Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

42
AUTOMOBILES OF THE FUTURE PROF. DR. JÜRGEN LEOHOLD EXECUTIVE DIRECTOR VOLKSWAGEN GROUP RESEARCH AND AUTOUNI

Transcript of Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

Page 1: Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

AUTOMOBILES OF THE FUTURE

PROF. DR. JÜRGEN LEOHOLDEXECUTIVE DIRECTOR VOLKSWAGEN GROUP RESEARCH AND AUTOUNI

Page 2: Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

2Group Research 

FUTURE CHALLENGES FOR MOBILITY

Page 3: Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

3Group Research 

FUTURE CHALLENGES AND MEGA TRENDS

► Demographic change: growing & agingpopulation

► Changes in lifestyle: catch up-phenomenonin consumption vs. increased awarenessfor sustainability

► Diversified mobility patternsalongside with increasing traffic volume

► Digital transformationand connectivityin the internet of things

► Functional, ultra lightweightmaterials

► Artifical intelligence androbotics as key enablingtechnologies

► Markets are shiftingtowards Asia & Africa

► Extented automotive valuechain by new business modelsand services

► Circular economy as establishedeconomic principle

► Climate change remainsdramatic

► Insufficient mobilityinfrastructures

► Growing urbanisationwith social and ecological risks

► More stringent regulationsfor vehicles

► Regional environment measureson the rise

► High volatility and impact of economic andtrade policies

Page 4: Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

4Group Research 

POWERTRAIN TECHNOLOGIES

Page 5: Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

5Group Research 

CO2‐REGULATIONS

Greenhouse‐Gas II

2020125 g CO2/km

Draft Fleet ConsumptionLegislation (Phase IV)

20205 l/100km

2025101 g CO2/km

after 2025 «5 l/100km

CO2‐Fleet Legislation

202095 g CO2/km

after 2025tbd

Europe USAChina

Page 6: Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

6Group Research 

MQB POWERTRAIN TECHNOLOGIES 

Alternative/Renewable

Ethanol CNG

Electrical

Plug‐In Hybrid Battery Electric Vehicle

Conventional

Diesel Petrol

Fuel cell

Hydrogen

Page 7: Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

7Group Research 

CO2‐REDUCTION MEASURESTransmissionEngine

High Performance Combustion System 

Maximum InjectionPressure

Hybrid Supercharging

Variable Valvetrain

Variable Compression

Innovative Materials 

StructuralOptimisation

Cylinder Deactivation

Downspeeding

Coasting / Sailing

Energy, Recovery andWaste Heat

NVH at Low Speed

Surface Finish &Coating

Thermal Management 

Utilisation ofResidual Heat

Spread

Efficiency 

Tractive Performance

Low Speed Concept

Combustion System Lightweight Design Operational Strategy Friction Direct‐Shift Gearbox

Page 8: Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

8Group Research 

MQB POWERTRAIN TECHNOLOGIES 

Alternative/Renewable

Ethanol CNG

Electrical

Plug‐In Hybrid Battery Electric Vehicle

Conventional

Diesel Petrol

Fuel cell

Hydrogen

Page 9: Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

9Group Research 

XL1 – TECHNICAL DATA

Aerodynamic Cw = 0,189

Weight 795 kg

Maximum speed 160 km/h

Fuel consumption (NEFZ) 0,9 l/100 km

CO2‐Emissions (NEFZ) 21 g/km

Electrical Range 50 km

Range ca. 500 km

Page 10: Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

10Group Research 

Lithium‐Ion‐Battery

Energy content: 5,5 kWh

Powertrain 0,8l 35 kW TDI Electric engine 20 kW Transmission: 

Magnesium‐DSG

AC‐Charging connection

Fuel system Diesel: 10 l

VOLKSWAGEN XL1 

Page 11: Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

11Group Research 

GOLF PLUG‐IN HYBRID (GTE)

Powertrain 1,4l 110 kW TSI Electric engine 75 kW Transmission: DQ400E System‐Torque:

350 Nm System‐Power:

150 kWLithium‐Ion‐Battery

Energy content: 8,8 kWh

Battery weight: 120 kg

AC‐Charging connection

Fuel system Petrol: 

40 l

Page 12: Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

12Group Research 

Acceleration 0 – 100 km/h:  7,6 s

Maximum speed:  222 km/h

Fuel consumption: 1,5 l/100 km

Power consumption: 11,4 kWh/100 km

CO2 Emissions:  35 g/km

Electrical range (NEFZ):  50 km

Range (NEFZ):  939 km

TECHNICAL DATA – GOLF GTE

Page 13: Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

13Group Research 

CHALLENGES FOR ENERGY STORAGE SYSTEMS

EnergyElectrical driving range, availability of comfort devices,charging time and infrastructure

SafetyFailure, accident,abuse, maintainance,comfort, reliability

DurabilityCycles, lifetime

PowerDriving power,performance, dynamics

CostAffordability, market acceptance,recycling

TemperaturebehaviourCold start, heat in summer

Page 14: Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

14Group Research 

LI‐ION‐BATTERIES: ROADMAP FOR HIGH ENERGY BATTERIESELECTRICAL RANGE IN KM **

Solid state battery

New batterytechnologies

Conventional Lithium‐IonTechnology

2010 2020

* Energy density based on cell** Basis:: Golf with constant battery volume

100

200

300

400

500

600

2030

700

190 km260 Wh/L*

300 km380 Wh/L*

380 km510 Wh/L*

500 km650 Wh/L* 700 km

1000 Wh/L*

Page 15: Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

15Group Research 

DEVELOPMENT REQUIREMENTSREQUIREMENTS FOR THE POWERTRAIN

Full‐Hybrid(HEV)

Range

Battery ElectricVehicle (BEV)

ca. 2 km

total

electric

ca. 150 km

Plug‐In Hybrid(PHEV)

ca. 50 km

Emissionfree Short Distance MobilityLong Distance Mobility

Große Bandbreite der Kundenanforderungen

Increasing Electrification 100 % Electric Powertrain

+ +++

Touareg (2010) Jetta (2012) A3 (2013) e‐up! (2013) e‐Golf (2013)Panamera S (2013)Golf (2014)

CO2 Reduction Potential

+ +

Page 16: Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

16Group Research 

MQB POWERTRAIN TECHNOLOGIES 

Alternative/Renewable

Ethanol CNG

Electrical

Plug‐In Hybrid Battery Electric Vehicle

Conventional

Diesel Petrol

Fuel cell

Hydrogen

Page 17: Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

17Group Research 

TECHNOLOGICAL SYNERGIES IN ELECTROMOBILITY

Natural gas Fuel cellSynergy

In Development

CNG FCEV

BatteryBEV

Fuel cell technology is based on MQB modules

Page 18: Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

18Group Research 

FUEL CELL TECHNOLOGY

Membrane electrode assembly and bipolar plate

Fuel cellvehicle

Fuel cellstack

End Plate

Cells

Casing

End Plate

Fuel cellsystem

Stack

Turbo Compressor

Gas diffusionlayer (GDL)

Membrane

Gas diffusionlayer (GDL)

MEA*

Bipolar Plate (BPP)Media inletand outlet

* MEA

: Mem

brane Electrod

eAssembly

Page 19: Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

19Group Research 

FUEL CELL TECHNOLOGY – GOLF HYMOTION

Drive system output100 kW

Accelaration0 ‐100 km/h10 s

Maximum speed> 160 km/h

Torque270 Nm

Battery capacity1 ‐ 3 kWh

Range> 500 km

Page 20: Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

20Group Research 

CORE CHALLENGES FOR FUEL CELL TECHNOLOGY

ŠKODA Q

CostPull: Customer’s demandPush: Legislation

Availability of renewable energy and fuel Fuel Cell

business

• Vehicle technology availability• Functionality• Emotions• TCO

Availability of vehicle

• Fuel availability• Technology for fuel production• Technology for fuel delivery• Cost: ROI

• Renewable energy availability• Peak oil• Land use change• Seasonal availability

HyMotion®

Page 21: Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

21Group Research 

POWERTRAIN AND FUEL STRATEGYCOEXISTENCE OF POWERTRAIN TECHNOLOGIES

CO2‐neutral and

sustainablemobility

FCHEV

ICE

CO2‐neutral electricity

CO2‐neutral fuels

Conventional electricity

Conventional fuels

HEV

BEV

PHEV

Page 22: Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

22Group Research 

OPPORTUNITIES FOR WEIGHT REDUCTION

Page 23: Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

23Group Research 

VEHICLE FUEL CONSUMPTION FACTORS

100%Consumption

Friction / ElectricDrivetrain

Weight

3%

13%

19%

42%

23%

Weight causes about ¼ of fuel consumption

Rolling Resistance

Aerodynamics

Page 24: Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

24Group Research 

Comfort

Safety

Quality

Legislation

Interior

Rigid body

High performance

Larger fuel volume

+ kg

Stronger chassis

THE WEIGHT SPIRAL

Page 25: Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

25Group Research 

REVERSAL OF THE WEIGHT SPIRAL

Downsized engine

‒ kg

Reduced fuel volume

Intelligent bodymaterials design

Light chassis

Next vehicle generation

Integrated components and functions

New materials and processes

Cost‐ / weight‐optimisation

Page 26: Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

26Group Research 

LIGHTWEIGHT MATERIALS

Relativ

e compo

nent weight 

for e

qual perform

ance

Source: N/EK‐L; EKP

Qua

litative cost

Alum

inium

Alum

inium

CFRP

CFRP

CFRP

CFRP

Steel

Steel

unidire

ctiona

l

quasi‐isotrop

ic

‐40%

‐20%

‐60%

75%

100%

25%

50%

Magne

sium

Magne

sium

‐15%

20

25

5

10

1

15

Lightw

eight  steel 

constructio

nLightw

eight  steel 

constructio

n‐5 to ‐25% Audi A8 

Car body structure VW XL1 Car body structure 

Page 27: Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

27Group Research 

Green

housegas (kg CO2‐eq

)

reference lightweight alternative 1 lightweight alternative 2 lightweight alternative 3

Use phase (mileage in km)Use phase (mileage in km)ProductionProduction End of lifeEnd of lifeUse phase (mileage in km)Production End of life

ENVIRONMENTAL IMPACT, LIGHTWEIGHT DESIGN AND LCA

According to Volkswagen  AG's corporate environmental principleslightweight design has to achieve an overall improved lifecycle balance.

= No amortisation compared to reference – measures to improve the environmental impact necessary

= Amortisation over life cycle,break‐even within use phase

= Better right from the start,e.g. hot formed steel due to material and weight savings

break‐even

Intelligent lightweight design

Page 28: Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

28Group Research 

MATERIALS EVOLUTION

Steel / Aluminium100 %

Medium scale production

Low volumeproduction

Lowest volume production

Large scale production

VW Polo

Multi material design

Audi R8 Coupe

Lamborghini Murcielago Bugatti 

Veyron 16.4

FRP composites 100 %

Audi           

Page 29: Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

29Group Research 

FUTURE FOCUS FOR MATERIAL DESIGN

Before curing:

After curing:

Design concepts Joining technologies Vehicle manufacturing sequence

Enable expansion in joining zoneadhesive and rivet allow movement and withstand all stresses

CFC‐Structures

Al‐Structures

Steel/Aluminium‐material mix

Small & medium production scale

Low volume production

Large scale production

Material mix for large volume

CollapseCollapsePolymerizationPolymerization Ϭ IncreasesϬ Increases CollapsePolymerization Ϭ Increases

Optimised steel lightweight design

Curing at 100°C

Tolerable tensilestress at 180°C

Product: tolerable compression stress in use phase

E‐coat curing 180°C

a th Alu  > a th CFRP

Vehicle manufacturing sequence

Material mix suitable for  cataphoretic painting

Body construction(St‐/Al‐/CFC)

Anticorrosive coatingtop‐coat

Vehicleassembly

Target: Integration in existing assembly facilities

CFC‐parts/‐modules

Page 30: Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

30Group Research 

MOBILE LIFE CAMPUS – OPEN HYBRID LABFACTORY

Page 31: Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

31Group Research 

AUTOMATED DRIVING

Page 32: Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

32Group Research 

Longitudinal Control

ACC          Front AssistCity Emergency Brake

Lateral Control

Side AssistLane AssistSide Assist

Parking

Park Assist Park PilotRear Assist            Area View

DRIVER ASSISTANCE SYSTEMS – PRESENT‐DAY EXAMPLES

Light

Light AssistDynamic Light Assist

Driver Status

Pause Recommendation

Prediction

Sign Assist

Page 33: Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

33Group Research 

City Emergency Braking

ACC       Front Assist

Emergency Assist

Side AssistLane Assist

Front Assist

Park Assist Park Pilot

DRIVER ASSISTANCE SYSTEMS – PRESENT‐DAY EXAMPLES

Park Assist

Light Assist

Trailer Assist

CameraRadar CameraRadar CameraRadar

Ultrasonic Camera

Page 34: Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

34Group Research 

CHALLENGES FOR AUTOMATED DRIVING

More than 90% of allAccidents

are caused byhuman errors. 

Surroundings, weather

Technical vehicle defects

Others

Page 35: Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

35Group Research 

TECHNOLOGY FOR AUTOMATED DRIVING – SENSORS

Page 36: Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

36Group Research 

Sensors

Gatew

ay

DDS

EXLAP

Vehicle

Data Fusion & Environment Model

Localization

MapObject Fusion

Drivable Area

Road Fusion

Ego Master

Road Graph

Function

Maneuver planning

Mission Planning

v[m

/s]

v[m

/s]Trajectory planning

Vehicle Interface

Lat./ Long control

Status interface

Maneuver interface

CAN / FLEXR

AY / ETH

ERNET

 / …

TECHNOLOGY FOR AUTOMATED DRIVING – SYSTEM ARCHITECTURE

Page 37: Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

37Group Research 

HUMAN MACHINE INTERFACE – HMIJACK COMES WITH THE FIRST PRODUCTION CAR INTEGRATED HUMAN MACHINE INTERFACE                   THAT IS SCIENTIFICALLY EVALUATED AND DESIGNED FOR EVERYDAY DRIVING.

Page 38: Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

38Group Research 

TECHNOLOGY – END TO END ARCHITECTURE – CAR TO X

New and innovative functions become reality when wireless connection between vehicle and infrastructure come to mass production.

IT BackendIT Backend

Cloud architectureCloud architectureVehicle architectureVehicle architecture

Map service

Connected ACC

Connected piloted vehicles

Local hazard warning Parking & navigationTraffic light info online

Page 39: Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

39Group Research 

LEVELS OF AUTOMATED DRIVING

Driver Only

Level of automation

Vehicle has entire  longitudinal and lateral control in a defined use case. Driver  must not monitor.

Vehicle has entire  longitudinal and lateral control in a defined use case. Driver  must not monitor.

Driver is continuously in longitudinal andlateral control

Driver is continuously in longitudinal orlateral control

Driver must monitor the system continuously

Driver must notmonitor the system continuously

No intervening vehicle system  active

No intervening vehicle system  active

The other driving task is accomplished by the vehicle

The other driving task is accomplished by the vehicle

Vehicle has longitudinal and lateral control (for a specific time and/or in specific situations)

Vehicle has longitudinal and lateral control (for a specific time and/or in specific situations)

Vehicle has longitudinal and lateral control (for a specific time and/or in specific situations).All system limits are recognized by the system. Sufficient time for driver to takeover.

Vehicle has longitudinal and lateral control (for a specific time and/or in specific situations).All system limits are recognized by the system. Sufficient time for driver to takeover.

Source: VDA

Assisted Partial automation High automation Full

automation

Vehicle

Driver

Page 40: Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

40Group Research 

ACTION REQUIRED FOR IMPLEMENTING AUTOMATED DRIVING AND PARKING

Technology Infrastructure Regulation1. 2. 3.2

1

4

35

6

► Sensors

► Safety architecture

► Redundant actors such as brakes

► High‐performance computer

► User interface

► Validation methodology

► Vehicle registration regulations

► Regulatory law (Vienna Convention, highway traffic regulations)

► Liability

► Maintaining and expanding infrastructure

► Global Implementation of standards

► Car2Car communication

► Accurate digital maps with short‐term updates

Page 41: Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

41Group Research 

eT – Follow me!

2011Automated Driving –urban  delivery traffic

AUTOMATED DRIVING AT VOLKSWAGEN GROUP RESEARCH

Heavy DAS

2013 Automated Driving –

Traffic jam pilot(heavy duty vehicles)

Auto‐Pilot

2015Automated Driving –highway 900 km (CES Las Vegas)

Race‐Pilot

2014 Automated Driving –

race track

Page 42: Prof. Dr. Juergen Leohold at BASF Science Symposium 2015

THANK YOU FOR ATTENTION!