Professor Fabrice PIERRON LMPF Research Group, ENSAM Châlons en Champagne, France THE VIRTUAL...

download Professor Fabrice PIERRON LMPF Research Group, ENSAM Châlons en Champagne, France THE VIRTUAL FIELDS METHOD Application to linear elasticity Paris Châlons.

If you can't read please download the document

Transcript of Professor Fabrice PIERRON LMPF Research Group, ENSAM Châlons en Champagne, France THE VIRTUAL...

  • Slide 1

Professor Fabrice PIERRON LMPF Research Group, ENSAM Chlons en Champagne, France THE VIRTUAL FIELDS METHOD Application to linear elasticity Paris Chlons en Champagne Slide 2 2/61 Basic equations or I Equilibrium equations (static) + boundary conditions strong (local) weak (global) II Constitutive equations (elasticity) III Kinematic equations (small strains/displacements) Slide 3 3/61 The Virtual Fields Method (VFM) Basic idea Eq. I (weak form, static) Substitute stress from Eq. II Slide 4 4/61 The Virtual Fields Method (VFM) valid for any kinematically admissible virtual fields For each choice of virtual field: 1 equation Choice of as many VF as unknowns: linear system Inversion: unknown stiffnesses Elasticity: direct solution to inverse problem ! Slide 5 5/61 Simple example Fuuny shaped disc in diametric compression Isotropic material -F/2 F y x Eps y Eps x Eps s Slide 6 6/61 1 st virtual field: virtual compression field -F/2 F y x Slide 7 7/61 -F/2 F y x Slide 8 8/61 Homogeneous material Assumption: strain field uniform through the thickness Measurement: uniform strain over a pixel (N pixels ) -F/2 F y x Slide 9 9/61 Pixels are of same area: Average strain Finally: -F/2 F y x Slide 10 10/61 Virtual work of external forces Contribution of point A Coordinates of A: -F/2 F y x A B C Slide 11 11/61 Contribution of point B Coordinates of B: Finally -F/2 F y x A B C L h Slide 12 12/61 1 st virtual field: uniform diametric compression 2 nd virtual field: transverse swelling -F/2 F y x A B C Slide 13 13/61 Finally -F/2 F y x Direct solution to inverse problem !!! Slide 14 14/61 Principal advantages Independent from stress distribution Independent from geometry Direct identification (no updating) Limitations Kinematic assumption through the thickness (plane stress, plane strain, bending...) y F -F x A B Slide 15 15/61 Anisotropic elasticity Example 2 Orthotropic material Slide 16 16/61 Choice of the virtual fields 1. Measurement on S 2 only (optical system) Over S 1 and S 3 : (rigid body) 2. A priori choice: over S 1 : Slide 17 17/61 Unknown force distribution over S 1 and S 3. Resultant P measured 3. Over S 3 (rigid body) : 2 possibilities 3.1 3.2 tyityi txitxi Slide 18 18/61 tyityi txitxi No information on t x Distribution t y unknown Filtering capacity of the VF Slide 19 19/61 4. Continuity of the virtual fields Conditions over S 2 Virtual strain field discontinuous Choice of 4 virtual fields at least: example Slide 20 20/61 Over S 2 Over S 3 k = -L Uniform virtual shear y x Slide 21 21/61 Plane stress Plane orthotropic elasticity Homogeneous material 0dSTudV V * V * ij Slide 22 22/61 y x Field n2: Bernoulli bending Sur S 2 Sur S 3 k = -L 3 Slide 23 23/61 Field n3: Global compression Over S 2 Sur S 3 k = 0 y x Slide 24 24/61 Field n4: Local compression Over A 1 Over S 3 k = 0 y x Over A 2 Slide 25 25/61 Field n4: Local compression Slide 26 26/61 Final system AQ = B Q = A -1 B If VF independent !! Pierron F. et Grdiac M., Identification of the through-thickness moduli of thick composites from whole-field measurements using the Iosipescu fixture : theory and simulations, Composites Part A, vol. 31, pp. 309-318, 2000. Slide 27 27/61 Experimental examples in linear elasticity Slide 28 28/61 Unnotched Iosipescu test Material: 0 glass-epoxy (2.1 mm thick) Slide 29 29/61 Polynomial fitting Noise filtering, extrapolation of missing data Displacements in the undeformed configuration Raw data Polynomial fitting Residual Slide 30 30/61 Strain fields Smooth fields local differentiation FE Slide 31 31/61 Identification: stiffness 6 specimens P = 600 N Reference (GPa) 44.912.23.683.86 Coeff. var (%) 0.72.87.32.4 Identified (GPa) 39.7 6.6 10.4 23 3.65 2.4 3.03 13 Coeff. var (%) Predicted by VFM routine Slide 32 32/61 Through thickness stiffnesses of thick UD glass/epoxy composite tubes Optimized position of measurement area R. Moulart Master thesis Ref. 10 Slide 33 33/61 Deformation maps Slide 34 34/61 Strain maps Polynomial fit, degree 3, transform to cylindrical and analytical differentiation Slide 35 35/61 Strain maps Slide 36 36/61 Strain maps Slide 37 37/61 Reference* (GPa) 104043 Identification results Identified (GPa) 11.444.46.83.87 Coeff. var (%) 5 tests 87666959 Problem: not an in-plane test !!! * Typical values Slide 38 38/61 Problem with thick ring compression test Slide 39 39/61 Problem with thick ring compression test Solution: back to back cameras Slide 40 40/61 Set-up with two cameras Slide 41 41/61 Results Reference* (GPa) 104043 Identified (GPa) 11.445.46.782.62 Coeff. var (%) 9 tests 2910429 Moulart R., Avril S., Pierron F., Identification of the through-thickness rigidities of a thick laminated composite tube, Composites Part A: Applied Science and Manufacturing, vol. 37, n 2, pp. 326-336, 2006.