can be known by the use of Kirkbride equation

2

)376348090(

)34313880(

)07218(

)65111(

37634

34312060log

F

F

p

m

687890p

m

817 pm

m = 725=8

p =1054 =11

Feed is introduced on eight stage from top

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 36

Chapter- 6

PACKED COLUMN DESIGN

61 Stage AnalysisThe data shown in table are typical data generated by commercial simulation

Vapor liquidStage Temperature0F lbhr CFS

ft3sV

lbft3

Lbhr GPM

galminL

σ

dynecm

μ

cP

1 1349 00 00 00 3655 1423 3202 6867 0114

2 1474 5501 12050 12683 3720 1447 3204 6738 01132

3 1548 5566 12049 12831 3724 1447 3208 6699 01128

4 1609 5571 11987 12909 3707 1438 3214 6684 01130

5 1668 5553 11889 12974 3693 1430 3220 6665 01135

6 1726 5539 11794 13045 3689 1426 3224 6632 01142

7 1779 5535 11716 13122 3691 1426 3226 6590 01149

8 1824 5537 11650 13199 8032 310471 3226 6544 01156

9 1873 5678 11794 13373 8126 3142 3224 6507 01153

10 1917 5772 11871 13506 8201 3171 3224 6479 01151

11 1961 5847 11915 13631 8275 3201 3223 6447 01152

12 2010 5921 11946 13768 8360 3235 3222 6406 01156

13 2064 6006 12152 13928 8475 3274 3220 6348 01162

14 2122 6103 12013 14111 8574 3321 3218 6295 01170

15 2179 6220 12070 14310 8701 3374 3215 6236 01180

16 2232 6347 12148 14512 8829 3428 3211 6178 01191

17 2280 6475 12234 14701 8947 3477 3208 6128 01201

18 2321 6593 12317 14868 2354 91599 3204 6087 01212

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 37

62 Flood Point

15 inch pall ring will be used throughout the column for this packing the flood point can

be determined by interpolation

A-flood point by GPDC [generalized pressure drop correlation] interpolation

2

2

6593

5571

fthrlbA

G

fthrlbA

G

TBottom

TTop

Liquid flowrates ( 2 fthrlb )

LTop =TA

3724

LBottom = TA

8947

Vapor density( 3 ftlb )

48681

31991

BottomG

TopG

Liquid density ( 3 ftlb )

2432

2632

BottomL

TopL

1 Flow parameter

L

GLV ρ

ρ

G

LF

Top 05

LV 3228

13199

5571

3724F

1352110FLV

Bottom LVF =

2432

48681

6593

8947

= 029142

2 Capacity parameter from graphical correlation

Top =152

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 38

Bottom =119

3 Viscosity of the liquid L (cP)

Top L =01128 (cP)

Bottom L =01151 (cP)

4 Kinematic viscosity

=

L

L

462

Top =

2632

11280462

Top = 0218187

Bottom =

2432

11510462

Bottom = 022277

5 Packing factor ( 1ft )

Top FP = 40

Bottom FP = 40

6 Vapour capacity factor CSFI(fts)

Capacity parameter = CSFI FP05 005

Top 05050SFI 2181040

921C

Top SFIC =02593

Bottom 05050SFI 2181040

191C

Bottom 20280CSFI

63 Flood point by the Kister amp Gill correlation

1 FTP packed bed specific pressure drop at flood point

FTP =0115 70PF

Top FTP =0115 7040

=1521

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 39

Bottom FTP =1521 inch of H2O per ft

2 Flow parameter

Top FLV =0135211

Bottom FLV =029142

3 Capacity parameter at flood point

Top =152

Bottom = 119

4 CSFl vapor capacity factor at the flood point

CSFl = capacity parameter

05050

1

PF

Top CSFl =02593

Bottom CSFl =02028

64 Diameter calculation

1 Vapor capacity factor Cs design (nonderated) fts

The column will be designed for 75 flood capacity

SFlS CC 750

Top CS = 075 02593

=0194475

Bottom CS = 075 02028

Bottom CS = 01551

2 CS vapor capacity factor (derated )fts

= 09 CSdesign

Top CS = 09 01944

Top CS =017496

Bottom CS =09 01521

Bottom CS =013689

3 Vapor superficial velocity based on the cross section of empty column u (fts)

GL

G

ss

ρρ

ρ

(derated)Cu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 40

Top su =

319912632

31991

174960

Top su =084737

Bottom su =

486812432

48681

136890

Bottom su = 062257

4 Vapor flow rate CFS ft3s

Top CFS =1205 ft3s

Bottom CFS =12316 ft3shellipfrom table

5 Tower area ft2

AT = s

T u

CFSA

Top AT = 847370

2051

Top AT =1422 ft2

Bottom AT = 622570

23161

Bottom AT =19782 ft2

6 Tower diameter ft

1587ftD

π

197824D

13455ftD

π

14224D

π

A4

BottomT

BottomT

TopT

TopT

TT

D

65 Diameter calculation using the maximum pressure drop criterion

1 L

G

calculation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 41

Top L

G

=2632

31991

= 00409

Bottom L

G

=2432

48681

= 004611

2OH

L

2

calculation

Top ( OHL 2 )=

4362

2632

= 05167

Bottom ( OHL 2 ) =

4362

2432

= 05164

3 FP packing factor

Top FP = 40

Bottom FP =40

4 Maximum pressure drops recommended for packed column with random packing

1902

70max

OH

LPFP

helliphelliphelliphellipfor 006 20L

G

Top maxP = 019 5167040 70

Top maxP = 12984helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

Bottom maxP = 019 5164040 70

Bottom maxP =12977helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

5 Surface tension dyne

Top =6544 cmdyne

Bottom =6128 cmdyne

6 Vapor capacity factor Csmax (fts)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 42

P

s

FCP

3342maxmax

Top 12984 =

5446

403342maxsC

Top maxsC =02634

Bottom 12977 =

1286

403342maxsC

Bottom maxsC =025628

7 Maximum vapor superficial velocity usmax

maxsC = usmax

GL

G

Top usmax =

319912632

31991

26340

= 12752

Bottom usmax =

486812432

48681

25620

=11651 fts

8 Tower area AT (ft2)

AT =smaxu

CFS

Top AT =27521

2051

Top AT =09449

Bottom AT = 16511

23161

= 1057 ft2

9 Tower diameter (ft)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 26: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 26

3658

5522

612290100

1

391909100

3

y

x

yx

x

yx

y

Components Fi(lbh) Di(lbh) Bi(lbh)

C3 210 210 0

i-C4 630 62884 116

C4 1050 102745 2255

i-C5 840 5836 78164

C5 1470 2055 144945

Total 4200 194520 224580

Components F(lbmolh) D(lbmolh) B(lbmolh)

C3 4762 4762 0

i-c4 10834 10823 002

C4 18072 17680 0392

i-c5 11652 0801 10850

C5 20388 0285 20103

Total 65716 34351 31365

Column operating condition

Distillate bubble point calculation on with temperature specified at 130 0F

Components D (lbmolh) K120 (lbin2)

C3 4762 210

i-C4 10823 10

C4 17680 073

i-C5 0801 033

C5 0285 027

Total 34351

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 27

992036334

07634

001

ii

iiii

xK

D

dKxK

Condition of the distillatereflux before 130 0F amp 120 lbin2overhead or column top

conditions are found by dew point calculation at the specified pressure of 1225lbin2

Components D (lbmolh) K1450

F K148 0

F

C3 4762 24 2425

i-C4 10823 116 1175

C4 17680 084 087

i-C5 0801 042 0425

C5 0285 033 034

01D

K

d

K

y i

i

i

i

For T=145 0F

018136334

9934

i

i

K

y K=1175 Tcal=148 0F

For T=148 0F

997036334

24334

i

i

K

y

Conditions of column overhead are revised to 148 0F and 1225lbin2column bottom

conditions are found by way of bubble point calculation

Components B(lbmolh) K2450

F

C3 0 45

i-C4 002 255

C4 0392 205

i-C5 10850 1075

C5 20103 094

Total 31365

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 28

Design equation

001B

bKxK ii

ii

For T =245 0F

00139331

39831ii xK

At column midpoint condition

2

0

1255127512250

519624514850

inlbP

FT

Summery of operating condition

Point 1 Point 2 Point 3

Temperature 148 1965 245

Pressure lbin2 (abs) 1225 125 1275

Equilibrium K data for column midpoint condition

Point 1 Point 2 Point 3

Components Ki i Ki i Ki i avgi

C3 2425 571 34 486 45 419 488

i-C4 1175 276 18 257 255 237 256

C4 087 205 138 197 205 191 198

i-C5 0425 100 07 10 1075 10 10

C5 034 08 06 086 094 087 084

Fenske equation

3919

001

981ln

3880

84210

8090

68417ln

m

m

N

N

Separation of non key component

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 29

4912

100198

2

avgLKavgHK

mean

molh09220bmolh 2920d

molh38820f840

)(CPentane

molh8090dmolh 84210b

molh65111f001

)C-(itan

68417dmolh 3880b

molh07218f981

)(CButane

hmol 82210d h mol0210b

hmol84310f562

)C-(iIsobutane

molh76240007624d

molh000molh101882

001

884

84210

80901

7624

7624f884

)(Cropane

C5C5

C5C5

5

C5-iC5-i

C5-iiC5

5

C4C4

C4C4

4

iC4iC4

iC4iC4

4

33C3

5

39193

C3C3

3

lblb

lb

lblb

lb

eIsopen

hlbmollb

lblb

lb

lbbf

lblbb

hmol

P

CC

C

Components Feed (lbmolh) Distillate (lbmolh) Bottom (lbmolh)

C3 4762 4762 0000

i-C4 10843 10822 0021

C4 18072 17684 03880

i-C5 11651 0809 10842

C5 20388 0292 20096

Total 65716 34369 31347

Maximum value of 3 wt of i-C5 in distillate is required

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 30

Calculated value =

wt 3

1004956

172

36934

8090

Maximum value of 1 wt of C4 in bottom is required

Calculated value

wt 1

1009163

158

34731

3880

Conditions are satisfied

542 Component split by Winn equation

The Fenske equation has a weakness as the relative volatility difference between

column top and bottom increase the estimated minimum number of stages gets

increasingly too small

460

1

460

1

lnln

bottomtop

bottomitopi

i

TT

PKPKB

460

ln

T

BAPK i

ii

110 irHKi PAAi

r

ii B

B

Components KTop148 F Kbottom245 F

C3 2425 450

i-C4 1175 255

C4 087 205

i-C5 0425 1075

C5 034 094

For P=125 lbin2

For butane (C4)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 31

550594460148

)271263()42525122log(

271263

460245

1

460148

1545127log42525122log

4

4

C

C

A

B

Heavy component is iso-pentane( i-C5)

955824460148

)711857()42505122log(

680010717185

271263

711857

460245

1

460148

1

07515127log4250125log

5

4

5

Ci

C

Ci

A

A

B

311344

)125(10

10)1680010()955824550594(

1

irHKi PAAi

Components Bi Ai θi βi

C3 -126327 45509 068001 43113

i-C4 -156377 473016 084177 24069

C4 -172167 48593 092677 191988

i-C5 -185771 49558 100000 10000

C5 -202840 49558 109189 086704

5339

919881log

)369348090(

)3473484210(

)347313880(

)3693468417(log

m

m

N

N

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 32

abvg

1

bdcomponent

orlightif

D

B

d

bb

d

HK

N

i

im

d

b1

fd

2dbkeyheavy

1

avgHKLKif

b

df

b

componentlight propanefor

5

032068

9533

101976

09120713402

4311

b

d

7624

0001097611

76245

bfd

b

For isobutene (i-C4)

f =10843 θ =0842 β =2407 (light component)

lh10821lbmo

002210843d

h0022lbmol

494151

10843b

4941509120713402

2407

b

d08417108417

9533

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 33

For Butane (C4)

f =18072 β=191988θ=092677

h0388lbmol

455771

18072b

4557709120713402

191988

b

d0926771092677

9533

d=18072-0388

=17684 lbmolh

For Isopentane (C5)

f =11651 β =100 θ =100

111

5339

91207040213

00001

b

d

=007461

βltβavg

)0746101(1

65111

d

= 0809 lbmolh

b = 11651-0809

=10842 lbmolh

For Pentane (C5)

f =20388 lbmolh β= 086704 θ =109189

0918911091891

5339

91207040213

867040

b

d

=0014959

βltβavg

)01495901(1

38820

d

= 0300 lb molh

b=20388-03

=20088

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 34

Components Feed lbmolh Distillate lbmolh Bottom lbmolh

C3 4762 4762 000

i-C4 10843 10821 0022

C4 18072 17684 0388

i-C5 11651 0809 10842

C5 20388 03 20088

65716 34376 3134

Components Feed lbh Distillate lbh Bottom lbh

C3 210 210 000

i-C4 630 62872 128

C4 1050 102745 2257

i-C5 840 5836 78164

C5 1470 2163 1448348

4200 194602 2253818

543 Calculation of Rm

From Underwood equation

qx

i

iFi

1

Components Flbmolhr xif xid αi

C3 4762 00725 01386 488

i-C4 10843 01650 03149 256

C4 18072 02750 05145 198

i-C5 11651 01773 002335 100

C5 20388 03102 00085 084

65716 1000 1000

Feed is at boiling conditions since q =1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 35

0840

31020840

1

177301

981

27500981

562

16500562

884

07250884

θ =1284

from this value of θ

avgi

idavgim

xR

1

11284840

00850840

12841

023501

1284981

51450981

1284562

31490562

1284884

13860884

mR

Rm=1185

R=15 Rm

=15times1185

=17775

X=1

R

RR m

X=177751

185177751

=02133

From GillilandrsquoS correlation Y=1

N

NN m =042

We know the value of Nm 4201

5339

N

N

N=178 =18 stages

Feed location can be known by the use of Kirkbride equation

2

)376348090(

)34313880(

)07218(

)65111(

37634

34312060log

F

F

p

m

687890p

m

817 pm

m = 725=8

p =1054 =11

Feed is introduced on eight stage from top

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 36

Chapter- 6

PACKED COLUMN DESIGN

61 Stage AnalysisThe data shown in table are typical data generated by commercial simulation

Vapor liquidStage Temperature0F lbhr CFS

ft3sV

lbft3

Lbhr GPM

galminL

σ

dynecm

μ

cP

1 1349 00 00 00 3655 1423 3202 6867 0114

2 1474 5501 12050 12683 3720 1447 3204 6738 01132

3 1548 5566 12049 12831 3724 1447 3208 6699 01128

4 1609 5571 11987 12909 3707 1438 3214 6684 01130

5 1668 5553 11889 12974 3693 1430 3220 6665 01135

6 1726 5539 11794 13045 3689 1426 3224 6632 01142

7 1779 5535 11716 13122 3691 1426 3226 6590 01149

8 1824 5537 11650 13199 8032 310471 3226 6544 01156

9 1873 5678 11794 13373 8126 3142 3224 6507 01153

10 1917 5772 11871 13506 8201 3171 3224 6479 01151

11 1961 5847 11915 13631 8275 3201 3223 6447 01152

12 2010 5921 11946 13768 8360 3235 3222 6406 01156

13 2064 6006 12152 13928 8475 3274 3220 6348 01162

14 2122 6103 12013 14111 8574 3321 3218 6295 01170

15 2179 6220 12070 14310 8701 3374 3215 6236 01180

16 2232 6347 12148 14512 8829 3428 3211 6178 01191

17 2280 6475 12234 14701 8947 3477 3208 6128 01201

18 2321 6593 12317 14868 2354 91599 3204 6087 01212

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 37

62 Flood Point

15 inch pall ring will be used throughout the column for this packing the flood point can

be determined by interpolation

A-flood point by GPDC [generalized pressure drop correlation] interpolation

2

2

6593

5571

fthrlbA

G

fthrlbA

G

TBottom

TTop

Liquid flowrates ( 2 fthrlb )

LTop =TA

3724

LBottom = TA

8947

Vapor density( 3 ftlb )

48681

31991

BottomG

TopG

Liquid density ( 3 ftlb )

2432

2632

BottomL

TopL

1 Flow parameter

L

GLV ρ

ρ

G

LF

Top 05

LV 3228

13199

5571

3724F

1352110FLV

Bottom LVF =

2432

48681

6593

8947

= 029142

2 Capacity parameter from graphical correlation

Top =152

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 38

Bottom =119

3 Viscosity of the liquid L (cP)

Top L =01128 (cP)

Bottom L =01151 (cP)

4 Kinematic viscosity

=

L

L

462

Top =

2632

11280462

Top = 0218187

Bottom =

2432

11510462

Bottom = 022277

5 Packing factor ( 1ft )

Top FP = 40

Bottom FP = 40

6 Vapour capacity factor CSFI(fts)

Capacity parameter = CSFI FP05 005

Top 05050SFI 2181040

921C

Top SFIC =02593

Bottom 05050SFI 2181040

191C

Bottom 20280CSFI

63 Flood point by the Kister amp Gill correlation

1 FTP packed bed specific pressure drop at flood point

FTP =0115 70PF

Top FTP =0115 7040

=1521

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 39

Bottom FTP =1521 inch of H2O per ft

2 Flow parameter

Top FLV =0135211

Bottom FLV =029142

3 Capacity parameter at flood point

Top =152

Bottom = 119

4 CSFl vapor capacity factor at the flood point

CSFl = capacity parameter

05050

1

PF

Top CSFl =02593

Bottom CSFl =02028

64 Diameter calculation

1 Vapor capacity factor Cs design (nonderated) fts

The column will be designed for 75 flood capacity

SFlS CC 750

Top CS = 075 02593

=0194475

Bottom CS = 075 02028

Bottom CS = 01551

2 CS vapor capacity factor (derated )fts

= 09 CSdesign

Top CS = 09 01944

Top CS =017496

Bottom CS =09 01521

Bottom CS =013689

3 Vapor superficial velocity based on the cross section of empty column u (fts)

GL

G

ss

ρρ

ρ

(derated)Cu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 40

Top su =

319912632

31991

174960

Top su =084737

Bottom su =

486812432

48681

136890

Bottom su = 062257

4 Vapor flow rate CFS ft3s

Top CFS =1205 ft3s

Bottom CFS =12316 ft3shellipfrom table

5 Tower area ft2

AT = s

T u

CFSA

Top AT = 847370

2051

Top AT =1422 ft2

Bottom AT = 622570

23161

Bottom AT =19782 ft2

6 Tower diameter ft

1587ftD

π

197824D

13455ftD

π

14224D

π

A4

BottomT

BottomT

TopT

TopT

TT

D

65 Diameter calculation using the maximum pressure drop criterion

1 L

G

calculation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 41

Top L

G

=2632

31991

= 00409

Bottom L

G

=2432

48681

= 004611

2OH

L

2

calculation

Top ( OHL 2 )=

4362

2632

= 05167

Bottom ( OHL 2 ) =

4362

2432

= 05164

3 FP packing factor

Top FP = 40

Bottom FP =40

4 Maximum pressure drops recommended for packed column with random packing

1902

70max

OH

LPFP

helliphelliphelliphellipfor 006 20L

G

Top maxP = 019 5167040 70

Top maxP = 12984helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

Bottom maxP = 019 5164040 70

Bottom maxP =12977helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

5 Surface tension dyne

Top =6544 cmdyne

Bottom =6128 cmdyne

6 Vapor capacity factor Csmax (fts)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 42

P

s

FCP

3342maxmax

Top 12984 =

5446

403342maxsC

Top maxsC =02634

Bottom 12977 =

1286

403342maxsC

Bottom maxsC =025628

7 Maximum vapor superficial velocity usmax

maxsC = usmax

GL

G

Top usmax =

319912632

31991

26340

= 12752

Bottom usmax =

486812432

48681

25620

=11651 fts

8 Tower area AT (ft2)

AT =smaxu

CFS

Top AT =27521

2051

Top AT =09449

Bottom AT = 16511

23161

= 1057 ft2

9 Tower diameter (ft)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 27: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 27

992036334

07634

001

ii

iiii

xK

D

dKxK

Condition of the distillatereflux before 130 0F amp 120 lbin2overhead or column top

conditions are found by dew point calculation at the specified pressure of 1225lbin2

Components D (lbmolh) K1450

F K148 0

F

C3 4762 24 2425

i-C4 10823 116 1175

C4 17680 084 087

i-C5 0801 042 0425

C5 0285 033 034

01D

K

d

K

y i

i

i

i

For T=145 0F

018136334

9934

i

i

K

y K=1175 Tcal=148 0F

For T=148 0F

997036334

24334

i

i

K

y

Conditions of column overhead are revised to 148 0F and 1225lbin2column bottom

conditions are found by way of bubble point calculation

Components B(lbmolh) K2450

F

C3 0 45

i-C4 002 255

C4 0392 205

i-C5 10850 1075

C5 20103 094

Total 31365

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 28

Design equation

001B

bKxK ii

ii

For T =245 0F

00139331

39831ii xK

At column midpoint condition

2

0

1255127512250

519624514850

inlbP

FT

Summery of operating condition

Point 1 Point 2 Point 3

Temperature 148 1965 245

Pressure lbin2 (abs) 1225 125 1275

Equilibrium K data for column midpoint condition

Point 1 Point 2 Point 3

Components Ki i Ki i Ki i avgi

C3 2425 571 34 486 45 419 488

i-C4 1175 276 18 257 255 237 256

C4 087 205 138 197 205 191 198

i-C5 0425 100 07 10 1075 10 10

C5 034 08 06 086 094 087 084

Fenske equation

3919

001

981ln

3880

84210

8090

68417ln

m

m

N

N

Separation of non key component

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 29

4912

100198

2

avgLKavgHK

mean

molh09220bmolh 2920d

molh38820f840

)(CPentane

molh8090dmolh 84210b

molh65111f001

)C-(itan

68417dmolh 3880b

molh07218f981

)(CButane

hmol 82210d h mol0210b

hmol84310f562

)C-(iIsobutane

molh76240007624d

molh000molh101882

001

884

84210

80901

7624

7624f884

)(Cropane

C5C5

C5C5

5

C5-iC5-i

C5-iiC5

5

C4C4

C4C4

4

iC4iC4

iC4iC4

4

33C3

5

39193

C3C3

3

lblb

lb

lblb

lb

eIsopen

hlbmollb

lblb

lb

lbbf

lblbb

hmol

P

CC

C

Components Feed (lbmolh) Distillate (lbmolh) Bottom (lbmolh)

C3 4762 4762 0000

i-C4 10843 10822 0021

C4 18072 17684 03880

i-C5 11651 0809 10842

C5 20388 0292 20096

Total 65716 34369 31347

Maximum value of 3 wt of i-C5 in distillate is required

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 30

Calculated value =

wt 3

1004956

172

36934

8090

Maximum value of 1 wt of C4 in bottom is required

Calculated value

wt 1

1009163

158

34731

3880

Conditions are satisfied

542 Component split by Winn equation

The Fenske equation has a weakness as the relative volatility difference between

column top and bottom increase the estimated minimum number of stages gets

increasingly too small

460

1

460

1

lnln

bottomtop

bottomitopi

i

TT

PKPKB

460

ln

T

BAPK i

ii

110 irHKi PAAi

r

ii B

B

Components KTop148 F Kbottom245 F

C3 2425 450

i-C4 1175 255

C4 087 205

i-C5 0425 1075

C5 034 094

For P=125 lbin2

For butane (C4)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 31

550594460148

)271263()42525122log(

271263

460245

1

460148

1545127log42525122log

4

4

C

C

A

B

Heavy component is iso-pentane( i-C5)

955824460148

)711857()42505122log(

680010717185

271263

711857

460245

1

460148

1

07515127log4250125log

5

4

5

Ci

C

Ci

A

A

B

311344

)125(10

10)1680010()955824550594(

1

irHKi PAAi

Components Bi Ai θi βi

C3 -126327 45509 068001 43113

i-C4 -156377 473016 084177 24069

C4 -172167 48593 092677 191988

i-C5 -185771 49558 100000 10000

C5 -202840 49558 109189 086704

5339

919881log

)369348090(

)3473484210(

)347313880(

)3693468417(log

m

m

N

N

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 32

abvg

1

bdcomponent

orlightif

D

B

d

bb

d

HK

N

i

im

d

b1

fd

2dbkeyheavy

1

avgHKLKif

b

df

b

componentlight propanefor

5

032068

9533

101976

09120713402

4311

b

d

7624

0001097611

76245

bfd

b

For isobutene (i-C4)

f =10843 θ =0842 β =2407 (light component)

lh10821lbmo

002210843d

h0022lbmol

494151

10843b

4941509120713402

2407

b

d08417108417

9533

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 33

For Butane (C4)

f =18072 β=191988θ=092677

h0388lbmol

455771

18072b

4557709120713402

191988

b

d0926771092677

9533

d=18072-0388

=17684 lbmolh

For Isopentane (C5)

f =11651 β =100 θ =100

111

5339

91207040213

00001

b

d

=007461

βltβavg

)0746101(1

65111

d

= 0809 lbmolh

b = 11651-0809

=10842 lbmolh

For Pentane (C5)

f =20388 lbmolh β= 086704 θ =109189

0918911091891

5339

91207040213

867040

b

d

=0014959

βltβavg

)01495901(1

38820

d

= 0300 lb molh

b=20388-03

=20088

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 34

Components Feed lbmolh Distillate lbmolh Bottom lbmolh

C3 4762 4762 000

i-C4 10843 10821 0022

C4 18072 17684 0388

i-C5 11651 0809 10842

C5 20388 03 20088

65716 34376 3134

Components Feed lbh Distillate lbh Bottom lbh

C3 210 210 000

i-C4 630 62872 128

C4 1050 102745 2257

i-C5 840 5836 78164

C5 1470 2163 1448348

4200 194602 2253818

543 Calculation of Rm

From Underwood equation

qx

i

iFi

1

Components Flbmolhr xif xid αi

C3 4762 00725 01386 488

i-C4 10843 01650 03149 256

C4 18072 02750 05145 198

i-C5 11651 01773 002335 100

C5 20388 03102 00085 084

65716 1000 1000

Feed is at boiling conditions since q =1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 35

0840

31020840

1

177301

981

27500981

562

16500562

884

07250884

θ =1284

from this value of θ

avgi

idavgim

xR

1

11284840

00850840

12841

023501

1284981

51450981

1284562

31490562

1284884

13860884

mR

Rm=1185

R=15 Rm

=15times1185

=17775

X=1

R

RR m

X=177751

185177751

=02133

From GillilandrsquoS correlation Y=1

N

NN m =042

We know the value of Nm 4201

5339

N

N

N=178 =18 stages

Feed location can be known by the use of Kirkbride equation

2

)376348090(

)34313880(

)07218(

)65111(

37634

34312060log

F

F

p

m

687890p

m

817 pm

m = 725=8

p =1054 =11

Feed is introduced on eight stage from top

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 36

Chapter- 6

PACKED COLUMN DESIGN

61 Stage AnalysisThe data shown in table are typical data generated by commercial simulation

Vapor liquidStage Temperature0F lbhr CFS

ft3sV

lbft3

Lbhr GPM

galminL

σ

dynecm

μ

cP

1 1349 00 00 00 3655 1423 3202 6867 0114

2 1474 5501 12050 12683 3720 1447 3204 6738 01132

3 1548 5566 12049 12831 3724 1447 3208 6699 01128

4 1609 5571 11987 12909 3707 1438 3214 6684 01130

5 1668 5553 11889 12974 3693 1430 3220 6665 01135

6 1726 5539 11794 13045 3689 1426 3224 6632 01142

7 1779 5535 11716 13122 3691 1426 3226 6590 01149

8 1824 5537 11650 13199 8032 310471 3226 6544 01156

9 1873 5678 11794 13373 8126 3142 3224 6507 01153

10 1917 5772 11871 13506 8201 3171 3224 6479 01151

11 1961 5847 11915 13631 8275 3201 3223 6447 01152

12 2010 5921 11946 13768 8360 3235 3222 6406 01156

13 2064 6006 12152 13928 8475 3274 3220 6348 01162

14 2122 6103 12013 14111 8574 3321 3218 6295 01170

15 2179 6220 12070 14310 8701 3374 3215 6236 01180

16 2232 6347 12148 14512 8829 3428 3211 6178 01191

17 2280 6475 12234 14701 8947 3477 3208 6128 01201

18 2321 6593 12317 14868 2354 91599 3204 6087 01212

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 37

62 Flood Point

15 inch pall ring will be used throughout the column for this packing the flood point can

be determined by interpolation

A-flood point by GPDC [generalized pressure drop correlation] interpolation

2

2

6593

5571

fthrlbA

G

fthrlbA

G

TBottom

TTop

Liquid flowrates ( 2 fthrlb )

LTop =TA

3724

LBottom = TA

8947

Vapor density( 3 ftlb )

48681

31991

BottomG

TopG

Liquid density ( 3 ftlb )

2432

2632

BottomL

TopL

1 Flow parameter

L

GLV ρ

ρ

G

LF

Top 05

LV 3228

13199

5571

3724F

1352110FLV

Bottom LVF =

2432

48681

6593

8947

= 029142

2 Capacity parameter from graphical correlation

Top =152

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 38

Bottom =119

3 Viscosity of the liquid L (cP)

Top L =01128 (cP)

Bottom L =01151 (cP)

4 Kinematic viscosity

=

L

L

462

Top =

2632

11280462

Top = 0218187

Bottom =

2432

11510462

Bottom = 022277

5 Packing factor ( 1ft )

Top FP = 40

Bottom FP = 40

6 Vapour capacity factor CSFI(fts)

Capacity parameter = CSFI FP05 005

Top 05050SFI 2181040

921C

Top SFIC =02593

Bottom 05050SFI 2181040

191C

Bottom 20280CSFI

63 Flood point by the Kister amp Gill correlation

1 FTP packed bed specific pressure drop at flood point

FTP =0115 70PF

Top FTP =0115 7040

=1521

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 39

Bottom FTP =1521 inch of H2O per ft

2 Flow parameter

Top FLV =0135211

Bottom FLV =029142

3 Capacity parameter at flood point

Top =152

Bottom = 119

4 CSFl vapor capacity factor at the flood point

CSFl = capacity parameter

05050

1

PF

Top CSFl =02593

Bottom CSFl =02028

64 Diameter calculation

1 Vapor capacity factor Cs design (nonderated) fts

The column will be designed for 75 flood capacity

SFlS CC 750

Top CS = 075 02593

=0194475

Bottom CS = 075 02028

Bottom CS = 01551

2 CS vapor capacity factor (derated )fts

= 09 CSdesign

Top CS = 09 01944

Top CS =017496

Bottom CS =09 01521

Bottom CS =013689

3 Vapor superficial velocity based on the cross section of empty column u (fts)

GL

G

ss

ρρ

ρ

(derated)Cu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 40

Top su =

319912632

31991

174960

Top su =084737

Bottom su =

486812432

48681

136890

Bottom su = 062257

4 Vapor flow rate CFS ft3s

Top CFS =1205 ft3s

Bottom CFS =12316 ft3shellipfrom table

5 Tower area ft2

AT = s

T u

CFSA

Top AT = 847370

2051

Top AT =1422 ft2

Bottom AT = 622570

23161

Bottom AT =19782 ft2

6 Tower diameter ft

1587ftD

π

197824D

13455ftD

π

14224D

π

A4

BottomT

BottomT

TopT

TopT

TT

D

65 Diameter calculation using the maximum pressure drop criterion

1 L

G

calculation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 41

Top L

G

=2632

31991

= 00409

Bottom L

G

=2432

48681

= 004611

2OH

L

2

calculation

Top ( OHL 2 )=

4362

2632

= 05167

Bottom ( OHL 2 ) =

4362

2432

= 05164

3 FP packing factor

Top FP = 40

Bottom FP =40

4 Maximum pressure drops recommended for packed column with random packing

1902

70max

OH

LPFP

helliphelliphelliphellipfor 006 20L

G

Top maxP = 019 5167040 70

Top maxP = 12984helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

Bottom maxP = 019 5164040 70

Bottom maxP =12977helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

5 Surface tension dyne

Top =6544 cmdyne

Bottom =6128 cmdyne

6 Vapor capacity factor Csmax (fts)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 42

P

s

FCP

3342maxmax

Top 12984 =

5446

403342maxsC

Top maxsC =02634

Bottom 12977 =

1286

403342maxsC

Bottom maxsC =025628

7 Maximum vapor superficial velocity usmax

maxsC = usmax

GL

G

Top usmax =

319912632

31991

26340

= 12752

Bottom usmax =

486812432

48681

25620

=11651 fts

8 Tower area AT (ft2)

AT =smaxu

CFS

Top AT =27521

2051

Top AT =09449

Bottom AT = 16511

23161

= 1057 ft2

9 Tower diameter (ft)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 28: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 28

Design equation

001B

bKxK ii

ii

For T =245 0F

00139331

39831ii xK

At column midpoint condition

2

0

1255127512250

519624514850

inlbP

FT

Summery of operating condition

Point 1 Point 2 Point 3

Temperature 148 1965 245

Pressure lbin2 (abs) 1225 125 1275

Equilibrium K data for column midpoint condition

Point 1 Point 2 Point 3

Components Ki i Ki i Ki i avgi

C3 2425 571 34 486 45 419 488

i-C4 1175 276 18 257 255 237 256

C4 087 205 138 197 205 191 198

i-C5 0425 100 07 10 1075 10 10

C5 034 08 06 086 094 087 084

Fenske equation

3919

001

981ln

3880

84210

8090

68417ln

m

m

N

N

Separation of non key component

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 29

4912

100198

2

avgLKavgHK

mean

molh09220bmolh 2920d

molh38820f840

)(CPentane

molh8090dmolh 84210b

molh65111f001

)C-(itan

68417dmolh 3880b

molh07218f981

)(CButane

hmol 82210d h mol0210b

hmol84310f562

)C-(iIsobutane

molh76240007624d

molh000molh101882

001

884

84210

80901

7624

7624f884

)(Cropane

C5C5

C5C5

5

C5-iC5-i

C5-iiC5

5

C4C4

C4C4

4

iC4iC4

iC4iC4

4

33C3

5

39193

C3C3

3

lblb

lb

lblb

lb

eIsopen

hlbmollb

lblb

lb

lbbf

lblbb

hmol

P

CC

C

Components Feed (lbmolh) Distillate (lbmolh) Bottom (lbmolh)

C3 4762 4762 0000

i-C4 10843 10822 0021

C4 18072 17684 03880

i-C5 11651 0809 10842

C5 20388 0292 20096

Total 65716 34369 31347

Maximum value of 3 wt of i-C5 in distillate is required

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 30

Calculated value =

wt 3

1004956

172

36934

8090

Maximum value of 1 wt of C4 in bottom is required

Calculated value

wt 1

1009163

158

34731

3880

Conditions are satisfied

542 Component split by Winn equation

The Fenske equation has a weakness as the relative volatility difference between

column top and bottom increase the estimated minimum number of stages gets

increasingly too small

460

1

460

1

lnln

bottomtop

bottomitopi

i

TT

PKPKB

460

ln

T

BAPK i

ii

110 irHKi PAAi

r

ii B

B

Components KTop148 F Kbottom245 F

C3 2425 450

i-C4 1175 255

C4 087 205

i-C5 0425 1075

C5 034 094

For P=125 lbin2

For butane (C4)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 31

550594460148

)271263()42525122log(

271263

460245

1

460148

1545127log42525122log

4

4

C

C

A

B

Heavy component is iso-pentane( i-C5)

955824460148

)711857()42505122log(

680010717185

271263

711857

460245

1

460148

1

07515127log4250125log

5

4

5

Ci

C

Ci

A

A

B

311344

)125(10

10)1680010()955824550594(

1

irHKi PAAi

Components Bi Ai θi βi

C3 -126327 45509 068001 43113

i-C4 -156377 473016 084177 24069

C4 -172167 48593 092677 191988

i-C5 -185771 49558 100000 10000

C5 -202840 49558 109189 086704

5339

919881log

)369348090(

)3473484210(

)347313880(

)3693468417(log

m

m

N

N

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 32

abvg

1

bdcomponent

orlightif

D

B

d

bb

d

HK

N

i

im

d

b1

fd

2dbkeyheavy

1

avgHKLKif

b

df

b

componentlight propanefor

5

032068

9533

101976

09120713402

4311

b

d

7624

0001097611

76245

bfd

b

For isobutene (i-C4)

f =10843 θ =0842 β =2407 (light component)

lh10821lbmo

002210843d

h0022lbmol

494151

10843b

4941509120713402

2407

b

d08417108417

9533

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 33

For Butane (C4)

f =18072 β=191988θ=092677

h0388lbmol

455771

18072b

4557709120713402

191988

b

d0926771092677

9533

d=18072-0388

=17684 lbmolh

For Isopentane (C5)

f =11651 β =100 θ =100

111

5339

91207040213

00001

b

d

=007461

βltβavg

)0746101(1

65111

d

= 0809 lbmolh

b = 11651-0809

=10842 lbmolh

For Pentane (C5)

f =20388 lbmolh β= 086704 θ =109189

0918911091891

5339

91207040213

867040

b

d

=0014959

βltβavg

)01495901(1

38820

d

= 0300 lb molh

b=20388-03

=20088

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 34

Components Feed lbmolh Distillate lbmolh Bottom lbmolh

C3 4762 4762 000

i-C4 10843 10821 0022

C4 18072 17684 0388

i-C5 11651 0809 10842

C5 20388 03 20088

65716 34376 3134

Components Feed lbh Distillate lbh Bottom lbh

C3 210 210 000

i-C4 630 62872 128

C4 1050 102745 2257

i-C5 840 5836 78164

C5 1470 2163 1448348

4200 194602 2253818

543 Calculation of Rm

From Underwood equation

qx

i

iFi

1

Components Flbmolhr xif xid αi

C3 4762 00725 01386 488

i-C4 10843 01650 03149 256

C4 18072 02750 05145 198

i-C5 11651 01773 002335 100

C5 20388 03102 00085 084

65716 1000 1000

Feed is at boiling conditions since q =1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 35

0840

31020840

1

177301

981

27500981

562

16500562

884

07250884

θ =1284

from this value of θ

avgi

idavgim

xR

1

11284840

00850840

12841

023501

1284981

51450981

1284562

31490562

1284884

13860884

mR

Rm=1185

R=15 Rm

=15times1185

=17775

X=1

R

RR m

X=177751

185177751

=02133

From GillilandrsquoS correlation Y=1

N

NN m =042

We know the value of Nm 4201

5339

N

N

N=178 =18 stages

Feed location can be known by the use of Kirkbride equation

2

)376348090(

)34313880(

)07218(

)65111(

37634

34312060log

F

F

p

m

687890p

m

817 pm

m = 725=8

p =1054 =11

Feed is introduced on eight stage from top

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 36

Chapter- 6

PACKED COLUMN DESIGN

61 Stage AnalysisThe data shown in table are typical data generated by commercial simulation

Vapor liquidStage Temperature0F lbhr CFS

ft3sV

lbft3

Lbhr GPM

galminL

σ

dynecm

μ

cP

1 1349 00 00 00 3655 1423 3202 6867 0114

2 1474 5501 12050 12683 3720 1447 3204 6738 01132

3 1548 5566 12049 12831 3724 1447 3208 6699 01128

4 1609 5571 11987 12909 3707 1438 3214 6684 01130

5 1668 5553 11889 12974 3693 1430 3220 6665 01135

6 1726 5539 11794 13045 3689 1426 3224 6632 01142

7 1779 5535 11716 13122 3691 1426 3226 6590 01149

8 1824 5537 11650 13199 8032 310471 3226 6544 01156

9 1873 5678 11794 13373 8126 3142 3224 6507 01153

10 1917 5772 11871 13506 8201 3171 3224 6479 01151

11 1961 5847 11915 13631 8275 3201 3223 6447 01152

12 2010 5921 11946 13768 8360 3235 3222 6406 01156

13 2064 6006 12152 13928 8475 3274 3220 6348 01162

14 2122 6103 12013 14111 8574 3321 3218 6295 01170

15 2179 6220 12070 14310 8701 3374 3215 6236 01180

16 2232 6347 12148 14512 8829 3428 3211 6178 01191

17 2280 6475 12234 14701 8947 3477 3208 6128 01201

18 2321 6593 12317 14868 2354 91599 3204 6087 01212

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 37

62 Flood Point

15 inch pall ring will be used throughout the column for this packing the flood point can

be determined by interpolation

A-flood point by GPDC [generalized pressure drop correlation] interpolation

2

2

6593

5571

fthrlbA

G

fthrlbA

G

TBottom

TTop

Liquid flowrates ( 2 fthrlb )

LTop =TA

3724

LBottom = TA

8947

Vapor density( 3 ftlb )

48681

31991

BottomG

TopG

Liquid density ( 3 ftlb )

2432

2632

BottomL

TopL

1 Flow parameter

L

GLV ρ

ρ

G

LF

Top 05

LV 3228

13199

5571

3724F

1352110FLV

Bottom LVF =

2432

48681

6593

8947

= 029142

2 Capacity parameter from graphical correlation

Top =152

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 38

Bottom =119

3 Viscosity of the liquid L (cP)

Top L =01128 (cP)

Bottom L =01151 (cP)

4 Kinematic viscosity

=

L

L

462

Top =

2632

11280462

Top = 0218187

Bottom =

2432

11510462

Bottom = 022277

5 Packing factor ( 1ft )

Top FP = 40

Bottom FP = 40

6 Vapour capacity factor CSFI(fts)

Capacity parameter = CSFI FP05 005

Top 05050SFI 2181040

921C

Top SFIC =02593

Bottom 05050SFI 2181040

191C

Bottom 20280CSFI

63 Flood point by the Kister amp Gill correlation

1 FTP packed bed specific pressure drop at flood point

FTP =0115 70PF

Top FTP =0115 7040

=1521

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 39

Bottom FTP =1521 inch of H2O per ft

2 Flow parameter

Top FLV =0135211

Bottom FLV =029142

3 Capacity parameter at flood point

Top =152

Bottom = 119

4 CSFl vapor capacity factor at the flood point

CSFl = capacity parameter

05050

1

PF

Top CSFl =02593

Bottom CSFl =02028

64 Diameter calculation

1 Vapor capacity factor Cs design (nonderated) fts

The column will be designed for 75 flood capacity

SFlS CC 750

Top CS = 075 02593

=0194475

Bottom CS = 075 02028

Bottom CS = 01551

2 CS vapor capacity factor (derated )fts

= 09 CSdesign

Top CS = 09 01944

Top CS =017496

Bottom CS =09 01521

Bottom CS =013689

3 Vapor superficial velocity based on the cross section of empty column u (fts)

GL

G

ss

ρρ

ρ

(derated)Cu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 40

Top su =

319912632

31991

174960

Top su =084737

Bottom su =

486812432

48681

136890

Bottom su = 062257

4 Vapor flow rate CFS ft3s

Top CFS =1205 ft3s

Bottom CFS =12316 ft3shellipfrom table

5 Tower area ft2

AT = s

T u

CFSA

Top AT = 847370

2051

Top AT =1422 ft2

Bottom AT = 622570

23161

Bottom AT =19782 ft2

6 Tower diameter ft

1587ftD

π

197824D

13455ftD

π

14224D

π

A4

BottomT

BottomT

TopT

TopT

TT

D

65 Diameter calculation using the maximum pressure drop criterion

1 L

G

calculation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 41

Top L

G

=2632

31991

= 00409

Bottom L

G

=2432

48681

= 004611

2OH

L

2

calculation

Top ( OHL 2 )=

4362

2632

= 05167

Bottom ( OHL 2 ) =

4362

2432

= 05164

3 FP packing factor

Top FP = 40

Bottom FP =40

4 Maximum pressure drops recommended for packed column with random packing

1902

70max

OH

LPFP

helliphelliphelliphellipfor 006 20L

G

Top maxP = 019 5167040 70

Top maxP = 12984helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

Bottom maxP = 019 5164040 70

Bottom maxP =12977helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

5 Surface tension dyne

Top =6544 cmdyne

Bottom =6128 cmdyne

6 Vapor capacity factor Csmax (fts)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 42

P

s

FCP

3342maxmax

Top 12984 =

5446

403342maxsC

Top maxsC =02634

Bottom 12977 =

1286

403342maxsC

Bottom maxsC =025628

7 Maximum vapor superficial velocity usmax

maxsC = usmax

GL

G

Top usmax =

319912632

31991

26340

= 12752

Bottom usmax =

486812432

48681

25620

=11651 fts

8 Tower area AT (ft2)

AT =smaxu

CFS

Top AT =27521

2051

Top AT =09449

Bottom AT = 16511

23161

= 1057 ft2

9 Tower diameter (ft)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 29: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 29

4912

100198

2

avgLKavgHK

mean

molh09220bmolh 2920d

molh38820f840

)(CPentane

molh8090dmolh 84210b

molh65111f001

)C-(itan

68417dmolh 3880b

molh07218f981

)(CButane

hmol 82210d h mol0210b

hmol84310f562

)C-(iIsobutane

molh76240007624d

molh000molh101882

001

884

84210

80901

7624

7624f884

)(Cropane

C5C5

C5C5

5

C5-iC5-i

C5-iiC5

5

C4C4

C4C4

4

iC4iC4

iC4iC4

4

33C3

5

39193

C3C3

3

lblb

lb

lblb

lb

eIsopen

hlbmollb

lblb

lb

lbbf

lblbb

hmol

P

CC

C

Components Feed (lbmolh) Distillate (lbmolh) Bottom (lbmolh)

C3 4762 4762 0000

i-C4 10843 10822 0021

C4 18072 17684 03880

i-C5 11651 0809 10842

C5 20388 0292 20096

Total 65716 34369 31347

Maximum value of 3 wt of i-C5 in distillate is required

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 30

Calculated value =

wt 3

1004956

172

36934

8090

Maximum value of 1 wt of C4 in bottom is required

Calculated value

wt 1

1009163

158

34731

3880

Conditions are satisfied

542 Component split by Winn equation

The Fenske equation has a weakness as the relative volatility difference between

column top and bottom increase the estimated minimum number of stages gets

increasingly too small

460

1

460

1

lnln

bottomtop

bottomitopi

i

TT

PKPKB

460

ln

T

BAPK i

ii

110 irHKi PAAi

r

ii B

B

Components KTop148 F Kbottom245 F

C3 2425 450

i-C4 1175 255

C4 087 205

i-C5 0425 1075

C5 034 094

For P=125 lbin2

For butane (C4)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 31

550594460148

)271263()42525122log(

271263

460245

1

460148

1545127log42525122log

4

4

C

C

A

B

Heavy component is iso-pentane( i-C5)

955824460148

)711857()42505122log(

680010717185

271263

711857

460245

1

460148

1

07515127log4250125log

5

4

5

Ci

C

Ci

A

A

B

311344

)125(10

10)1680010()955824550594(

1

irHKi PAAi

Components Bi Ai θi βi

C3 -126327 45509 068001 43113

i-C4 -156377 473016 084177 24069

C4 -172167 48593 092677 191988

i-C5 -185771 49558 100000 10000

C5 -202840 49558 109189 086704

5339

919881log

)369348090(

)3473484210(

)347313880(

)3693468417(log

m

m

N

N

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 32

abvg

1

bdcomponent

orlightif

D

B

d

bb

d

HK

N

i

im

d

b1

fd

2dbkeyheavy

1

avgHKLKif

b

df

b

componentlight propanefor

5

032068

9533

101976

09120713402

4311

b

d

7624

0001097611

76245

bfd

b

For isobutene (i-C4)

f =10843 θ =0842 β =2407 (light component)

lh10821lbmo

002210843d

h0022lbmol

494151

10843b

4941509120713402

2407

b

d08417108417

9533

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 33

For Butane (C4)

f =18072 β=191988θ=092677

h0388lbmol

455771

18072b

4557709120713402

191988

b

d0926771092677

9533

d=18072-0388

=17684 lbmolh

For Isopentane (C5)

f =11651 β =100 θ =100

111

5339

91207040213

00001

b

d

=007461

βltβavg

)0746101(1

65111

d

= 0809 lbmolh

b = 11651-0809

=10842 lbmolh

For Pentane (C5)

f =20388 lbmolh β= 086704 θ =109189

0918911091891

5339

91207040213

867040

b

d

=0014959

βltβavg

)01495901(1

38820

d

= 0300 lb molh

b=20388-03

=20088

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 34

Components Feed lbmolh Distillate lbmolh Bottom lbmolh

C3 4762 4762 000

i-C4 10843 10821 0022

C4 18072 17684 0388

i-C5 11651 0809 10842

C5 20388 03 20088

65716 34376 3134

Components Feed lbh Distillate lbh Bottom lbh

C3 210 210 000

i-C4 630 62872 128

C4 1050 102745 2257

i-C5 840 5836 78164

C5 1470 2163 1448348

4200 194602 2253818

543 Calculation of Rm

From Underwood equation

qx

i

iFi

1

Components Flbmolhr xif xid αi

C3 4762 00725 01386 488

i-C4 10843 01650 03149 256

C4 18072 02750 05145 198

i-C5 11651 01773 002335 100

C5 20388 03102 00085 084

65716 1000 1000

Feed is at boiling conditions since q =1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 35

0840

31020840

1

177301

981

27500981

562

16500562

884

07250884

θ =1284

from this value of θ

avgi

idavgim

xR

1

11284840

00850840

12841

023501

1284981

51450981

1284562

31490562

1284884

13860884

mR

Rm=1185

R=15 Rm

=15times1185

=17775

X=1

R

RR m

X=177751

185177751

=02133

From GillilandrsquoS correlation Y=1

N

NN m =042

We know the value of Nm 4201

5339

N

N

N=178 =18 stages

Feed location can be known by the use of Kirkbride equation

2

)376348090(

)34313880(

)07218(

)65111(

37634

34312060log

F

F

p

m

687890p

m

817 pm

m = 725=8

p =1054 =11

Feed is introduced on eight stage from top

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 36

Chapter- 6

PACKED COLUMN DESIGN

61 Stage AnalysisThe data shown in table are typical data generated by commercial simulation

Vapor liquidStage Temperature0F lbhr CFS

ft3sV

lbft3

Lbhr GPM

galminL

σ

dynecm

μ

cP

1 1349 00 00 00 3655 1423 3202 6867 0114

2 1474 5501 12050 12683 3720 1447 3204 6738 01132

3 1548 5566 12049 12831 3724 1447 3208 6699 01128

4 1609 5571 11987 12909 3707 1438 3214 6684 01130

5 1668 5553 11889 12974 3693 1430 3220 6665 01135

6 1726 5539 11794 13045 3689 1426 3224 6632 01142

7 1779 5535 11716 13122 3691 1426 3226 6590 01149

8 1824 5537 11650 13199 8032 310471 3226 6544 01156

9 1873 5678 11794 13373 8126 3142 3224 6507 01153

10 1917 5772 11871 13506 8201 3171 3224 6479 01151

11 1961 5847 11915 13631 8275 3201 3223 6447 01152

12 2010 5921 11946 13768 8360 3235 3222 6406 01156

13 2064 6006 12152 13928 8475 3274 3220 6348 01162

14 2122 6103 12013 14111 8574 3321 3218 6295 01170

15 2179 6220 12070 14310 8701 3374 3215 6236 01180

16 2232 6347 12148 14512 8829 3428 3211 6178 01191

17 2280 6475 12234 14701 8947 3477 3208 6128 01201

18 2321 6593 12317 14868 2354 91599 3204 6087 01212

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 37

62 Flood Point

15 inch pall ring will be used throughout the column for this packing the flood point can

be determined by interpolation

A-flood point by GPDC [generalized pressure drop correlation] interpolation

2

2

6593

5571

fthrlbA

G

fthrlbA

G

TBottom

TTop

Liquid flowrates ( 2 fthrlb )

LTop =TA

3724

LBottom = TA

8947

Vapor density( 3 ftlb )

48681

31991

BottomG

TopG

Liquid density ( 3 ftlb )

2432

2632

BottomL

TopL

1 Flow parameter

L

GLV ρ

ρ

G

LF

Top 05

LV 3228

13199

5571

3724F

1352110FLV

Bottom LVF =

2432

48681

6593

8947

= 029142

2 Capacity parameter from graphical correlation

Top =152

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 38

Bottom =119

3 Viscosity of the liquid L (cP)

Top L =01128 (cP)

Bottom L =01151 (cP)

4 Kinematic viscosity

=

L

L

462

Top =

2632

11280462

Top = 0218187

Bottom =

2432

11510462

Bottom = 022277

5 Packing factor ( 1ft )

Top FP = 40

Bottom FP = 40

6 Vapour capacity factor CSFI(fts)

Capacity parameter = CSFI FP05 005

Top 05050SFI 2181040

921C

Top SFIC =02593

Bottom 05050SFI 2181040

191C

Bottom 20280CSFI

63 Flood point by the Kister amp Gill correlation

1 FTP packed bed specific pressure drop at flood point

FTP =0115 70PF

Top FTP =0115 7040

=1521

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 39

Bottom FTP =1521 inch of H2O per ft

2 Flow parameter

Top FLV =0135211

Bottom FLV =029142

3 Capacity parameter at flood point

Top =152

Bottom = 119

4 CSFl vapor capacity factor at the flood point

CSFl = capacity parameter

05050

1

PF

Top CSFl =02593

Bottom CSFl =02028

64 Diameter calculation

1 Vapor capacity factor Cs design (nonderated) fts

The column will be designed for 75 flood capacity

SFlS CC 750

Top CS = 075 02593

=0194475

Bottom CS = 075 02028

Bottom CS = 01551

2 CS vapor capacity factor (derated )fts

= 09 CSdesign

Top CS = 09 01944

Top CS =017496

Bottom CS =09 01521

Bottom CS =013689

3 Vapor superficial velocity based on the cross section of empty column u (fts)

GL

G

ss

ρρ

ρ

(derated)Cu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 40

Top su =

319912632

31991

174960

Top su =084737

Bottom su =

486812432

48681

136890

Bottom su = 062257

4 Vapor flow rate CFS ft3s

Top CFS =1205 ft3s

Bottom CFS =12316 ft3shellipfrom table

5 Tower area ft2

AT = s

T u

CFSA

Top AT = 847370

2051

Top AT =1422 ft2

Bottom AT = 622570

23161

Bottom AT =19782 ft2

6 Tower diameter ft

1587ftD

π

197824D

13455ftD

π

14224D

π

A4

BottomT

BottomT

TopT

TopT

TT

D

65 Diameter calculation using the maximum pressure drop criterion

1 L

G

calculation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 41

Top L

G

=2632

31991

= 00409

Bottom L

G

=2432

48681

= 004611

2OH

L

2

calculation

Top ( OHL 2 )=

4362

2632

= 05167

Bottom ( OHL 2 ) =

4362

2432

= 05164

3 FP packing factor

Top FP = 40

Bottom FP =40

4 Maximum pressure drops recommended for packed column with random packing

1902

70max

OH

LPFP

helliphelliphelliphellipfor 006 20L

G

Top maxP = 019 5167040 70

Top maxP = 12984helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

Bottom maxP = 019 5164040 70

Bottom maxP =12977helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

5 Surface tension dyne

Top =6544 cmdyne

Bottom =6128 cmdyne

6 Vapor capacity factor Csmax (fts)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 42

P

s

FCP

3342maxmax

Top 12984 =

5446

403342maxsC

Top maxsC =02634

Bottom 12977 =

1286

403342maxsC

Bottom maxsC =025628

7 Maximum vapor superficial velocity usmax

maxsC = usmax

GL

G

Top usmax =

319912632

31991

26340

= 12752

Bottom usmax =

486812432

48681

25620

=11651 fts

8 Tower area AT (ft2)

AT =smaxu

CFS

Top AT =27521

2051

Top AT =09449

Bottom AT = 16511

23161

= 1057 ft2

9 Tower diameter (ft)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 30: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 30

Calculated value =

wt 3

1004956

172

36934

8090

Maximum value of 1 wt of C4 in bottom is required

Calculated value

wt 1

1009163

158

34731

3880

Conditions are satisfied

542 Component split by Winn equation

The Fenske equation has a weakness as the relative volatility difference between

column top and bottom increase the estimated minimum number of stages gets

increasingly too small

460

1

460

1

lnln

bottomtop

bottomitopi

i

TT

PKPKB

460

ln

T

BAPK i

ii

110 irHKi PAAi

r

ii B

B

Components KTop148 F Kbottom245 F

C3 2425 450

i-C4 1175 255

C4 087 205

i-C5 0425 1075

C5 034 094

For P=125 lbin2

For butane (C4)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 31

550594460148

)271263()42525122log(

271263

460245

1

460148

1545127log42525122log

4

4

C

C

A

B

Heavy component is iso-pentane( i-C5)

955824460148

)711857()42505122log(

680010717185

271263

711857

460245

1

460148

1

07515127log4250125log

5

4

5

Ci

C

Ci

A

A

B

311344

)125(10

10)1680010()955824550594(

1

irHKi PAAi

Components Bi Ai θi βi

C3 -126327 45509 068001 43113

i-C4 -156377 473016 084177 24069

C4 -172167 48593 092677 191988

i-C5 -185771 49558 100000 10000

C5 -202840 49558 109189 086704

5339

919881log

)369348090(

)3473484210(

)347313880(

)3693468417(log

m

m

N

N

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 32

abvg

1

bdcomponent

orlightif

D

B

d

bb

d

HK

N

i

im

d

b1

fd

2dbkeyheavy

1

avgHKLKif

b

df

b

componentlight propanefor

5

032068

9533

101976

09120713402

4311

b

d

7624

0001097611

76245

bfd

b

For isobutene (i-C4)

f =10843 θ =0842 β =2407 (light component)

lh10821lbmo

002210843d

h0022lbmol

494151

10843b

4941509120713402

2407

b

d08417108417

9533

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 33

For Butane (C4)

f =18072 β=191988θ=092677

h0388lbmol

455771

18072b

4557709120713402

191988

b

d0926771092677

9533

d=18072-0388

=17684 lbmolh

For Isopentane (C5)

f =11651 β =100 θ =100

111

5339

91207040213

00001

b

d

=007461

βltβavg

)0746101(1

65111

d

= 0809 lbmolh

b = 11651-0809

=10842 lbmolh

For Pentane (C5)

f =20388 lbmolh β= 086704 θ =109189

0918911091891

5339

91207040213

867040

b

d

=0014959

βltβavg

)01495901(1

38820

d

= 0300 lb molh

b=20388-03

=20088

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 34

Components Feed lbmolh Distillate lbmolh Bottom lbmolh

C3 4762 4762 000

i-C4 10843 10821 0022

C4 18072 17684 0388

i-C5 11651 0809 10842

C5 20388 03 20088

65716 34376 3134

Components Feed lbh Distillate lbh Bottom lbh

C3 210 210 000

i-C4 630 62872 128

C4 1050 102745 2257

i-C5 840 5836 78164

C5 1470 2163 1448348

4200 194602 2253818

543 Calculation of Rm

From Underwood equation

qx

i

iFi

1

Components Flbmolhr xif xid αi

C3 4762 00725 01386 488

i-C4 10843 01650 03149 256

C4 18072 02750 05145 198

i-C5 11651 01773 002335 100

C5 20388 03102 00085 084

65716 1000 1000

Feed is at boiling conditions since q =1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 35

0840

31020840

1

177301

981

27500981

562

16500562

884

07250884

θ =1284

from this value of θ

avgi

idavgim

xR

1

11284840

00850840

12841

023501

1284981

51450981

1284562

31490562

1284884

13860884

mR

Rm=1185

R=15 Rm

=15times1185

=17775

X=1

R

RR m

X=177751

185177751

=02133

From GillilandrsquoS correlation Y=1

N

NN m =042

We know the value of Nm 4201

5339

N

N

N=178 =18 stages

Feed location can be known by the use of Kirkbride equation

2

)376348090(

)34313880(

)07218(

)65111(

37634

34312060log

F

F

p

m

687890p

m

817 pm

m = 725=8

p =1054 =11

Feed is introduced on eight stage from top

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 36

Chapter- 6

PACKED COLUMN DESIGN

61 Stage AnalysisThe data shown in table are typical data generated by commercial simulation

Vapor liquidStage Temperature0F lbhr CFS

ft3sV

lbft3

Lbhr GPM

galminL

σ

dynecm

μ

cP

1 1349 00 00 00 3655 1423 3202 6867 0114

2 1474 5501 12050 12683 3720 1447 3204 6738 01132

3 1548 5566 12049 12831 3724 1447 3208 6699 01128

4 1609 5571 11987 12909 3707 1438 3214 6684 01130

5 1668 5553 11889 12974 3693 1430 3220 6665 01135

6 1726 5539 11794 13045 3689 1426 3224 6632 01142

7 1779 5535 11716 13122 3691 1426 3226 6590 01149

8 1824 5537 11650 13199 8032 310471 3226 6544 01156

9 1873 5678 11794 13373 8126 3142 3224 6507 01153

10 1917 5772 11871 13506 8201 3171 3224 6479 01151

11 1961 5847 11915 13631 8275 3201 3223 6447 01152

12 2010 5921 11946 13768 8360 3235 3222 6406 01156

13 2064 6006 12152 13928 8475 3274 3220 6348 01162

14 2122 6103 12013 14111 8574 3321 3218 6295 01170

15 2179 6220 12070 14310 8701 3374 3215 6236 01180

16 2232 6347 12148 14512 8829 3428 3211 6178 01191

17 2280 6475 12234 14701 8947 3477 3208 6128 01201

18 2321 6593 12317 14868 2354 91599 3204 6087 01212

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 37

62 Flood Point

15 inch pall ring will be used throughout the column for this packing the flood point can

be determined by interpolation

A-flood point by GPDC [generalized pressure drop correlation] interpolation

2

2

6593

5571

fthrlbA

G

fthrlbA

G

TBottom

TTop

Liquid flowrates ( 2 fthrlb )

LTop =TA

3724

LBottom = TA

8947

Vapor density( 3 ftlb )

48681

31991

BottomG

TopG

Liquid density ( 3 ftlb )

2432

2632

BottomL

TopL

1 Flow parameter

L

GLV ρ

ρ

G

LF

Top 05

LV 3228

13199

5571

3724F

1352110FLV

Bottom LVF =

2432

48681

6593

8947

= 029142

2 Capacity parameter from graphical correlation

Top =152

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 38

Bottom =119

3 Viscosity of the liquid L (cP)

Top L =01128 (cP)

Bottom L =01151 (cP)

4 Kinematic viscosity

=

L

L

462

Top =

2632

11280462

Top = 0218187

Bottom =

2432

11510462

Bottom = 022277

5 Packing factor ( 1ft )

Top FP = 40

Bottom FP = 40

6 Vapour capacity factor CSFI(fts)

Capacity parameter = CSFI FP05 005

Top 05050SFI 2181040

921C

Top SFIC =02593

Bottom 05050SFI 2181040

191C

Bottom 20280CSFI

63 Flood point by the Kister amp Gill correlation

1 FTP packed bed specific pressure drop at flood point

FTP =0115 70PF

Top FTP =0115 7040

=1521

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 39

Bottom FTP =1521 inch of H2O per ft

2 Flow parameter

Top FLV =0135211

Bottom FLV =029142

3 Capacity parameter at flood point

Top =152

Bottom = 119

4 CSFl vapor capacity factor at the flood point

CSFl = capacity parameter

05050

1

PF

Top CSFl =02593

Bottom CSFl =02028

64 Diameter calculation

1 Vapor capacity factor Cs design (nonderated) fts

The column will be designed for 75 flood capacity

SFlS CC 750

Top CS = 075 02593

=0194475

Bottom CS = 075 02028

Bottom CS = 01551

2 CS vapor capacity factor (derated )fts

= 09 CSdesign

Top CS = 09 01944

Top CS =017496

Bottom CS =09 01521

Bottom CS =013689

3 Vapor superficial velocity based on the cross section of empty column u (fts)

GL

G

ss

ρρ

ρ

(derated)Cu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 40

Top su =

319912632

31991

174960

Top su =084737

Bottom su =

486812432

48681

136890

Bottom su = 062257

4 Vapor flow rate CFS ft3s

Top CFS =1205 ft3s

Bottom CFS =12316 ft3shellipfrom table

5 Tower area ft2

AT = s

T u

CFSA

Top AT = 847370

2051

Top AT =1422 ft2

Bottom AT = 622570

23161

Bottom AT =19782 ft2

6 Tower diameter ft

1587ftD

π

197824D

13455ftD

π

14224D

π

A4

BottomT

BottomT

TopT

TopT

TT

D

65 Diameter calculation using the maximum pressure drop criterion

1 L

G

calculation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 41

Top L

G

=2632

31991

= 00409

Bottom L

G

=2432

48681

= 004611

2OH

L

2

calculation

Top ( OHL 2 )=

4362

2632

= 05167

Bottom ( OHL 2 ) =

4362

2432

= 05164

3 FP packing factor

Top FP = 40

Bottom FP =40

4 Maximum pressure drops recommended for packed column with random packing

1902

70max

OH

LPFP

helliphelliphelliphellipfor 006 20L

G

Top maxP = 019 5167040 70

Top maxP = 12984helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

Bottom maxP = 019 5164040 70

Bottom maxP =12977helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

5 Surface tension dyne

Top =6544 cmdyne

Bottom =6128 cmdyne

6 Vapor capacity factor Csmax (fts)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 42

P

s

FCP

3342maxmax

Top 12984 =

5446

403342maxsC

Top maxsC =02634

Bottom 12977 =

1286

403342maxsC

Bottom maxsC =025628

7 Maximum vapor superficial velocity usmax

maxsC = usmax

GL

G

Top usmax =

319912632

31991

26340

= 12752

Bottom usmax =

486812432

48681

25620

=11651 fts

8 Tower area AT (ft2)

AT =smaxu

CFS

Top AT =27521

2051

Top AT =09449

Bottom AT = 16511

23161

= 1057 ft2

9 Tower diameter (ft)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 31: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 31

550594460148

)271263()42525122log(

271263

460245

1

460148

1545127log42525122log

4

4

C

C

A

B

Heavy component is iso-pentane( i-C5)

955824460148

)711857()42505122log(

680010717185

271263

711857

460245

1

460148

1

07515127log4250125log

5

4

5

Ci

C

Ci

A

A

B

311344

)125(10

10)1680010()955824550594(

1

irHKi PAAi

Components Bi Ai θi βi

C3 -126327 45509 068001 43113

i-C4 -156377 473016 084177 24069

C4 -172167 48593 092677 191988

i-C5 -185771 49558 100000 10000

C5 -202840 49558 109189 086704

5339

919881log

)369348090(

)3473484210(

)347313880(

)3693468417(log

m

m

N

N

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 32

abvg

1

bdcomponent

orlightif

D

B

d

bb

d

HK

N

i

im

d

b1

fd

2dbkeyheavy

1

avgHKLKif

b

df

b

componentlight propanefor

5

032068

9533

101976

09120713402

4311

b

d

7624

0001097611

76245

bfd

b

For isobutene (i-C4)

f =10843 θ =0842 β =2407 (light component)

lh10821lbmo

002210843d

h0022lbmol

494151

10843b

4941509120713402

2407

b

d08417108417

9533

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 33

For Butane (C4)

f =18072 β=191988θ=092677

h0388lbmol

455771

18072b

4557709120713402

191988

b

d0926771092677

9533

d=18072-0388

=17684 lbmolh

For Isopentane (C5)

f =11651 β =100 θ =100

111

5339

91207040213

00001

b

d

=007461

βltβavg

)0746101(1

65111

d

= 0809 lbmolh

b = 11651-0809

=10842 lbmolh

For Pentane (C5)

f =20388 lbmolh β= 086704 θ =109189

0918911091891

5339

91207040213

867040

b

d

=0014959

βltβavg

)01495901(1

38820

d

= 0300 lb molh

b=20388-03

=20088

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 34

Components Feed lbmolh Distillate lbmolh Bottom lbmolh

C3 4762 4762 000

i-C4 10843 10821 0022

C4 18072 17684 0388

i-C5 11651 0809 10842

C5 20388 03 20088

65716 34376 3134

Components Feed lbh Distillate lbh Bottom lbh

C3 210 210 000

i-C4 630 62872 128

C4 1050 102745 2257

i-C5 840 5836 78164

C5 1470 2163 1448348

4200 194602 2253818

543 Calculation of Rm

From Underwood equation

qx

i

iFi

1

Components Flbmolhr xif xid αi

C3 4762 00725 01386 488

i-C4 10843 01650 03149 256

C4 18072 02750 05145 198

i-C5 11651 01773 002335 100

C5 20388 03102 00085 084

65716 1000 1000

Feed is at boiling conditions since q =1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 35

0840

31020840

1

177301

981

27500981

562

16500562

884

07250884

θ =1284

from this value of θ

avgi

idavgim

xR

1

11284840

00850840

12841

023501

1284981

51450981

1284562

31490562

1284884

13860884

mR

Rm=1185

R=15 Rm

=15times1185

=17775

X=1

R

RR m

X=177751

185177751

=02133

From GillilandrsquoS correlation Y=1

N

NN m =042

We know the value of Nm 4201

5339

N

N

N=178 =18 stages

Feed location can be known by the use of Kirkbride equation

2

)376348090(

)34313880(

)07218(

)65111(

37634

34312060log

F

F

p

m

687890p

m

817 pm

m = 725=8

p =1054 =11

Feed is introduced on eight stage from top

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 36

Chapter- 6

PACKED COLUMN DESIGN

61 Stage AnalysisThe data shown in table are typical data generated by commercial simulation

Vapor liquidStage Temperature0F lbhr CFS

ft3sV

lbft3

Lbhr GPM

galminL

σ

dynecm

μ

cP

1 1349 00 00 00 3655 1423 3202 6867 0114

2 1474 5501 12050 12683 3720 1447 3204 6738 01132

3 1548 5566 12049 12831 3724 1447 3208 6699 01128

4 1609 5571 11987 12909 3707 1438 3214 6684 01130

5 1668 5553 11889 12974 3693 1430 3220 6665 01135

6 1726 5539 11794 13045 3689 1426 3224 6632 01142

7 1779 5535 11716 13122 3691 1426 3226 6590 01149

8 1824 5537 11650 13199 8032 310471 3226 6544 01156

9 1873 5678 11794 13373 8126 3142 3224 6507 01153

10 1917 5772 11871 13506 8201 3171 3224 6479 01151

11 1961 5847 11915 13631 8275 3201 3223 6447 01152

12 2010 5921 11946 13768 8360 3235 3222 6406 01156

13 2064 6006 12152 13928 8475 3274 3220 6348 01162

14 2122 6103 12013 14111 8574 3321 3218 6295 01170

15 2179 6220 12070 14310 8701 3374 3215 6236 01180

16 2232 6347 12148 14512 8829 3428 3211 6178 01191

17 2280 6475 12234 14701 8947 3477 3208 6128 01201

18 2321 6593 12317 14868 2354 91599 3204 6087 01212

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 37

62 Flood Point

15 inch pall ring will be used throughout the column for this packing the flood point can

be determined by interpolation

A-flood point by GPDC [generalized pressure drop correlation] interpolation

2

2

6593

5571

fthrlbA

G

fthrlbA

G

TBottom

TTop

Liquid flowrates ( 2 fthrlb )

LTop =TA

3724

LBottom = TA

8947

Vapor density( 3 ftlb )

48681

31991

BottomG

TopG

Liquid density ( 3 ftlb )

2432

2632

BottomL

TopL

1 Flow parameter

L

GLV ρ

ρ

G

LF

Top 05

LV 3228

13199

5571

3724F

1352110FLV

Bottom LVF =

2432

48681

6593

8947

= 029142

2 Capacity parameter from graphical correlation

Top =152

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 38

Bottom =119

3 Viscosity of the liquid L (cP)

Top L =01128 (cP)

Bottom L =01151 (cP)

4 Kinematic viscosity

=

L

L

462

Top =

2632

11280462

Top = 0218187

Bottom =

2432

11510462

Bottom = 022277

5 Packing factor ( 1ft )

Top FP = 40

Bottom FP = 40

6 Vapour capacity factor CSFI(fts)

Capacity parameter = CSFI FP05 005

Top 05050SFI 2181040

921C

Top SFIC =02593

Bottom 05050SFI 2181040

191C

Bottom 20280CSFI

63 Flood point by the Kister amp Gill correlation

1 FTP packed bed specific pressure drop at flood point

FTP =0115 70PF

Top FTP =0115 7040

=1521

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 39

Bottom FTP =1521 inch of H2O per ft

2 Flow parameter

Top FLV =0135211

Bottom FLV =029142

3 Capacity parameter at flood point

Top =152

Bottom = 119

4 CSFl vapor capacity factor at the flood point

CSFl = capacity parameter

05050

1

PF

Top CSFl =02593

Bottom CSFl =02028

64 Diameter calculation

1 Vapor capacity factor Cs design (nonderated) fts

The column will be designed for 75 flood capacity

SFlS CC 750

Top CS = 075 02593

=0194475

Bottom CS = 075 02028

Bottom CS = 01551

2 CS vapor capacity factor (derated )fts

= 09 CSdesign

Top CS = 09 01944

Top CS =017496

Bottom CS =09 01521

Bottom CS =013689

3 Vapor superficial velocity based on the cross section of empty column u (fts)

GL

G

ss

ρρ

ρ

(derated)Cu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 40

Top su =

319912632

31991

174960

Top su =084737

Bottom su =

486812432

48681

136890

Bottom su = 062257

4 Vapor flow rate CFS ft3s

Top CFS =1205 ft3s

Bottom CFS =12316 ft3shellipfrom table

5 Tower area ft2

AT = s

T u

CFSA

Top AT = 847370

2051

Top AT =1422 ft2

Bottom AT = 622570

23161

Bottom AT =19782 ft2

6 Tower diameter ft

1587ftD

π

197824D

13455ftD

π

14224D

π

A4

BottomT

BottomT

TopT

TopT

TT

D

65 Diameter calculation using the maximum pressure drop criterion

1 L

G

calculation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 41

Top L

G

=2632

31991

= 00409

Bottom L

G

=2432

48681

= 004611

2OH

L

2

calculation

Top ( OHL 2 )=

4362

2632

= 05167

Bottom ( OHL 2 ) =

4362

2432

= 05164

3 FP packing factor

Top FP = 40

Bottom FP =40

4 Maximum pressure drops recommended for packed column with random packing

1902

70max

OH

LPFP

helliphelliphelliphellipfor 006 20L

G

Top maxP = 019 5167040 70

Top maxP = 12984helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

Bottom maxP = 019 5164040 70

Bottom maxP =12977helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

5 Surface tension dyne

Top =6544 cmdyne

Bottom =6128 cmdyne

6 Vapor capacity factor Csmax (fts)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 42

P

s

FCP

3342maxmax

Top 12984 =

5446

403342maxsC

Top maxsC =02634

Bottom 12977 =

1286

403342maxsC

Bottom maxsC =025628

7 Maximum vapor superficial velocity usmax

maxsC = usmax

GL

G

Top usmax =

319912632

31991

26340

= 12752

Bottom usmax =

486812432

48681

25620

=11651 fts

8 Tower area AT (ft2)

AT =smaxu

CFS

Top AT =27521

2051

Top AT =09449

Bottom AT = 16511

23161

= 1057 ft2

9 Tower diameter (ft)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 32: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 32

abvg

1

bdcomponent

orlightif

D

B

d

bb

d

HK

N

i

im

d

b1

fd

2dbkeyheavy

1

avgHKLKif

b

df

b

componentlight propanefor

5

032068

9533

101976

09120713402

4311

b

d

7624

0001097611

76245

bfd

b

For isobutene (i-C4)

f =10843 θ =0842 β =2407 (light component)

lh10821lbmo

002210843d

h0022lbmol

494151

10843b

4941509120713402

2407

b

d08417108417

9533

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 33

For Butane (C4)

f =18072 β=191988θ=092677

h0388lbmol

455771

18072b

4557709120713402

191988

b

d0926771092677

9533

d=18072-0388

=17684 lbmolh

For Isopentane (C5)

f =11651 β =100 θ =100

111

5339

91207040213

00001

b

d

=007461

βltβavg

)0746101(1

65111

d

= 0809 lbmolh

b = 11651-0809

=10842 lbmolh

For Pentane (C5)

f =20388 lbmolh β= 086704 θ =109189

0918911091891

5339

91207040213

867040

b

d

=0014959

βltβavg

)01495901(1

38820

d

= 0300 lb molh

b=20388-03

=20088

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 34

Components Feed lbmolh Distillate lbmolh Bottom lbmolh

C3 4762 4762 000

i-C4 10843 10821 0022

C4 18072 17684 0388

i-C5 11651 0809 10842

C5 20388 03 20088

65716 34376 3134

Components Feed lbh Distillate lbh Bottom lbh

C3 210 210 000

i-C4 630 62872 128

C4 1050 102745 2257

i-C5 840 5836 78164

C5 1470 2163 1448348

4200 194602 2253818

543 Calculation of Rm

From Underwood equation

qx

i

iFi

1

Components Flbmolhr xif xid αi

C3 4762 00725 01386 488

i-C4 10843 01650 03149 256

C4 18072 02750 05145 198

i-C5 11651 01773 002335 100

C5 20388 03102 00085 084

65716 1000 1000

Feed is at boiling conditions since q =1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 35

0840

31020840

1

177301

981

27500981

562

16500562

884

07250884

θ =1284

from this value of θ

avgi

idavgim

xR

1

11284840

00850840

12841

023501

1284981

51450981

1284562

31490562

1284884

13860884

mR

Rm=1185

R=15 Rm

=15times1185

=17775

X=1

R

RR m

X=177751

185177751

=02133

From GillilandrsquoS correlation Y=1

N

NN m =042

We know the value of Nm 4201

5339

N

N

N=178 =18 stages

Feed location can be known by the use of Kirkbride equation

2

)376348090(

)34313880(

)07218(

)65111(

37634

34312060log

F

F

p

m

687890p

m

817 pm

m = 725=8

p =1054 =11

Feed is introduced on eight stage from top

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 36

Chapter- 6

PACKED COLUMN DESIGN

61 Stage AnalysisThe data shown in table are typical data generated by commercial simulation

Vapor liquidStage Temperature0F lbhr CFS

ft3sV

lbft3

Lbhr GPM

galminL

σ

dynecm

μ

cP

1 1349 00 00 00 3655 1423 3202 6867 0114

2 1474 5501 12050 12683 3720 1447 3204 6738 01132

3 1548 5566 12049 12831 3724 1447 3208 6699 01128

4 1609 5571 11987 12909 3707 1438 3214 6684 01130

5 1668 5553 11889 12974 3693 1430 3220 6665 01135

6 1726 5539 11794 13045 3689 1426 3224 6632 01142

7 1779 5535 11716 13122 3691 1426 3226 6590 01149

8 1824 5537 11650 13199 8032 310471 3226 6544 01156

9 1873 5678 11794 13373 8126 3142 3224 6507 01153

10 1917 5772 11871 13506 8201 3171 3224 6479 01151

11 1961 5847 11915 13631 8275 3201 3223 6447 01152

12 2010 5921 11946 13768 8360 3235 3222 6406 01156

13 2064 6006 12152 13928 8475 3274 3220 6348 01162

14 2122 6103 12013 14111 8574 3321 3218 6295 01170

15 2179 6220 12070 14310 8701 3374 3215 6236 01180

16 2232 6347 12148 14512 8829 3428 3211 6178 01191

17 2280 6475 12234 14701 8947 3477 3208 6128 01201

18 2321 6593 12317 14868 2354 91599 3204 6087 01212

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 37

62 Flood Point

15 inch pall ring will be used throughout the column for this packing the flood point can

be determined by interpolation

A-flood point by GPDC [generalized pressure drop correlation] interpolation

2

2

6593

5571

fthrlbA

G

fthrlbA

G

TBottom

TTop

Liquid flowrates ( 2 fthrlb )

LTop =TA

3724

LBottom = TA

8947

Vapor density( 3 ftlb )

48681

31991

BottomG

TopG

Liquid density ( 3 ftlb )

2432

2632

BottomL

TopL

1 Flow parameter

L

GLV ρ

ρ

G

LF

Top 05

LV 3228

13199

5571

3724F

1352110FLV

Bottom LVF =

2432

48681

6593

8947

= 029142

2 Capacity parameter from graphical correlation

Top =152

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 38

Bottom =119

3 Viscosity of the liquid L (cP)

Top L =01128 (cP)

Bottom L =01151 (cP)

4 Kinematic viscosity

=

L

L

462

Top =

2632

11280462

Top = 0218187

Bottom =

2432

11510462

Bottom = 022277

5 Packing factor ( 1ft )

Top FP = 40

Bottom FP = 40

6 Vapour capacity factor CSFI(fts)

Capacity parameter = CSFI FP05 005

Top 05050SFI 2181040

921C

Top SFIC =02593

Bottom 05050SFI 2181040

191C

Bottom 20280CSFI

63 Flood point by the Kister amp Gill correlation

1 FTP packed bed specific pressure drop at flood point

FTP =0115 70PF

Top FTP =0115 7040

=1521

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 39

Bottom FTP =1521 inch of H2O per ft

2 Flow parameter

Top FLV =0135211

Bottom FLV =029142

3 Capacity parameter at flood point

Top =152

Bottom = 119

4 CSFl vapor capacity factor at the flood point

CSFl = capacity parameter

05050

1

PF

Top CSFl =02593

Bottom CSFl =02028

64 Diameter calculation

1 Vapor capacity factor Cs design (nonderated) fts

The column will be designed for 75 flood capacity

SFlS CC 750

Top CS = 075 02593

=0194475

Bottom CS = 075 02028

Bottom CS = 01551

2 CS vapor capacity factor (derated )fts

= 09 CSdesign

Top CS = 09 01944

Top CS =017496

Bottom CS =09 01521

Bottom CS =013689

3 Vapor superficial velocity based on the cross section of empty column u (fts)

GL

G

ss

ρρ

ρ

(derated)Cu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 40

Top su =

319912632

31991

174960

Top su =084737

Bottom su =

486812432

48681

136890

Bottom su = 062257

4 Vapor flow rate CFS ft3s

Top CFS =1205 ft3s

Bottom CFS =12316 ft3shellipfrom table

5 Tower area ft2

AT = s

T u

CFSA

Top AT = 847370

2051

Top AT =1422 ft2

Bottom AT = 622570

23161

Bottom AT =19782 ft2

6 Tower diameter ft

1587ftD

π

197824D

13455ftD

π

14224D

π

A4

BottomT

BottomT

TopT

TopT

TT

D

65 Diameter calculation using the maximum pressure drop criterion

1 L

G

calculation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 41

Top L

G

=2632

31991

= 00409

Bottom L

G

=2432

48681

= 004611

2OH

L

2

calculation

Top ( OHL 2 )=

4362

2632

= 05167

Bottom ( OHL 2 ) =

4362

2432

= 05164

3 FP packing factor

Top FP = 40

Bottom FP =40

4 Maximum pressure drops recommended for packed column with random packing

1902

70max

OH

LPFP

helliphelliphelliphellipfor 006 20L

G

Top maxP = 019 5167040 70

Top maxP = 12984helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

Bottom maxP = 019 5164040 70

Bottom maxP =12977helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

5 Surface tension dyne

Top =6544 cmdyne

Bottom =6128 cmdyne

6 Vapor capacity factor Csmax (fts)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 42

P

s

FCP

3342maxmax

Top 12984 =

5446

403342maxsC

Top maxsC =02634

Bottom 12977 =

1286

403342maxsC

Bottom maxsC =025628

7 Maximum vapor superficial velocity usmax

maxsC = usmax

GL

G

Top usmax =

319912632

31991

26340

= 12752

Bottom usmax =

486812432

48681

25620

=11651 fts

8 Tower area AT (ft2)

AT =smaxu

CFS

Top AT =27521

2051

Top AT =09449

Bottom AT = 16511

23161

= 1057 ft2

9 Tower diameter (ft)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 33: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 33

For Butane (C4)

f =18072 β=191988θ=092677

h0388lbmol

455771

18072b

4557709120713402

191988

b

d0926771092677

9533

d=18072-0388

=17684 lbmolh

For Isopentane (C5)

f =11651 β =100 θ =100

111

5339

91207040213

00001

b

d

=007461

βltβavg

)0746101(1

65111

d

= 0809 lbmolh

b = 11651-0809

=10842 lbmolh

For Pentane (C5)

f =20388 lbmolh β= 086704 θ =109189

0918911091891

5339

91207040213

867040

b

d

=0014959

βltβavg

)01495901(1

38820

d

= 0300 lb molh

b=20388-03

=20088

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 34

Components Feed lbmolh Distillate lbmolh Bottom lbmolh

C3 4762 4762 000

i-C4 10843 10821 0022

C4 18072 17684 0388

i-C5 11651 0809 10842

C5 20388 03 20088

65716 34376 3134

Components Feed lbh Distillate lbh Bottom lbh

C3 210 210 000

i-C4 630 62872 128

C4 1050 102745 2257

i-C5 840 5836 78164

C5 1470 2163 1448348

4200 194602 2253818

543 Calculation of Rm

From Underwood equation

qx

i

iFi

1

Components Flbmolhr xif xid αi

C3 4762 00725 01386 488

i-C4 10843 01650 03149 256

C4 18072 02750 05145 198

i-C5 11651 01773 002335 100

C5 20388 03102 00085 084

65716 1000 1000

Feed is at boiling conditions since q =1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 35

0840

31020840

1

177301

981

27500981

562

16500562

884

07250884

θ =1284

from this value of θ

avgi

idavgim

xR

1

11284840

00850840

12841

023501

1284981

51450981

1284562

31490562

1284884

13860884

mR

Rm=1185

R=15 Rm

=15times1185

=17775

X=1

R

RR m

X=177751

185177751

=02133

From GillilandrsquoS correlation Y=1

N

NN m =042

We know the value of Nm 4201

5339

N

N

N=178 =18 stages

Feed location can be known by the use of Kirkbride equation

2

)376348090(

)34313880(

)07218(

)65111(

37634

34312060log

F

F

p

m

687890p

m

817 pm

m = 725=8

p =1054 =11

Feed is introduced on eight stage from top

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 36

Chapter- 6

PACKED COLUMN DESIGN

61 Stage AnalysisThe data shown in table are typical data generated by commercial simulation

Vapor liquidStage Temperature0F lbhr CFS

ft3sV

lbft3

Lbhr GPM

galminL

σ

dynecm

μ

cP

1 1349 00 00 00 3655 1423 3202 6867 0114

2 1474 5501 12050 12683 3720 1447 3204 6738 01132

3 1548 5566 12049 12831 3724 1447 3208 6699 01128

4 1609 5571 11987 12909 3707 1438 3214 6684 01130

5 1668 5553 11889 12974 3693 1430 3220 6665 01135

6 1726 5539 11794 13045 3689 1426 3224 6632 01142

7 1779 5535 11716 13122 3691 1426 3226 6590 01149

8 1824 5537 11650 13199 8032 310471 3226 6544 01156

9 1873 5678 11794 13373 8126 3142 3224 6507 01153

10 1917 5772 11871 13506 8201 3171 3224 6479 01151

11 1961 5847 11915 13631 8275 3201 3223 6447 01152

12 2010 5921 11946 13768 8360 3235 3222 6406 01156

13 2064 6006 12152 13928 8475 3274 3220 6348 01162

14 2122 6103 12013 14111 8574 3321 3218 6295 01170

15 2179 6220 12070 14310 8701 3374 3215 6236 01180

16 2232 6347 12148 14512 8829 3428 3211 6178 01191

17 2280 6475 12234 14701 8947 3477 3208 6128 01201

18 2321 6593 12317 14868 2354 91599 3204 6087 01212

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 37

62 Flood Point

15 inch pall ring will be used throughout the column for this packing the flood point can

be determined by interpolation

A-flood point by GPDC [generalized pressure drop correlation] interpolation

2

2

6593

5571

fthrlbA

G

fthrlbA

G

TBottom

TTop

Liquid flowrates ( 2 fthrlb )

LTop =TA

3724

LBottom = TA

8947

Vapor density( 3 ftlb )

48681

31991

BottomG

TopG

Liquid density ( 3 ftlb )

2432

2632

BottomL

TopL

1 Flow parameter

L

GLV ρ

ρ

G

LF

Top 05

LV 3228

13199

5571

3724F

1352110FLV

Bottom LVF =

2432

48681

6593

8947

= 029142

2 Capacity parameter from graphical correlation

Top =152

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 38

Bottom =119

3 Viscosity of the liquid L (cP)

Top L =01128 (cP)

Bottom L =01151 (cP)

4 Kinematic viscosity

=

L

L

462

Top =

2632

11280462

Top = 0218187

Bottom =

2432

11510462

Bottom = 022277

5 Packing factor ( 1ft )

Top FP = 40

Bottom FP = 40

6 Vapour capacity factor CSFI(fts)

Capacity parameter = CSFI FP05 005

Top 05050SFI 2181040

921C

Top SFIC =02593

Bottom 05050SFI 2181040

191C

Bottom 20280CSFI

63 Flood point by the Kister amp Gill correlation

1 FTP packed bed specific pressure drop at flood point

FTP =0115 70PF

Top FTP =0115 7040

=1521

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 39

Bottom FTP =1521 inch of H2O per ft

2 Flow parameter

Top FLV =0135211

Bottom FLV =029142

3 Capacity parameter at flood point

Top =152

Bottom = 119

4 CSFl vapor capacity factor at the flood point

CSFl = capacity parameter

05050

1

PF

Top CSFl =02593

Bottom CSFl =02028

64 Diameter calculation

1 Vapor capacity factor Cs design (nonderated) fts

The column will be designed for 75 flood capacity

SFlS CC 750

Top CS = 075 02593

=0194475

Bottom CS = 075 02028

Bottom CS = 01551

2 CS vapor capacity factor (derated )fts

= 09 CSdesign

Top CS = 09 01944

Top CS =017496

Bottom CS =09 01521

Bottom CS =013689

3 Vapor superficial velocity based on the cross section of empty column u (fts)

GL

G

ss

ρρ

ρ

(derated)Cu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 40

Top su =

319912632

31991

174960

Top su =084737

Bottom su =

486812432

48681

136890

Bottom su = 062257

4 Vapor flow rate CFS ft3s

Top CFS =1205 ft3s

Bottom CFS =12316 ft3shellipfrom table

5 Tower area ft2

AT = s

T u

CFSA

Top AT = 847370

2051

Top AT =1422 ft2

Bottom AT = 622570

23161

Bottom AT =19782 ft2

6 Tower diameter ft

1587ftD

π

197824D

13455ftD

π

14224D

π

A4

BottomT

BottomT

TopT

TopT

TT

D

65 Diameter calculation using the maximum pressure drop criterion

1 L

G

calculation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 41

Top L

G

=2632

31991

= 00409

Bottom L

G

=2432

48681

= 004611

2OH

L

2

calculation

Top ( OHL 2 )=

4362

2632

= 05167

Bottom ( OHL 2 ) =

4362

2432

= 05164

3 FP packing factor

Top FP = 40

Bottom FP =40

4 Maximum pressure drops recommended for packed column with random packing

1902

70max

OH

LPFP

helliphelliphelliphellipfor 006 20L

G

Top maxP = 019 5167040 70

Top maxP = 12984helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

Bottom maxP = 019 5164040 70

Bottom maxP =12977helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

5 Surface tension dyne

Top =6544 cmdyne

Bottom =6128 cmdyne

6 Vapor capacity factor Csmax (fts)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 42

P

s

FCP

3342maxmax

Top 12984 =

5446

403342maxsC

Top maxsC =02634

Bottom 12977 =

1286

403342maxsC

Bottom maxsC =025628

7 Maximum vapor superficial velocity usmax

maxsC = usmax

GL

G

Top usmax =

319912632

31991

26340

= 12752

Bottom usmax =

486812432

48681

25620

=11651 fts

8 Tower area AT (ft2)

AT =smaxu

CFS

Top AT =27521

2051

Top AT =09449

Bottom AT = 16511

23161

= 1057 ft2

9 Tower diameter (ft)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 34: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 34

Components Feed lbmolh Distillate lbmolh Bottom lbmolh

C3 4762 4762 000

i-C4 10843 10821 0022

C4 18072 17684 0388

i-C5 11651 0809 10842

C5 20388 03 20088

65716 34376 3134

Components Feed lbh Distillate lbh Bottom lbh

C3 210 210 000

i-C4 630 62872 128

C4 1050 102745 2257

i-C5 840 5836 78164

C5 1470 2163 1448348

4200 194602 2253818

543 Calculation of Rm

From Underwood equation

qx

i

iFi

1

Components Flbmolhr xif xid αi

C3 4762 00725 01386 488

i-C4 10843 01650 03149 256

C4 18072 02750 05145 198

i-C5 11651 01773 002335 100

C5 20388 03102 00085 084

65716 1000 1000

Feed is at boiling conditions since q =1

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 35

0840

31020840

1

177301

981

27500981

562

16500562

884

07250884

θ =1284

from this value of θ

avgi

idavgim

xR

1

11284840

00850840

12841

023501

1284981

51450981

1284562

31490562

1284884

13860884

mR

Rm=1185

R=15 Rm

=15times1185

=17775

X=1

R

RR m

X=177751

185177751

=02133

From GillilandrsquoS correlation Y=1

N

NN m =042

We know the value of Nm 4201

5339

N

N

N=178 =18 stages

Feed location can be known by the use of Kirkbride equation

2

)376348090(

)34313880(

)07218(

)65111(

37634

34312060log

F

F

p

m

687890p

m

817 pm

m = 725=8

p =1054 =11

Feed is introduced on eight stage from top

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 36

Chapter- 6

PACKED COLUMN DESIGN

61 Stage AnalysisThe data shown in table are typical data generated by commercial simulation

Vapor liquidStage Temperature0F lbhr CFS

ft3sV

lbft3

Lbhr GPM

galminL

σ

dynecm

μ

cP

1 1349 00 00 00 3655 1423 3202 6867 0114

2 1474 5501 12050 12683 3720 1447 3204 6738 01132

3 1548 5566 12049 12831 3724 1447 3208 6699 01128

4 1609 5571 11987 12909 3707 1438 3214 6684 01130

5 1668 5553 11889 12974 3693 1430 3220 6665 01135

6 1726 5539 11794 13045 3689 1426 3224 6632 01142

7 1779 5535 11716 13122 3691 1426 3226 6590 01149

8 1824 5537 11650 13199 8032 310471 3226 6544 01156

9 1873 5678 11794 13373 8126 3142 3224 6507 01153

10 1917 5772 11871 13506 8201 3171 3224 6479 01151

11 1961 5847 11915 13631 8275 3201 3223 6447 01152

12 2010 5921 11946 13768 8360 3235 3222 6406 01156

13 2064 6006 12152 13928 8475 3274 3220 6348 01162

14 2122 6103 12013 14111 8574 3321 3218 6295 01170

15 2179 6220 12070 14310 8701 3374 3215 6236 01180

16 2232 6347 12148 14512 8829 3428 3211 6178 01191

17 2280 6475 12234 14701 8947 3477 3208 6128 01201

18 2321 6593 12317 14868 2354 91599 3204 6087 01212

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 37

62 Flood Point

15 inch pall ring will be used throughout the column for this packing the flood point can

be determined by interpolation

A-flood point by GPDC [generalized pressure drop correlation] interpolation

2

2

6593

5571

fthrlbA

G

fthrlbA

G

TBottom

TTop

Liquid flowrates ( 2 fthrlb )

LTop =TA

3724

LBottom = TA

8947

Vapor density( 3 ftlb )

48681

31991

BottomG

TopG

Liquid density ( 3 ftlb )

2432

2632

BottomL

TopL

1 Flow parameter

L

GLV ρ

ρ

G

LF

Top 05

LV 3228

13199

5571

3724F

1352110FLV

Bottom LVF =

2432

48681

6593

8947

= 029142

2 Capacity parameter from graphical correlation

Top =152

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 38

Bottom =119

3 Viscosity of the liquid L (cP)

Top L =01128 (cP)

Bottom L =01151 (cP)

4 Kinematic viscosity

=

L

L

462

Top =

2632

11280462

Top = 0218187

Bottom =

2432

11510462

Bottom = 022277

5 Packing factor ( 1ft )

Top FP = 40

Bottom FP = 40

6 Vapour capacity factor CSFI(fts)

Capacity parameter = CSFI FP05 005

Top 05050SFI 2181040

921C

Top SFIC =02593

Bottom 05050SFI 2181040

191C

Bottom 20280CSFI

63 Flood point by the Kister amp Gill correlation

1 FTP packed bed specific pressure drop at flood point

FTP =0115 70PF

Top FTP =0115 7040

=1521

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 39

Bottom FTP =1521 inch of H2O per ft

2 Flow parameter

Top FLV =0135211

Bottom FLV =029142

3 Capacity parameter at flood point

Top =152

Bottom = 119

4 CSFl vapor capacity factor at the flood point

CSFl = capacity parameter

05050

1

PF

Top CSFl =02593

Bottom CSFl =02028

64 Diameter calculation

1 Vapor capacity factor Cs design (nonderated) fts

The column will be designed for 75 flood capacity

SFlS CC 750

Top CS = 075 02593

=0194475

Bottom CS = 075 02028

Bottom CS = 01551

2 CS vapor capacity factor (derated )fts

= 09 CSdesign

Top CS = 09 01944

Top CS =017496

Bottom CS =09 01521

Bottom CS =013689

3 Vapor superficial velocity based on the cross section of empty column u (fts)

GL

G

ss

ρρ

ρ

(derated)Cu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 40

Top su =

319912632

31991

174960

Top su =084737

Bottom su =

486812432

48681

136890

Bottom su = 062257

4 Vapor flow rate CFS ft3s

Top CFS =1205 ft3s

Bottom CFS =12316 ft3shellipfrom table

5 Tower area ft2

AT = s

T u

CFSA

Top AT = 847370

2051

Top AT =1422 ft2

Bottom AT = 622570

23161

Bottom AT =19782 ft2

6 Tower diameter ft

1587ftD

π

197824D

13455ftD

π

14224D

π

A4

BottomT

BottomT

TopT

TopT

TT

D

65 Diameter calculation using the maximum pressure drop criterion

1 L

G

calculation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 41

Top L

G

=2632

31991

= 00409

Bottom L

G

=2432

48681

= 004611

2OH

L

2

calculation

Top ( OHL 2 )=

4362

2632

= 05167

Bottom ( OHL 2 ) =

4362

2432

= 05164

3 FP packing factor

Top FP = 40

Bottom FP =40

4 Maximum pressure drops recommended for packed column with random packing

1902

70max

OH

LPFP

helliphelliphelliphellipfor 006 20L

G

Top maxP = 019 5167040 70

Top maxP = 12984helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

Bottom maxP = 019 5164040 70

Bottom maxP =12977helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

5 Surface tension dyne

Top =6544 cmdyne

Bottom =6128 cmdyne

6 Vapor capacity factor Csmax (fts)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 42

P

s

FCP

3342maxmax

Top 12984 =

5446

403342maxsC

Top maxsC =02634

Bottom 12977 =

1286

403342maxsC

Bottom maxsC =025628

7 Maximum vapor superficial velocity usmax

maxsC = usmax

GL

G

Top usmax =

319912632

31991

26340

= 12752

Bottom usmax =

486812432

48681

25620

=11651 fts

8 Tower area AT (ft2)

AT =smaxu

CFS

Top AT =27521

2051

Top AT =09449

Bottom AT = 16511

23161

= 1057 ft2

9 Tower diameter (ft)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 35: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 35

0840

31020840

1

177301

981

27500981

562

16500562

884

07250884

θ =1284

from this value of θ

avgi

idavgim

xR

1

11284840

00850840

12841

023501

1284981

51450981

1284562

31490562

1284884

13860884

mR

Rm=1185

R=15 Rm

=15times1185

=17775

X=1

R

RR m

X=177751

185177751

=02133

From GillilandrsquoS correlation Y=1

N

NN m =042

We know the value of Nm 4201

5339

N

N

N=178 =18 stages

Feed location can be known by the use of Kirkbride equation

2

)376348090(

)34313880(

)07218(

)65111(

37634

34312060log

F

F

p

m

687890p

m

817 pm

m = 725=8

p =1054 =11

Feed is introduced on eight stage from top

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 36

Chapter- 6

PACKED COLUMN DESIGN

61 Stage AnalysisThe data shown in table are typical data generated by commercial simulation

Vapor liquidStage Temperature0F lbhr CFS

ft3sV

lbft3

Lbhr GPM

galminL

σ

dynecm

μ

cP

1 1349 00 00 00 3655 1423 3202 6867 0114

2 1474 5501 12050 12683 3720 1447 3204 6738 01132

3 1548 5566 12049 12831 3724 1447 3208 6699 01128

4 1609 5571 11987 12909 3707 1438 3214 6684 01130

5 1668 5553 11889 12974 3693 1430 3220 6665 01135

6 1726 5539 11794 13045 3689 1426 3224 6632 01142

7 1779 5535 11716 13122 3691 1426 3226 6590 01149

8 1824 5537 11650 13199 8032 310471 3226 6544 01156

9 1873 5678 11794 13373 8126 3142 3224 6507 01153

10 1917 5772 11871 13506 8201 3171 3224 6479 01151

11 1961 5847 11915 13631 8275 3201 3223 6447 01152

12 2010 5921 11946 13768 8360 3235 3222 6406 01156

13 2064 6006 12152 13928 8475 3274 3220 6348 01162

14 2122 6103 12013 14111 8574 3321 3218 6295 01170

15 2179 6220 12070 14310 8701 3374 3215 6236 01180

16 2232 6347 12148 14512 8829 3428 3211 6178 01191

17 2280 6475 12234 14701 8947 3477 3208 6128 01201

18 2321 6593 12317 14868 2354 91599 3204 6087 01212

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 37

62 Flood Point

15 inch pall ring will be used throughout the column for this packing the flood point can

be determined by interpolation

A-flood point by GPDC [generalized pressure drop correlation] interpolation

2

2

6593

5571

fthrlbA

G

fthrlbA

G

TBottom

TTop

Liquid flowrates ( 2 fthrlb )

LTop =TA

3724

LBottom = TA

8947

Vapor density( 3 ftlb )

48681

31991

BottomG

TopG

Liquid density ( 3 ftlb )

2432

2632

BottomL

TopL

1 Flow parameter

L

GLV ρ

ρ

G

LF

Top 05

LV 3228

13199

5571

3724F

1352110FLV

Bottom LVF =

2432

48681

6593

8947

= 029142

2 Capacity parameter from graphical correlation

Top =152

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 38

Bottom =119

3 Viscosity of the liquid L (cP)

Top L =01128 (cP)

Bottom L =01151 (cP)

4 Kinematic viscosity

=

L

L

462

Top =

2632

11280462

Top = 0218187

Bottom =

2432

11510462

Bottom = 022277

5 Packing factor ( 1ft )

Top FP = 40

Bottom FP = 40

6 Vapour capacity factor CSFI(fts)

Capacity parameter = CSFI FP05 005

Top 05050SFI 2181040

921C

Top SFIC =02593

Bottom 05050SFI 2181040

191C

Bottom 20280CSFI

63 Flood point by the Kister amp Gill correlation

1 FTP packed bed specific pressure drop at flood point

FTP =0115 70PF

Top FTP =0115 7040

=1521

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 39

Bottom FTP =1521 inch of H2O per ft

2 Flow parameter

Top FLV =0135211

Bottom FLV =029142

3 Capacity parameter at flood point

Top =152

Bottom = 119

4 CSFl vapor capacity factor at the flood point

CSFl = capacity parameter

05050

1

PF

Top CSFl =02593

Bottom CSFl =02028

64 Diameter calculation

1 Vapor capacity factor Cs design (nonderated) fts

The column will be designed for 75 flood capacity

SFlS CC 750

Top CS = 075 02593

=0194475

Bottom CS = 075 02028

Bottom CS = 01551

2 CS vapor capacity factor (derated )fts

= 09 CSdesign

Top CS = 09 01944

Top CS =017496

Bottom CS =09 01521

Bottom CS =013689

3 Vapor superficial velocity based on the cross section of empty column u (fts)

GL

G

ss

ρρ

ρ

(derated)Cu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 40

Top su =

319912632

31991

174960

Top su =084737

Bottom su =

486812432

48681

136890

Bottom su = 062257

4 Vapor flow rate CFS ft3s

Top CFS =1205 ft3s

Bottom CFS =12316 ft3shellipfrom table

5 Tower area ft2

AT = s

T u

CFSA

Top AT = 847370

2051

Top AT =1422 ft2

Bottom AT = 622570

23161

Bottom AT =19782 ft2

6 Tower diameter ft

1587ftD

π

197824D

13455ftD

π

14224D

π

A4

BottomT

BottomT

TopT

TopT

TT

D

65 Diameter calculation using the maximum pressure drop criterion

1 L

G

calculation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 41

Top L

G

=2632

31991

= 00409

Bottom L

G

=2432

48681

= 004611

2OH

L

2

calculation

Top ( OHL 2 )=

4362

2632

= 05167

Bottom ( OHL 2 ) =

4362

2432

= 05164

3 FP packing factor

Top FP = 40

Bottom FP =40

4 Maximum pressure drops recommended for packed column with random packing

1902

70max

OH

LPFP

helliphelliphelliphellipfor 006 20L

G

Top maxP = 019 5167040 70

Top maxP = 12984helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

Bottom maxP = 019 5164040 70

Bottom maxP =12977helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

5 Surface tension dyne

Top =6544 cmdyne

Bottom =6128 cmdyne

6 Vapor capacity factor Csmax (fts)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 42

P

s

FCP

3342maxmax

Top 12984 =

5446

403342maxsC

Top maxsC =02634

Bottom 12977 =

1286

403342maxsC

Bottom maxsC =025628

7 Maximum vapor superficial velocity usmax

maxsC = usmax

GL

G

Top usmax =

319912632

31991

26340

= 12752

Bottom usmax =

486812432

48681

25620

=11651 fts

8 Tower area AT (ft2)

AT =smaxu

CFS

Top AT =27521

2051

Top AT =09449

Bottom AT = 16511

23161

= 1057 ft2

9 Tower diameter (ft)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 36: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 36

Chapter- 6

PACKED COLUMN DESIGN

61 Stage AnalysisThe data shown in table are typical data generated by commercial simulation

Vapor liquidStage Temperature0F lbhr CFS

ft3sV

lbft3

Lbhr GPM

galminL

σ

dynecm

μ

cP

1 1349 00 00 00 3655 1423 3202 6867 0114

2 1474 5501 12050 12683 3720 1447 3204 6738 01132

3 1548 5566 12049 12831 3724 1447 3208 6699 01128

4 1609 5571 11987 12909 3707 1438 3214 6684 01130

5 1668 5553 11889 12974 3693 1430 3220 6665 01135

6 1726 5539 11794 13045 3689 1426 3224 6632 01142

7 1779 5535 11716 13122 3691 1426 3226 6590 01149

8 1824 5537 11650 13199 8032 310471 3226 6544 01156

9 1873 5678 11794 13373 8126 3142 3224 6507 01153

10 1917 5772 11871 13506 8201 3171 3224 6479 01151

11 1961 5847 11915 13631 8275 3201 3223 6447 01152

12 2010 5921 11946 13768 8360 3235 3222 6406 01156

13 2064 6006 12152 13928 8475 3274 3220 6348 01162

14 2122 6103 12013 14111 8574 3321 3218 6295 01170

15 2179 6220 12070 14310 8701 3374 3215 6236 01180

16 2232 6347 12148 14512 8829 3428 3211 6178 01191

17 2280 6475 12234 14701 8947 3477 3208 6128 01201

18 2321 6593 12317 14868 2354 91599 3204 6087 01212

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 37

62 Flood Point

15 inch pall ring will be used throughout the column for this packing the flood point can

be determined by interpolation

A-flood point by GPDC [generalized pressure drop correlation] interpolation

2

2

6593

5571

fthrlbA

G

fthrlbA

G

TBottom

TTop

Liquid flowrates ( 2 fthrlb )

LTop =TA

3724

LBottom = TA

8947

Vapor density( 3 ftlb )

48681

31991

BottomG

TopG

Liquid density ( 3 ftlb )

2432

2632

BottomL

TopL

1 Flow parameter

L

GLV ρ

ρ

G

LF

Top 05

LV 3228

13199

5571

3724F

1352110FLV

Bottom LVF =

2432

48681

6593

8947

= 029142

2 Capacity parameter from graphical correlation

Top =152

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 38

Bottom =119

3 Viscosity of the liquid L (cP)

Top L =01128 (cP)

Bottom L =01151 (cP)

4 Kinematic viscosity

=

L

L

462

Top =

2632

11280462

Top = 0218187

Bottom =

2432

11510462

Bottom = 022277

5 Packing factor ( 1ft )

Top FP = 40

Bottom FP = 40

6 Vapour capacity factor CSFI(fts)

Capacity parameter = CSFI FP05 005

Top 05050SFI 2181040

921C

Top SFIC =02593

Bottom 05050SFI 2181040

191C

Bottom 20280CSFI

63 Flood point by the Kister amp Gill correlation

1 FTP packed bed specific pressure drop at flood point

FTP =0115 70PF

Top FTP =0115 7040

=1521

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 39

Bottom FTP =1521 inch of H2O per ft

2 Flow parameter

Top FLV =0135211

Bottom FLV =029142

3 Capacity parameter at flood point

Top =152

Bottom = 119

4 CSFl vapor capacity factor at the flood point

CSFl = capacity parameter

05050

1

PF

Top CSFl =02593

Bottom CSFl =02028

64 Diameter calculation

1 Vapor capacity factor Cs design (nonderated) fts

The column will be designed for 75 flood capacity

SFlS CC 750

Top CS = 075 02593

=0194475

Bottom CS = 075 02028

Bottom CS = 01551

2 CS vapor capacity factor (derated )fts

= 09 CSdesign

Top CS = 09 01944

Top CS =017496

Bottom CS =09 01521

Bottom CS =013689

3 Vapor superficial velocity based on the cross section of empty column u (fts)

GL

G

ss

ρρ

ρ

(derated)Cu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 40

Top su =

319912632

31991

174960

Top su =084737

Bottom su =

486812432

48681

136890

Bottom su = 062257

4 Vapor flow rate CFS ft3s

Top CFS =1205 ft3s

Bottom CFS =12316 ft3shellipfrom table

5 Tower area ft2

AT = s

T u

CFSA

Top AT = 847370

2051

Top AT =1422 ft2

Bottom AT = 622570

23161

Bottom AT =19782 ft2

6 Tower diameter ft

1587ftD

π

197824D

13455ftD

π

14224D

π

A4

BottomT

BottomT

TopT

TopT

TT

D

65 Diameter calculation using the maximum pressure drop criterion

1 L

G

calculation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 41

Top L

G

=2632

31991

= 00409

Bottom L

G

=2432

48681

= 004611

2OH

L

2

calculation

Top ( OHL 2 )=

4362

2632

= 05167

Bottom ( OHL 2 ) =

4362

2432

= 05164

3 FP packing factor

Top FP = 40

Bottom FP =40

4 Maximum pressure drops recommended for packed column with random packing

1902

70max

OH

LPFP

helliphelliphelliphellipfor 006 20L

G

Top maxP = 019 5167040 70

Top maxP = 12984helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

Bottom maxP = 019 5164040 70

Bottom maxP =12977helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

5 Surface tension dyne

Top =6544 cmdyne

Bottom =6128 cmdyne

6 Vapor capacity factor Csmax (fts)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 42

P

s

FCP

3342maxmax

Top 12984 =

5446

403342maxsC

Top maxsC =02634

Bottom 12977 =

1286

403342maxsC

Bottom maxsC =025628

7 Maximum vapor superficial velocity usmax

maxsC = usmax

GL

G

Top usmax =

319912632

31991

26340

= 12752

Bottom usmax =

486812432

48681

25620

=11651 fts

8 Tower area AT (ft2)

AT =smaxu

CFS

Top AT =27521

2051

Top AT =09449

Bottom AT = 16511

23161

= 1057 ft2

9 Tower diameter (ft)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 37: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 37

62 Flood Point

15 inch pall ring will be used throughout the column for this packing the flood point can

be determined by interpolation

A-flood point by GPDC [generalized pressure drop correlation] interpolation

2

2

6593

5571

fthrlbA

G

fthrlbA

G

TBottom

TTop

Liquid flowrates ( 2 fthrlb )

LTop =TA

3724

LBottom = TA

8947

Vapor density( 3 ftlb )

48681

31991

BottomG

TopG

Liquid density ( 3 ftlb )

2432

2632

BottomL

TopL

1 Flow parameter

L

GLV ρ

ρ

G

LF

Top 05

LV 3228

13199

5571

3724F

1352110FLV

Bottom LVF =

2432

48681

6593

8947

= 029142

2 Capacity parameter from graphical correlation

Top =152

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 38

Bottom =119

3 Viscosity of the liquid L (cP)

Top L =01128 (cP)

Bottom L =01151 (cP)

4 Kinematic viscosity

=

L

L

462

Top =

2632

11280462

Top = 0218187

Bottom =

2432

11510462

Bottom = 022277

5 Packing factor ( 1ft )

Top FP = 40

Bottom FP = 40

6 Vapour capacity factor CSFI(fts)

Capacity parameter = CSFI FP05 005

Top 05050SFI 2181040

921C

Top SFIC =02593

Bottom 05050SFI 2181040

191C

Bottom 20280CSFI

63 Flood point by the Kister amp Gill correlation

1 FTP packed bed specific pressure drop at flood point

FTP =0115 70PF

Top FTP =0115 7040

=1521

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 39

Bottom FTP =1521 inch of H2O per ft

2 Flow parameter

Top FLV =0135211

Bottom FLV =029142

3 Capacity parameter at flood point

Top =152

Bottom = 119

4 CSFl vapor capacity factor at the flood point

CSFl = capacity parameter

05050

1

PF

Top CSFl =02593

Bottom CSFl =02028

64 Diameter calculation

1 Vapor capacity factor Cs design (nonderated) fts

The column will be designed for 75 flood capacity

SFlS CC 750

Top CS = 075 02593

=0194475

Bottom CS = 075 02028

Bottom CS = 01551

2 CS vapor capacity factor (derated )fts

= 09 CSdesign

Top CS = 09 01944

Top CS =017496

Bottom CS =09 01521

Bottom CS =013689

3 Vapor superficial velocity based on the cross section of empty column u (fts)

GL

G

ss

ρρ

ρ

(derated)Cu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 40

Top su =

319912632

31991

174960

Top su =084737

Bottom su =

486812432

48681

136890

Bottom su = 062257

4 Vapor flow rate CFS ft3s

Top CFS =1205 ft3s

Bottom CFS =12316 ft3shellipfrom table

5 Tower area ft2

AT = s

T u

CFSA

Top AT = 847370

2051

Top AT =1422 ft2

Bottom AT = 622570

23161

Bottom AT =19782 ft2

6 Tower diameter ft

1587ftD

π

197824D

13455ftD

π

14224D

π

A4

BottomT

BottomT

TopT

TopT

TT

D

65 Diameter calculation using the maximum pressure drop criterion

1 L

G

calculation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 41

Top L

G

=2632

31991

= 00409

Bottom L

G

=2432

48681

= 004611

2OH

L

2

calculation

Top ( OHL 2 )=

4362

2632

= 05167

Bottom ( OHL 2 ) =

4362

2432

= 05164

3 FP packing factor

Top FP = 40

Bottom FP =40

4 Maximum pressure drops recommended for packed column with random packing

1902

70max

OH

LPFP

helliphelliphelliphellipfor 006 20L

G

Top maxP = 019 5167040 70

Top maxP = 12984helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

Bottom maxP = 019 5164040 70

Bottom maxP =12977helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

5 Surface tension dyne

Top =6544 cmdyne

Bottom =6128 cmdyne

6 Vapor capacity factor Csmax (fts)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 42

P

s

FCP

3342maxmax

Top 12984 =

5446

403342maxsC

Top maxsC =02634

Bottom 12977 =

1286

403342maxsC

Bottom maxsC =025628

7 Maximum vapor superficial velocity usmax

maxsC = usmax

GL

G

Top usmax =

319912632

31991

26340

= 12752

Bottom usmax =

486812432

48681

25620

=11651 fts

8 Tower area AT (ft2)

AT =smaxu

CFS

Top AT =27521

2051

Top AT =09449

Bottom AT = 16511

23161

= 1057 ft2

9 Tower diameter (ft)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 38: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 38

Bottom =119

3 Viscosity of the liquid L (cP)

Top L =01128 (cP)

Bottom L =01151 (cP)

4 Kinematic viscosity

=

L

L

462

Top =

2632

11280462

Top = 0218187

Bottom =

2432

11510462

Bottom = 022277

5 Packing factor ( 1ft )

Top FP = 40

Bottom FP = 40

6 Vapour capacity factor CSFI(fts)

Capacity parameter = CSFI FP05 005

Top 05050SFI 2181040

921C

Top SFIC =02593

Bottom 05050SFI 2181040

191C

Bottom 20280CSFI

63 Flood point by the Kister amp Gill correlation

1 FTP packed bed specific pressure drop at flood point

FTP =0115 70PF

Top FTP =0115 7040

=1521

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 39

Bottom FTP =1521 inch of H2O per ft

2 Flow parameter

Top FLV =0135211

Bottom FLV =029142

3 Capacity parameter at flood point

Top =152

Bottom = 119

4 CSFl vapor capacity factor at the flood point

CSFl = capacity parameter

05050

1

PF

Top CSFl =02593

Bottom CSFl =02028

64 Diameter calculation

1 Vapor capacity factor Cs design (nonderated) fts

The column will be designed for 75 flood capacity

SFlS CC 750

Top CS = 075 02593

=0194475

Bottom CS = 075 02028

Bottom CS = 01551

2 CS vapor capacity factor (derated )fts

= 09 CSdesign

Top CS = 09 01944

Top CS =017496

Bottom CS =09 01521

Bottom CS =013689

3 Vapor superficial velocity based on the cross section of empty column u (fts)

GL

G

ss

ρρ

ρ

(derated)Cu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 40

Top su =

319912632

31991

174960

Top su =084737

Bottom su =

486812432

48681

136890

Bottom su = 062257

4 Vapor flow rate CFS ft3s

Top CFS =1205 ft3s

Bottom CFS =12316 ft3shellipfrom table

5 Tower area ft2

AT = s

T u

CFSA

Top AT = 847370

2051

Top AT =1422 ft2

Bottom AT = 622570

23161

Bottom AT =19782 ft2

6 Tower diameter ft

1587ftD

π

197824D

13455ftD

π

14224D

π

A4

BottomT

BottomT

TopT

TopT

TT

D

65 Diameter calculation using the maximum pressure drop criterion

1 L

G

calculation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 41

Top L

G

=2632

31991

= 00409

Bottom L

G

=2432

48681

= 004611

2OH

L

2

calculation

Top ( OHL 2 )=

4362

2632

= 05167

Bottom ( OHL 2 ) =

4362

2432

= 05164

3 FP packing factor

Top FP = 40

Bottom FP =40

4 Maximum pressure drops recommended for packed column with random packing

1902

70max

OH

LPFP

helliphelliphelliphellipfor 006 20L

G

Top maxP = 019 5167040 70

Top maxP = 12984helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

Bottom maxP = 019 5164040 70

Bottom maxP =12977helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

5 Surface tension dyne

Top =6544 cmdyne

Bottom =6128 cmdyne

6 Vapor capacity factor Csmax (fts)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 42

P

s

FCP

3342maxmax

Top 12984 =

5446

403342maxsC

Top maxsC =02634

Bottom 12977 =

1286

403342maxsC

Bottom maxsC =025628

7 Maximum vapor superficial velocity usmax

maxsC = usmax

GL

G

Top usmax =

319912632

31991

26340

= 12752

Bottom usmax =

486812432

48681

25620

=11651 fts

8 Tower area AT (ft2)

AT =smaxu

CFS

Top AT =27521

2051

Top AT =09449

Bottom AT = 16511

23161

= 1057 ft2

9 Tower diameter (ft)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 39: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 39

Bottom FTP =1521 inch of H2O per ft

2 Flow parameter

Top FLV =0135211

Bottom FLV =029142

3 Capacity parameter at flood point

Top =152

Bottom = 119

4 CSFl vapor capacity factor at the flood point

CSFl = capacity parameter

05050

1

PF

Top CSFl =02593

Bottom CSFl =02028

64 Diameter calculation

1 Vapor capacity factor Cs design (nonderated) fts

The column will be designed for 75 flood capacity

SFlS CC 750

Top CS = 075 02593

=0194475

Bottom CS = 075 02028

Bottom CS = 01551

2 CS vapor capacity factor (derated )fts

= 09 CSdesign

Top CS = 09 01944

Top CS =017496

Bottom CS =09 01521

Bottom CS =013689

3 Vapor superficial velocity based on the cross section of empty column u (fts)

GL

G

ss

ρρ

ρ

(derated)Cu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 40

Top su =

319912632

31991

174960

Top su =084737

Bottom su =

486812432

48681

136890

Bottom su = 062257

4 Vapor flow rate CFS ft3s

Top CFS =1205 ft3s

Bottom CFS =12316 ft3shellipfrom table

5 Tower area ft2

AT = s

T u

CFSA

Top AT = 847370

2051

Top AT =1422 ft2

Bottom AT = 622570

23161

Bottom AT =19782 ft2

6 Tower diameter ft

1587ftD

π

197824D

13455ftD

π

14224D

π

A4

BottomT

BottomT

TopT

TopT

TT

D

65 Diameter calculation using the maximum pressure drop criterion

1 L

G

calculation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 41

Top L

G

=2632

31991

= 00409

Bottom L

G

=2432

48681

= 004611

2OH

L

2

calculation

Top ( OHL 2 )=

4362

2632

= 05167

Bottom ( OHL 2 ) =

4362

2432

= 05164

3 FP packing factor

Top FP = 40

Bottom FP =40

4 Maximum pressure drops recommended for packed column with random packing

1902

70max

OH

LPFP

helliphelliphelliphellipfor 006 20L

G

Top maxP = 019 5167040 70

Top maxP = 12984helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

Bottom maxP = 019 5164040 70

Bottom maxP =12977helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

5 Surface tension dyne

Top =6544 cmdyne

Bottom =6128 cmdyne

6 Vapor capacity factor Csmax (fts)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 42

P

s

FCP

3342maxmax

Top 12984 =

5446

403342maxsC

Top maxsC =02634

Bottom 12977 =

1286

403342maxsC

Bottom maxsC =025628

7 Maximum vapor superficial velocity usmax

maxsC = usmax

GL

G

Top usmax =

319912632

31991

26340

= 12752

Bottom usmax =

486812432

48681

25620

=11651 fts

8 Tower area AT (ft2)

AT =smaxu

CFS

Top AT =27521

2051

Top AT =09449

Bottom AT = 16511

23161

= 1057 ft2

9 Tower diameter (ft)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 40: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 40

Top su =

319912632

31991

174960

Top su =084737

Bottom su =

486812432

48681

136890

Bottom su = 062257

4 Vapor flow rate CFS ft3s

Top CFS =1205 ft3s

Bottom CFS =12316 ft3shellipfrom table

5 Tower area ft2

AT = s

T u

CFSA

Top AT = 847370

2051

Top AT =1422 ft2

Bottom AT = 622570

23161

Bottom AT =19782 ft2

6 Tower diameter ft

1587ftD

π

197824D

13455ftD

π

14224D

π

A4

BottomT

BottomT

TopT

TopT

TT

D

65 Diameter calculation using the maximum pressure drop criterion

1 L

G

calculation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 41

Top L

G

=2632

31991

= 00409

Bottom L

G

=2432

48681

= 004611

2OH

L

2

calculation

Top ( OHL 2 )=

4362

2632

= 05167

Bottom ( OHL 2 ) =

4362

2432

= 05164

3 FP packing factor

Top FP = 40

Bottom FP =40

4 Maximum pressure drops recommended for packed column with random packing

1902

70max

OH

LPFP

helliphelliphelliphellipfor 006 20L

G

Top maxP = 019 5167040 70

Top maxP = 12984helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

Bottom maxP = 019 5164040 70

Bottom maxP =12977helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

5 Surface tension dyne

Top =6544 cmdyne

Bottom =6128 cmdyne

6 Vapor capacity factor Csmax (fts)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 42

P

s

FCP

3342maxmax

Top 12984 =

5446

403342maxsC

Top maxsC =02634

Bottom 12977 =

1286

403342maxsC

Bottom maxsC =025628

7 Maximum vapor superficial velocity usmax

maxsC = usmax

GL

G

Top usmax =

319912632

31991

26340

= 12752

Bottom usmax =

486812432

48681

25620

=11651 fts

8 Tower area AT (ft2)

AT =smaxu

CFS

Top AT =27521

2051

Top AT =09449

Bottom AT = 16511

23161

= 1057 ft2

9 Tower diameter (ft)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 41: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 41

Top L

G

=2632

31991

= 00409

Bottom L

G

=2432

48681

= 004611

2OH

L

2

calculation

Top ( OHL 2 )=

4362

2632

= 05167

Bottom ( OHL 2 ) =

4362

2432

= 05164

3 FP packing factor

Top FP = 40

Bottom FP =40

4 Maximum pressure drops recommended for packed column with random packing

1902

70max

OH

LPFP

helliphelliphelliphellipfor 006 20L

G

Top maxP = 019 5167040 70

Top maxP = 12984helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

Bottom maxP = 019 5164040 70

Bottom maxP =12977helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

5 Surface tension dyne

Top =6544 cmdyne

Bottom =6128 cmdyne

6 Vapor capacity factor Csmax (fts)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 42

P

s

FCP

3342maxmax

Top 12984 =

5446

403342maxsC

Top maxsC =02634

Bottom 12977 =

1286

403342maxsC

Bottom maxsC =025628

7 Maximum vapor superficial velocity usmax

maxsC = usmax

GL

G

Top usmax =

319912632

31991

26340

= 12752

Bottom usmax =

486812432

48681

25620

=11651 fts

8 Tower area AT (ft2)

AT =smaxu

CFS

Top AT =27521

2051

Top AT =09449

Bottom AT = 16511

23161

= 1057 ft2

9 Tower diameter (ft)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 42: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 42

P

s

FCP

3342maxmax

Top 12984 =

5446

403342maxsC

Top maxsC =02634

Bottom 12977 =

1286

403342maxsC

Bottom maxsC =025628

7 Maximum vapor superficial velocity usmax

maxsC = usmax

GL

G

Top usmax =

319912632

31991

26340

= 12752

Bottom usmax =

486812432

48681

25620

=11651 fts

8 Tower area AT (ft2)

AT =smaxu

CFS

Top AT =27521

2051

Top AT =09449

Bottom AT = 16511

23161

= 1057 ft2

9 Tower diameter (ft)

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 43: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 43

TA4TD

Top TD =109685 ft

Bottom TD =116 ft

The flood point and the maximum pressure drop criteria gave comparable tower

diameter The more conservative criteria gives diameter of 134 and 158 ft for top and

bottom sections of tower respectively As the diameter for the top and bottom sections

are not much differentThe preliminary column diameter is the larger for the two

column section ie 158 ftThis diameter is normally rounded to the next nearest half

footA diameter of 158 is for closer to 158 than 2ftThe column is operated at high

pressure shells are expensiveTherefore the preliminary column diameter 2ft

66 Bed height calculation

1 Packing diameter dP in

Top dP = 15 in

Bottom dP =15 in

2Tower diameter DTft

Top DT = 2 ft

Bottom DT =2 ft

3Ratio of

12

d

D

T

T

Top

12

d

D

T

T =51

212

=16

Bottom

12

d

D

T

T =51

212=16

4HETP ft height equivalent to theoretical plate

HETP = Pd51 (for pall rings)

Top HETP = 2525151 ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 44: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 44

Bottom HETP = 2525151 ft

5Number of stages

Top N = 8

Bottom N = 10

6Total packed height

HETPNZ

Top 182528 Z ft

Bottom 52225210 Z ft

67 Column sizing second trial

1Tower diameter

Top DT = 2 ft

Bottom DT = 2 ft

2Packing diameter dPin

TopdP =15in

Bottom dP =15in

3Tower area AT

4

2T

T

DA

Top4

22

TA

=31415 ft2

Bottom 4

22

TA

=31415 ft2

4Vapor flowrate CFS ft3s

Top CFS = 1205 ft3s

Botttom CFS =12316 ft3s

5Vapor superficial velocity usfts

design T

s A

CFSu

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 45: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 45

Top 3835014153

2051su fts

Bottom 3920014153

23161su fts

6 Vapor capacity factor Csfts

Top sC = us

GL

G

Top sC =03835

319912632

31991

Top sC = 0079209 fts

Botttom sC =03920

486812432

48681

Botttom sC =008619 fts

68 Average bed pressure drop calculation

Most method for pressure drop calculation assume the column handles a

nonuniform mixture they do not strictly apply to the high pressure column

1 P calculation in H2O per ft

P =

425033 sP CFP

Top P =5446

079204033 4250

= 007255 helliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft Bottom

P =00949helliphelliphelliphelliphelliphelliphelliphelliphelliphelliphellipin H2O per ft

2 Stage 8 amp 9 calculation

Top 31991G lbft3

Bottom 33731G lbft3

Top L 3226 lbft3

Bottom 2432L lbft3

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 46: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 46

3CFS vapor flowrate ft3s

Top CFS = 11652 ft3s

Bottom CFS =117944 ft3s

4AT tower area ft2

Top AT =31415 ft2

Bottom AT =31415 ft2

5Superficial Velocity us fts

T

s A

CFSu

fts0375431415

117944uBottom

fts0370831415

11652uTop

s

s

6Cs Vapor Capacity factor

fts078090337312432

3373137540CBottom

fts07580319912632

3199137080C

s

s

Top

uCGL

Gss

7Surface Tension (σ) of liquid dynecm

Top σ = 6544 dynecm

Bottom σ = 6507 dynecm

8Packing Factor (FP)

Top FP = 40

Bottom FP = 40

9ΔP in of H2O per ft

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 47: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 47

070505076

0780904033

0652905446

075804033

σ

CF33ΔP

4250

4250

24s

05P

PBottom

PTop

10Average ΔP in of water per ft

25050 )5050( bottomtop PPP

25050 0652905007255050 P

Top P = 006887 in water per ft

Bottom P = 25050 07050500949050

P =00822 in water per ft

69 Maximum pressure drop by interpolation

1Flv = flow parameter

Top Flv =0135211

Bottom Flv = 029142

2Cs vapor capacity factor fts

Top Cs =0079209

Bottom Cs = 008619

3 kinematic capacity Cs

Top =0218187

Bottom =022277

4FP = packing factor ft-1

Top FP = 40

Bottom FP =40

5Capacity parameter at design

05050PF SC

Top = 04642

Bottom =05056

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 48: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 48

6 P at design in H2O per ft

P top = 008 in H2O per ft = 008

P bottom = 009 in H2O per ft = 009

610Minimum wetting rate

1GPM at design

Top =31037 galmin helliphellip For 8th amp 9th stages

Bottom = 3142 galmin

2GPM turndown

GPM 60

Top = 18622 galmin

Bottom = 18852 galmin

As 60 of turndown expected

3GPMft2 at turndown

Top 14153

62218 = 592

Bottom = 0077614153

85218

Since these rates are well above 3GPMft2 the column operate well above minimum

wetting

611 Total pressure drop

1ΔP average in H2O per ft

Top = 006887

Bottom = 00822

Top total ΔP = ΔP top height

= 006887 18

= 123966 in H2O

Bottom ΔP = 00822 225

= 1849 in H2O

2Total packing pressure drop = 1849 +123966

= 3089 in H2O

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 49: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 49

612 Design column summery

1Tower diameter (ft)

Top = 2 ft

Bottom = 2 ft

2Number of packed beds

Top = 1

Bottom =1

3Total packed heightft

Top = 15 in metallic pallR ring(M)

Bottom = 15 in 15 in metallic pallR ring(M)

613 Percentage flood

CSFlderated = 09 CSFl

Top = 09 02593

= 023337

Bottom = 09 02028

= 018252

flood = deratedSFl

s

C

designC

100

Top flood = 233370

0792090100

= 3394

Bottom flood = 182520

086190100

= 4722

614 Performance summery

1 flood

Top = 3394

Bottom = 4722

2Pressure drop in of H2O per ft

Maximum expected

top = 007255

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 50: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 50

bottom = 00949

Maximum allowable

Top = 12984

Bottom = 12977

Bed average

Top = 006887

Bottom = 00822

3Total bed pressure drop in of H2O

Top =123966

Bottom = 1849

4Number of theoretical stages

Top = 8

Bottom = 10

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 51: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 51

Chapter-7

DETERMINATION OF CONDENSER AND REBOILER

HEAT LOAD

Enthalpy data for calculations of heat load are

Vapor enthalpy Btulb at 125 lbin2

Component 100degF 200degF 300degF

C3 3075 3550 4070

i-C4 2775 3260 3790

C4 2980 3460 4000

i-C5 2880 3280 3820

C5 2800 3360 3790

Liquid Enthalpy Btulb

Component 100degF 200degF 300degF

C3 1700 2280 2880

i-C4 1540 2125 2725

C4 1600 2230 2850

i-C5 1480 2110 2775

C5 1525 2150 2800

In order to calculate the energy requirement for preheater the fed bubble point must be

deteremined Th feed pressure is 125lbin2 the final iteration is summerised below and the

bubble point is at 1750F

Component Feedlbmolhr K

C3 4762 29

i-C4 10843 1475

C4 18072 1125

i-C5 11651 055

C5 20388 045

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 52: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 52

001ii xK

The column feed at 1720Fthe bubble point found by linear interpolation of feed enthalpy at

1000F this last enthalpy is found using the feed rates

Temperature0F hfeed 610 Btuhr

100 06492

172 08364

200 09092

For the reflux ratio of 17775 calculate the condenser duty the enthalpy of the distillate

liquid and overhead vapors must be determined at their respective condition

Condenser duty

1)( 130148 RhHQ liqvapC

The enthalpy data at 100 and 2000F were given from that 0F hdist times106 Btuh Hvap times106 Btuh

100 03088 05681

130 03444 -

148 - 06128

200 04275 06021

177751103444062180 6 CQ

= 07704times106 Btuh

An overall energy balance yields the reboiler duty

hfeed172 + Qrebioler = hdistillate130 + Qcondenser +hbottom245

The bottom enthalpy must be found before the reboiler duty The bottom flow rates are

calculated The liquid enthalpy is given earlier0F hbottomtimes106 Btuh

200 04817

245 05482

300 06294

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 53: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 53

08362times106 + Qreboiler =03444times106+07704times106 +05482times106

Qreboiler =08268times106 BtuhThe amount of stripping vapor generated by the reboiler is now calculated The reboiler is

assumed to be equilibrium stage the bottom temperature is 2450 using the enthalpy data for

the vapour is given above at 2000F and 3000F the molar enthalpy is calculated from

ivapi HwtmolyH

0F Hbottom Btulbmol

200 23897

245 25426

300 27294

Since the majority of energy supplied to the reboiler is used to generate the stripping vapor

the vapor rate can be estimated by calculating the latent heat

λ= enthalpy of vapor- enthalpy of liquid

vapor enthalpy = 25426 Btulbmol

liquid enthalpy =34731

1054820 6

= 17488 Btulbmol

λ = 25426-17488

= 7938 Btulbmol

Stripping rate =

reboilerQ

7983

1082680 6estimatedV

= 10355 lbmolh

= 1035571722

= 7426681 lbhr

Mass balance around the reboiler

BVL

= 10355 + 31345

=1348 lbmolh

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 54: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 54

The bubble point and the enthalpy of stream L are needed for the balance Pressure is 1275

lbin2 and the initial assumed temperature is 2450F

ComponentiL lbmolhr K245 K242

C3 0 45 440

i-C4 0194 255 250

C4 2556 205 200

i-C5 43098 1075 105

C5 72208 094 092

At 2450F

016105611894119 ii xK

At 242 0F

993008611828117 ii xK

Enthalpy at 2420F

Temperature0F Enthalpy Btulbmol

200 15336

242 17310

300 20036

Material balance

BVL and B=31347 lbmolhr

Energy balance

bottomreboiler hBVQL 2542617310

Bhbottom = 05482times 106 Btuhr

34731VL

17310 L -25426V =-02786times106

Solving two equations

5132L lbmolhr

V =10118 lbmolhr

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 55: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 55

Chapter-8

CALCULATION OF THE THICKNESS OF SHELL AND COST ESTIMATION

P =150 lbin2 = 11376 Nmm2

Di = 2ft s

Total column length 52 ft

mm

CPJf

DPt t

sh

32261371850952

66091371

2

Weight of head = 370387 N

Shell thickness at different height

1 Axial stress fap = Ct

DiP

s 4

= 232264

66091371

= 4009 N

2 for compressive stress due to the weight of shell up to distance lsquoXrsquo

shelloftioncross

ofshellwtf as sec

22

22

4

4

io

io

DD

XDD

=

622

322

106609244622

10776609244622

X

= 77times10-3 timesX Nmm2

3 FD compressive stress due to weight of insulation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 56: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 56

Ct

Xlengthunitperinsolutionofweightf

SD

mD

1023226

0770

X

= 567095 times 10-4times X Nmm2

4 Compressive stress due to liquid in the column up to height X

Compressive stresses due to liquid in the column up to height X

CtD

Xpackingliquidweightf

smliq

232266609

4071113490

X

= 18369 X Nmm2

CtD

Xheightunitperattachmentofweightf

smd

232266609

140026700

X

df =322 +01691X

Total compressive dead weight stress at a height X from equation

22301422

2231691083691106751077 43

Xf

X

dx

bending moment due to the wind load

2

70 20 XDP

M wwZ

2

620130070 2X

= 2821X2

Stream due to the wind load

CtD

PXf

so

wwX

241

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 57: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 57

2322624622

130041 2

X

= 02154 Nmm2

Tensile stress due to the sesmic load

Momentum due to sesmic load

2

2 3

3 H

XHXWCM SX

2

2

8415

84153

3

187581479480 XXM SX

9250

524728947 2 X

X Nm

CtD

Mf

s

SXSX

204

23226246224

10

2

3

SXM

=281314

SXMNmm2

SXf = 68077 timesX2

9250

5447 X Nmm2

To determine value of X combined stresses on the upward side as

dxapSXt ffff max

= 22301422094002710291 2 XXX

maxtf = 783601432291 2 XX

The equation

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 58: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 58

004D

41

m0

2

alls

i

ss

w fCt

DP

Ct

Xwtsdead

CtD

XP

85036009402230142221540 2 XX

X = 4521 mX = 147 ft

The thickness will be same for the entire height of the column the compressive stress as for

apdxSXwXC ffforff max

= 129 094022301422027102 XXX

= 129 8736987112 XX

The tower height is 1584 m

87368415987118415291 2 Cf

= 2512 Nmm2

This is well within the permissible stream for elastic stability

Cost estimationFrom graph ( Appendix -A) for 24 in diameter packed bed distillation column cost is 9000 $Cost of Packing is 20 $ft3soTotal volume of packed region in a column is

4

2 LDVP

4

54022

PV

= 12717 ft3

Total cost of packing =1271720

=2543 $

Total cost of column = 9000+2543

=115434 $

Cost in rupees = 1154350

= 577170 Rs

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 59: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 59

CONCLUSION

Distillation calculation shows the results are feasible from the literature data

Number of stages and reflux ratio is slightly varies with the different methods There are

eighteen theoretical stages 11775 are obtained by shortcut method Relative volatility of

component changes at different stages By considering this phenomenon the Winn equation

is used for the calculation of component distribution In the calculation of packed bed

limitations of pressure co-relations are systematic rather than random It has been

demonstrated that a co-relation that gives excellent stastical fit to experimental data can

give poor prediction for many situations commonly encountered in industrial practice

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 60: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 60

APPENDIX -A

Distribution coefficients (K=yx) in light hydrocarbon system high temperature

ranges

Figure1 Depriesterrsquos chart

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 61: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 61

Cost Of Packed Bed Distillation Column

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40

Column diameterin

Co

st $

100

0

Figure 2 Cost of Packed bed distillation column

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 62: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 62

APPENDIX B

program fenskeimplicit nonerealc1c2c3c4c5k1k2k3k4k5dlkbhkalphalka1b1frealalpha1alphahkalpha2alpha5d1fdlkfdhkfd2fd5fb1fblkfrealbhkfb2fb5ff1flkfhkf2f5d1d2d3d4d5bb1b2b3b4b5realdtotalbtotalxlkdxhkdxlkbxhkbnminzyalphalkavgprinttype value of mole fraction of component in feedreadc1c2c3c4c5printType the value of feed flow ratereadfprinttype value of distribution coefficient of each componentreadk1k2k3k4k5printType the fraction of light key component in distillatereaddlkprintType the fraction of heavy key component in bottomreadbhkalphalk=k3k4alpha1=k1k4alpha2=k2k4alphahk=k4k4alpha5=k5k4printalpha1=alpha1printalpha2=alpha2printalphalk=alphalkprintalphahk=alphahkprintalpha5=alpha5z=dlk(1-dlk)y=bhk(1-bhk)a1=log10((1-bhk)bhk)b1=log10(zy)log10(alphalk)

printa1=a1printb1=b1d1f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))d2f=10(a1)alpha2(b1)(1+10(a1)alpha2(b1))dlkf=10(a1)alphalk(b1)(1+10(a1)alphalk(b1))dhkf=10(a1)alphahk(b1)(1+10(a1)alphahk(b1)) d5f=10(a1)alpha1(b1)(1+10(a1)alpha1(b1))printdf values= d1fd2fdlkfdhkfd5f

b1f=1(1+10(a1)alpha1(b1))b2f=1(1+10(a1)alpha2(b1))

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 63: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 63

blkf=1(1+10(a1)alphalk(b1))bhkf=1(1+10(a1)alphahk(b1))b5f=1(1+10(a1)alpha5(b1))printbf values= b1fb2fblkfbhkfb5f

f1=c1ff2=c2fflk=c3ffhk=c4ff5=c5fprintf1= f2= f3= f4= f5=f1f2flkfhkf5

d1=210d2=630d3=102725d4=5775d5=0printd1= d2= d3= d4= d5=d1d2d3d4d5

bb1=0b2=0b3=2275b4=78225b5=1470printb1= b2= b3= b4= b5=bb1b2b3b4b5

dtotal=d1+d2+d3+d4+d5btotal=bb1+b2+b3+b4+b5printdtotal= dtotalprintbtotal= btotal

xlkd=d3dtotalxhkd=d4dtotalxlkb=b3btotalxhkb=b4btotalalphalkavg=202nmin=log((xlkdxhkd)(xhkbxlkb))log(alphalkavg)

printN(min)= nmin end program fenske

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 64: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 64

OUTPUT

type value of mole fraction of component in feed0075016502750177303102Type the value of feed flow rate65716type value of distribution coefficient of each component2914751125055045Type the fraction of light key component in distillate05144Type the fraction of heavy key component in bottom03459alpha1= 5272727alpha2= 2681818alphalk= 2045455alphahk= 1000000alpha5= 8181818E-01a1= 2766936E-01b1= -8097797E-01df values= 3297785E-01 4596546E-01 5144000E-01 6541000E-01 3297785E-01bf values= 6702214E-01 5403454E-01 4856000E-01 3459000E-01 3101090E-01f1= f2= f3= f4= f5= 4928700 10843140 18071900 11651450 20385110d1= d2= d3= d4= d5= 210000000 630000000 1027250000 57750000 0000000E+00b1= b2= b3= b4= b5= 0000000E+00 0000000E+00 22750000 782250000 1470000000dtotal= 1925000000btotal= 2275000000N(min)= 9125515

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980

Page 65: Project

Project report Design Of Packed Bed Distillation Column

Dr Babasaheb Ambedkar Technological UniversityLonere 65

References

1Billet Reinbord rdquo Distillation Engineeringrdquo Chemical Publishing Co New York 19

2 Hines Anthony L Robert N MaddoxrdquoMass Transfer Fundamental and Applicationrdquo

Prentic ndashHall New Jersey 1985

3Joshi MVrdquoProcess Equipment Designrdquo3rd edition Macmillion India Ltd2004

4Kister Henry ZrdquoDistillation Design lsquorsquo McGraw Hill New York1989

5Matley JayrdquoModern Cost Engineering Methods and DatardquoVol II McGraw Hill

publicationsNY1984

6 Perry Robert H Green Don W James O MalonyrdquoPerryrsquos Chemical Engineering

Handbook ldquo7th edition McGraw Hill New York 1997

7 Rose LMrdquo Distillation Design In Practice ldquo Elsevier Amsterdam 1985

8 Schweitzer Philip ArdquoHandbook of separation techniques for chemical engineer ldquo2nd

edition McGraw Hill New York1988

9 Smith BDrdquo Design of Equilibrium Stage ProcessesrdquoMcGraw Hill Book Company

New York 1963

10 Treybal RErdquo Mass Transfer Operationrdquo McGraw Hill Book Company New York

1980