Proiectare Structuri de Beton Rom

download Proiectare Structuri de Beton Rom

of 340

Transcript of Proiectare Structuri de Beton Rom

  • 7/27/2019 Proiectare Structuri de Beton Rom

    1/339

    Manual

    Proiectare structur i de beton

  • 7/27/2019 Proiectare Structuri de Beton Rom

    2/339

    Proiectare structuri de beton

  • 7/27/2019 Proiectare Structuri de Beton Rom

    3/339

  • 7/27/2019 Proiectare Structuri de Beton Rom

    4/339

    iii

    Table of ContentsAdjusting the parameters for design .................................................................................... 1Setup dialogue ........................................................................................................................ 1Parameters to a particular code ............................................................................................ 3

    Automatic member reinforcement design ............................................................................ 3EC ENV ..................................................................................................................................... 5

    Design defaults .................................................................................................................... 5

    Calculation parameters ........................................................................................................ 7

    CDD/PGNL parameters ..................................................................................................... 11

    Interaction diagram ............................................................................................................ 12

    Ultimate limit state .............................................................................................................. 13

    Ultimate limit state - Shear ................................................................................................. 14

    Ultimate limit state - Punching shear ................................................................................. 16

    Ultimate limit state - Foundation block ............................................................................... 18

    Detailing provisions ............................................................................................................ 20

    Serviceability limit state ...................................................................................................... 22Serviceability limit state - Crack proof ................................................................................ 22

    Design and drawing ........................................................................................................... 24

    Hooks ................................................................................................................................. 24

    Warning and errors ............................................................................................................ 24EC EN 1992-1-1 ...................................................................................................................... 25

    Design defaults .................................................................................................................. 25

    General .............................................................................................................................. 27

    Calculation parameters ...................................................................................................... 27

    Ultimate limit state .............................................................................................................. 32

    Interaction diagram ............................................................................................................ 32Ultimate limit state - Shear ................................................................................................. 33

    Ultimate Limit State - Fire resistance ................................................................................. 35

    Ultimate limit state - Punching shear ................................................................................. 37

    Serviceability limit state ...................................................................................................... 38

    Serviceability limit state - Creep ......................................................................................... 38

    Serviceability limit state - Crack proof ................................................................................ 39

    CDD parameters ................................................................................................................ 40

    Detailing provisions ............................................................................................................ 40

    Detailing provisions - Fire resistance ................................................................................. 41

    Design and drawing ........................................................................................................... 43

    Hooks ................................................................................................................................. 45

    Warning and errors ............................................................................................................ 46CSN 73 1201 ........................................................................................................................... 46

    Design defaults .................................................................................................................. 46

    Calculation parameters ...................................................................................................... 46

    CDD/PGNL parameters ..................................................................................................... 51

    Interaction diagram ............................................................................................................ 52

    Ultimate limit state .............................................................................................................. 52

    Gamma b ........................................................................................................................... 53

    Gamma s ............................................................................................................................ 54

    Ultimate limit state - Punching shear ................................................................................. 54Serviceability limit state ...................................................................................................... 55

  • 7/27/2019 Proiectare Structuri de Beton Rom

    5/339

    Proiectare structuri de beton

    iv

    Serviceability limit state - Crack proof ................................................................................ 56

    Design and drawing ........................................................................................................... 56

    Hooks ................................................................................................................................. 56

    Detailing provisions ............................................................................................................ 56DIN 1045, 1045-1 .................................................................................................................... 57

    Design defaults .................................................................................................................. 57Calculation parameters ...................................................................................................... 59

    CDD/PGNL parameters ..................................................................................................... 63

    Interaction diagram ............................................................................................................ 63

    Ultimate limit state .............................................................................................................. 65

    Ultimate limit state - Shear ................................................................................................. 66

    Ultimate limit state - Punching shear ................................................................................. 67

    Detailing provisions ............................................................................................................ 69

    Serviceability limit state ...................................................................................................... 72

    Serviceability limit state - Crack proof ................................................................................ 72

    Design and drawing ........................................................................................................... 73

    Hooks ................................................................................................................................. 73

    Warning and errors ............................................................................................................ 73NEN 6720 ................................................................................................................................ 73

    Design defaults .................................................................................................................. 73

    Calculation parameters ...................................................................................................... 75

    CDD / PGNL calculation .................................................................................................... 80

    Interaction diagram ............................................................................................................ 80

    Ultimate limit state .............................................................................................................. 82

    Ultimate limit state - Punching shear ................................................................................. 82

    Serviceability limit state ...................................................................................................... 83

    Serviceability limit state - Crack proof ................................................................................ 83Design and drawing ........................................................................................................... 84

    Hooks ................................................................................................................................. 84

    Detailing provisions ............................................................................................................ 84NORM B4700 ....................................................................................................................... 86

    Design defaults .................................................................................................................. 86

    Calculation parameters ...................................................................................................... 88

    CDD/PGNL parameters ..................................................................................................... 92

    Interaction diagram ............................................................................................................ 92

    Ultimate limit state .............................................................................................................. 94

    Ultimate limit state - Shear ................................................................................................. 94Ultimate limit state - Punching shear ................................................................................. 96

    Detailing provisions ............................................................................................................ 97

    Serviceability limit state ...................................................................................................... 99

    Serviceability limit state - Crack proof .............................................................................. 100

    Design and drawing ......................................................................................................... 100

    Hooks ............................................................................................................................... 102

    Warning and errors .......................................................................................................... 103SIA 263 ................................................................................................................................. 103

    Design defaults ................................................................................................................ 103

    Calculation parameters .................................................................................................... 105

    CDD/PGNL parameters ................................................................................................... 109Interaction diagram .......................................................................................................... 109

  • 7/27/2019 Proiectare Structuri de Beton Rom

    6/339

    Table of Contents

    v

    Ultimate limit state ............................................................................................................ 111

    Ultimate limit state - Punching ......................................................................................... 112

    Ultimate limit state - Shear ............................................................................................... 114

    Detailing provisions .......................................................................................................... 115

    Serviceability limit state .................................................................................................... 118

    Serviceability limit state - Crack proof .............................................................................. 118REDES ............................................................................................................................. 119

    Hooks ............................................................................................................................... 119

    Warning and errors .......................................................................................................... 119BAEL ..................................................................................................................................... 120

    Design defaults ................................................................................................................ 120

    Calculation parameters .................................................................................................... 122

    Interaction diagram .......................................................................................................... 125

    Ultimate limit state ............................................................................................................ 127

    Ultimate limit state - Punching ......................................................................................... 128

    Serviceability limit state .................................................................................................... 128

    Serviceability limit state - Crack proof .............................................................................. 128

    Detailing provisions .......................................................................................................... 129

    REDES ............................................................................................................................. 131

    Hooks ............................................................................................................................... 131

    Warning and errors .......................................................................................................... 131BS 8110 ................................................................................................................................ 131

    Design defaults ................................................................................................................ 131

    Calculation parameters .................................................................................................... 133

    Ultimate limit state ............................................................................................................ 138

    Ultimate limit state - Shear ............................................................................................... 138

    Ultimate limit state - Punching shear ............................................................................... 139Serviceability limit state .................................................................................................... 140

    Percentages for beams and columns .............................................................................. 140

    Percentages for 2D structures ......................................................................................... 142

    Detailing provisions .......................................................................................................... 142

    Design and drawing ......................................................................................................... 143

    Hooks ............................................................................................................................... 143

    Warning and errors .......................................................................................................... 144ACI 318 ................................................................................................................................. 144

    Code setup for ACI 318 ................................................................................................... 144

    General ............................................................................................................................ 145Design defaults ................................................................................................................ 145

    Calculation ....................................................................................................................... 148

    Interaction diagram .......................................................................................................... 152

    Design strength ................................................................................................................ 153

    Shear ................................................................................................................................ 154

    Detailing provisions .......................................................................................................... 155

    Warning and errors .......................................................................................................... 155Introduction ......................................................................................................................... 157Adjusting the member data ................................................................................................ 157Copying the member related data ..................................................................................... 1581D elements ......................................................................................................................... 158

    Basic mode for member data adjustment on 1D elements .............................................. 158

  • 7/27/2019 Proiectare Structuri de Beton Rom

    7/339

    Proiectare structuri de beton

    vi

    Advanced mode for member data adjustment on 1D elements ...................................... 1602D elements ......................................................................................................................... 163

    Basic mode for member data adjustment on 2D elements .............................................. 163

    Advanced mode for member data adjustment on 2D elements ...................................... 164Calculated internal forces .................................................................................................. 169Displaying the calculated internal forces ......................................................................... 170

    Displaying the slenderness parameters ........................................................................... 171Calculation of required reinforcement .............................................................................. 173

    Introduction to design of reinforcement ........................................................................... 173

    1D elements ..................................................................................................................... 173

    2D elements ..................................................................................................................... 182REDES - input of practical reinforcement ........................................................................ 195

    Input of practical reinforcement ........................................................................................ 195

    Reinforcement template ................................................................................................... 196

    Input and modification of reinforcement ........................................................................... 211

    Anchorage detailing ......................................................................................................... 243

    Automatic design of reinforcement .................................................................................. 246Bill of material ..................................................................................................................... 248

    Displaying the bill of material ........................................................................................... 2481D elements ......................................................................................................................... 249

    Checking to interaction diagram ...................................................................................... 249

    Checking to interaction diagram - single check ............................................................... 251

    Performing the checking to interaction diagram .............................................................. 255

    Checking of limit strain ..................................................................................................... 255

    Checking of limit strain - single check .............................................................................. 256

    Performing the checking to limit deformations ................................................................. 261

    Checking the cracks ......................................................................................................... 261

    Performing the checking of crack ..................................................................................... 262Overall check ................................................................................................................... 262

    Detailing provisions .......................................................................................................... 265Deflections according to codes ......................................................................................... 266

    Prerequisites for calculation of deflections according to a standard ................................ 266

    Load case combination for calculation of deflections according to a standard ............... 266

    Performing the calculation of deflections according to a standard .................................. 267

    Deflections according to a standard................................................................................. 267

    Performing the check of deflections according to a standard .......................................... 271

    Stiffness in calculation of code dependent deformations ................................................ 271Prestressed concrete .......................................................................................................... 273

    Checks of prestressed concrete ...................................................................................... 273Crack control .................................................................................................................... 274

    Performing crack control .................................................................................................. 274

    Checking of limit strain ..................................................................................................... 275

    Detailed checking of limit strain ....................................................................................... 277

    Performing the checking of limit strain ............................................................................. 283

    Checking to interaction diagram ...................................................................................... 284

    Detailed checking to interaction diagram ......................................................................... 284

    Performing the checking to interaction diagram .............................................................. 284

    Allowable stress in concrete ............................................................................................ 285

    Detailed check of allowable stress in concrete ................................................................ 285Performing the check of allowable stress in concrete ...................................................... 285

  • 7/27/2019 Proiectare Structuri de Beton Rom

    8/339

    Table of Contents

    vii

    Check of prestressing reinforcement ............................................................................... 286

    Performing the check of prestressing reinforcement ....................................................... 287

    Allowable principal stresses ............................................................................................. 287

    Performing the check of allowable principal stresses ...................................................... 287

    Detailed check of allowable principal stresses ................................................................ 288

    Introduction ......................................................................................................................... 291Punching shear data ........................................................................................................... 291Punching shear data for CSN/STN .................................................................................... 294Assigning the punching shear data to the node .............................................................. 297Performing the punching shear check ............................................................................. 297Detailed punching shear check ......................................................................................... 298Comparison of PNL and PGNL calculation ...................................................................... 305Material properties for physically non-linear calculation ............................................... 306Beam related parameters for physically non-linear calculations .................................. 307Reinforcement in the physically non-linear calculation ................................................. 309The procedure for the Physically non-linear calculation ................................................ 310Types of load case combinations ..................................................................................... 311Assessment of results ........................................................................................................ 311

    Separate check of a section/beam .................................................................................... 315Literature .............................................................................................................................. 317Types of fire resistance calculation .................................................................................. 319Setup dialogue for fire resistance calculations ............................................................... 320Fire resistance related member data ................................................................................ 321Material properties of concrete with reference to fire resistance .................................. 322Material properties of reinforcement with reference to fire resistance ......................... 323Material properties of prestressing reinforcement with reference to fire resistance .. 323Results for the check of detailing provisions .................................................................. 324Load case combinations for fire resistance calculations ............................................... 325Results for advanced method ............................................................................................ 326Results for simplified method ............................................................................................ 327Quantities, parameters and warnings related to fire resistance .................................... 328

  • 7/27/2019 Proiectare Structuri de Beton Rom

    9/339

  • 7/27/2019 Proiectare Structuri de Beton Rom

    10/339

    1

    General parameters

    Adjusting the parameters for designThe user must review and adequately adjust a set of design and calculation parameters prior to

    performing a successful and accurate design and checking of a concrete memberAll the parameters that may be adjusted are integrated into one multi-tab modal dialogue. Thisensures that any of the parameters can be easily viewed, checked, modified, and/or comparedwith other settings.

    The procedure for modifying parameters

    1. Call tree menu function Concrete > Setup.2. The Setup dialogue opens on the screen.3. Use the left-hand side tree to select required parameter set.4. Input desired values in the right hand side part of the dialogue.5. Confirm the settings with [OK].

    Setup dialogueDespite any possible differences in individual items due to specific regulations of differentnational standards, the Setup dialogue has got the same layout for all implemented nationalstandards.

    Setup DialogueIn general, the Setup Dialogue consists of four parts (see the picture below): filter window (A), tree window (B), property window (C), explanation window (D).

  • 7/27/2019 Proiectare Structuri de Beton Rom

    11/339

    Proiectare structuri de beton

    2

    Filter Window (A)This window contains a list of filters that can be used to reduce the number of parameters

    displayed in other parts of the dialogue.Note: This window may be hidden for some configurations of the dialogue.

    Tree Window (B)This window contains a list of parameter groups arranged in a tree structure.Clicking on a branch in the tree expanses the corresponding part of the property Window (withother branches automatically collapsed).

    Property Window (C)This window lists all the parameters that are available for the current configuration of thedialogue. The parameters are sorted in groups (branches). You may expand or collapse therequired groups.

    Explanation Window (D)

    Once an item is selected in the Property Window, an explanation is displayed in this window. Ifpossible, the explanation is accompanied with an illustrative picture.

    See chapter Adjusting the parameters for design for "how to open" the dialogue.

    Note: Individual items in the Setup dialogue are printed in either black or blue colour. Itemsin black are valid for the whole project. Items in blue colour are default values for individualbeams. These values, however, can be separately modified on individual beams. Themodification of "blue values" can be done via function Concrete > Member data 1D.

    Note: The items displayed in the dialogue may vary according to (i) the project settings and(ii) the place from which the dialogue has been invoked. The dialogue takes account of the"caller" and may hide some items that are not relevant to the current operation.

  • 7/27/2019 Proiectare Structuri de Beton Rom

    12/339

    General parameters

    3

    Parameters to a particular codeThe dialogue for the adjustment of design and calculation parameters may look different forvarious national technical standards. The description of individual code-related dialogue tabs is

    therefore made separately for individual standards.Setup for EC2 (Eurocode)

    Setup forSN 73 1201 (Czech standard)

    Setup for STN 73 1201 (Slovak standard)

    see the Czech standard

    Setup for DIN 1045, 1045-1 (German standard)

    Setup for NEN 6720 (Dutch standard)

    Setup for NORM B4700 (Austrian standard)

    Setup for SIA 263 (Swiss standard)

    Setup for BAEL (French standard)

    Setup for BS 8110 (British standard)

    Note 1: Settings whose description text is in blue can be defined per member. The valueinput in the Setup for concrete dialogue is the default value used for every new member.

    Note 2: The particular national standard can be selected in the Project Setup dialogue or viathe "flag" button at the right end of programs Status bar (e.g. ).

    Automatic member reinforcement designThis part of Setup dialogue is code-independent. It means that it looks the same for each

    national standard.General

    Maximal exploitation ofcross-section

    Specifies the maximal utilisation of the cross-section in the automatically reinforced beam.

    The value may be between 1 and 100%.

    Longitudinal reinforcement

    Minimal length of bars Defines the minimal length of barsautomatically inserted into the reinforced

    beam. The algorithm tries to shorten thereinforcement bars if possible so that they do

  • 7/27/2019 Proiectare Structuri de Beton Rom

    13/339

    Proiectare structuri de beton

    4

    not extent along the whole length of thebeam. The shortened bar cannot be shorterthan the value of this parameter.

    Check min. number of

    longitudinal barsabove supports

    If ON, the number of reinforcement bars

    above supports is checked and compared tothe values specified below.

    Minimum number oflongitudinal barsabove supports

    Defines the minimal required amount ofreinforcement bars above supports.

    Try to reduce length ofbars

    If OFF, the program uses only bars thatextent along the whole length of the beam.

    If ON, some bars may be shortened if theunity check is satisfied without them.

    Minimal number ofbars in reinforcementlayer

    Imagine a simply supported beam. Theremust be 6 bars in the middle of the span.Only 5 bars are required in a section that iscloser to the support. And only 4 bars arenecessary in another section that is still closerto the support. And so on.

    So in general, you could shorten the bars oneby one. This may be sometimes impracticalas it would lead to a large number of differentbars.

    The value in this parameter defines theminimal number of bars that may be

    shortened at the same time. The default valueis 2. It means that, in our example, you wouldhave 6 bars in the middle, there still will be 6bars in the section where 5 is sufficient, andonly farther towards the support the numberwill be reduced to 4 bars. And so on.

    Maximal number ofbigger diameters thanthe default

    Defines how many different (bigger)diameters of the reinforcement can be usedfor the optimisation. Let us assume that thedefault diameter specified in the Designdefault tab is 10mm.

    If this parameter is set to 2, the program canuse diameters 10, 12 (i.e. +1 item in themanufacturing programme) and 14 (i.e. +2item in the manufacturing programme) for thedesign.

    Do not use"Neighbouring" bars

    Some standards recommend that"neighbouring" profiles from themanufacturing programme should not beused in one beam (in order to avoidunintentional interchange of the profiles).

    Let us assume that the default diameter

    specified in the Design default tab is 10mm.Further assume that Maximal number of

  • 7/27/2019 Proiectare Structuri de Beton Rom

    14/339

    General parameters

    5

    bigger diameters than the default is set to2.

    If this option is ON, the following bars can beinserted into the beam: (i) either 10mm, (ii) or12mm, (iii) or 14mm, (iv) or 10mm and 14mmcan be combined together. 10mm and 12mm

    are not permitted to be combined in onebeam.

    Stirrups

    Minimal centre-to-centre distance forstirrups

    Specifies the minimal distance betweenstirrups measured from the centre of a bar tothe centre of an adjacent bar.

    Minimum reductionlength

    Defines the minimum reduction length. It maybe defined by means of length or number of

    stirrups in the part. See the next twoparameters.

    Minimal length of onestirrup part

    Defines the length of one part of the beamwhere stirrups are distributed uniformly. Thisparameter ensures than a situation thedistance between two adjacent stirrups isdifferent for every two adjacent stirrups.

    Minimal number ofstirrups in one stirruppart

    Analogous to the parameter above.

    Stepfor reduction Defines the step for the reduction of the

    distance between two adjacent stirrups. Thisinsures that the distance between stirrups isalways a "rounded" number e.g. 200mm,then 250mm, then 300mm, etc. (and not e.g.200, 246mm, 298mm, etc.).

    Symmetrical part ofstirrups

    This parameter may enforce that the stirruppart are symmetrical along the length of thebeam.

    EC ENV

    Design defaults

    These parameters are used for the design of minimum required reinforcement if no member datahave yet been defined on particular members.

    General

    Concrete cover

    Use min concretecover

    The minimal values of cover based ondetailing rules specified in the code are used.

    User defined concrete

    cover

    The user may input the thickness of cover

    layer.

  • 7/27/2019 Proiectare Structuri de Beton Rom

    15/339

    Proiectare structuri de beton

    6

    Concrete cover advanced settings

    Environmental class Specifies the environmental class.

    Tolerance increase

    delta tb

    The required cover may be affected byspecific exposure and other conditions. Oneof the following options may be selected:

    prefabricated elements

    constructions made of cast concrete

    concrete foundation

    foundation ground

    temperature > 75

    floating blocks of ice

    Beams

    Default reinforcement

    Upper cover Defines thickness of concrete cover at theupper surface.

    Upper Specifies diameter and type of reinforcementat the upper surface.

    Stirrup Specifies diameter and type of reinforcementfor stirrups (links).

    Lower Specifies diameter and type of reinforcementat the lower surface.

    Lower cover Defines thickness of concrete cover at the

    lower surface.

    Note: Items Upper coverand Lower coverare accessible only ifUser-definedconcrete coverhas been selected.

    Columns

    Default reinforcement

    Concrete cover Defines the thickness of concrete cover.

    Main Specifies diameter and type of mainreinforcement.

    Stirrup Specifies diameter and type of reinforcementfor stirrups (links).

    Note: Item Concrete coveris accessible only ifUser-defined concrete coverhasbeen selected.

    2D structures and slabs

    Default reinforcement

    Upper cover Defines thickness of concrete cover at theupper surface.

    Reinforcement Specifies the type of reinforcement.

    Upper Specifies diameter of reinforcement for theupper surface.

  • 7/27/2019 Proiectare Structuri de Beton Rom

    16/339

    General parameters

    7

    Lower Specifies diameter of reinforcement for thelower surface.

    Lower cover Defines thickness of concrete cover at thelower surface.

    Note: Items Upper coverand Lower coverare accessible only ifUser-definedconcrete coverhas been selected.

    Calculation parameters

    Calculation parameters are divided into several groups: general parameters (see below), parameters for columns (see below), parameters for beams (see below), parameters for CDD/PGNL calculation (see separate chapter), parameters for interaction diagram (see separate chapter).

    General parameters

    Number of iterationsteps

    Defines the maximum numbers of steps, usedto find the state of equilibrium in a section.

    Precision of iteration Defines the numerical precision inpercentages.

    Limit value for checks This value is used in all checks for finalassessment whether the member satisfies ordoes not satisfies the prescribed conditions.

    Normally, this value will be one (1), but it can

    be even lower or greater than 1.For stiffness andcrack-proof calculationuse reinforcement

    As,tot or 0 (As, tot for As,req > 0 and 0 forAs,req = 0)

    The total area of reinforcement is used for thecalculation on condition that the designfunction has been already run and that theprogram has already calculated the requiredarea of reinforcement. Otherwise, zero valueis used (even if the user has manuallyinserted some reinforcement bars).

    The total area of reinforcement is the sum ofthe user-defined reinforcement (through basic

    reinforcement, through reinforcementzones/regions or through free bars) andcalculated additional required reinforcement.The additional required reinforcement may bezero, if the user has already inputted enoughuser-defined reinforcement.

    IMPORTANT: Keep in mind, that the functioncalculating the required areas ofreinforcement MUST HAVE BEEN run before.Otherwise, the user-defined reinforcement isignored and ZERO value is used.

    As, userThe user-defined reinforcement is used for

  • 7/27/2019 Proiectare Structuri de Beton Rom

    17/339

    Proiectare structuri de beton

    8

    the calculation. The term user-definedreinforcement covers the basic reinforcementspecified in member data, reinforcement barsinputted through reinforcement templates inreinforcement zones (1D members) orregions (2D members), and free bars of

    reinforcement.

    In order: [ As, user ]; [ As,tot or 0]

    If there is any user-defined reinforcement, it isused, otherwise, the total reinforcement isused (which in fact means the calculatedrequired area of reinforcement). Remember,that for the second option, the design functionmust have been already run.

    In order: [ As,tot or 0]; [ As, user]

    If the design of reinforcement has beenalready performed and the required area ofreinforcement has been already calculated, itis used. Otherwise, the user-definedreinforcement is used.

    Check percentage oflongitudinalreinforcement

    If this option is ON, the calculation proceduretakes account of the defined reinforcementpercentage for longitudinal reinforcement.

    Check percentage ofshear reinforcement

    If this option is ON, the calculation proceduretakes account of the defined shear

    reinforcement number of legs, link diameter,spacing of the links, and minimal percentageof reinforcement.

    Check selectedsections only

    The checks are performed only in selectedsections. This option can dramatically speedup the program.

    Concrete areaweakened byreinforcement bars

    The area of reinforcement is subtracted fromthe area of the cross-section as if ductswere installed.

    Take into accountlongitudinal practicalreinforcement for

    design calculation

    If ON, the already inserted longitudinalreinforcement is taken into account during thecalculation.

    Check torsion If ON, the torsion check is performed.

    Parameters for columns

    Advanced settings This parameter can simplify the input forthose users who calculate simple problemsand need to adjust just a few basicparameters.

    If ON, all the items in the column setup partare available.

    If OFF, only the basic parameters areavailable. The less-common parameters are

  • 7/27/2019 Proiectare Structuri de Beton Rom

    18/339

    General parameters

    9

    disabled.

    Corner design only The following cross-sections are supported:rectangular, L-section, T-section, I-section.

    The bars are designed only in corners of thecross-section. The calculation is iterative and

    diameter or area of reinforcement in corner isincreased until the check is satisfied.

    Determine governingcross-sectionbeforehand

    The user may determine that the design ofreinforcement is carried out in the foot andhead of the column. Otherwise, thecalculation is carried out in all intermediatesections as well, which may be timeconsuming and bring no profit in terms ofaccuracy. The subsequent check of thedesigned reinforcement is performed in allsections.

    Buckling data The option activates a pseudo-linearcalculation of buckling for 1D member (thegenuine 2nd order analysis is the non-linearone, i.e. using the Timoshenko or Newton-Raphson iteration). If this option is ON, aspecial algorithm is started on thebackground that evaluates bar imperfectionsand 1st + 2nd order deflections which leads toan approximation of the 1st order bendingmoments by increased 2nd order moments.

    DIN 1045-1 introduces for this situation theconcept of "Model column method" and

    NORM calls it "Spare bar method". Eachnational standard implemented in SciaEngineer uses its analysis path that takes intoaccount the stipulations of the particularstandard.

    Optimize the numberof bars in c-s forbiaxial calculation

    If ON, the number of bars in the cross-sectionis optimised to achieve the minimum numberof bars with the cross-section still passing thecheck.

    Calculation method

    Uni-axial bendingcalculation

    The largest of bending moments My, Mz willbe taken into consideration. The smaller onewill be ignored.

    Bi-axial bendingcalculation

    (interaction formula)

    Both My and Mz are taken into account. Thedesign is carried out using interaction formula

    (My/Myu)x+ (Mz/Mzu)

    x< 1

    where x is the safety factor (see below).

    Automaticdetermination - uni-axial bendingcalculation if ratio ofbiaxial moment is less

    If the ratio of one bending moment to theother along the whole beam length is smallerthan the input value, then the beam isconsidered to be subject to uni-axial bending.Otherwise, if at least one cross-section is

  • 7/27/2019 Proiectare Structuri de Beton Rom

    19/339

    Proiectare structuri de beton

    10

    then found where the ratio is greater than the inputvalue, the biaxial approach is applied.

    Biaxial bending

    Safety factor for biaxialbending formula (seeabove)

    Specifies the safety factor used in theinteraction formula above.

    Default value = 1.4.

    Calculatereinforcement using

    real area of reinforcement

    If this option is ON, the reinforcement iscalculated from the real sectional area ofindividual bars.

    delta area of reinforcement

    If this option is ON, the reinforcement iscalculated using the user defined area (delta).

    Optimisation methodfor number of bars incross-section

    If the option is ON, the number on bars insection is minimised so that their minimalnumber is used.

    Ratio y/z automatic

    If ON, the ratio of y-reinforcement to z-reinforcement is determined automatically.

    manual

    If ON, the user specifies the ratio ofreinforcement in y-direction to reinforcementin z-direction.

    Parameters for beams

    Calculate compressionreinforcement

    If the compression reinforcement isnecessary, check this box to provide for itscalculation.

    Moment capping atsupports

    Bending moment diagram may be "shifted" insupports in order to provide for reduction ofsupport bending moments. The reductiondepends on the type of support. For supportsofColumn type, the support dimension iscalculated from the columns cross-section.For standard supports the user must input the

    support size (see the chapter dealing withpoint supports in the main reference manual).

    Shear force capping atsupports

    If reduction of shear force in supports isallowed, check this box.

    at the face (support/column)

    the reduced shear force is determined at thesupport face

    at the effective depth from the face(support/column)

    the reduced shear force is determined in theeffective length from the support face

    See ENV 1992-1-1 Art. 4.3.2.2(10)

  • 7/27/2019 Proiectare Structuri de Beton Rom

    20/339

    General parameters

    11

    in the face (support/column) + factor xinternal cantilever arm

    For this option, the user must specify Factorof internal cantileverarm.

    Parameters for 2D elements

    The depth of slabshould be at least 200mm when shearreinforcement isrequired

    (5.4.3.3 (1))

    If ON, the provision of the related paragraphis taken into account.

    Structuralreinforcement of deepbeam

    See ENV 1992-1-1 : Art. 5.4.5.(2).

    If ON, construction reinforcement for deepbeams will be taken into account.

    CDD/PGNL parameters

    Two different types of physical nonlinear calculation (material nonlinearity) are available: Analysis of Code Dependent Deflections (including creep) (CDD) Physically nonlinear calculation of internal forces (only short term conditions)

    CDD

    Divide members inparts

    The number of intervals the beam is dividedto during the physically nonlinear calculation

    of deformations.This value overrides the division adjusted

    in the mesh setup dialogue, but is used ONLYfor the calculation of physically nonlineardeformations.

    Deformation: Max.displacement of beam

    Maximal deflection of a beam for theserviceability limit state (defined relatively tothe length of the beam).

    Deformation: Max.displacement of plate

    Maximal deflection of a slab for theserviceability limit state (the absolute value).

    PGNL

    Calculation ofnonlinear stiffness fornonlinear calculation

    The default setting determining if thephysically nonlinear behaviour should betaken into account in order to calculateinternal forces.

    Convergence criterionof the calculation

    The precision (in percentages) of the iterationmethod.

    General

    Coefficient for If the PNL calculation is performed for the

  • 7/27/2019 Proiectare Structuri de Beton Rom

    21/339

    Proiectare structuri de beton

    12

    reinforcement

    (amount ofreinforcement can beincreased for the CDDand PGNL calculation)

    Required As, the user may modify theamount of calculated reinforcement bymultiplying it by this coefficient.

    Interaction diagram

    The parameters for interaction diagram are:

    Division of strain Calculation precision for one of the diagram"branches". The value means how manytimes the strain plane is readjusted from theposition of section under full compression tothe position of section under full tension.

    Default value = 180.

    The value influences the accuracy and thespeed of calculation.

    See Figure 1 below.

    Vertical division Number of directions in which the diagram iscalculated (number of "branches").

    Default value = 72.

    See Figure 1 below.

    Horizontal division The value affecting the accuracy of verticalsections. Because "branches" of the diagramare not generally planar, the calculation of

    vertical sections is based on horizontalsections.

    Default value = 100.

    See Figure 1 below.

    Method of check The interaction diagram shows the ultimatebearing capacity. The following approachescan be applied:

    Nu assuming Md is constant

    Mu assuming Nd is constant

    NuMu assuming eccentricity is constant

    Muy assuming Mdz is constant

    Muz assuming Mdy is constant

    Default value = Muy.

    See Figure 2 below.

    Figure 1 - Divisions

  • 7/27/2019 Proiectare Structuri de Beton Rom

    22/339

    General parameters

    13

    A = Division of strain; B = Vertical division; C = Horizontal division

    Figure 2 Method of check

    Ultimate limit state

    Safety factors

    Gamma c shear Partial safety factor for concrete used for

    calculation of the basic design shearresistance.

  • 7/27/2019 Proiectare Structuri de Beton Rom

    23/339

    Proiectare structuri de beton

    14

    ENV 1992-1-1: Art. 4.3.2.3. (1)

    Default value = 1.5

    Gamma c compression Partial safety factor for concrete.

    ENV 1992-1-1: Art. 2.3.3.2. (1)

    Default value = 1.5

    Gamma s Partial safety factor for reinforcement steel.

    ENV 1992-1-1: Art. 2.3.3.2. (1)

    Default value = 1.15

    Concrete

    Max. compressionstrain of concrete

    The limiting compressive strain for concrete.

    ENV 1992-1-1: Art. 4.3.1.2

    Default = -0.0035.

    Strain at beginning ofplastic deformation

    Strain at which concrete starts to behaveplastically in the stress-strain diagram.

    ENV 1992-1-1 : Fig.4.2

    Default = -0.0020.

    Alfa The additional reduction factor for sustainedcompression.

    ENV 1992-1-1: Art. 4.2.1.3.3b. (11)

    Default = 0.85.

    Steel

    Max. tension strain ofsteel

    The limiting steel strain.

    ENV 1992-1-1: Art.4.2.2.3.2. (5)

    Default = 0.01.

    Ultimate limit state - Shear

    The parameters in the Shear group control the calculation of shear reinforcement.

    1D structures - beams

    Shear coefficients

    Coefficient in equation(4.18)

    Gives the influence of axial force on shearresistance of concrete without shearreinforcement.

    ENV 1992-1-1: Art.4.3.2.3. (1)

    Default value = 0.15

    Max. value forcoefficient ro_1

    Maximum value of an effective reinforcementpercentage.

    ENV 1992-1-1: Art.4.3.2.3. (1)

    Default value = 0.02

  • 7/27/2019 Proiectare Structuri de Beton Rom

    24/339

    General parameters

    15

    Shear percentage

    Concrete class The concrete classes that together with thesteel class determine the minimum shearreinforcement ratio.

    ENV 1992-1-1: Tab.5.5

    Default value = C40/50 to C50/60

    Steel grade The steel class that together with theconcrete classes determine the minimumshear reinforcement ratio.

    ENV 1992-1-1: Tab.5.5

    Default value = S400

    Result value of min.percentage

    Minimum shear reinforcement ratio.

    ENV 1992-1-1: Tab.5.5

    Default value = 0.0016

    Method for calculation of shear reinforcement

    Standard Choose this option to calculate shearreinforcement according to the standardmethod.

    ENV 1992-1-1: Art. 4.3.2.4.3

    Variable strutinclination

    Choose this option to calculate shearreinforcement according to the variable strutinclination method.

    ENV 1992-1-1: Art. 4.3.2.4.4

    Variable strut inclination method

    Minimum angle of theconcrete strut with thelongitudinal axis

    The lower limiting value for the angle betweenthe concrete strut and the longitudinal axis.

    Maximum angle of theconcrete strut with thelongitudinal axis

    The upper limiting value for the anglebetween the concrete strut and thelongitudinal axis.

    2D structures - slabs

    Shear modeThe calculation employs the checking of capability considering a fixed inclination of fictitiousconcrete strut (fixed strut inclination method).

    At most 50% oftraction reinforcementis anchored before thesupport

    See ENV 1992-1-1 : Art. 4.3.2.3.(1)

    More than 50% oftraction reinforcementis anchored before thesupport

    See ENV 1992-1-1 : Art. 4.3.2.3.(1). This isthe default setting.

  • 7/27/2019 Proiectare Structuri de Beton Rom

    25/339

    Proiectare structuri de beton

    16

    Shear strut inclination control

    variable strutinclination method

    (4.3.2.4.4)

    See ENV 1992-1-1 : Art. 4.3.2.4.4.

    fixed strut inclinationmethod

    (4.3.2.4.3)

    See ENV 1992-1-1 : Art. 4.3.2.4.3.

    Shear effect upon the net reinforcementShear reinforcement in a net reinforcement may have an effect on the results ("shear effect").These parameters control the way this effect is taken into account.

    no shear effect uponthe net reinforcement

    (4.3.2.4.4 (6) -> 5.4.2)

    See ENV 1992-1-1 : Art. 4.3.2.4.4(6) -> 5.4.2

    shear effect will beconsidered in SR2 only

    (4.3.2.4.4 (5))

    A special check. The shear effect is taken intoaccount in shear area 2 only.

    shear effect will begenerally beconsidered

    (4.3.2.4.4 (5))

    See ENV 1992-1-1 : 4.3.2.4.3.(5)

    Ultimate limit state - Punching shear

    CoefficientsThis group defines parameters depending on the position of the column. The first fourcoefficients are used to determine the minimal bending moment per unit length in X and Ydirection. The values are used in accordance with Table 4.9 ENV 1992-1-1.

    Column position The position of the column is selected.

    Moment coefficient:

    eta x top

    eta x bottom

    eta y top

    eta y bottom

    Individual moment coefficients.

    ENV 1992-1-1, Art. 4.2.4.5.3(1)

    Default values: acc. to EC2, Table 4.9

    Beta Coefficient taking into account the eccentricityof load (ENV 1992-1-1 : Art. 4.3.4.3 (4)).

    Default value = 1.0

    Loaded area

    Shape circular, withdiameter notexceeding ...

    Loaded area of circular shape with themaximal diameter equal to the input value.

    EC 2: Art. 4.3.4.2.1 (1), default value = 3.5 * d

    Shape rectangular,with perimeter notexceeding ...

    Loaded area of rectangular shape with themaximal perimeter equal to the input value.

  • 7/27/2019 Proiectare Structuri de Beton Rom

    26/339

    General parameters

    17

    EC 2: Art. 4.3.4.2.1 (1), default value = 11 * d

    Shape rectangular,max length/width

    Loaded area of rectangular shape with thelength/width ration not exceeding the inputvalue.

    EC 2: Art. 4.3.4.2.1 (1) , default value = 2

    Distance between theperimeter of the loadedarea and the edge ofthe opening notexceeding ...

    The maximum value of the smallest distancebetween the perimeter of the loaded area andthe edge of an opening. If the distance islessthan the input value, the part of the criticalsection enclosed by the two tangents drawnfrom the centre of the loaded area to theopening edge is taken as ineffective.

    ENV 1991-1-1 2: Art. 4.3.4.2.2 (2),

    default value = 6 * d

    Shear reinforcement

    Min thickness of plate Minimal thickness of a plate where the shearreinforcement is created.

    EC 2: Art. 5.4.3.3 (1), default value = 200 mm

    Min ratio Minimal acting shear reinforcement shouldnot be lower that the input percentage in thetab SLS group Ratio of shearreinforcement.

    EC 2: Art. 5.4.3.3 (2), default value = 60 % ofthe values acc. to Table 5.5

    Shear resistance

    Coefficient of VRd1 The coefficient k for the calculation of shearresistance VRd1. It is possible to select (i) anautomatic calculation or (ii) manual input ofthe value.

    ENV 1992-1-1: Art. 4.3.4.5.1 (1), formula(4.56)

    Coefficient of VRd2 The coefficient for the calculation of shearresistance VRd2.

    EC 2: Art. 4.3.4.5.2 (1) formula (4.57)

    Default value = 1.6

    Column heads

    Rectangular columnwith rectangularcolumn head,

    lh< 1.5 hh

    This option defines the determination of dcrit inthe case that lh < 1.5 hh:

    The rectangularloadedarea according toENV 1992-1-1: Art. 4.3.4.2.2

    Equivalent diameteraccording to ENV1992-1-1: Art. 4.3.4.4(1), formula 4.52.

    Failure surface has tobe completely inside Use this option if the failure area should befully outside or fully inside of the column head

  • 7/27/2019 Proiectare Structuri de Beton Rom

    27/339

    Proiectare structuri de beton

    18

    or outside of thecolumn head

    if 1.5hH < lH < 1.5(hH + d).

    If the failure area is not fully outside or fullyinside of the column head, a warning isissued.

    If the option is not selected, formula 4.55 from

    ENV 1992-1-1: Art. 4.3.4.4(5) is used insteadto calculate dcrit.

    Ultimate limit state - Foundation block

    Longitudinal reinforcement

    No reinforcementneeded when hf / a >

    If the ratio hF / a is greater than the adjustedvalue, no reinforcement is used.

    Default value = 2.0.

    Minimumreinforcement ratio r1 Minimal reinforcement ratio.Default value = 0.005.

    Minimumreinforcement onlyneeded hf

  • 7/27/2019 Proiectare Structuri de Beton Rom

    28/339

    General parameters

    19

    Shear punching

    if A > 2 hF, Beta 1 = The definition of punching shear angle Beta 1(see Fig. above) for the situation when A > 2hF.

    Default value = 33.7.

    if A < 2 hF, Beta 1 = The definition of punching shear angle Beta 1(see Fig. above) for the situation when A < 2hF.

    Default value = 45.0.

    Beta V Coefficient taking account of the punching

    shear reinforcement in order to determine theshear force capacity.

    Default value = 1.0.

    Angle alphareinforcement /foundation plane

    The orientation of the punching shearreinforcement.

    Default value = 45.0.

    Pyramidal block

    k1 Correction coefficient.

    Default value = 2.25.k2 Correction coefficient.

  • 7/27/2019 Proiectare Structuri de Beton Rom

    29/339

    Proiectare structuri de beton

    20

    Default value = 1.11.

    k3 Correction coefficient.

    Default value = 1.34.

    Detailing provisions

    Columns

    Longitudinal reinforcement

    Min. reinforcementpercentage

    The minimum reinforcement percentage.

    ENV 1992-1-1: Art.5.4.1.2.1

    Default value = 0.3%

    Max. reinforcementpercentage

    The maximum reinforcement percentage.

    ENV 1992-1-1: Art.5.4.1.2.1Default value = 8%

    Min. bar distance The minimum clear distance betweenindividual parallel bars (for Design andDrawing).

    ENV 1992-1-1: Art.5.2.1.1 (3)

    Default value = 20 mm

    Max. bar distance The maximum clear distance betweenindividual parallel bars (for Design andDrawing).

    Min. number of bars in

    circular column

    The minimum numbers of bars in a column of

    a circular cross-section.ENV 1992-1-1: Art.5.4.1.2.1. (4)

    Default value = 6

    Min. bar diameter The minimum diameter of bars in columns.

    ENV 1992-1-1: Art.5.4.1.2.1. (1)

    Default value = 12 mm

    Beams

    Longitudinal reinforcement

    Min. reinforcementfactor x

    (b x d) / fyk equals to

    The minimum reinforcement percentagerelated to the characteristic steel yieldstrength.

    ENV 1992-1-1: Art.5.4.2.1.1 (1)

    Default value = 0.6

    Min. reinforcementpercentage (b x d)

    The minimum reinforcement percentage.

    ENV 1992-1-1: Art.5.4.2.1.1 (1)

    Default value = 0.15%

    Max. reinforcementpercentage

    The maximum reinforcement percentage.

    ENV 1992-1-1: Art.5.4.2.1.1 (2)Default value = 4%

  • 7/27/2019 Proiectare Structuri de Beton Rom

    30/339

    General parameters

    21

    Min bar distance The minimum clear distance betweenindividual bars (for Design and Drawing).

    ENV 1992-1-1: Art.5.2.1.1 (P1)

    Default value = 20 mm

    Max. bar distance The maximum clear distance betweenindividual parallel bars (for Design andDrawing).

    Stirrups (links)

    Maximum transversespacing of stirrups

    The maximal transverse spacing of legs in aseries of shear links is related to the shearforce (Vsd).

    ENV 1992-1-1: Art.5.4.2.2 (9)

    Maximum longitudinalspacing of stirrups

    The maximal longitudinal spacing ofsuccessive links is related to the shear force(Vsd).

    ENV 1992-1-1: Art.5.4.2.2 (7)

    Calculation and theoprac (columns and beams)This group contains switches for checks that can be applied during design and drawing ofreinforcement.

    Check min. bardistance

    Check for minimal distance of bars duringdesign and drawing.

    Check max. bar

    distance

    Check for maximal distance of bars duringdesign and drawing.

    2D Structures

    Reinforcement

    Min. transversereinforcementpercentage

    Minimal amount of transverse reinforcement,determined as a percentage of mainreinforcement,

    Default value = 20%.

    Min. net reinforcementpercentage (in general)

    Minimum percentage of longitudinalreinforcement, unconditionally.

    Default value = 0%.

    Min pressurereinforcementpercentage

    Minimal part of concrete cross-section thatshould act as compression reinforcement.

    Default value = 0.4%.

    Maximum percentagein

    bending pressure zone

    Plates only:

    Definition of the maximum percentage ofreinforcement in the bending pressure zonerelated to the concrete pressure force.

    Compare with SIA 162, Art.

    3.24.16

    Default value = 50%.

    Min tension Shells and Plates only:

  • 7/27/2019 Proiectare Structuri de Beton Rom

    31/339

    Proiectare structuri de beton

    22

    reinforcementpercentageat face +Zp

    Minimum percentage of tension reinforcementat the surface with positive Z co-ordinate (inthe local coordinate system of the 2Dmember).

    ENV 1992-1-1, art. 5.4.2.1.1(1), formula

    (5.14)Default value = 0.15%.

    Min tensionreinforcementpercentageat face-Zp

    Minimum percentage of tension reinforcementat the surface with negative Z co-ordinate (inthe local co ordinate system of the 2Dmember) or at each of the Wall faces, resp.

    ENV 1992-1-1, art. 5.4.2.1.1(1), formula(5.14)

    Default value = 0.15 %.

    Max reinforcementpercentage in cross-

    section

    Maximal part of concrete cross-section thatshould act as reinforcement.

    Default value = 8%.Min shearreinforcement

    Minimal part of concrete cross-section thatshould act as shear reinforcement.

    Default value = 0.11%.

    Minimal bar distance Displays the minimal bar distance.

    Maximal bar distance Displays the maximal bar distance.

    Serviceability limit state

    Creep

    Creep coefficient The value of creep coefficient used for thecalculation of effective tangential concretemodulus of elasticity that is valid during thephysically nonlinear calculation for creepcombination.

    ENV 1992-1-1: Table 3.3

    Creep according totable

    If ON, creep coefficient according to the codetable can be specified.

    ENV 1992-1-1: Table 3.3

    Environment class Exposure conditions for the determination ofcreep.

    Age at loading The age of concrete at loading for whichcreep should be calculated.

    Serviceability limit state - Crack proof

    1D structures

    Sigma S Tension of the reinforcement as percentage

    of fyk.ENV 1992-1-1: Art. 4.4.2.2(39), Gl.(4.78)

  • 7/27/2019 Proiectare Structuri de Beton Rom

    32/339

    General parameters

    23

    Default value: 100% (fyk)

    w lim Maximal permissible crack width.

    ENV 1992-1-1 Art. 4.4.2.1 (6), default value =0.3 mm.

    2D structures

    Maximum allowable crack width

    crack width on faceZp+ / Zp-

    Maximal allowable crack width at the surfacewith positive / negative Z co-ordinate (in thelocal co-ordinate system of the plate).

    If the value is set to zero, the crack width is not checked and the calculation is carried outempirically following the provisions of Article 4.4.2.3.

    Limit bar distance

    bar distance on faceZp+ / Zp-

    Maximal allowable distance betweenreinforcement bars at the surface withpositive / negative Z co-ordinate (in the localco-ordinate system of the plate).

    Reinforcement bar surface characteristics

    Effect upon the mainstrainon face +Zp/-Zp

    Coefficient beta1 of the crack formula.

    ENV 1992-1-1, Art. 4.4.2.4(2), Gl.(4.81)

    Default value: Beta1=1.0

    Effect upon the meancrack distanceon face+Zp/-Zp

    Coefficient k1 of the mean crack distanceformula.

    ENV 1992-1-1, Art. 4.4.2.4(2), Gl.(4.82)

    Default value: k1=0.8

    Load case processing attitude

    Effect upon the mainstrain

    The user selects the type of load case thatcauses

    the appearance of cracks. The load causingcracks

    can be due to:

    prevailingly external load,

    internally imposed deformation,

    externally imposed deformation.

    Concrete tension strength fct,eff in early stage of hardening

    In percent of fct The effective utilisation of concrete in tension.It can reduce the strength of concrete intension. If set to zero (default value), the

    coefficient is not taken into account.

  • 7/27/2019 Proiectare Structuri de Beton Rom

    33/339

    Proiectare structuri de beton

    24

    Design and drawing

    The parameters are the same as for EC-EN 1992-1-1.See chapter General parameters > EC ENV > Design and drawing.

    Hooks

    This dialogue enables the user to define the default values for the anchorage details in stirrupsand longitudinal reinforcement.

    Design and drawing

    Anchorage of stirrups In this dialogue the user can input the defaultvalues for the shape of the stirrup anchorage.Possible shapes are:

    Anchorage of

    longitudinalreinforcement

    In this dialogue the user can input the default

    values for the shape of the stirrup anchorage.Available shapes are:

    Warning and errors

    The calculation of a concrete member may generate a set of various warnings and errorsspecified in the code.The program warns the user if a warning or even an error has been generated. The used mayreview the rules and their seriousness in this dialogue.An error causes that the calculation in that particular point is stopped. On the other hand, awarning is just recorded and the calculation goes on.

  • 7/27/2019 Proiectare Structuri de Beton Rom

    34/339

    General parameters

    25

    EC EN 1992-1-1

    Design defaults

    These parameters are used for the design of minimum required reinforcement if no member datahave yet been defined on particular members.

    General

    Concrete cover

    Use min concretecover

    The minimal values of cover based ondetailing rules specified in the code are used.

    User defined concretecover

    The user may input the thickness of coverlayer.

    Concrete cover advanced settings

    Design working life[years]

    It is possible to set either 50 or 100 years oflifespan of the structure.

    EN 1992-1-1:2004, art. 4.4.1.2(5), table 4.3 N

    Exposure class The exposure classes are related toenvironmental conditions and can be found intable 4.1 (X0, XC1, XC2, XC3, XC4, XD1,XD2, XD3, XS1, XS2, XS3, XF1, XF2, XF3,XF4, XA1, XA2, XA3).

    Note: Exposure classes 5(XFy) and 6 (XAy)are not taken into account for concrete covercalculation, see EN 206-1, section 6.

    EN 1992-1-1:2004, art. 4.2(2), table 4.1Abrasion class The minimum concrete cover cmin should be

    increased for concrete abrasion:

    - Abrasion class XM1: cmin + 5 mm;

    - Abrasion class XM2: cmin + 10 mm;

    - Abrasion class XM3: cmin + 15 mm

    Note: The abrasion class default is Noneand cmin is not increased.

    EN 1992-1-1:2004, art. 4.4.1.2(13)

    Delta c. dev The allowance in design for deviation

    Deltac.dev is:- for Prefabricated: 5 mm;

    - for In-situ concrete:10 mm;

    - for Concrete against prepared ground: 40mm;

    - for Concrete against soil: 75 mm.

    EN 1992-1-1:2004:2004, art. 4.4.1.3

    Special quality control See EN 1992-1-1:2004 table 4.3 N.

  • 7/27/2019 Proiectare Structuri de Beton Rom

    35/339

    Proiectare structuri de beton

    26

    Beams

    Default reinforcement

    Upper cover Defines thickness of concrete cover at theupper surface.

    Upper Specifies diameter and type of reinforcementat the upper surface.

    Stirrup Specifies diameter and type of reinforcementfor stirrups (links).

    Lower Specifies diameter and type of reinforcementat the lower surface.

    Lower cover Defines thickness of concrete cover at thelower surface.

    Note: Items Upper coverand Lower coverare accessible only ifUser-defined

    concrete coverhas been selected.Columns

    Default reinforcement

    Concrete cover Defines the thickness of concrete cover.

    Main Specifies diameter and type of mainreinforcement.

    Stirrup Specifies diameter and type of reinforcementfor stirrups (links).

    Note: Item Concrete coveris accessible only ifUser-defined concrete coverhasbeen selected.

    2D structures and slabs

    Default reinforcement

    Upper cover Defines thickness of concrete cover at theupper surface.

    Reinforcement Specifies the type of reinforcement.

    Upper Specifies diameter of reinforcement for theupper surface.

    Lower Specifies diameter of reinforcement for thelower surface.

    Lower cover Defines thickness of concrete cover at thelower surface.

    Note: Items Upper coverand Lower coverare accessible only ifUser-definedconcrete coverhas been selected.

    Default unbraced types (for columns and beams only)If the option is ON, the sway frame is considered. This is the default setting that is used if:- the user has not defined this value at the beam directly (in the buckling lengths settingsdialogue), or- if the corresponding parameters in the buckling lengths settings dialogue is set to "Settings".

  • 7/27/2019 Proiectare Structuri de Beton Rom

    36/339

    General parameters

    27

    Y-Y Sway in YY direction.

    Z-Z Sway in ZZ direction.

    General

    This part of the dialogue contains a set of parameters specified in the standard. Theirexplanation is not necessary here as all the items in the dialogue contain reference to theappropriate article in the standard.Some parameters are related to fire-resistance calculations and do not appear if fire resistanceis not selected in Project > Functionality dialogue. These parameters are marked with "[2]" inthe end of the article number.

    Calculation parameters

    Calculation parameters are divided into several groups: general parameters (see below), parameters for columns (see below), parameters for beams (see below), parameters for CDD calculation (see separate chapter), parameters for interaction diagram (see separate chapter).

    General parameters

    Number of iterationsteps

    Defines the maximum numbers of steps,used to find the state of equilibrium in asection.

    Precision of iteration Defines the numerical precision inpercentages.

    Limit value of checks This value is used in all checks for finalassessment whether the member satisfies ordoes not satisfies the prescribed conditions.

    Normally, this value will be one (1), but it canbe even lower or greater than 1.

    For stiffness andcrack-proof calculationuse reinforcement

    As,tot or 0 (As, tot for As,req > 0 and 0 forAs,req = 0)

    The total area of reinforcement is used for thecalculation on condition that the designfunction has been already run and that theprogram has already calculated the requiredarea of reinforcement. Otherwise, zero valueis used (even if the user has manuallyinserted some reinforcement bars).

    The total area of reinforcement is the sum ofthe user-defined reinforcement (through basicreinforcement, through reinforcementzones/regions or through free bars) andcalculated additional required reinforcement.The additional required reinforcement may bezero, if the user has already inputted enough

    user-defined reinforcement.IMPORTANT: Keep in mind, that the function

  • 7/27/2019 Proiectare Structuri de Beton Rom

    37/339

    Proiectare structuri de beton

    28

    calculating the required areas ofreinforcement MUST HAVE BEEN runbefore. Otherwise, the user-definedreinforcement is ignored and ZERO value isused.

    As, user

    The user-defined reinforcement is used forthe calculation. The term user-definedreinforcement covers the basic reinforcementspecified in member data, reinforcement barsinputted through reinforcement templates inreinforcement zones (1D members) orregions (2D members), and free bars ofreinforcement.

    In order: [ As, user ]; [ As,tot or 0]

    If there is any user-defined reinforcement, it isused, otherwise, the total reinforcement isused (which in fact means the calculatedrequired area of reinforcement). Remember,that for the second option, the design functionmust have been already run.

    In order: [ As,tot or 0]; [ As, user]

    If the design of reinforcement has beenalready performed and the required area ofreinforcement has been already calculated, itis used. Otherwise, the user-defined

    reinforcement is used.

    Check selectedsections only

    The checks are performed only in selectedsections. This option can dramatically speedup the program.

    Concrete areaweakened byreinforcement bars

    The area of reinforcement is subtracted fromthe area of the cross-section as if ductswere installed.

    Take into accountlongitudinal practical

    reinforcement fordesign calculation

    If ON, the already inserted longitudinalreinforcement is taken into account during the

    calculation.

    Check torsion If ON, the torsion check is performed.

    Check shear ofconstruction joint

    If ON, the shear stress in joints is checked.

    Check the interactionof shear, torsion,flexure and axial load

    If ON, the interaction of shear, torsion, flexureand axial load is checked.

    Limit bendingpressure zone rationxu/d

    The limit value of the ratio of compressionzone of concrete to effective height of thecross-section.

  • 7/27/2019 Proiectare Structuri de Beton Rom

    38/339

    General parameters

    29

    Parameters for columns

    Advanced settings This parameter can simplify the input forthose users who calculate simple problemsand need to adjust just a few basicparameters.

    If ON, all the items in the column setup partare available.

    If OFF, only the basic parameters areavailable. The less-common parameters aredisabled.

    Corner design only The following cross-sections are supported:rectangular, L-section, T-section, I-section.

    The bars are designed only in corners of thecross-section. The calculation is iterative anddiameter or area of reinforcement in corner isincreased until the check is satisfied.

    Determine governingcross-sectionbeforehand

    The user may determine that the design ofreinforcement is carried out in the foot andhead of the column. Otherwise, thecalculation is carried out in all intermediatesections as well, which may be timeconsuming and bring no profit in terms ofaccuracy. The subsequent check of thedesigned reinforcement is performed in allsections.

    Buckling data The option activates a pseudo-linearcalculation of buckling for 1D member (thegenuine 2nd order analysis is the non-linear

    one, i.e. using the Timoshenko or Newton-Raphson iteration). If this option is ON, aspecial algorithm is started on thebackground that evaluates bar imperfectionsand 1st + 2nd order deflections which leadsto an approximation of the 1st order bendingmoments by increased 2nd order moments.

    DIN 1045-1 introduces for this situation theconcept of "Model column method" andNORM calls it "Spare bar method". Eachnational standard implemented in SciaEngineer uses its analysis path that takes intoaccount the stipulations of the particularstandard.

    User estimate of reinf.ratio for design ofreinforcement

    The users estimate of reinforcement ratio forcolumns. When the reinforcement is beingdesigned with the effect of buckling lengthtaken into account, the area of reinforcementis known yet. This are is, therefore, calculatedusing the user-specified value in this item.

    Optimize the numberof bars in c-s forbiaxial calculation

    If ON, the number of bars in the cross-sectionis optimised to achieve the minimum numberof bars with the cross-section still passing thecheck.

  • 7/27/2019 Proiectare Structuri de Beton Rom

    39/339

    Proiectare structuri de beton

    30

    Calculation method

    Uni-axial bendingcalculation

    The largest of bending moments My, Mz willbe taken into consideration. The smaller onewill be ignored.

    Bi-axial bendingcalculation

    (interaction formula)

    Both My and Mz are taken into account. Thedesign is carried out using interaction formula

    (My/Myu)x+ (Mz/Mzu)

    x< 1

    where x is the safety factor (see below).

    Automaticdetermination - uni-axial bendingcalculation if ratio ofbiaxial moment is lessthen

    If the ratio of one bending moment to theother along the whole beam length is smallerthan the input value, then the beam isconsidered to be subject to uni-axial bending.Otherwise, if at least one cross-section isfound where the ratio is greater than the inputvalue, the biaxial approach is applied.

    Biaxial bending

    Safety factor forbiaxial bendingformula (see above)

    Specifies the safety factor used in theinteraction formula above.

    Default value = 1.4.

    Calculatereinforcement using

    real area of reinforcement

    If this option is ON, the reinforcement iscalculated from the real sectional area ofindividual bars.

    delta area of reinforcement

    If this option is ON, the reinforcement iscalculated using the user defined area (delta).

    Optimisation methodfor number of bars incross-section

    If the option is ON, the number on bars insection is minimised so that their minimalnumber is used.

    Ratio y/z automatic

    If ON, the ratio of y-reinforcement to z-reinforcement is determined automatically.

    manual

    If ON, the user specifies the ratio of

    reinforcement in y-direction to reinforcementin z-direction.

    Parameters for beams

    Check max. depth ofcompression zone

    If ON, activates the check of the limit value ofthe depth of compression zone x_lim (fullvalue of tensile strength of steel is reached)

    Calculate compressionreinforcement

    If the compression reinforcement isnecessary, check this box to provide for itscalculation.

    Normal force tocalculation

    If ON the normal force in beam is takes intoaccount.

  • 7/27/2019 Proiectare Structuri de Beton Rom

    40/339

    General parameters

    31

    Moment capping atsupports

    Bending moment diagram may be "shifted" insupports in order to provide for reduction ofsupport bending moments. The reductiondepends on the type of support. For supportsofColumn type, the support dimension iscalculated from the columns cross-section.

    For standard supports the user must input thesupport size (see the chapter dealing withpoint supports in the main reference manual).

    Shear force capping atsupports

    If reduction of shear force in supports isallowed, check this box.

    at the face (support/column)

    the reduced shear force is determined at thesupport face

    at the effective depth from the face(support/column)

    the reduced shear force is determined in theeffective length from the support face

    Parameters for 2D elements

    9.3.2(1): when shearreinforcement req. theheight ought to be? 20 cm

    If ON, the statically required shearreinforcement in cross-sections with depth Functionality dialogue.

    Interaction diagram

    The parameters for interaction diagram are:

    Division of strain Calculation precision for one of the diagram"branches". The value means how manytimes the strain plane is readjusted from theposition of section under full compression tothe position of section under full tension.

    Default value = 180.

    The value influences the accuracy and thespeed of calculation.

    See Figure 1 below.

    Vertical division Number of directions in which the diagram iscalculated (number of "branches").

    Default value = 72.

    See Figure 1 below.

    Horizontal division The value affecting the accuracy of verticalsections. Because "branches" of the diagramare not generally planar, the calculation ofvertical sections is based on horizontalsections.

    Default value = 100.

    See Figure 1 below.

    Method of check The interaction diagram shows the ultimatebearing capacity. The following approachescan be applied:

    Nu assuming Md is constant

    Mu assuming Nd is constant

    NuMu assuming eccentricity is constant

    Muy assuming Mdz is constant

    Muz assuming Mdy is constant

    Default value = Muy.

    See Figure 2 below.

    Figure 1 - Divisions

  • 7/27/2019 Proiectare Structuri de Beton Rom

    42/339

    General parameters

    33

    A = Division of strain; B = Vertical division; C = Horizontal division

    Figure 2 Method of check

    Ultimate limit state - Shear

    The parameters in the Shear group control the calculation of shear reinforcement.

  • 7/27/2019 Proiectare Structuri de Beton Rom

    43/339

    Proiectare structuri de beton

    34

    1D structures - beams

    Shear coefficients

    Max. value forcoefficient ro_1

    Maximum value of an effective longitudinalreinforcement percentage.

    EN 1992-1-1:2004, art. 6.2.2(1), Gl.(6.2a)Default value = 0.02

    Angle between the concrete compression struts and beam axis model

    Type of input for theta Angle

    The angle is input.

    Cotangent

    Directly the cotangent is input.

    theta Depending on the type of input either requires

    the input or shows angle theta.

    cot (theta) Depending on the type of input either requiresthe input or shows cotangents of theta.

    Plain and lightly reinforced concrete members

    Perform check alwaysas plain concretemembers

    (12.6.3, 12.6.4)

    Coefficient taking into account axial compressive stress

    Automatic calculationaccording to sigma_cp

    value alpha_w bynational annex

    user input alpha_cw

    Principal stress

    Check design tensilestrength only incompression zone

    Construction joint

    Take into accountcos_alpha for formula6.25

  • 7/27/2019 Proiectare Structuri de Beton Rom

    44/339

    General parameters

    35

    2D structures

    Shear strut inclination control

    variable strutinclination method

    (4.3.2.4.4)

    Calculates the required shear reinforcementusing the standard Variable strut inclinationmethod.

    EN 1992-1-1:2004, art. 6.2.3

    fixed strut inclinationmethod

    (4.3.2.4.3)

    Choose this option to calculate shearreinforcement according to the non-standardmethod assuming the constant strutinclination of 45.

    Shear effect upon the net reinforcementThe Shear force can affect also the net reinforcement (Scia Engineer introduced the notion of"Shear Effect" for this phenomenon). These parameters control the way this effect is taken intoaccount.

    No Shear Effectconsidered

    Constructive measures are taken instead ofexact calculation.

    EN 1992-1-1:2004, art. 6.2.2(5) and9.2.1.3(2)

    Shear effectconsidered in SR2/3

    This is the standard case of Shear Effect: theimpact upon the net reinforcement takesplace if shear reinforcement is staticallyrequired only (Shear Region 2)

    EN 1992-1-1:2004, Art. 6.2.3(7)

    Shear Effect

    consideredunconditionally

    This is a non-standard control (e.g. for test or

    comparison purposes): Shear Effect (seeabove) is applied also in SR1 (no shearreinforcement required)

    Shear reinforcement in a net reinforcement may have an effect on the results ("shear effect").These parameters control the way this effect is taken into account. See art. 6.2.3. (7)

    Ultimate Limit State - Fire resistance

    Note: Before the fire resistance data can be adjusted in servise Concrete &g