Progress on an urban surface energy balance model comparison study Acknowledge: UK Met Office,...

20
Progress on an urban surface energy balance model comparison study Acknowledge: UK Met Office, Vasilis Pappas (KCL), Rob Mullen (KCL) COST-728 Exeter meeting, 3-4 May 2007 Sue Grimmond, Martin Best, Janet Barlow King's College London, UK Met Office, University of Reading With (people participating so far): J-J Baik (Korea), M Best (UK), M Bruse (Germany), I Calmet (France), A Dandou (Greece), K Fortuniak (Poland), R Hamdi (Belgium), M Kanda (Japan), H Kondo (Japan), S Krayenhoff (Canada), S-B Limor (Israel), A Martilli (Spain), V Masson (France), K Oleson (USA), A Porson (UK), U Sievers (Germany), H Thompson (UK)

Transcript of Progress on an urban surface energy balance model comparison study Acknowledge: UK Met Office,...

Page 1: Progress on an urban surface energy balance model comparison study Acknowledge:  UK Met Office, Vasilis Pappas (KCL), Rob Mullen (KCL) COST-728 Exeter.

Progress on an urban surface energy balance model comparison study

Acknowledge: UK Met Office, Vasilis Pappas (KCL), Rob Mullen (KCL)

COST-728 Exeter meeting, 3-4 May 2007

Sue Grimmond, Martin Best, Janet BarlowKing's College London, UK Met Office, University of Reading

With (people participating so far): J-J Baik (Korea), M Best (UK), M Bruse (Germany), I Calmet (France), A Dandou (Greece), K Fortuniak (Poland), R Hamdi (Belgium), M Kanda (Japan), H Kondo (Japan), S Krayenhoff (Canada), S-B Limor (Israel), A Martilli (Spain), V Masson (France), K Oleson (USA), A Porson (UK), U Sievers (Germany), H Thompson (UK)

Page 2: Progress on an urban surface energy balance model comparison study Acknowledge:  UK Met Office, Vasilis Pappas (KCL), Rob Mullen (KCL) COST-728 Exeter.

For example: Meso-scale modelling Global climate modelling Air quality View factor determinations Heat island studies Upper boundary conditions for other models Weather forecasting Energy assessments Emergency response

This Study Suite of different models Range of complexity Range of applications Range of data needs Range of computer needs Common: all run offline

Variety of Applications for Urban Energy Balance Models

Page 3: Progress on an urban surface energy balance model comparison study Acknowledge:  UK Met Office, Vasilis Pappas (KCL), Rob Mullen (KCL) COST-728 Exeter.

Available modelsC

ompu

tatio

nal R

equi

rem

ents

Number of Parameters

Parameters difficult to get?

Too expensive to run?

Globally moreapplicable?

Page 4: Progress on an urban surface energy balance model comparison study Acknowledge:  UK Met Office, Vasilis Pappas (KCL), Rob Mullen (KCL) COST-728 Exeter.

Past Model Evaluations

Page 5: Progress on an urban surface energy balance model comparison study Acknowledge:  UK Met Office, Vasilis Pappas (KCL), Rob Mullen (KCL) COST-728 Exeter.

Distinct Features of Comparison

Page 6: Progress on an urban surface energy balance model comparison study Acknowledge:  UK Met Office, Vasilis Pappas (KCL), Rob Mullen (KCL) COST-728 Exeter.

Key Questions

Page 7: Progress on an urban surface energy balance model comparison study Acknowledge:  UK Met Office, Vasilis Pappas (KCL), Rob Mullen (KCL) COST-728 Exeter.

Current Status

Page 8: Progress on an urban surface energy balance model comparison study Acknowledge:  UK Met Office, Vasilis Pappas (KCL), Rob Mullen (KCL) COST-728 Exeter.

Immediate Next steps

Page 9: Progress on an urban surface energy balance model comparison study Acknowledge:  UK Met Office, Vasilis Pappas (KCL), Rob Mullen (KCL) COST-728 Exeter.

Multi-step model runs

Simulation of the components of the surface energy balance (net radiation, storage, sensible and latent heat fluxes) for the location(s) of the evaluation dataset

Four stages Different levels of input data are released to the modellers At each stage more information is released about the

morphology and physical properties of the site enables determination of model parameters with more

accuracy

Staged approach to establish the required accuracy for each model parameter by comparing the quality of the simulation at each stage.

Page 10: Progress on an urban surface energy balance model comparison study Acknowledge:  UK Met Office, Vasilis Pappas (KCL), Rob Mullen (KCL) COST-728 Exeter.

Multi-step model runs

Page 11: Progress on an urban surface energy balance model comparison study Acknowledge:  UK Met Office, Vasilis Pappas (KCL), Rob Mullen (KCL) COST-728 Exeter.

Process-oriented statistical analysis

Page 12: Progress on an urban surface energy balance model comparison study Acknowledge:  UK Met Office, Vasilis Pappas (KCL), Rob Mullen (KCL) COST-728 Exeter.

Urban Energy Balance Models participating so far

CODE Authors Contact Person Version used CountryBEP02 Martilli Alberto Martilli older version SpainBEP0X Martilli Heather Thompson Linked to METRAS UKCLMU Oleson et al Keith Oleson USACTTC Limor & Hoffman S-B Limor Green CTTC model IsraelENVI Bruse Michael Bruse GermanyLUMPS Grimmond & Oke Sue Grimmond UK/USAMCBM Kondo, Hiroaki Hiroaki Kondo v.1.0 Japan

MM5u Dandou & Tombrou Aggeliki Dandou, Maria Tombrou MM5V3-6-1 Greece

MOSES1T M. Best M. Best One tile version UKMOSES2T M. Best M. Best Two tile version UKMUKLIMO Siewers, Uwe U. Sievers Thermodynamic GermanySM2U Dupont & Mestayer Isabelle Calmet FranceSRUM Porson, Harman, Clark,

Best, BelcherA. Porson Under development UK

SUMM Kanda, T.Kawai, R Moriwaki

Manabu Kanda, Toru Kawai, Ryo Moriwaki

Coupled with 1D-vegetation model

Japan

TEB Masson, Valery Valery Masson Single-layer FranceTEB07 Masson, Valery Rafiq Hamdi last version BelgiumTUF2d Krayenhoff & Voogt Scott Krayenhoff 2-d version CanadaTUF3d Krayenhoff & Voogt Scott Krayenhoff 3-d version CanadaTUFopt Krayenhoff & Voogt Scott Krayenhoff Optimized 3-d ver CanadaTVM_BEP05 Martilli, Alberto Rafiq Hamdi last version BelgiumULEB Fortuniak, Krzysztof K. Fortuniak PolandVUCM Lee, S-H & Park, S-U Jong-Jin Baik Korea

Page 13: Progress on an urban surface energy balance model comparison study Acknowledge:  UK Met Office, Vasilis Pappas (KCL), Rob Mullen (KCL) COST-728 Exeter.

Multiple versionsCODE Authors Contact Person Version used CountryBEP02 Martilli Alberto Martilli older version SpainBEP0X Martilli Heather Thompson Linked to METRAS UKCLMU Oleson et al Keith Oleson USACTTC Limor & Hoffman S-B Limor Green CTTC model IsraelENVI Bruse Michael Bruse GermanyLUMPS Grimmond & Oke Sue Grimmond UK/USAMCBM Kondo, Hiroaki Hiroaki Kondo v.1.0 Japan

MM5u Dandou & Tombrou Aggeliki Dandou, Maria Tombrou MM5V3-6-1 Greece

MOSES1T M. Best M. Best One tile version UKMOSES2T M. Best M. Best Two tile version UKMUKLIMO Siewers, Uwe U. Sievers Thermodynamic GermanySM2U Dupont & Mestayer Isabelle Calmet FranceSRUM Porson, Harman, Clark,

Best, BelcherA. Porson Under development UK

SUMM Kanda, T.Kawai, R Moriwaki

Manabu Kanda, Toru Kawai, Ryo Moriwaki

Coupled with 1D-vegetation model

Japan

TEB Masson, Valery Valery Masson Single-layer FranceTEB07 Masson, Valery Rafiq Hamdi last version BelgiumTUF2d Krayenhoff & Voogt Scott Krayenhoff 2-d version CanadaTUF3d Krayenhoff & Voogt Scott Krayenhoff 3-d version CanadaTUFopt Krayenhoff & Voogt Scott Krayenhoff Optimized 3-d ver CanadaTVM_BEP05 Martilli, Alberto Rafiq Hamdi last version BelgiumULEB Fortuniak, Krzysztof K. Fortuniak PolandVUCM Lee, S-H & Park, S-U Jong-Jin Baik Korea

Page 14: Progress on an urban surface energy balance model comparison study Acknowledge:  UK Met Office, Vasilis Pappas (KCL), Rob Mullen (KCL) COST-728 Exeter.

Methods used to model outgoingshortwave radiation

CODE # reflections albedoMUKLIMOTEB infinite canyon, roofTEB07 infinite canyon, roofBEP02 multiple canyonSRUM multiple bulk/effectiveCLMU multiple by facetTVM_BEP05 multiple canyon

BEP0X multipleTUF3d multiple (min 2) patches /facetTUF2d multiple (min 2) patches /facetTUFopt multiple (min 2) patches /facetVUCM threeMCBM two by facetMOSES2T one canyon, roofMOSES1T one bulkSM2U one bulk/effectiveMM5u one bulk/townENVI one by facetCTTC one by facetULEB one bulk/town

Page 15: Progress on an urban surface energy balance model comparison study Acknowledge:  UK Met Office, Vasilis Pappas (KCL), Rob Mullen (KCL) COST-728 Exeter.

Methods used to determine Anthropogenic Heat FluxCODE Anthropogenic heat flux Methods

BEP0X

MUKLIMO heat fluxes from the interior of the buildings

TEB domestic heating computed

TEB07 domestic heating computed

BEP02 Partially accounted for by imposing a fixed temp at the building interior

BEP05 Partially accounted for by imposing a fixed temp at the building interior

TUF3d Prescribed bulk value

TUF2d Prescribed bulk value

TUFopt Prescribed bulk value

VUCM Prescribed bulk value

SM2U Prescribed

CTTC Prescribed per vehicle (for vehicles only)

CLMU prescribed traffic fluxes, parameterized waste heat fluxes from heating/ air conditioning

MOSES2T not modelled itself but possible to be included for calculation of turbulent fluxes

MOSES1T not modelled itself but possible to be included for calculation of turbulent fluxes

SRUM not modelled itself but possible to be included for calculation of turbulent fluxes

ULEB not modelled itself but possible to be included for calculation of turbulent fluxes

MM5u calculated (offline) as a temporal & spatial function of the anthropogenic emissions

ENVI from heat transfer ew through walls, no storage term

MCBM Modelled by Kikegawa et al. offline

Page 16: Progress on an urban surface energy balance model comparison study Acknowledge:  UK Met Office, Vasilis Pappas (KCL), Rob Mullen (KCL) COST-728 Exeter.

CODE Methods to calculate turbulent sensible heat fluxCTTC calculated by the model

TEB07 From each surface

BEP02 From each surface

BEP05 From each surface

SRUM Resistance network based on Harman et al. (2004)

CLMU resistances between canyon surfaces and canyon air based on Rowley (1930), between canyon air and atmosphere depend on stability as in CLM3

BEP0X Resistances based on Clarke (1985)

TUF3dResistances based on flat-plate heat transfer coeffs (vertical patches) and based on MO similarity (horiz. patches)TUF2d

TUFoptSM2U Resistance (Guilloteau, 1998 + Zilitinkevich, 1995)

TEB Resistance

MOSES2T Standard resistance

MOSES1T Standard resistance

ENVI from turbulence model (wall function) and surface energy balance

MM5u Parametric formulation

VUCM Parametric formulation

MCBM MO or Jurges

MUKLIMO MO-laws

ULEB M-O similarity: Louis (1979) modified by Mascart at al. (1995)

Page 17: Progress on an urban surface energy balance model comparison study Acknowledge:  UK Met Office, Vasilis Pappas (KCL), Rob Mullen (KCL) COST-728 Exeter.

CODE Methods used to calculate Heat Storage FluxCTTC calculated by the model

BEP02

BEP0X

TEB Diffusion

TEB07 diffusion

CLMU Diffusion

BEP05 Diffusion

TUF3d Diffusion

TUF2d Diffusion

TUFopt Diffusion

MOSES2T Diffusion

MOSES1T Diffusion

VUCM Diffusion

SM2U Difference + Diffusion + Force restore

MM5u OHM scheme (Grimmond et al., 1991)

ENVI soil: 1D model, fully resolved, walls/building system: no storage term

ULEB As QG in urban slab (solution of multi layer thermal diffusion equation)

MCBM Finite difference

MUKLIMO Walls and roofs have a heat capacity

Page 18: Progress on an urban surface energy balance model comparison study Acknowledge:  UK Met Office, Vasilis Pappas (KCL), Rob Mullen (KCL) COST-728 Exeter.

What is resolved in the model?

CODEResolved: CANYONS

Resolved:Roof

Resolved:walls

Walls with orientation

Walls sunlit/shaded

Road sunlit/shaded

Turbulence within canyon

resolved

BEP02 Yes Yes Yes Yes Yes No Yes

BEP05 Yes Yes Yes Yes Yes No Yes

BEP0X No No No No No No No

CLMU No Yes Yes No Yes No No

CTTC Yes Yes Yes No No No Yes

ENVI No Yes Yes No No No Yes

MCBM No Yes Yes No Yes Yes Yes

MM5u No No No No No No No

MOSES1T No No No No No No No

MOSES2T Yes Yes No No No No No

MUKLIMO No No No No No No Yes

SM2U No No No No No No No

SRUM Yes Yes No No No No No

TEB No Yes Yes No No No No

TEB07 No No No No No No No

TUF Yes Yes Yes Yes Yes Yes No

ULEB No No No No No No No

VUCM Yes Yes Yes No Yes Yes No

Page 19: Progress on an urban surface energy balance model comparison study Acknowledge:  UK Met Office, Vasilis Pappas (KCL), Rob Mullen (KCL) COST-728 Exeter.

Final Comments

Models that are already participating show a wide range of approaches Need to follow up on some details

Multiple versions of some individual models are participating

Initial trial dataset now available Data back from three groups This is allowing us to iron out issues at both ends

People can still participate Encouraged to do so! Contact me: [email protected] Participants will be co-authors in manuscripts etc

Waiting to hear if NERC will fund the next parts of this project

Page 20: Progress on an urban surface energy balance model comparison study Acknowledge:  UK Met Office, Vasilis Pappas (KCL), Rob Mullen (KCL) COST-728 Exeter.

CODE Type of ModelWithin Canyon

processes modelled

Canyons are resolved

Above canyon modelled

Canyon top modelled

BEP02 Multiple layer No No No No

BEP05 Multiple layer No No No No

BEP0X Multiple layer No No No No

CLMU Single layer Yes No Yes Yes

CTTC Single layer No No No No

ENVI Yes Yes Yes Yes

MCBM Multiple layer No No No No

MM5u Single layer No No No No

MOSES1T Single Layer No No No No

MOSES2T Single Layer No No No No

MUKLIMO Yes Yes No No

SM2U Single Layer No No No No

SRUM Single Layer No No No No

TEB No No No No

TEB07 No No No No

TUF No Yes No No

BEP05 No No No No

ULEB Multiple layer No No No No

VUCM Single layer Yes No Yes Yes