Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

47
Electrochemical Impedance & Morphologic Study of Poly( Propylenedioxythiophene) -Thin Films on Carbon Fiber Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology ISTANBUL TECHNICAL UNIVERSITY

description

ISTANBUL TECHNICAL UNIVERSITY. Electrochemical Impedance & Morphologic Study of Poly( Propylenedioxythiophene) -Thin Films on Carbon Fiber. Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology. Conducting Polymer (Nano) / Carbon Fiber(Micro). Energy storage - PowerPoint PPT Presentation

Transcript of Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

Page 1: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

Electrochemical Impedance & Morphologic Study of

Poly( Propylenedioxythiophene) -Thin Films on Carbon Fiber

Prof.Dr.A.Sezai SARACDepartment of Chemistry & Polymer Science

& Technology

ISTANBUL TECHNICAL UNIVERSITY

Page 2: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

Energy storage(batteries, supercapacitors)

Electrochromic devices (smart Windows, mirrors, IR and microwave shutters)

Antistatic coatings (displays, flat TV screens)

Semiconductor devices (Solar Cells)

Corrosion Protection

Mechanical actuators

Bio applications (drug delivery systems, artificial muscles, biosensors)

Conducting Polymer Conducting Polymer (Nano)(Nano)/ Carbon Fiber(Micro)

Page 3: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

SupercapacitorsSupercapacitors(Electrochemical (Electrochemical capacitors)capacitors)

Supercapacitors store the electric energy in an electrochemical double layer (Helmholtz Layer) formed at a solid / electrolyte interface.

AdvantagesHigh energy density& rates of charge&discharge Little degradation-longer cycle lifesmall chemical charge transferGood reversibility Low toxicity High cycle efficiency (95% >)

AdvantagesHigh energy density& rates of charge&discharge Little degradation-longer cycle lifesmall chemical charge transferGood reversibility Low toxicity High cycle efficiency (95% >)

Page 4: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

X X

X

X

-e-

Epa

X X

X

H

H

2 + 2H

X

X -e-

Epa X

X H+

X

X

X

H

H

X

X

XX

+ 2H

Electropolymerization mechanism of 5-membered heterocycles

Cyclic Voltammetry (CV)

Monomer Free

Polymer Electrogrowth

extremely useful for studying electrode reaction mechanisms &electropolymerization

Red ↔Ox + e-→X

doping; reduction or oxidation. Oxidation leaves "holes" in the form of positive charges that can move along the

chain

Page 5: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

Electrochemical Impedance Spectroscopy

(AC) The excitation signal , expressed as a function of time , has the form

E(t) = E0 cos (wt)

In a linear system, the response signal , It , is shifted in phase (Ф) and has a different amplitude

I(t) = I0 cos (wt - Ф )

= Zo [ cos(wt) / cos(wt – Ф ) ] Using EULER’s relationship

Exp ( j Ф ) = cos Ф + jsin Ф

Z = Z0(cos Ф + jsin Ф )

Z = E(t) / I(t)

DC ohms law R= E/I

Page 6: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

Poly(3,4-alkylenedioxythiophene) Derivatives

Poly(3,4-dialkylthiophene)

Substitution at the 3- and 4- positions

LONGER CONJUGATION LENGTHMORE ORDERED POLYMERS

LOW EoxSTABLE OXIDIZED FORM

STERIC INTERACTIONS INCREASING DEGREE OF CONJUGATIONCONDUCTIVITY

Alkyl substitution to the monomer, lowers the EOX

J.Roncali,Chem.Rev.1997,97,173

S

OO

C4H9 C4H9

n

S

OO

n

m

n

S

RR

34

ProDOT-(Bu)2ProDOT-(Me)2

S

OO

n

CH3 CH3

Page 7: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

EXPERIMENTAL -ELECTROCHEMICAL

Cyclic Voltammetric (CV)Coating: 10 mM ProDOT-(Bu)2 in

0,1 M NaClO4/ACN & Bu4NPF6/ACN at diff.scan rates (mV s-1 )

0,0 V – 1,6 V

3 ELECTRODE SYSTEM

W.E. : CFSE , ITO ,PtR.E. : Ag wire (checked aginst [FcII(CN)6]4- [FcIII(CN)6]3- + e-)C.E. : Pt wire

Electrochem.Impedance Spectroscopy (EIS) 0,1 M NaClO4/ACN 100 kHz -10 mhz

Page 8: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

Depending on the situation, forces that are measured in AFM include mechanical contact force, Van der Waals forces, capillary forces, chemical bonding, electrostatic forces, magnetic forces, solvation forces etc. --the three dimensional topography

8

Atomic Force Microscopy (AFM)NON-CONTACTNON-CONTACT

Page 9: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

Atomic Force Microscopy (AFM)Atomic Force Microscopy (AFM)

S

OO

C4H9 C4H9

n

Page 10: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

0,0 0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6-200

0

200

400

600

800

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

-2000

-1000

0

1000

2000h

a

h

a

Cu

rre

nt

de

ns

ity

/ A

/cm

2

Potential / V

0 50 100 150 200 250 300 350 400

-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

Cu

rre

nt

de

ns

ity

/

A/c

m2

Scan rate / mV s-1

Oxidationpeak1 Reductionpeak1 Oxidationpeak2 Reductionpeak2

5mM ProDOT-Me2 deposited at 100 mV/s, 10cycle in 0.1 M Bu4NPF6/ACN5mM ProDOT-Me2 deposited at 100 mV/s, 10cycle in 0.1 M Bu4NPF6/ACN

EDX results of coatings

S

OO

n

CH3 CH3

100 mV/s 100 mV/s EDX of film EDX of film

Bandgap- of film on ITOBandgap- of film on ITO

Cyclic Voltammetric film growth Cyclic Voltammetric film growth

Page 11: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

S

OO

n

CH3 CH3

SCAN RATE EFFECT400 mV/s

SCAN RATE EFFECT400 mV/s

uncoated

SEM & AFM Electrocoated 2,2-Dimethyl-3,4 Propylenedioxythiophene on CFMEin 0.1 M Bu4NPF6/ACN at scan rate: 400 mV/s, 10 cycle.

SEM & AFM Electrocoated 2,2-Dimethyl-3,4 Propylenedioxythiophene on CFMEin 0.1 M Bu4NPF6/ACN at scan rate: 400 mV/s, 10 cycle.

Page 12: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

SEM & AFM Electrocoated 2,2-Dimethyl-3,4 Propylenedioxythiophene on CFME 20 mV/s & 10 cycle 20 mV/s 20 mV/s

S

OO

n

CH3 CH3

uncoated CF

Page 13: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

SEM and AFM of PProDOT-(Me)2/CFME coated at 10 mV/s and 10 cycle 10 mV/s 10 mV/s

Sarac AS,Schulz B,Gencturk A.,GilsingHD ,Surface Eng. (2008) in Press

Page 14: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

SEM picture of PProDOT-(Me)2/CFME in 0,1 M Bu4NPF6/ACN scan rate:100 mV/s ,10 cycle, 2 different magnifications

100 mV/s 100 mV/s

S

OO

n

CH3 CH3

Page 15: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

Cyclovoltammetric (C = charge density/scan rate) &• Nyquist plots (at low frequency) in monomer free solution &(polymer film obtained at 10 cycle, 10 mM monomer, 0.1 M Bu4NPF6/ACN).

Capacitance vs scan rate

Sarac AS,Schulz B,Gencturk A.,GilsingHD ,Surface Eng. (2008) in Press

Page 16: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

20th cycle coated CFME

40th cycle

uncoated CFME

40th cycle

PProDOT-(Me)2 in 0,1 M Bu4NPF6/ACN

S

OO

n

CH3 CH3

100 mV/s

DIFFERENT CHARGE (CYCLE NO)

Page 17: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

5 10 15 20 25 30

100

150

200

250

300

350

400

450

500

550

600

0 20 40 60 80 100 120

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Pot

entia

l / V

Time / s

15s

5mM ProDOT-Me2 deposited at 100 mV/s in 0.1 M Bu4NPF6/ACN

Capacitance vs scan no

Sarac AS, Gilsing HD, Gencturk A, et al. Prog.Org.Coat. 60 (2007) 281

Page 18: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

parameters of the model- EIS• 1.Bulk Electrolyte resistance (Rs)

• 2.Double layer capacitance(Cdl)

• 3.Polarization resistance(R1)

• 4.Charge transfer resistance(R2)

• 5.Warburg impedance(W)

• 6.CF & film capacitance

• 7.Constant phase element (Q)

. • Ates M,Castillo J,Sarac AS, Schuhmann W, Microchim Acta 160(2008)247• Sarac AS ,Sipahi M, Parlak EA ,Gul A , Ekinci E,Yardim F , Prog Org.Coat. 62 (2008) 96• SaracAS, Sezgin S, AtesM, Turhan CM, Parlak EA, Irfanoglu B , Prog. Org. Coat.

62( 2008) 331

EQUIVALENT CIRCUITR(C(R(Q(RW))))(C(R))

Cdl Ccf

Rs

R2

R1

RCF

Page 19: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

(Electrochemical deposition is performed at different molarities of ProDOT-Me2 at 100 mV/s, 20 cycle in 0.1 M Bu4NPF6/ACN).

E=0.2V E=0.4V E=0.7V E=1.0V E=1.3VRs / Ohm 1850 1852 1851 1851 1860Cdl /μ F 97.82 111.5 103.9 69.32 9.617x10-12

R1 / kOhm 2.964 3.449 14.860 0.390 0.0011Q / Yo/ μS s-

n1.501x10-2 6.497x10-2 5.057x 10-3 2.548x10-2 8.891x10-2

n 0.8932 0.96 1 1 0.9818R2 / kOhm 723 935.6 9.998 98.99 1296W / Yo/ S s-n 2.532x10-6 1.222x 10-6 2.966x 10-6 2.942x10-6 9.046x10-6

CCF / μF 0.205 1.10 0.286 2.50 0.2404RCF / Ohm 20.9 25.36 28.11 44.15 26.24Chi Squared (χ2) 3.57x10-5 4.87x 10-5 3.81x10-5 3.66x10-5 5.09x10-5

Potential Potential dependence dependence the parameters calculated from the model

S

OO

n

CH3 CH3

Rs, the bulk solution resistance of the polymer and the electrolyte, Cdl, double layer capacitance, R1 is the resistance of the electrolyte.(Polarization) R2 is the charge transfer, and W is the Warburg impedance of the polymer.

Page 20: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

Poly(3,4-alkylenedioxythiophene) Derivatives

2,2 -dibutylpropylene dioxythiophene (PProDOT(Bu)2)

S

OO

C4H9 C4H9

S

OO

C4H9 C4H9

n

Page 21: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

PProDOT-(Bu)2/0,1 M Bu4NPF6 /ACN PProDOT-(Bu)2/0,1 M Bu4NBF4/ACN

Atomic Force Microscopy (AFM)&SEMElectrolyte effect

A.S. Sarac, A. Gencturk, H.D. Gilsing, B. Schulz,C.M. Turhan, J.NanoSci.& Nanotech. 2008- In press

Page 22: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

PProDOT-(Bu)2/0,1 M Et4NClO4 /ACN

Atomic Force Microscopy (AFM)

PProDOT-(Bu)2/0,1 M LiClO4/ACN

S

OO

C4H9 C4H9

n

Electrolyte effect

Page 23: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

23

PProDOT-(Bu)2/0,1 M NaClO4 /ACN

Atomic Force Microscopy (AFM)

A.S. Sarac, A. Gencturk, H.D. Gilsing, B. Schulz,C.M. Turhan, J.NanoSci.& Nanotech. – 2008- In press

S

OO

C4H9 C4H9

n

0.1 M NaClO4/ACN 10 cycle 100 mV/sNaClO4 /ACN 30 cyc

100 mV/s

Page 24: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

24

Atomic Force Microscopy (AFM)Electrolyte

Sarac, AS. Gencturk, H.D. Gilsing, B. Schulz,C.M. Turhan, J.NanoSci.and Tech. – 2008- in press

0 1 5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

30

35

40

45

50

55

60

Cdl

Et4NClO

4

Bu4NBF

4

LiClO4

R.M

.S. /

nm

Cd

l / m

F

Increase in radius of CF / m

R.M.S. Roughness

NaClO4

Bu4NPF

6

Page 25: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

Cycle Effect of PProDOT-Bu2/Single CFME

1st CYCLE

S

OO

C4H9 C4H9

n

Page 26: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

Randless Sevcik Equation : ip = (2.69x105) n3/2ACD1/2γ1/2

Cycle Effect of PProDOT-Bu2/SCFME

n : number of electrons, ν scan rate (V / sec) F :Faraday’s constant (96485 C / mol)

A : Electrode area (cm2) R : Universal gas constant (8.314 J / mol K)

T : Absolute temperature (K), and D is the analyte’s diffusion coefficient (cm2/sec).

1st CYCLE

Page 27: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

Cycle Effect of PProDOT-Bu2/SCFME3 CYCLES 5 CYCLES

(Scan rate)1/2 Scan rate (Scan rate)1/2 Scan rate

Page 28: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

Cycle Effect of PProDOT-Bu2/SCFME

10 CYCLES 15 CYCLES

(Scan rate)1/2 Scan rate (Scan rate)1/2 Scan rate

10 CYCLES 15 CYCLES

Page 29: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

Cycle Effect of PProDOT-Bu2/SCFME20 CYCLES

Sarac AS, Gilsing HD, Gencturk A, et al. Prog. Org. Coat. 60 (2007) 281

S

OO

C4H9 C4H9

n

Page 30: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

Cycle Effect of PProDOT-Bu2/SCFME

AFM

1 cycle 3 cycles 5 cycles

10 cycles 15 cycles 20 cycles

Page 31: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

Cycle Effect of PProDOT-Bu2/SCFMESEM 1-3-5 Cycles

Page 32: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

Cycle Effect of PProDOT-Bu2/SCFME

SEM 10-15- 20 cycles

Page 33: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

Cycle Effect of PProDOT-Bu2/SCFME

EIS

BODEPHASE

Sarac AS, Gencturk A, Schulz B, et al. Journal of Nanoscience and Nanotechnology 7 ((2007 )3543

S

OO

C4H9 C4H9

n

Page 34: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

Cycle Effect of PProDOT-Bu2/SCFME

BODE MAGNITUDE

Cdl : 1 / IZimI

Page 35: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

Cycle Effect of PProDOT-Bu2/SCFME

NYQUISTCLF : 1/ 2π f Zim

S

OO

C4H9 C4H9

n

Page 36: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

Cycle Effect of PProDOT-Bu2/SCFME

EQUIVALENT CIRCUIT

BODEPHASE

S

OO

C4H9 C4H9

n

Page 37: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

Cycle Effect of PProDOT-Bu2/SCFMEEQUIVALENT CIRCUIT

BODE

Page 38: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

Cycle Effect of PProDOT-Bu2/SCFMEEQUIVALENT CIRCUIT

NYQUIST PLOT

Page 39: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

Cycle Effect of PProDOT-Bu2/SCFMEEQUIVALENT CIRCUIT

R(C(R(Q(RW))))(C(R)) Cdl Ccf

Rs

R2

R1

RCF

Page 40: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

Cycle Effect of PProDOT-Bu2/SCFME

EQUIVALENT CIRCUITCdl Ccf

Rs

R2

R1

RCF

S

OO

C4H9 C4H9

n

Rs, the bulk solution resistance of the polymer and the electrolyte, Cdl, double layer capacitance, R1 is the resistance of the electrolyte. R2 is the charge transfer, and W is the Warburg impedance of the polymer.

Page 41: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

Potential Effect of PProDOT-Bu2/CFSEEQUIVALENT CIRCUIT

Page 42: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

Potential Effect of PProDOT-Bu2/CFSE

0.1 – 1.1 V After 1.1 V

Page 43: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

Substrate Effect of PProDOT-Bu2

Pt SCFE ITO

Page 44: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

Substrate Effect of PProDOT-Bu2BARE Csp / mFcm-2 C dl / mFcm-2

ITO 2.2 x 10-4 0.94Pt 3.9 1.54CF 0.0221 0.13

10 cyc Csp / mFcm-2 C dl / mFcm-2

ITO 8.85 6.45Pt 83.00 164.00CF 45.00 270.00

C sp ctd / C sp bare

C dl ctd / C dl

bare

ITO 402 68

CF 2036 2142Pt 21 106

S

OO

C4H9 C4H9

n

Page 45: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

ConclusionEquivalent circuit simulations corresponding to the polymer modified microelectrodes calculated and suggested values of the each component was in good correlation with experimental data.

Typical CV of the polymeric film exhibits very well-defined and reversible redox processes.

Porous nanostructures were obtained with high capacitances

The impedance changes with film thickneses & morphologies, between 0.1 V and 1.4 V.

A potential range was found to be the most suitable condition for the PProDOT-Bu2 modified microelectrodes as supercapacitor

components

Page 46: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

acknowlegements

• Dr.B.Schulz – Potsdam University & IDM Teltow Germany

• Dr.Gilsing –IDM Teltow Germany

• M.Turhan –Univ.of Nurnberg &Istanbul Tech Univ• A.Gencturk - Istanbul Tech Univ

Page 47: Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology

Thank you

Istanbul Bosphorous