PROCESS STEPS - NPTEL

44

Transcript of PROCESS STEPS - NPTEL

PROCESS STEPS

Application Fields• Portable Electronics (PC, PDA,

Wireless)• IC Cost (Packaging and Cooling)• Reliability (Electromigration, Latch-

up)• Signal Integrity (Switching Noise,

DC Voltage Drop)• Thermal Design• Ultra-low-power applications• Space missions (miniaturized

satellites)

Arun N. Chandorkar, IIT Bombay

Different Constraints for Different Application Fields

• Portable devices: Battery life-time• Telecom and military: Reliability

(reduced power decreases electromigration, hence increases reliability)

• High volume products: Unit cost

(reduced power decreases packaging cost)

Arun N. Chandorkar, IIT Bombay

Is Transistor a Good Switch?

On

I = ∞

I = 0

Off

I = 0

I = 0

I ≠ 0

I = 1ma/u

I ≠ 0

I ≠ 0Sub-threshold Leakage

4

5

MOSFET Scaling Problem: Saturation of IDsat

200

400

600

800

0.1 0.2

0.25

0.3 0.4 0.6 0.8 1.0

NMOS

PMOS

IDsat (A/m) (drive current)

Channel Length (µm)

Data from IBM, TI, Intel, AMD, Motorola and Lucent

Low OFF current desirable

0

0.4

0.8

1.2

1990 1995 2000 2005

1

10

Su

pp

ly V

olta

ge

(V)

Driv

e C

urr

ent

( mA

/ µm

)

Changhoon Choi, PhD Thesis, Stanford Univ., 2002

Constant OFF current Limit

Relaxed OFF current Limit

Source: Intel

Low Vt

High Vt

IOFF,high Vt

IOFF,low Vt

Vg

log Id

0

Leakage Power

0%

10%

20%

30%

40%

50%

1.5 0.7 0.35 0.18 0.09 0.045

Technology (µ)

Lea

kag

e P

ow

er(%

of

To

tal)

Must stopat 50%

Leakage power limits Vt scaling

A. Grove, IEDM 2002

INTEL

9

Subthreshold Leakage (A/µµ)

Op

erat

ion

Fre

qu

ency

(a.

u.)

e)

100

10

1

Source: 2007  ITRS Winter Public Conf.

The limit is deferent depending on application

Gate Oxide is Near Limit

Poly Si Gate Electrode

Si Substrate

1.5 nm Gate Oxide

70 nm

Si3N4

CoSi2130nm Transistor

Will high K happen?Would you count on it?

INTEL

P. P. Gelsinger, “Microprocessor for the New Millennium: Challenges, Opportunities, and New Frontiers,” Dig. Tech. 2001 ISSCC, San Francisco, pp.22-23, February, 2001

Microprocessors Trend expected in 2001

Today: 2002 (Intel)

Lg sub-70 nm

Tox 1.4 nm

f 2.53 GHz

P several 10 W

N 50 M

Heat Generation

2002   10W/cm2 Hot Plate

2006   100W/cm2 Surface of Nuclear Reactor

2010   1000W/cm2 Rocket Nozzle

2016   10000W/cm2 Sun Surface

2008 (Intel)

Lg sub-25 nm

Tox 0.7 nm

f 30 GHz

P 10 kW

N 1.8B

MIPS 1M MIPS (TIPS)

Power Increase

Tr. Number increase

Clock Frequency increase

Cause

Solution:

Low supply Voltage

Past: 1972 (Intel)

Lg 10,000 nm

Tox 1200 nm

f 0.00075 GHz

P a few 100 mW

N 2.25k

Heat generation

increase

0

20

40

60

80

100

120

-39.71 -25.27 -10.83 3.61 18.05 32.49

∆VTn(mv)

# o

f C

hip

s

~30mV

VT Distribution

0.18 micron~1000 samples

Low FreqLow Isb

High FreqMedium Isb

High FreqHigh IsbINTEL

Impact on Path Delays

Path Delay

Path delay variability due to variations in Vdd, Vt, and TempImpacts individual circuit performance and power

Optimize each circuit for full chip objectives

Delay

Pro

bab

ility

Objective: full chip performance, power, and yieldMultivariable optimization of individual circuit—Vdd, Vt, size

Towards the end of the (ITRS) Roadmap

• Feature sizes approach single-digit nanometers

• Physical and economic limits to scaling

Red Brick Wall!

New Technologies– Chemically Assembled Electronic Nanotech. (CAEN)– Extreme Ultraviolet (EUV) Lithography

Qi Xinag, ECS 2004, AMD

Gate Oxd

Channel

Electronwavelength

10 nm

Channel length?Scaling limit?

Hiroshi Iwai

5 nm gate length CMOS

H. Wakabayashi et.al, NEC

IEDM, 2003

Length of 18 Si atoms

Is a Real Nano Device!!

5 nm

Hiroshi Iwai

Electronwavelength

10 nm

Tunnelingdistance

3 nm

Atomdistance

0.3 nm

Prediction at present

Practical limitbecause of off-leakagebetween S and D?

Lg = 5 nm?

MOSFET operation

Lg = 2 ~ 1.5 nm?

But, no one knows future!

Gate length Prediction now!

By Robert Chau, IWGI 2003

0.8 nm Gate Oxide Thickness MOSFETs operates!!

0.8 nm: Distance of 3 Si atoms!!

So, we are now in the limitation Of Scaling?

Do you believe this or do not????

There is a solution!To use high-k dielectrics

Thin gate SiO2 Thick gate high-k dielectrics

Almost the same electric characteristics

However, very difficult and big challenge!

Remember MOSFET had not been realized without Si/SiO2!

K: Dielectric Constant

Thick

Small leakageCurrent

R. Hauser, IEDM Short Course, 1999Hubbard and Schlom, J Mater Res 11 2757 (1996)

● Gas or liquidat 1000 K

●H

○Radio activeHe

● ● ● ● ● ●Li Be

B C N O F Ne

① ● ● ● ●Na Mg Al Si P S Cl Ar

② ① ① ① ① ① ① ① ① ① ① ● ● ● ●K Ca Sc Ti V Cr Mn Fc Co Ni Cu Zn Ga Ge As Se Br Kr● ① ① ① ① ① ● ① ① ① ① ① ● ●Rh Sr Y Zr Nb Mo Tc Ru Rb Pd Ag Cd In Sn Sb Te I Xe● ③ ① ① ① ① ① ● ● ● ● ① ① ○ ○ ○Cs Ba ★

HfTa W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn

○ ○ ○ ○ ○ ○ ○ ○Fr Ra ☆ Rf Ha Sg Ns Hs Mt

○LaCe Pr Nd PmSmEuGdTbDyHo Er TmYbLu○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○Ac Th Pa U Np Pu AmCm Bk Cf Es Fm Md No Lr

Candidates

● ●Na Al Si P S Cl Ar

② ① ① ① ① ① ① ① ① ① ● ● ● ●K Sc Ti V Cr Mn Fc Co Ni Cu Zn Ga Ge As Se Br Kr● ① ① ① ① ① ● ① ①

○ ○ ○ ○ ○ ○Ac Th Pa U Np Pu AmCm Bk Cf Es Fm Md No Lr

Unstable at Si interfaceSi + MOX M + SiO2①

Si + MOX MSiX + SiO2

Si + MOX M + MSiXOY

Choice of High­k elements for oxide

HfO2 based dielectrics are selected as the first generation materials, because of their merit in1) band­offset, 2) dielectric constant3) thermal stability

La2O3 based dielectrics are thought to be the next generation materials, which may not need a thicker interfacial layer

23

Intel’s announcement, January 26, 2007, and IEDM Dec 2010

Hafnium-based high-k material by ALD: EOT= 1nmSpecific gate metals ( Intel’s trade secret) Different Metals for NMOS and PMOSUse of 193nm dry lithography

From 45 nm to 32 nm Tech. Tr density: 2 times increase Tr witching power: 30% reduction Tr witching speed: 20% improvement S-D leakage power: 5 times reduction Gate oxide leakage: 10 times reduction

45nm processors (Core™2 family processors "Penryn") running Windows* Vista*, Linux* etc.

11nm production in the First half of 2015 or Early 2016.

24

PMOS

High-k gate insulator MOSFETs for Intel: EOT=1nm

EOT: Equivalent Oxide Thickness

EOT = 0.48 nm

Transistor with La2O3 Gate Insulator

TIT results

back-gate

channel

isolation

buried oxide

channel

top-gate

Source Drain

Gate

 Time

Conclusion: Technology Progression

Well doping

channelDepletion layer

isolation

halo

Bulk CMOS

Si0.8Ge0.2

Si

Si(tensile)

Si1-xGex

Strained Si

High k gate dielectric

Metal gate

3D ICs

2 nm

Cu interconnect

Low­k ILD

FD SOI CMOS

channeldepletion layer

isolation

buried oxide

raised source/drain

Optical interconnect

Molecular device

Detectors, lasers, modulators, waveguides

Spin device

B

+ =

Ge on Si hetroepitaxy

Ge on Insulator

Wafer bonding Crystallization 

Nanowires

Ge/Si Heterostrcture

Double­Gate CMOS

Nanowire

Single e transistor

Nanotube

Featur e Size

Carbon Nanotubes

Graphene Device

Graphene Device Electronics(??)

• A study of how electrons behave in circuitry made from ultrathin layers of graphite – known as graphene – suggests the material could provide the foundation for a new generation of nanometer scale devices that manipulate electrons as waves – much like photonic systems control light waves.

Graphene 3D structure and Band Diagram

In 2004 two scientists, Andre Geim and Konstantin Novoselov, both of

whom would later receive the Nobel Prize for their work

In preparation of Graphene

Graphene based (2D Material)Transistor

Standard NMOSFET

Graphene Based Transistor

Graphene transistor and new possible Ballistic Device

Tunneling Effect

Coulomb Blockade

• a Coulomb blockade is the increased

resistance at small bias voltage of an electronic device

comprising at lease one low-capacitance

tunnel junction.

Bottom-Up

Self Assembly

• Applicatoins: solar cell, light-emitting diodes, capsule in drug delivery system

Chemical Colloidal Method

Lithography and Etching

• Lithography: electron beam, ion beam, nanoimprint, dip pen nanolithography

• Etching: wet etching, dry etching, plasma, implantation, photo etching

Split-gate Approach

• Use additional voltage to create 2 dimensional confinements to control the shape and size of the quantum dot’s gate.

• It’s a combination of e beam lithography, evaporation, lift off, contact annealing

Limitations of CMOS in ~ 10 years

• Fundamental physical limit    ­ 8 electron per bit       (today 1000 e/bit)• Manufacturing cost     ­ $50 Billion/FAB

Moore’s law scaling to an end ??????

Never Give Up!

There would always be             a solution!!!!

Think, Think, and Think!

    Or, Wait for the time!                      whenSome one will think for you

As No one knows future!

                Do not believe        a text book  statement, Or        Researcher’s statement, Blindly!