Progress in plastic design of composites - RWTH Aachen University

26
Institute of General Mechanics RWTH Aachen University M. Chen, A. Hachemi, D. Weichert 3 nd International Workshop on Direct Methods, October 20-21, 2011, Athens Progress in plastic design of composites

Transcript of Progress in plastic design of composites - RWTH Aachen University

Institute of General Mechanics RWTH Aachen University

M. Chen, A. Hachemi, D. Weichert

3nd International Workshop on Direct Methods, October 20-21, 2011, Athens

Progress in plastic design

of composites

BACKGROUND

*http://www.boeing.com

Composites: Increasing application Multi-scale approach (Meso-/Micromechanics) Local and global design

Direct Methods: Unknown loading history Economic design ( permission of plastic deformation)

Composite Materials at Boeing 787 *

CONTENTS

Direct methods applied to composites โ€ข Elements of homogenization theory โ€ข Finite element discretization

Kinematic hardening โ€ข Unlimited kinematic hardening โ€ข Limited kinematic hardening

Failure criterion of composites โ€ข Plane stress โ€ข Plane strain ( 3D general stress state)

Numerical illustration โ€ข Effective material properties โ€ข Yield criterition fitting โ€ข Kiematic hardening

Conclusions

Research Goals

Microscopic Level -------------------------------------- Numerical Model of limit and shakedown analysis of RVE Numerical Solution of limit and shakedown problem (FEM & Optimization)

Macroscopic Level -------------------------------------- Comparison of loading carrying capacity of different types of composites Prediction of elastic and plastic properties

Homogenization

DIRECT METHODS APPLIED TO COMPOSITES

Assumptions โ€ข Fieber-reinforced periodic composites (RVE)

โ€ข Perfect bonding

โ€ข Elasto-plastic material behaviour

ELEMENTS OF HOMOGENIZATION THEORY

* Suquet, P.: Doctor Thesis, Pierre & Marie Curie, (1982)

Concept of representative volume element (RVE)

Heterogeneous Material RVE Homogenized Material

Localisation Globalisation

๐œ‰๐œ‰ = ๐‘ฅ๐‘ฅ ๐œƒ๐œƒโ„ , ฮธ: a small parameter

Average field quantities*

๐œฎ๐œฎ(๐‘ฅ๐‘ฅ) =1๐‘‰๐‘‰ ๏ฟฝ ๐ˆ๐ˆ(๐œ‰๐œ‰) d๐‘‰๐‘‰ = โŸจ๐ˆ๐ˆ(๐œ‰๐œ‰)โŸฉ๐‘‰๐‘‰

๐‘ฌ๐‘ฌ(๐‘ฅ๐‘ฅ) =1๐‘‰๐‘‰ ๏ฟฝ ๐œบ๐œบ(๐œ‰๐œ‰) d๐‘‰๐‘‰ = โŸจ๐œบ๐œบ(๐œ‰๐œ‰)โŸฉ๐‘‰๐‘‰

DIRECT METHODS APPLIED TO COMPOSITES

* D.Weichert, A.Hachemi and F.Schwabe. Mech. Res. Comm. 26(3), 309-318 (1999)

** H.Magoariec, S.Bourgeois and O.Dรฉbordes. Int. J. Plasticity. 20, 1655-1675 (2004)

๐œฎ๐œฎ =1๐‘‰๐‘‰๏ฟฝ(๐›ผ๐›ผ๐ˆ๐ˆ๐’†๐’† + ๐†๐†๏ฟฝ) d๐‘‰๐‘‰๐‘‰๐‘‰

=1๐‘‰๐‘‰๏ฟฝ ๐›ผ๐›ผ๐ˆ๐ˆ๐’†๐’† d๐‘‰๐‘‰๐‘‰๐‘‰

+1๐‘‰๐‘‰๏ฟฝ ๐†๐†๏ฟฝ d๐‘‰๐‘‰๐‘‰๐‘‰

๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค๐‘คโ„Ž 1๐‘‰๐‘‰๏ฟฝ ๐†๐†๏ฟฝ d๐‘‰๐‘‰๐‘‰๐‘‰

= 0

Static direct methods for periodic composites*

๐“Ÿ๐“Ÿ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ

โŽฉโŽชโŽจ

โŽชโŽง div ๐ˆ๐ˆ๐ธ๐ธ = 0 in ๐‘‰๐‘‰

๐ˆ๐ˆ๐ธ๐ธ = ๐’…๐’…: (๐‘ฌ๐‘ฌ + ๐œบ๐œบ๐ฉ๐ฉ๐ฉ๐ฉ๐ฌ๐ฌ) in ๐‘‰๐‘‰ ๐ˆ๐ˆ๐ธ๐ธ โˆ™ ๐’๐’ anti โˆ’ periodic on ๐œ•๐œ•๐‘‰๐‘‰ ๐’–๐’–per periodic on ๐œ•๐œ•๐‘‰๐‘‰ โŸจ๐œบ๐œบโŸฉ = ๐œ ๐œ 

๐“Ÿ๐“Ÿ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฌ๐ฉ๐ฉ๐ฌ๐ฌ ๏ฟฝdiv ๐†๐†๏ฟฝ = 0 in ๐‘‰๐‘‰

๐†๐†๏ฟฝ โˆ™ ๐’๐’ anti โˆ’ periodic on ๐œ•๐œ•๐‘‰๐‘‰

Localization problem โ€“ strain method**

Before deformation after deformation symmetrical part

FINITE ELEMENT DISCRETISATION

Choose proper finite element Restriction of plane element Scale of optimization problem

(a)8-node first order element (b) 20-node second order

element (c) 8-node non-conforming

element *

โŽฉโŽชโŽชโŽชโŽจ

โŽชโŽชโŽชโŽง๐‘ข๐‘ข = ๏ฟฝ๐‘๐‘๐‘ค๐‘ค๐‘ข๐‘ข๐‘ค๐‘ค +

8

๐‘ค๐‘ค=1

๐›ผ๐›ผ1(1 โˆ’ ๐‘Ÿ๐‘Ÿ2) + ๐›ผ๐›ผ2(1 โˆ’ ๐‘ ๐‘ 2) + ๐›ผ๐›ผ3(1 โˆ’ ๐‘ค๐‘ค2)

๐‘ฃ๐‘ฃ = ๏ฟฝ๐‘๐‘๐‘ค๐‘ค๐‘ฃ๐‘ฃ๐‘ค๐‘ค +8

๐‘ค๐‘ค=1

๐›ผ๐›ผ4(1 โˆ’ ๐‘Ÿ๐‘Ÿ2) + ๐›ผ๐›ผ5(1 โˆ’ ๐‘ ๐‘ 2) + ๐›ผ๐›ผ6(1 โˆ’ ๐‘ค๐‘ค2)

๐‘ค๐‘ค = ๏ฟฝ๐‘๐‘๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค๐‘ค +8

๐‘ค๐‘ค=1

๐›ผ๐›ผ7(1 โˆ’ ๐‘Ÿ๐‘Ÿ2) + ๐›ผ๐›ผ8(1 โˆ’ ๐‘ ๐‘ 2) + ๐›ผ๐›ผ9(1 โˆ’ ๐‘ค๐‘ค2)

(๐‘Ž๐‘Ž1,๐‘Ž๐‘Ž2,๐‘Ž๐‘Ž3) (๐‘Ž๐‘Ž4,๐‘Ž๐‘Ž5, ๐‘Ž๐‘Ž6)

(๐‘Ž๐‘Ž7,๐‘Ž๐‘Ž8,๐‘Ž๐‘Ž9)

* Wilson,E.L. Imcompatible displacement models. Numerical and Computer Methods in Structural Mechanics.(1973)

FINITE ELEMENT DISCRETISATION

max๐›ผ๐›ผ

๏ฟฝ [๐‘ช๐‘ช]{๐†๐†๏ฟฝ} = 0๐น๐น๏ฟฝ๐›ผ๐›ผ๐œŽ๐œŽ๐‘ค๐‘ค๐ธ๐ธ๏ฟฝ๐‘ƒ๐‘ƒ๏ฟฝ๐‘˜๐‘˜๏ฟฝ + ๐†๐†๏ฟฝ๐‘ค๐‘ค ,๐œŽ๐œŽ๐‘Œ๐‘Œ๐‘ค๐‘ค๏ฟฝ โ‰ค 0๐‘ค๐‘ค โˆˆ [1,๐‘๐‘๐‘๐‘๐‘๐‘],๐‘˜๐‘˜ = 1,โ‹ฏ , 2๐‘›๐‘›

Nr. Vr: 6NGS+1 Nr. Equality Constr: 3NK+9NE Nr. Inequality Constr: NL*NGS NL=1, limit analysis; NL=2๐‘›๐‘› , shakedown analysis

Finite element discretization using non-conforming element: โ€ข Material Model: elastic-perfectly plastic โ€ข Von Mises yield criterion

Large-scale optimization

โ€ข Algorithm Augmented Lagrangian method Sequential quadratic programming Interior Point Methed โ€ฆโ€ฆ

โ€ข Software Packages LANCELOT, โ€ฆ SNOPT, NPSOL,NLPQL IPOPT, IPDCA, IPSAโ€ฆ โ€ฆโ€ฆ

HARDENING MATERIAL MODEL

Unlimited kinematic hardening Limited kinematic hardening

Isotropic hardening & Kinematic hardening

HARDENING MATERIAL MODEL

โ€ข Material model: Matrix -- Unlimited kinematic hardening Fiber -- elastic-perfectly plastic

max๐›ผ๐›ผ

โŽฉโŽชโŽจ

โŽชโŽง [๐‘ช๐‘ช]{๐†๐†๏ฟฝ} = 0 ๐น๐น๏ฟฝ๐›ผ๐›ผ๐œŽ๐œŽ๐‘—๐‘—๐ธ๐ธ๏ฟฝ๐‘ƒ๐‘ƒ๏ฟฝ๐‘˜๐‘˜๏ฟฝ + ๏ฟฝฬ…๏ฟฝ๐œŒ๐‘—๐‘— ,๐œŽ๐œŽ๐‘Œ๐‘Œ๐‘—๐‘—f ๏ฟฝ โ‰ค 0 ๐‘—๐‘— โˆˆ [1,๐‘๐‘๐‘๐‘๐‘๐‘๐น๐น]๐น๐น๏ฟฝ๐›ผ๐›ผ๐œŽ๐œŽ๐‘ค๐‘ค๐ธ๐ธ๏ฟฝ๐‘ƒ๐‘ƒ๏ฟฝ๐‘˜๐‘˜๏ฟฝ + ๏ฟฝฬ…๏ฟฝ๐œŒ๐‘ค๐‘ค โˆ’ ๐›ฝ๐›ฝ๐‘ค๐‘ค ,๐œŽ๐œŽ๐‘Œ๐‘Œ๐‘ค๐‘คm ๏ฟฝ โ‰ค 0 ๐‘ค๐‘ค โˆˆ [1,๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘]๐‘˜๐‘˜ = 1,โ‹ฏ , 2๐‘›๐‘›

๐œท๐œท:back stress field ๐œŽ๐œŽ๐‘Œ๐‘Œ:yield strength Nr. Vr: 6NGSF+6NGSM+1 Nr. Equality Constr: 3NK+9NE Nr. Inequality Constr: NL*NGS NGS=NGSF+NGSM

โ€ข Material model: Matrix -- limited kinematic hardening Fiber -- elastic-perfectly plastic

max๐›ผ๐›ผ

โŽฉโŽชโŽจ

โŽชโŽง

[๐‘ช๐‘ช]{๐†๐†๏ฟฝ} = 0 ๐น๐น๏ฟฝ๐›ผ๐›ผ๐œŽ๐œŽ๐‘—๐‘—๐ธ๐ธ๏ฟฝ๐‘ƒ๐‘ƒ๏ฟฝ๐‘˜๐‘˜๏ฟฝ + ๏ฟฝฬ…๏ฟฝ๐œŒ๐‘—๐‘— ,๐œŽ๐œŽ๐‘Œ๐‘Œ๐‘—๐‘—f ๏ฟฝ โ‰ค 0 ๐‘—๐‘— โˆˆ [1,๐‘๐‘๐‘๐‘๐‘๐‘๐น๐น] ๐น๐น๏ฟฝ๐›ผ๐›ผ๐œŽ๐œŽ๐‘ค๐‘ค๐ธ๐ธ๏ฟฝ๐‘ƒ๐‘ƒ๏ฟฝ๐‘˜๐‘˜๏ฟฝ + ๏ฟฝฬ…๏ฟฝ๐œŒ๐‘ค๐‘ค โˆ’ ๐›ฝ๐›ฝ๐‘ค๐‘ค ,๐œŽ๐œŽ๐‘Œ๐‘Œ๐‘ค๐‘คm ๏ฟฝ โ‰ค 0 ๐น๐น๏ฟฝ๐›ผ๐›ผ๐œŽ๐œŽ๐‘ค๐‘ค๐ธ๐ธ๏ฟฝ๐‘ƒ๐‘ƒ๏ฟฝ๐‘˜๐‘˜๏ฟฝ + ๏ฟฝฬ…๏ฟฝ๐œŒ๐‘ค๐‘ค ,๐œŽ๐œŽ๐‘ˆ๐‘ˆ๐‘ค๐‘คm ๏ฟฝ โ‰ค 0 ๐‘ค๐‘ค โˆˆ [1,๐‘๐‘๐‘๐‘๐‘๐‘๐‘๐‘]๐‘˜๐‘˜ = 1,โ‹ฏ , 2๐‘›๐‘›

๐œท๐œท:back stress field ๐œŽ๐œŽ๐‘Œ๐‘Œ:yield strength ๐œŽ๐œŽ๐‘ˆ๐‘ˆ: ultimate strength Nr. Vr: 6NGS+6NGSM+1 Nr. Equality Constr: 3NK+9NE Nr. Inequality Constr: NL*(NGS+NGSM)

FAILURE CRITERION OF COMPOSITES

Failure : Every material has certain strength, expressed in terms of stress or strain, beyond which the structures fracture or fail to carry the load.

For heterogeneous material, consisted of two or more than two phases material, how to determine the Failure Criterion?

Why Need Failure Criterion for Composites? โ€ข To determine weak and strong directions โ€ข To guide local design of composites โ€ข To guide global design of composites-structures

Macromechanical Failure Theories in Composites ?? โ€ข Maximum stress theory โ€ข Maximum strain theory โ€ข Tsai-Hill theory (Deviatoric strain energy theory) โ€ข Tsai-Wu theory (Interactive tensor polynomial theory) โ€ข โ€ฆโ€ฆ โ€ข Loci of yield strength fitting based on limit macroscopic stress domain

* Hosford, W.F.: Oxford University (1993)

๐œŽ๐œŽ12 + ๐œŽ๐œŽ2

2 โˆ’ ๏ฟฝ 2๐‘…๐‘…๐‘…๐‘…+1

๏ฟฝ๐œŽ๐œŽ1๐œŽ๐œŽ2 โˆ’ ๐‘‹๐‘‹2 = 0

where ๐‘…๐‘… = 2 ๏ฟฝ๐‘๐‘๐‘‹๐‘‹๏ฟฝ

2โˆ’ 1

with ๐‘‹๐‘‹ = 1โˆš๐น๐น+๐ป๐ป

and ๐‘๐‘ = 1โˆš2๐น๐น

R : is a measure of the plastic

anisotropy of a rolled metal

Hillโ€™s yield criterion in plane stress*

FAILURE CRITERION OF COMPOSITES

-1.5 -1 -0.5 0 0.5 1 1.5-1.5

-1

-0.5

0

0.5

1

1.5R=1R>1R<1

The plastic strain ratio R is a parameter that indicates the ability of a sheet metal to resist thinning or thickening when subjected to either tensile or compressive forces in the plane of the sheet.

Hillโ€™s yield criterion in plane strain (general stress state)

FAILURE CRITERION OF COMPOSITES

โ€œy-conventionโ€ ,i.e.(Z,Yโ€™,Zโ€™โ€™):

โ€ข Rotate the ๐‘ฅ๐‘ฅ1๐‘ฆ๐‘ฆ1๐‘ง๐‘ง1-system about the ๐‘ง๐‘ง1-axis (Z) by angle ฮจ;

โ€ข Rotate the current system about the new ๐‘ฆ๐‘ฆ-axis (Yโ€™) by angle ฮ˜;

โ€ข Rotate the current system about the new ๐‘ง๐‘ง โ€“axis (Zโ€™โ€™) by angle ฮฆ.

๏ฟฝ๐‘ฅ๐‘ฅ2๐‘ฆ๐‘ฆ2๐‘ง๐‘ง2

๏ฟฝ = ๐‘‡๐‘‡โˆ’1 ๏ฟฝ๐‘ฅ๐‘ฅ1๐‘ฆ๐‘ฆ1๐‘ง๐‘ง1

๏ฟฝ

Rotation matrix is:

๐‘‡๐‘‡๐‘ฅ๐‘ฅ1๐‘ฆ๐‘ฆ1๐‘ง๐‘ง1 = ๏ฟฝcosฮจ โˆ’ sinฮจ 0sinฮจ cosฮจ 0

0 0 1๏ฟฝ๏ฟฝ

cos ฮ˜ 0 sin ฮ˜0 1 0

โˆ’sin ฮ˜ 0 cos ฮ˜๏ฟฝ๏ฟฝ

cosฮฆ โˆ’ sinฮฆ 0sinฮฆ cosฮฆ 0

0 0 1๏ฟฝ

with

ฮจ =๐œ‹๐œ‹4

; ฮ˜= tanโˆ’1๏ฟฝโˆš2๏ฟฝ ; ฮฆ = โˆ’๐œ‹๐œ‹4

Hillโ€™s yield criterion in plane strain (general stress state)

FAILURE CRITERION OF COMPOSITES

โ€ข Calculation of principle stress

โ€ข Projection in ๐›‘๐›‘-plane

๐น๐น(๐œŽ๐œŽ2 โˆ’ ๐œŽ๐œŽ3)2 + ๐‘๐‘(๐œŽ๐œŽ3 โˆ’ ๐œŽ๐œŽ1)2 + ๐ป๐ป(๐œŽ๐œŽ1 โˆ’ ๐œŽ๐œŽ2)2 โˆ’ 1 = 0

๐น๐น,๐‘๐‘,๐ป๐ป are defined as:

๐น๐น =12 ๏ฟฝ

1๐‘Œ๐‘Œ2 +

1๐‘๐‘2 โˆ’

1๐‘‹๐‘‹2๏ฟฝ ; ๐‘๐‘ =

12 ๏ฟฝ

1๐‘๐‘2 +

1๐‘‹๐‘‹2 โˆ’

1๐‘Œ๐‘Œ2๏ฟฝ ; ๐ป๐ป =

12 ๏ฟฝ

1๐‘‹๐‘‹2 +

1๐‘Œ๐‘Œ2 โˆ’

1๐‘๐‘2๏ฟฝ

Let: ๏ฟฝ๐œŽ๐œŽ1๐œŽ๐œŽ2๐œŽ๐œŽ3

๏ฟฝ = ๐‘‡๐‘‡ ๏ฟฝ๐›พ๐›พ1๐›พ๐›พ2๐›พ๐›พ3

๏ฟฝ

(๐น๐น + 1.866๐ป๐ป + 0.134๐‘๐‘)๐›พ๐›พ12 + (๐น๐น + 0.134๐ป๐ป + 1.866๐‘๐‘)๐›พ๐›พ2

2 +(๐‘๐‘ โˆ’ 2๐น๐น + ๐ป๐ป)๐›พ๐›พ1๐›พ๐›พ2 = 1

Stress Invariants ๐œŽ๐œŽ๐‘›๐‘› Independent on coordinate system

๐œŽ๐œŽ๐‘ค๐‘ค๐‘—๐‘— Dependent on coordinate system

Hillโ€™s yield criterion in plane strain (general stress state)

FAILURE CRITERION OF COMPOSITES

For homogenous material, ๐‘‹๐‘‹ = ๐‘Œ๐‘Œ = ๐‘๐‘, i.e. ๐น๐น = ๐‘๐‘ = ๐ป๐ป:

๐›พ๐›พ12 + ๐›พ๐›พ2

2 = ๐ถ๐ถ ; here: ๐ถ๐ถ =1

3๐น๐น =23๐œŽ๐œŽ๐‘Œ๐‘Œ

2

For transversely homogenous material, assume ๐‘Œ๐‘Œ = ๐‘๐‘ , i.e. ๐‘๐‘ = ๐ป๐ป

(๐น๐น + 2๐ป๐ป)๐›พ๐›พ12 + (๐น๐น + 2๐ป๐ป)๐›พ๐›พ2

2 + (2๐ป๐ป โˆ’ 2๐น๐น)๐›พ๐›พ1๐›พ๐›พ2 = 1

(๐น๐น + 1.866๐ป๐ป + 0.134๐‘๐‘)๐›พ๐›พ12 + (๐น๐น + 0.134๐ป๐ป + 1.866๐‘๐‘)๐›พ๐›พ2

2 +(๐‘๐‘ โˆ’ 2๐น๐น + ๐ป๐ป)๐›พ๐›พ1๐›พ๐›พ2 = 1

NUMERICAL ILLUSTRATION

Numerical Example

โ€ข Homogenization theory- Effective material properties

โ€ข Failure criterion fitting

โ€ข Kinematic hardening

E (Gpa) ๐œ ๐œŽ๐œŽ๐‘Œ (Mpa) ๐œŽ๐œŽ๐‘ˆ (Mpa)

Matrix (Al) 70e3 0.3 80 120

Fiber (Al2O3) 370e3 0.3 2000 ---

Material properties:

Periodic composites:

Homogenized elastic material property

Square pattern

Rotated pattern

Hexagonal pattern

0.200

0.220

0.240

0.260

0.280

0.300

0.320

0 10 20 30 40 50

Poiss

on R

atio

Fiber Volume Fraction (%)

Homogenized Poisson Ratio

Square-X,Y

R-Square-X,Y

Hexagonal-X

Hexagonal-Y

40

60

80

100

120

140

160

0 10 20 30 40 50

Youn

g's

Mod

ulus

(G

Pa)

Fiber Volume Fraction (%)

Homogenized Young's Modulus

Square-X,Y

R-Square-X,Y

Hexagonal-X

Hexagonal-Y

Square pattern (SQ)

Rotated pattern (TS)

Hexagonal pattern (HEX)

Axial macroscopic limit stress

Homogenized axial strength

Comparison

Failure curve fitting

-3 -2 -1 0 1 2 3-3

-2

-1

0

1

2

3Displacement Domain

ELSDLM

-150 -100 -50 0 50 100 150-150

-100

-50

0

50

100

150Addmissible Stress Domain

ELSDLM

-4 -2 0 2 4-4

-3

-2

-1

0

1

2

3

4Displacement Domain

ELSDLM

-200 -100 0 100 200-250

-200

-150

-100

-50

0

50

100

150

200

250Addmissible Stress Domain

ELSDLM

Plain Strain

Plain Stress Vf: 40%

Vf: 40%

-2 -1 0 1 2-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5Displacement Domain

LM

-1.5 -1 -0.5 0 0.5 1 1.5-1.5

-1

-0.5

0

0.5

1

1.5Addmissible Stress Domain

LM

R=0.9146

Not good at deforming

Failure curve fitting โ€“ plane stress

-500 0 500

-800

-600

-400

-200

0

200

400

600

800

Admissible Stress Domain

LM

-200 -100 0 100 200-200

-150

-100

-50

0

50

100

150

200Admissible Stress Domain-Projected in Pi-plane

LM

Major axis: a=241.83 Minor axis: b=67.78

X = 592.4 Mpa = 7.41 ๐œŽ๐œŽm Y = Z= 98.5 MPa = 1.23 ๐œŽ๐œŽm

Failure curve fitting โ€“ plane strain

Kinematic hardening

โ€ข Elastic-perfectly plastic material (SD) โ€ข Limited kinematic hardening(SDHard) โ€ข Unlimited kinematic hardening(SDHard-UN)

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4U2/

U0

U1/U0

Plain strain V40% - Shakedown Domain

SD

SDHard

SDHard-UN

AP

Matrix:

Numerical results

Limited kinematic Unlimited kinematic El

astic

Stre

ss

Elastic-perfectly Re

sidua

l Stre

ss

Numerical results

Limited kinematic Unlimited kinematic Ba

ck S

tress

Elastic-perfectly

Tota

l Stre

ss

CONCLUSIONS

Summary

Perspectives

โ€ข Application of a 3D nonconforming element to the limit and shakedown analysis of composites.

โ€ข Prediction of transverse elastic material properties of unidirectional continuous fiber reinforced metal matrix composites based on homogenization theory.

โ€ข Definition of yield loci for periodic composites and the prediction of plastic material properties by using yield surface fitting.

โ€ข Consideration of the hardening enlarged the shakedown domain. Different material model, different mechanism.

โ€ข Apply direct methods to other composites types and more complex problems.

โ€ข The general quantitative yield criterion fitting according to limit domain is still not solved yet.

โ€ข The presented results for the fiber-reinforced composite are only numerical, and a future effort has to be made in order to compare with experimental results quantitatively.

Thanks for

your attention!