Procedure 10-4: Lifting Loads and...

44
Procedure 10-4: Lifting Loads and Forces Transportation and Erection of Pressure Vessels 675

Transcript of Procedure 10-4: Lifting Loads and...

Page 1: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

Procedure 10-4 Lifting Loads and Forces

Transportation and Erection of Pressure Vessels 675

676 Pressure Vessel Design Manual

Loads

bull Overall load factor KL

KL frac14 Ki thorn Ks

bull Design lift weight WL

WL frac14 KLWE

bull Tailing load T

T frac14 WL cos q L2

cos q L1 thorn sin q L4

At q frac14 0 initial pick point vessel horizontal

T frac14 WLL2

L1and P frac14 WLL3

L1or P frac14 WL T

At q frac14 90 vessel vertical

T frac14 0 and P frac14 WL

bull Calculate the loads for various lift angles q

Lift angles shown are suggested only to help find theworst case for loads T and P

bull Maximum transverse load per lug PT

PT frac14 P cos qnL

bull Maximum longitudinal load per lug PL

PL frac14 P sin q

nL

bull Radial loads in shell due to sling angles qy or qH

Pr frac14 PT tan qH Vessel in horizontal

Pr frac14 PL tan qv Vessel in vertical

bull Tailing loads fL and fr

fL frac14 T cos q

fr frac14 T sin q

bull Longitudinal bending stress in vessel shell sb

sb frac14 4M

pD2mt

Maximum moment occurs at initial pick when q frac14 0 Seecases 1 through 4 for maximum moment M

Note

If the tailing point is below the CG as is the casewhen a tailing frame or sled is used the tail supportcould see the entire weight of the vessel as erectionapproaches 90

Transportation and Erection of Pressure Vessels 677

Dimensions and Moments for Various VesselConfigurations

Case 1 Top Head Lug Top Head Trunnion or TopHead Flange

M1 frac14 WLL3L2

L1

Case 2 Side Lug or Side Trunnion

w5 frac14 WL

L5

M1 frac14 w5

8L21

ethL1 thorn L4THORN2ethL1 L4THORN2

M2 frac14 w5L24

2

Case 3 Cone Lug or Trunnion

w5 frac14 WL1

L4w6 frac14 WL2

L1

M1 frac14 w6

8L21

ethL1 thorn L4THORN2ethL1 L4THORN2

M2 frac14 w5L24

2

Case 4 Cone Lug or Trunnion with IntermediateSkirt Tail

w5 frac14 WL1

L4w6 frac14 WL2

L1 thorn L5

M1 frac14 w6L25

2

M2 frac14 w5L24

2

M3 frac14M1 thornM3

2

w6L2

1

8

678 Pressure Vessel Design Manual

Find Lifting Loads at Any Lift Angle for a Symmetrical Horizontal Drum

Dimensions and Forces

Example

Steam drum

WL frac14 600 kips

L1 frac14 80 ft

L4 frac14 5 ft

L1

2L4frac14 80

10frac14 8

Free-Body Diagram

Curve is based on the following equation

PWL

frac14 L4

L1ethtan qTHORN thorn 05

Results from curve

q frac14 15 frac14 516 q frac14 30 frac14 536 q frac14 45 frac14 563 q frac14 60 frac14 608 q frac14 75 frac14 733

Transportation and Erection of Pressure Vessels 679

Sample Problem

Case 1 L3 gt L2

L1 frac14 280 thorn 2833 thorn 1 frac14 28383 ftL2 frac14 28383 ndash 162 frac14 12183 ftL3 frac14 161 thorn 1 frac14 162 ftL4 frac14 10 ft

Case 2 L3 lt L2

L1 frac14 28383 ftL2 frac14 162 ftL3 frac14 12183 ftL4 frac14 10 ft

680 Pressure Vessel Design Manual

Procedure 10-5 Design of Tail Beams Lugs and Base Ring Details

Transportation and Erection of Pressure Vessels 681

682 Pressure Vessel Design Manual

Base Ring Design Check

C1 frac14 SAYSA

C2 frac14 WB C1

I frac14 SAY2 thorn SIo C1SAY

RB frac14 inside radius of base platethorn C2

Internal Forces and Moments in the Skirt BaseDuring Lifting

To determine the stresses in the base ring as a result ofthe tailing load the designer must find the coefficients Krand KT based on angle a as shown and the type of stiff-ening in the skirtbase ring configuration

M frac14 KrTRB

Tt frac14 KTT

Transportation and Erection of Pressure Vessels 683

SkirtTail Beam Calculations

Tail Beam

bull Tailing loads fL and fr

fL frac14 T cos q

fr frac14 T sin q

bull Maximum bending moment Mb

Mb frac14 xfr thorn yfL

bull Maximum bending stress sb

sb frac14 Mb

Z

Tail Beam Bolts

bull Shear load fs

fs frac14 05frn

bull Shear stress s

s frac14 fsAb

bull Tension force ft

Note y1 frac14 mean skirt diameter or centerline of boltgroup if a filler plate is used

ft frac14 Mb

y1

Skirt

bull Tension stress in bolts sT

sT frac14 fTNbAb

bull Compressive force in skirt fc

fc frac14 fL thorn ft

bull Skirt crippling is dependent on the base configura-tion and lengths l1 through l4

N frac14 1 in if web stiffeners are not usedN frac14 width of top flange of tail beam if web stiffeners are

used

bull Compressive stress in skirt sc

sc frac14 fctskln

bull Check shear stress s in base to skirt weld

s frac14 frpDsk 0707w4

Base Plate

bull Bending moment in base plate Mb

Mb frac14 KrTRB

bull Find tangential force Tt

Tt frac14 KTT

bull Total combined stress s

sTfrac14 MbC1

Ithorn Tt

A

tension

sCfrac14 MbC2

I Tt

A

compression

684 Pressure Vessel Design Manual

Size Base Ring Stiffeners

F1 frac14 force in strut or tailing beam lbF1 is (thorn) for tension and (ndash) for compression

bull Tension stress sT

sT frac14 FnAs

bull Critical buckling stress per AISC scr

Cc frac14ffiffiffiffiffiffiffiffi2p2

Fy

s

scr frac141

KL2s=r

2C2

c

Fy

eth5=3THORN thorn etheth3KLs=rTHORN=8CcTHORN ethKLs=rTHORN3=8C3

c

bull Actual compressive stress sc

sc frac14 FnAs

Note Evaluate all struts as tension and compressionmembers regardless of sign because when the vessel issitting on the ground the loads are the reverse of the signsshown

Two Point

F1 frac14 eththornTHORN05T

Three Point

F1 frac14 eththornTHORN0453TF2 frac14 ethTHORN0329T

Parallel BeamsStruts

F1 frac14 eththornTHORN025T

Four Point

F1 frac14 eththornTHORN05TF2 frac14 ethTHORN0273TF3 frac14 eththornTHORN0273T

Transportation and Erection of Pressure Vessels 685

Table 10-7Internal moment coefficients for base ring

One Point Two Point Three Point Four Point

Angle a Kr KT Kr KT Kr KT Kr KT

0 02387 e02387 00795 e02387 e00229 01651 00093 e01156

5 01961 e02802 00587 e02584 e00148 01708 00048 e01188

10 01555 e03171 00398 e02736 e00067 01764 00012 e01188

15 01174 e03492 00229 e02845 e00055 01747 e00015 e01155

20 00819 e03763 00043 e02908 e00042 01729 e00033 e01089

25 00493 e03983 e00042 e02926 00028 01640 e00043 e00993

30 00197 e04151 e00145 e02900 00098 01551 e00045 e00867

35 e00067 e04266 e00225 e02831 00103 01397 e00041 e00713

40 e00299 e04328 e00284 e02721 00107 01242 e00031 e00534

45 e00497 e04340 e00321 e02571 00093 01032 e00017 e00333

50 e00663 e04301 e00335 e02385 00078 00821 e00001 e00112

55 e00796 e04214 e00340 e02165 00052 00567 00017 00126

60 e00897 e04080 e00324 e01915 00025 00313 00033 00376

65 e00967 e03904 e00293 e01638 00031 00031 00046 00636

70 e01008 e03688 e00250 e01338 00037 e00252 00055 00901

75 e01020 e03435 e00197 e01020 e00028 e00548 00056 01167

80 e01006 e03150 e00136 e00688 e00092 e00843 00049 01431

85 e00968 e02837 e00069 e00346 e00107 e01134 00031 01688

90 e00908 e02500 0 0 e00121 e01425 0 01935

95 e00830 e02144 00069 00416 e00114 e01694 e00031 e01688

100 e00735 e01774 00135 00688 e00107 e01963 e00049 e01431

105 e00627 e01394 00198 01020 e00074 e02194 e00057 e01167

110 e00508 e01011 00250 01338 e00033 e02425 e00055 e00901

115 e00381 e00627 00293 01638 00041 e02603 e00046 e00636

120 e00250 e00250 00324 01915 00114 e02781 e00033 e00376

125 e00016 00118 00340 02165 00107 e01060 e00017 e00126

130 00116 00471 00335 02385 00100 00661 00001 00112

135 00145 00804 00321 02571 00083 00448 00017 00333

140 00268 01115 00284 02721 00066 00234 00031 00534

145 00382 01398 00225 02831 00045 00104 00041 00713

150 00486 01551 00145 02900 00024 e00026 00045 00867

155 00577 01870 00042 02926 e00005 e00213 00043 00993

160 00654 02053 e00083 02908 e00015 e00399 00033 01089

165 00715 02198 e00225 02845 e00028 e00484 00015 01155

170 00760 02301 e00398 02736 e00041 e00569 e00012 01188

175 00787 02366 e00587 02584 e00046 e00597 e00048 01188

180 00796 02387 e00795 02387 e00051 e00626 e00093 01156

686 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 687

Design of Vessel for Choker (Cinch) Lift at Base

bull Uniform load p

p frac14 TR

bull Moments in ring at points A and C

MA frac14 01271TR

Mc frac14 00723TR

bull Tensioncompression forces in ring at points Aand C

TA frac14 06421T

Tc frac14 12232T

bull Combined stress at point A inside of ring

sA frac14 TA

AthornMA

Zin

bull Combined stress at point A outside of ring

sA frac14 TA

A MA

Zout

bull Combined stress at point C inside of ring

sc frac14 Tc

AthornMc

Zin

bull Combined stress at point C outside of ring

sc frac14 Tc

A Mc

Zout

Note Assume that the choker is attached immediately atthe base ring even though this may be impossible toachieve Then use the properties of the base ring for Aand Z

From R J Roark Formulas for Stress and Strain 5thEdition McGraw-Hill Book Co Table 17 Cases 12 and18 combined

688 Pressure Vessel Design Manual

Design of Tailing Lugs

Table 10-8Dimensions for tailing lugs

Tail Load (kips) tL tP E Ro RP D1 e

lt10 None required

10 to 20 075 NR 3 4 NR 2375 NR

21 to 40 075 0375 3 4 35 2375 03125

41 to 70 1 05 3 4 35 2375 03125

71 to 100 1 05 4 5 45 34375 03125

101 to 130 15 05 4 5 45 34375 03125

131 to 170 1625 075 4 5 45 34375 0375

171 to 210 1625 075 5 6 55 45 0375

211 to 250 2 075 5 6 55 45 04375

251 to 300 225 1 5 6 55 45 05

gt300 Special design required

Transportation and Erection of Pressure Vessels 689

Formulas

The tailing lug is designed like all other lugs Theforces are determined from the tailing load T calcu-lated per this procedure The ideal position for thetailing lug is to be as close as possible to the baseplate for stiffness and transmitting these loads throughthe base to the skirt The option of using a tailing lugversus a tailing beam is the designerrsquos choice Eithercan accommodate internal skirt rings stiffeners andstruts

Design as follows

bull Area required at pin hole Ar

Ar frac14 TFs

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN-ethD1tLTHORN

bull Bending moment in lug Mb

Mb frac14 fLE

bull Section modulus of lug Z

Z frac14 tLA2

6bull Bending stress in lug sb

sb frac14 Mb

Zbull Area required at pin hole for bearing Ar

Ar frac14 TFp

bull Area available at pin hole for bearing Aa

Aa frac14 D2tL

Note Substitute tL thorn 2tp for tL in the preceding equationsif pad eyes are used

690 Pressure Vessel Design Manual

Procedure 10-6 Design of Top Head and Cone Lifting Lugs

Design of Top HeadCone Lug

Dimensions

NT frac14 B2

Athorn 2B

LT frac14 Ethorn B NT

q1 frac14 arctan2L1

A

L2 frac14 L1

sin q1

q2 frac14 arcsinR3

L2

q3 frac14 q1 thorn q2

L3 frac14 R3

sin q3

L4 frac14 05A L1 05D3

tan q3

L5 frac14 05A L1 Ctan q3

Transportation and Erection of Pressure Vessels 691

Lug

bull Maximum bending moment in lug ML

ML frac14 PE

bull Section modulus lug Z

Z frac14 A2tL6

bull Bending stress lug sb

sb frac14 ML

Z

bull Thickness of lug required tL

tL frac14 6ML

A2Fb

bull Tension at edge of pad sT

sT frac14 PL2L4tL

bull Net section at pin hole Ap

Ap frac14 2L3tL thorn 2tpD3 D1

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at top of lug An

An frac14 tL

R3 D1

2

thorn 2tp

D3 D1

2

bull Shear stress at top of lug s

s frac14 PTAn

bull Pin bearing stress sp

sp frac14 PTD3

tL thorn 2tp

Check Welds

bull Polar moment of inertia Jw

Re-pad Jw frac14 ethA1 thorn L6THORN36

Lug Jw frac14 ethAthorn 2BTHORN312

B2ethAthorn BTHORN2ethAthorn 2BTHORN

bull Moment M1

M1 frac14 LTPT

Lug Weld

bull Find loads on weldsbull Transverse shear due to PT f1

f1 frac14 PTAthorn 2B

bull Transverse shear due to M1 f2

f2 frac14 M1ethB NTTHORNJw

bull Longitudinal shear due to M1 f3

f3 frac14 M1BJw

bull Combined shear load fr

fr frac14ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiethf1 thorn f2THORN2thornf23

q

692 Pressure Vessel Design Manual

bull Size of weld required w1

w1 frac14 fr0707Fs

Note If w1 exceeds the shell plate thickness then a re-padmust be used

Re-pad Weld

bull Moment M2

M2 frac14 PTethEthorn 05L6THORN

bull Transverse shear due to PT f1

f1 frac14 PT2A1 thorn 2L6

bull Transverse shear due to M2 f2

f2 frac14 05M2L6

Jw

bull Longitudinal shear due to M2 f3

f3 frac14 M2L6

Jw

bull Combined shear load fr

fr frac14ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiethf1 thorn f2THORN2thornf23

q

bull Size of weld required w1

w2 frac14 fr0707Fs

Pad Eye Weld

bull Unit shear load on pad f4

f4 frac14 PTtppD2

2tp thorn tL

bull Size of weld required w3

w3 frac14 f40707Fs

Top Head Lug for Large Loads

Transportation and Erection of Pressure Vessels 693

Table 10-9Dimensions for top head or cone lugs

694 Pressure Vessel Design Manual

Procedure 10-7 Design of Flange Lugs

Transportation and Erection of Pressure Vessels 695

Table 10-10Flange lug dimensions

Load Capacity (tons) D1 tL tb A B G H E

50 338 2 2 8 11 12 30 9

100 5 3 3 14 12 24 36 9

200 6 4 4 18 14 30 40 10

400 8 5 5 20 16 36 46 11

600 9 6 6 24 22 40 58 16

800 10 9 7 28 24 42 60 17

Table 10-11Bolt properties

Bolt Size Ab As Tb

05e13 0196 0112 12

0625e11 0307 0199 19

075e10 0442 0309 28

0875e9 0601 0446 39

1e8 0785 0605 51

1125e8 0994 079 56

125e8 1227 1 71

1375e8 1485 1233 85

15e8 1767 1492 103

175e8 2405 2082 182

2e8 3142 2771 243

225e8 3976 3557 311

25e8 4909 4442 389

275e8 594 543 418

3e8 7069 6506 501

325e8 83 7686 592

35e8 962 896 690

375e8 1104 1034 796

4e8 1257 1181 910

Table 10-12Values of Su

Bolt Dia db Material Su (ksi)

lt 1 A-325 120

1125e15 A-325 105

1625e25 A-193-B7 125

2625e4 A-193-B7 110

696 Pressure Vessel Design Manual

Top Flange Lug

PL frac14 P sin q

PT frac14 P cos q

PE frac14 PLA

thorn 3PTe

A2

M1frac14 PTB

M2frac14 PT(B thorn J)

M3frac14 PTe

Mufrac14 Xn cos an Nb

Mafrac14 MuM1PMu

Xn frac14 Rb cos an

yn frac14 Rb sin an

Side Flange Lug

Fn frac14 Ma

XnNb

fs frac14 PTN

sT frac14 FnAs

Fs frac14 15 ksi

1 sTAb

Tb

As frac14 07854 ethd 01218THORN2

s frac14 fsAs

lt Fs

Tb frac14 075uAs

06Fy lt FT lt 40 ksi

Transportation and Erection of Pressure Vessels 697

Design Process

1 Determine loads2 Check of lug

a Shear at pin holeb Bending of lugc Bearing at pin hole

3 Check of base plate4 Check of nozzle flange5 Check of flange bolting6 Check of local load at nozzle to head or shell

junction

Step 1 Determine loads

bull Determine loads PT and PL for various lift angles qbull Determine uniform loads w1 and w2 for variousangles q

bull Using w1 and w2 solve for worst case of combinedload PE

bull Determine worst-case bending moment in lug M3

Step 2 Check of lug

a Shear at pin holebull Area required Ar

Ar frac14 PEFs

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN

b Bending of lug due to M3

bull Section modulus Z

Z frac14 tLA2

6

bull Bending stress lug sb

sb frac14 M3

Z

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFp

bull Bearing available Aa

Aa frac14 D2tL

Maximum Tension in Lug

Check of Nozzle Flange

bull Unit load w

w frac14 PEpBc

bull Bending moment M

M frac14 whDbull Bending stress sb

sb frac14 6M

t2f

698 Pressure Vessel Design Manual

Bolt Loads for Rectangular Lugs Design of Full Circular Base Plate for Lug

bull If a full circular plate is used in lieu of a rectangularplate the following evaluation may be used

bull Unit load on bolt circle w

w frac14 PEpBc

bull Edge distance from point of load hp

hp frac14 BC tL2

bull Bending moment M

M frac14 whp

bull Bending stress sb

sb frac14 6M

t2b

bull Check bolting same as rectangular flange

Transportation and Erection of Pressure Vessels 699

Design of Lug Base Plate

(From R J Roark Formulas for Stress and StrainMcGraw-Hill Book Co 4th Edition Table III Case 34)

bull Uniform load w

w frac14 PEA

bull End reaction R1

R1 frac14 wA2

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

bull Moment at midspan Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

bull Thickness required tb

tb frac14ffiffiffiffiffiffiffiffiffi6Mx

GFb

s

700 Pressure Vessel Design Manual

Check of Bolts

Case 1 Bolts on Centerline Case 2 Bolts Straddle Centerline

Bolt 1 2 3 4 5 Bolt 1 2 3 4 5

an an

xn xn

yn yn

Nb Nb

Mu Mu

Ma Ma

Fn Fn

sT sT

Fs Fs

Transportation and Erection of Pressure Vessels 701

Sample Problem Top Flange Lug

GivenL1 frac14 90 ftL2 frac14 50 ftL3 frac14 40 ftL4 frac14 95 ft

Fy bolting frac14 75 ksiFy lug frac14 36 ksi

Fy flange frac14 36 ksiFs frac14 04(36) frac14 144 ksiFT frac14 06(36) frac14 216 ksiFb frac14 066(36) frac14 2376 ksiWL frac14 1200 kipsBc frac14 54 inRc frac14 27 inB frac14 22 intb frac14 6 intL frac14 6 intf frac14 11 in

D1 frac14 9 in

D2 frac14 8 in

Bolt size frac14 3-14-8 UNC

Ab frac14 83 in2

As frac14 7686 in2

Tb frac14 592 kips

Su frac14 110 ksi

e frac14 16 in

G frac14 40 in

A frac14 24 in

hD frac14 95 in

b frac14 05ethBc ATHORN

Results

PT max frac14 537 kips q frac14 10

PL max frac141200 kips q frac14 90

PE max frac141277 kips q frac14 40

sT bolt max frac14 2011 ksi 40 ksi

s bolt max frac14 698 ksi 1077 ksi

702 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 703

10 Check Lug

a Shear at pin hole

bull Area required Ar

Ar frac14 PEFS

frac14 1277144

frac14 8868 in2

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN frac14 eth24$6THORN eth9$6THORN frac14 90 in2

b Bending of lug due to M3

bull Maximum moment M3

M3 frac14 PTe frac14 537eth16THORN frac14 8592 in kips

bull Section modulus Z

Z frac14 tLA2

6frac14

6$242

6

frac14 576 in3

bull Bending stress lug sb

sb frac14 M3

Zfrac14 8592

576frac14 1491 ksi

bull Thickness required tL

tL frac14 6M

FbA2 frac14 6$85922376eth242THORN frac14 376 in

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFP

frac14 1277324

frac14 3941 in2

bull Bearing available Aa

Aa frac14 D2tL frac14 8$6 frac14 48 in2

20 Check Lug Base Plate

bull Uniform load w

w frac14 PEA

frac14 127724

frac14 532kipsin

bull End reaction R1

R1 frac14 PE2

frac14 12772

frac14 6385 kips

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

Ma frac14 0985eth8748 2496thorn 768thorn 2304 17 496THORNfrac14 8049 in kips

bull Moment at mid Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

Mx frac14 8049thorn 17 240 3831

frac14 5360 in kips

bull Section modulus Z

Z frac14t2bG

6

frac1462$40

6

frac14 240 in3

bull Bending stress sb

sb frac14 Mx

Zfrac14 5360

240frac14 2233 ksi

bull Allowable bending stress Fb

Fb frac14 066Fy frac14 06636 frac14 2376 ksi

30 Check of Vessel Flange

bull Unit load w

w frac14 PEpBc

frac14 1277p54

frac14 752kipsin

bull Bending moment Mb

Mb frac14 whD frac14 752eth92THORN frac14 6925 in kips

bull Bending stress sb

sb frac14 6Mb

t2ffrac14 frac126eth6925THORN

11252frac14 328 ksi

704 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 705

Procedure 10-8 Design of Trunnions

Lug Dimensions

Dimensions for Trunnion

Type 1 Trunnion and Fixed Lug

Type 2 Trunnion and Rotating Lug

Type 3 Trunnion Only

706 Pressure Vessel Design Manual

Type 1 Trunnion and Fixed Lug

There are four checks to be performed

1 Check lug2 Check trunnion3 Check welds4 Check vessel shell

Check Lug

Transverse (vessel horizontal)

M frac14 PTE and Z frac14 4R2otL6

Therefore

tL frac14 15PTE

R2oFb

Longitudinal (vessel vertical)

bull Cross-sectional area at pin hole Ap

Ap frac14 213tL thorn 2tpethD3 D1

bull Cross-sectional area at top of lug An

An frac14 tL

RT D1

2

thorn 2tp

D3 D1

2

bull Shear stress s

s frac14 PLAP

or s frac14 PLAn

bull Pin bearing stress sp

sp frac14 PLD2

tL thorn 2tp

Check Trunnion

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Torsional moment MT (vessel horizontal)

MT frac14 PTE

bull Bending stress sb

sb frac14 ML

Z

bull Torsional shear stress sT

sT frac14 MT

2pRnto

Check Welds

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Polar moment of inertia Jw

Jw frac14 2pR3n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Torsional shear stress in weld sT

sT frac14 MTRn

Jw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 2 Trunnion and Rotating Lug

bull Net section at Section A-A Ap

Ap frac14 213tL thorn 2tpD3 D1

Transportation and Erection of Pressure Vessels 707

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at Section B-B An

An frac14 2tLethRo RiTHORNbull Shear stress at trunnion s

s frac14 PLAn

bull Minimum bearing contact angle for lug at trun-nion qB

qB frac14 eth159PLTHORNRntLFp

bull Pin hole bearing stress sp

sp frac14 PLD3

tL thorn 2tp

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Swbull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 3 Trunnion Only

Vessel Vertical

bull Longitudinal moment ML

ML frac14 PLe

bull Bending stress in trunnion sb

sb frac14 ML

Z

Vessel Horizontal

bull Circumferential moment Mc

Mc frac14 PTe

bull Bending stress in trunnion sb

sb frac14 Mc

Z

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

708 Pressure Vessel Design Manual

TYPE 1 TYPE 2

W

K

DIA

A

DIA

= F

DIA

= M

K

C

KT

2 X 125 DIAVENT HOLES

DIA

A

125

D

250

DIA

= F

W

K

B

NUTS WELDED

GRIND WELDSMOOTH

DIA

= M

K

E

KT

2 X 125 DIAVENT HOLES

Table 10-13Dimensions of trunnions

Allowable Load Tons Pipe Size A C D E F M N T W Weight Lbs

1 0-5 4 Std 4 - - 85 8 - 05 025 30

2 5-10 6 Std 5 - - 105 12 - 05 025 55

3 10-15 8 Std 6 0625 8 125 15 4 05 0375 90

4 15-25 10 Std 6 0625 8 15 18 4 075 0375 150

5 25-35 12 Sch 80 6 075 8 17 21 4 075 0375 240

6 35-45 12 Sch 80 6 075 8 17 21 4 075 05 240

7 45-60 14 Sch 80 6 075 8 18 24 8 1 05 375

8 60-75 14 Sch 80 7 0875 8 18 24 8 1 0625 400

9 75-100 16 Sch 80 7 0875 8 25 27 8 1 0625 625

10 100-125 16 Sch 80 7 0875 8 25 27 8 1125 0875 660

11 125-150 18 Sch 80 7 0875 8 27 30 12 1125 0875 850

12 150-200 18 Sch 80 8 0875 8 27 30 12 1125 1 875

13 200-250 20 Sch 80 8 0875 10 30 36 16 125 1 1000

14 300 24 Sch 80 8 1 10 34 36 16 125 1125 1440

15 400 24 Sch 80 8 1 10 34 40 20 1375 1125 1675

16 500 30 125 10 125 12 42 48 20 1375 1375 2400

17 600 36 125 10 125 12 48 60 24 15 1375 3600

Notes

1 Do not use re-pads for cyclic service

2 B frac14 D - 125

3 K frac14 Pipe Wall Thk

4 Dimensions are given for reference only All loadings and stress shall be checked prior to use

Transportation and Erection of Pressure Vessels 709

Procedure 10-9 Local Loads in Shell Due to Erection Forces

Trunnions

Fixed Lug Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Maximum torsional moment MT

MT frac14 PTE

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

Rotating Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

TrunniondNo Lug

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

710 Pressure Vessel Design Manual

Side Lugs Notes

1 Optional internal pipe Remove after erection2 Radial load Pr is the axial load in the internal pipe

stiffener if used in lieu of radial load in shell3 Circumferential ring stiffeners are optional at these

elevations

bull Circumferential moment Mc

Mc frac14 PTe

bull Longitudinal moment Mx

Mx frac14 PLe

bull Load on weld group f

f frac14 PTELT

bull Radial loads Pr and Pa

Pr frac14 PLe

Pa frac14 PL sin f

Top Flange Lug

bull Loads PT and PL

PT frac14 P cos q

PL frac14 P sin q

Transportation and Erection of Pressure Vessels 711

bull Moment on flange M

M frac14 PTB

bull Moment on head M

M frac14 PTethBthorn JTHORNbull Moment on vessel M

M frac14 PTG

bull Radial load on head and nozzle frac14 PL

Side Flange Lug

bull Loads PT and PL

PL frac14 P cos q

PT frac14 P sin q

bull Moment on flange M

M frac14 PLB

bull Longitudinal moment on shell Mx

M frac14 PTethBthorn JTHORNbull Radial load on shell and nozzle frac14 PT

712 Pressure Vessel Design Manual

Procedure 10-10 Miscellaneous

Figure 10-7 Fundamental handling operations Reprinted by permission of the Babcock and Wilcox Companya McDermott Company

Transportation and Erection of Pressure Vessels 713

Figure 10-8 Loads on wire rope for various sheave configurations

714 Pressure Vessel Design Manual

Table 10-14Forged Steel Shackles

Dimensions in Inches

Size D (in)Safe Load

(lb)D (min) A

Tolerance

A DimB B (min) C G

Tolerance C

and G DimE F

frac14 475 73232 153232 11616 51616 93232 1⅛ ⅞ 11616 frac34 111616

⅜ 1050 113232 213232 11616 71616 256464 171616 1frac14 ⅛ 1 313232

71616 1450 256464 233232 11616 frac12 296464 1111616 171616 ⅛ 1⅛ 111616

frac12 1900 296464 131616 11616 ⅝ 91616 1⅞ 1⅝ ⅛ 1⅜ 151616

⅝ 2950 91616 111616 11616 frac34 436464 2133232 2 ⅛ 1⅝ 191616

frac34 4250 436464 1frac14 11616 ⅞ 253232 2273232 2⅜ frac14 2 1⅞

⅞ 5750 253232 171616 11616 1 576464 351616 2131616 frac14 2frac14 2⅛

1 7550 576464 1111616 11616 1⅛ 113232 3frac34 331616 frac14 2frac12 2⅜

1⅛ 8900 113232 1271616 ⅛ 1frac14 176464 4frac14 391616 frac14 2frac34 2⅝

1frac14 11000 176464 213232 ⅛ 1⅜ 1156464 4111616 3151616 frac14 3⅛ 3

1⅜ 13300 1156464 2frac14 ⅛ 1frac12 1113232 5frac14 471616 frac14 3frac12 351616

1frac12 15600 1113232 2⅜ ⅛ 1⅝ 1296464 5frac34 4⅞ frac14 3frac34 3⅝

1frac34 21500 1356464 2⅞ ⅛ 2 1253232 7 5frac34 frac14 4frac14 4⅛

2 28100 1253232 3frac14 ⅛ 2frac14 216464 7frac34 6frac34 frac14 5frac14 5

2frac14 36000 216464 3frac34 ⅛ 2frac12 2156464 9frac14 7⅛ frac34 5frac12 5frac14

2frac12 45100 2156464 4⅛ ⅛ 2frac34 2153232 10frac12 8 frac34 6frac14 6

3 64700 2111616 5 ⅛ 3frac14 2293232 13 11frac12 frac34 6frac34 6frac12

Notes

For shackles with safe loads greater than the maximum shown use CrosbyndashLaughlin (The Crosby Group Div of American Hoist amp Derrick Co Tulsa

OK 74101) Skookum (Skookum Co Inc Portland OR 97203) or equal with an ultimate strength at least 5 times the safe working load

Allowable loads are lower than OSHA requirements tabulated in Section 1926251 Table H-19

Transportation and Erection of Pressure Vessels 715

Figure 10-9 Wire rope end configurations

716 Pressure Vessel Design Manual

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 2: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

676 Pressure Vessel Design Manual

Loads

bull Overall load factor KL

KL frac14 Ki thorn Ks

bull Design lift weight WL

WL frac14 KLWE

bull Tailing load T

T frac14 WL cos q L2

cos q L1 thorn sin q L4

At q frac14 0 initial pick point vessel horizontal

T frac14 WLL2

L1and P frac14 WLL3

L1or P frac14 WL T

At q frac14 90 vessel vertical

T frac14 0 and P frac14 WL

bull Calculate the loads for various lift angles q

Lift angles shown are suggested only to help find theworst case for loads T and P

bull Maximum transverse load per lug PT

PT frac14 P cos qnL

bull Maximum longitudinal load per lug PL

PL frac14 P sin q

nL

bull Radial loads in shell due to sling angles qy or qH

Pr frac14 PT tan qH Vessel in horizontal

Pr frac14 PL tan qv Vessel in vertical

bull Tailing loads fL and fr

fL frac14 T cos q

fr frac14 T sin q

bull Longitudinal bending stress in vessel shell sb

sb frac14 4M

pD2mt

Maximum moment occurs at initial pick when q frac14 0 Seecases 1 through 4 for maximum moment M

Note

If the tailing point is below the CG as is the casewhen a tailing frame or sled is used the tail supportcould see the entire weight of the vessel as erectionapproaches 90

Transportation and Erection of Pressure Vessels 677

Dimensions and Moments for Various VesselConfigurations

Case 1 Top Head Lug Top Head Trunnion or TopHead Flange

M1 frac14 WLL3L2

L1

Case 2 Side Lug or Side Trunnion

w5 frac14 WL

L5

M1 frac14 w5

8L21

ethL1 thorn L4THORN2ethL1 L4THORN2

M2 frac14 w5L24

2

Case 3 Cone Lug or Trunnion

w5 frac14 WL1

L4w6 frac14 WL2

L1

M1 frac14 w6

8L21

ethL1 thorn L4THORN2ethL1 L4THORN2

M2 frac14 w5L24

2

Case 4 Cone Lug or Trunnion with IntermediateSkirt Tail

w5 frac14 WL1

L4w6 frac14 WL2

L1 thorn L5

M1 frac14 w6L25

2

M2 frac14 w5L24

2

M3 frac14M1 thornM3

2

w6L2

1

8

678 Pressure Vessel Design Manual

Find Lifting Loads at Any Lift Angle for a Symmetrical Horizontal Drum

Dimensions and Forces

Example

Steam drum

WL frac14 600 kips

L1 frac14 80 ft

L4 frac14 5 ft

L1

2L4frac14 80

10frac14 8

Free-Body Diagram

Curve is based on the following equation

PWL

frac14 L4

L1ethtan qTHORN thorn 05

Results from curve

q frac14 15 frac14 516 q frac14 30 frac14 536 q frac14 45 frac14 563 q frac14 60 frac14 608 q frac14 75 frac14 733

Transportation and Erection of Pressure Vessels 679

Sample Problem

Case 1 L3 gt L2

L1 frac14 280 thorn 2833 thorn 1 frac14 28383 ftL2 frac14 28383 ndash 162 frac14 12183 ftL3 frac14 161 thorn 1 frac14 162 ftL4 frac14 10 ft

Case 2 L3 lt L2

L1 frac14 28383 ftL2 frac14 162 ftL3 frac14 12183 ftL4 frac14 10 ft

680 Pressure Vessel Design Manual

Procedure 10-5 Design of Tail Beams Lugs and Base Ring Details

Transportation and Erection of Pressure Vessels 681

682 Pressure Vessel Design Manual

Base Ring Design Check

C1 frac14 SAYSA

C2 frac14 WB C1

I frac14 SAY2 thorn SIo C1SAY

RB frac14 inside radius of base platethorn C2

Internal Forces and Moments in the Skirt BaseDuring Lifting

To determine the stresses in the base ring as a result ofthe tailing load the designer must find the coefficients Krand KT based on angle a as shown and the type of stiff-ening in the skirtbase ring configuration

M frac14 KrTRB

Tt frac14 KTT

Transportation and Erection of Pressure Vessels 683

SkirtTail Beam Calculations

Tail Beam

bull Tailing loads fL and fr

fL frac14 T cos q

fr frac14 T sin q

bull Maximum bending moment Mb

Mb frac14 xfr thorn yfL

bull Maximum bending stress sb

sb frac14 Mb

Z

Tail Beam Bolts

bull Shear load fs

fs frac14 05frn

bull Shear stress s

s frac14 fsAb

bull Tension force ft

Note y1 frac14 mean skirt diameter or centerline of boltgroup if a filler plate is used

ft frac14 Mb

y1

Skirt

bull Tension stress in bolts sT

sT frac14 fTNbAb

bull Compressive force in skirt fc

fc frac14 fL thorn ft

bull Skirt crippling is dependent on the base configura-tion and lengths l1 through l4

N frac14 1 in if web stiffeners are not usedN frac14 width of top flange of tail beam if web stiffeners are

used

bull Compressive stress in skirt sc

sc frac14 fctskln

bull Check shear stress s in base to skirt weld

s frac14 frpDsk 0707w4

Base Plate

bull Bending moment in base plate Mb

Mb frac14 KrTRB

bull Find tangential force Tt

Tt frac14 KTT

bull Total combined stress s

sTfrac14 MbC1

Ithorn Tt

A

tension

sCfrac14 MbC2

I Tt

A

compression

684 Pressure Vessel Design Manual

Size Base Ring Stiffeners

F1 frac14 force in strut or tailing beam lbF1 is (thorn) for tension and (ndash) for compression

bull Tension stress sT

sT frac14 FnAs

bull Critical buckling stress per AISC scr

Cc frac14ffiffiffiffiffiffiffiffi2p2

Fy

s

scr frac141

KL2s=r

2C2

c

Fy

eth5=3THORN thorn etheth3KLs=rTHORN=8CcTHORN ethKLs=rTHORN3=8C3

c

bull Actual compressive stress sc

sc frac14 FnAs

Note Evaluate all struts as tension and compressionmembers regardless of sign because when the vessel issitting on the ground the loads are the reverse of the signsshown

Two Point

F1 frac14 eththornTHORN05T

Three Point

F1 frac14 eththornTHORN0453TF2 frac14 ethTHORN0329T

Parallel BeamsStruts

F1 frac14 eththornTHORN025T

Four Point

F1 frac14 eththornTHORN05TF2 frac14 ethTHORN0273TF3 frac14 eththornTHORN0273T

Transportation and Erection of Pressure Vessels 685

Table 10-7Internal moment coefficients for base ring

One Point Two Point Three Point Four Point

Angle a Kr KT Kr KT Kr KT Kr KT

0 02387 e02387 00795 e02387 e00229 01651 00093 e01156

5 01961 e02802 00587 e02584 e00148 01708 00048 e01188

10 01555 e03171 00398 e02736 e00067 01764 00012 e01188

15 01174 e03492 00229 e02845 e00055 01747 e00015 e01155

20 00819 e03763 00043 e02908 e00042 01729 e00033 e01089

25 00493 e03983 e00042 e02926 00028 01640 e00043 e00993

30 00197 e04151 e00145 e02900 00098 01551 e00045 e00867

35 e00067 e04266 e00225 e02831 00103 01397 e00041 e00713

40 e00299 e04328 e00284 e02721 00107 01242 e00031 e00534

45 e00497 e04340 e00321 e02571 00093 01032 e00017 e00333

50 e00663 e04301 e00335 e02385 00078 00821 e00001 e00112

55 e00796 e04214 e00340 e02165 00052 00567 00017 00126

60 e00897 e04080 e00324 e01915 00025 00313 00033 00376

65 e00967 e03904 e00293 e01638 00031 00031 00046 00636

70 e01008 e03688 e00250 e01338 00037 e00252 00055 00901

75 e01020 e03435 e00197 e01020 e00028 e00548 00056 01167

80 e01006 e03150 e00136 e00688 e00092 e00843 00049 01431

85 e00968 e02837 e00069 e00346 e00107 e01134 00031 01688

90 e00908 e02500 0 0 e00121 e01425 0 01935

95 e00830 e02144 00069 00416 e00114 e01694 e00031 e01688

100 e00735 e01774 00135 00688 e00107 e01963 e00049 e01431

105 e00627 e01394 00198 01020 e00074 e02194 e00057 e01167

110 e00508 e01011 00250 01338 e00033 e02425 e00055 e00901

115 e00381 e00627 00293 01638 00041 e02603 e00046 e00636

120 e00250 e00250 00324 01915 00114 e02781 e00033 e00376

125 e00016 00118 00340 02165 00107 e01060 e00017 e00126

130 00116 00471 00335 02385 00100 00661 00001 00112

135 00145 00804 00321 02571 00083 00448 00017 00333

140 00268 01115 00284 02721 00066 00234 00031 00534

145 00382 01398 00225 02831 00045 00104 00041 00713

150 00486 01551 00145 02900 00024 e00026 00045 00867

155 00577 01870 00042 02926 e00005 e00213 00043 00993

160 00654 02053 e00083 02908 e00015 e00399 00033 01089

165 00715 02198 e00225 02845 e00028 e00484 00015 01155

170 00760 02301 e00398 02736 e00041 e00569 e00012 01188

175 00787 02366 e00587 02584 e00046 e00597 e00048 01188

180 00796 02387 e00795 02387 e00051 e00626 e00093 01156

686 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 687

Design of Vessel for Choker (Cinch) Lift at Base

bull Uniform load p

p frac14 TR

bull Moments in ring at points A and C

MA frac14 01271TR

Mc frac14 00723TR

bull Tensioncompression forces in ring at points Aand C

TA frac14 06421T

Tc frac14 12232T

bull Combined stress at point A inside of ring

sA frac14 TA

AthornMA

Zin

bull Combined stress at point A outside of ring

sA frac14 TA

A MA

Zout

bull Combined stress at point C inside of ring

sc frac14 Tc

AthornMc

Zin

bull Combined stress at point C outside of ring

sc frac14 Tc

A Mc

Zout

Note Assume that the choker is attached immediately atthe base ring even though this may be impossible toachieve Then use the properties of the base ring for Aand Z

From R J Roark Formulas for Stress and Strain 5thEdition McGraw-Hill Book Co Table 17 Cases 12 and18 combined

688 Pressure Vessel Design Manual

Design of Tailing Lugs

Table 10-8Dimensions for tailing lugs

Tail Load (kips) tL tP E Ro RP D1 e

lt10 None required

10 to 20 075 NR 3 4 NR 2375 NR

21 to 40 075 0375 3 4 35 2375 03125

41 to 70 1 05 3 4 35 2375 03125

71 to 100 1 05 4 5 45 34375 03125

101 to 130 15 05 4 5 45 34375 03125

131 to 170 1625 075 4 5 45 34375 0375

171 to 210 1625 075 5 6 55 45 0375

211 to 250 2 075 5 6 55 45 04375

251 to 300 225 1 5 6 55 45 05

gt300 Special design required

Transportation and Erection of Pressure Vessels 689

Formulas

The tailing lug is designed like all other lugs Theforces are determined from the tailing load T calcu-lated per this procedure The ideal position for thetailing lug is to be as close as possible to the baseplate for stiffness and transmitting these loads throughthe base to the skirt The option of using a tailing lugversus a tailing beam is the designerrsquos choice Eithercan accommodate internal skirt rings stiffeners andstruts

Design as follows

bull Area required at pin hole Ar

Ar frac14 TFs

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN-ethD1tLTHORN

bull Bending moment in lug Mb

Mb frac14 fLE

bull Section modulus of lug Z

Z frac14 tLA2

6bull Bending stress in lug sb

sb frac14 Mb

Zbull Area required at pin hole for bearing Ar

Ar frac14 TFp

bull Area available at pin hole for bearing Aa

Aa frac14 D2tL

Note Substitute tL thorn 2tp for tL in the preceding equationsif pad eyes are used

690 Pressure Vessel Design Manual

Procedure 10-6 Design of Top Head and Cone Lifting Lugs

Design of Top HeadCone Lug

Dimensions

NT frac14 B2

Athorn 2B

LT frac14 Ethorn B NT

q1 frac14 arctan2L1

A

L2 frac14 L1

sin q1

q2 frac14 arcsinR3

L2

q3 frac14 q1 thorn q2

L3 frac14 R3

sin q3

L4 frac14 05A L1 05D3

tan q3

L5 frac14 05A L1 Ctan q3

Transportation and Erection of Pressure Vessels 691

Lug

bull Maximum bending moment in lug ML

ML frac14 PE

bull Section modulus lug Z

Z frac14 A2tL6

bull Bending stress lug sb

sb frac14 ML

Z

bull Thickness of lug required tL

tL frac14 6ML

A2Fb

bull Tension at edge of pad sT

sT frac14 PL2L4tL

bull Net section at pin hole Ap

Ap frac14 2L3tL thorn 2tpD3 D1

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at top of lug An

An frac14 tL

R3 D1

2

thorn 2tp

D3 D1

2

bull Shear stress at top of lug s

s frac14 PTAn

bull Pin bearing stress sp

sp frac14 PTD3

tL thorn 2tp

Check Welds

bull Polar moment of inertia Jw

Re-pad Jw frac14 ethA1 thorn L6THORN36

Lug Jw frac14 ethAthorn 2BTHORN312

B2ethAthorn BTHORN2ethAthorn 2BTHORN

bull Moment M1

M1 frac14 LTPT

Lug Weld

bull Find loads on weldsbull Transverse shear due to PT f1

f1 frac14 PTAthorn 2B

bull Transverse shear due to M1 f2

f2 frac14 M1ethB NTTHORNJw

bull Longitudinal shear due to M1 f3

f3 frac14 M1BJw

bull Combined shear load fr

fr frac14ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiethf1 thorn f2THORN2thornf23

q

692 Pressure Vessel Design Manual

bull Size of weld required w1

w1 frac14 fr0707Fs

Note If w1 exceeds the shell plate thickness then a re-padmust be used

Re-pad Weld

bull Moment M2

M2 frac14 PTethEthorn 05L6THORN

bull Transverse shear due to PT f1

f1 frac14 PT2A1 thorn 2L6

bull Transverse shear due to M2 f2

f2 frac14 05M2L6

Jw

bull Longitudinal shear due to M2 f3

f3 frac14 M2L6

Jw

bull Combined shear load fr

fr frac14ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiethf1 thorn f2THORN2thornf23

q

bull Size of weld required w1

w2 frac14 fr0707Fs

Pad Eye Weld

bull Unit shear load on pad f4

f4 frac14 PTtppD2

2tp thorn tL

bull Size of weld required w3

w3 frac14 f40707Fs

Top Head Lug for Large Loads

Transportation and Erection of Pressure Vessels 693

Table 10-9Dimensions for top head or cone lugs

694 Pressure Vessel Design Manual

Procedure 10-7 Design of Flange Lugs

Transportation and Erection of Pressure Vessels 695

Table 10-10Flange lug dimensions

Load Capacity (tons) D1 tL tb A B G H E

50 338 2 2 8 11 12 30 9

100 5 3 3 14 12 24 36 9

200 6 4 4 18 14 30 40 10

400 8 5 5 20 16 36 46 11

600 9 6 6 24 22 40 58 16

800 10 9 7 28 24 42 60 17

Table 10-11Bolt properties

Bolt Size Ab As Tb

05e13 0196 0112 12

0625e11 0307 0199 19

075e10 0442 0309 28

0875e9 0601 0446 39

1e8 0785 0605 51

1125e8 0994 079 56

125e8 1227 1 71

1375e8 1485 1233 85

15e8 1767 1492 103

175e8 2405 2082 182

2e8 3142 2771 243

225e8 3976 3557 311

25e8 4909 4442 389

275e8 594 543 418

3e8 7069 6506 501

325e8 83 7686 592

35e8 962 896 690

375e8 1104 1034 796

4e8 1257 1181 910

Table 10-12Values of Su

Bolt Dia db Material Su (ksi)

lt 1 A-325 120

1125e15 A-325 105

1625e25 A-193-B7 125

2625e4 A-193-B7 110

696 Pressure Vessel Design Manual

Top Flange Lug

PL frac14 P sin q

PT frac14 P cos q

PE frac14 PLA

thorn 3PTe

A2

M1frac14 PTB

M2frac14 PT(B thorn J)

M3frac14 PTe

Mufrac14 Xn cos an Nb

Mafrac14 MuM1PMu

Xn frac14 Rb cos an

yn frac14 Rb sin an

Side Flange Lug

Fn frac14 Ma

XnNb

fs frac14 PTN

sT frac14 FnAs

Fs frac14 15 ksi

1 sTAb

Tb

As frac14 07854 ethd 01218THORN2

s frac14 fsAs

lt Fs

Tb frac14 075uAs

06Fy lt FT lt 40 ksi

Transportation and Erection of Pressure Vessels 697

Design Process

1 Determine loads2 Check of lug

a Shear at pin holeb Bending of lugc Bearing at pin hole

3 Check of base plate4 Check of nozzle flange5 Check of flange bolting6 Check of local load at nozzle to head or shell

junction

Step 1 Determine loads

bull Determine loads PT and PL for various lift angles qbull Determine uniform loads w1 and w2 for variousangles q

bull Using w1 and w2 solve for worst case of combinedload PE

bull Determine worst-case bending moment in lug M3

Step 2 Check of lug

a Shear at pin holebull Area required Ar

Ar frac14 PEFs

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN

b Bending of lug due to M3

bull Section modulus Z

Z frac14 tLA2

6

bull Bending stress lug sb

sb frac14 M3

Z

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFp

bull Bearing available Aa

Aa frac14 D2tL

Maximum Tension in Lug

Check of Nozzle Flange

bull Unit load w

w frac14 PEpBc

bull Bending moment M

M frac14 whDbull Bending stress sb

sb frac14 6M

t2f

698 Pressure Vessel Design Manual

Bolt Loads for Rectangular Lugs Design of Full Circular Base Plate for Lug

bull If a full circular plate is used in lieu of a rectangularplate the following evaluation may be used

bull Unit load on bolt circle w

w frac14 PEpBc

bull Edge distance from point of load hp

hp frac14 BC tL2

bull Bending moment M

M frac14 whp

bull Bending stress sb

sb frac14 6M

t2b

bull Check bolting same as rectangular flange

Transportation and Erection of Pressure Vessels 699

Design of Lug Base Plate

(From R J Roark Formulas for Stress and StrainMcGraw-Hill Book Co 4th Edition Table III Case 34)

bull Uniform load w

w frac14 PEA

bull End reaction R1

R1 frac14 wA2

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

bull Moment at midspan Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

bull Thickness required tb

tb frac14ffiffiffiffiffiffiffiffiffi6Mx

GFb

s

700 Pressure Vessel Design Manual

Check of Bolts

Case 1 Bolts on Centerline Case 2 Bolts Straddle Centerline

Bolt 1 2 3 4 5 Bolt 1 2 3 4 5

an an

xn xn

yn yn

Nb Nb

Mu Mu

Ma Ma

Fn Fn

sT sT

Fs Fs

Transportation and Erection of Pressure Vessels 701

Sample Problem Top Flange Lug

GivenL1 frac14 90 ftL2 frac14 50 ftL3 frac14 40 ftL4 frac14 95 ft

Fy bolting frac14 75 ksiFy lug frac14 36 ksi

Fy flange frac14 36 ksiFs frac14 04(36) frac14 144 ksiFT frac14 06(36) frac14 216 ksiFb frac14 066(36) frac14 2376 ksiWL frac14 1200 kipsBc frac14 54 inRc frac14 27 inB frac14 22 intb frac14 6 intL frac14 6 intf frac14 11 in

D1 frac14 9 in

D2 frac14 8 in

Bolt size frac14 3-14-8 UNC

Ab frac14 83 in2

As frac14 7686 in2

Tb frac14 592 kips

Su frac14 110 ksi

e frac14 16 in

G frac14 40 in

A frac14 24 in

hD frac14 95 in

b frac14 05ethBc ATHORN

Results

PT max frac14 537 kips q frac14 10

PL max frac141200 kips q frac14 90

PE max frac141277 kips q frac14 40

sT bolt max frac14 2011 ksi 40 ksi

s bolt max frac14 698 ksi 1077 ksi

702 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 703

10 Check Lug

a Shear at pin hole

bull Area required Ar

Ar frac14 PEFS

frac14 1277144

frac14 8868 in2

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN frac14 eth24$6THORN eth9$6THORN frac14 90 in2

b Bending of lug due to M3

bull Maximum moment M3

M3 frac14 PTe frac14 537eth16THORN frac14 8592 in kips

bull Section modulus Z

Z frac14 tLA2

6frac14

6$242

6

frac14 576 in3

bull Bending stress lug sb

sb frac14 M3

Zfrac14 8592

576frac14 1491 ksi

bull Thickness required tL

tL frac14 6M

FbA2 frac14 6$85922376eth242THORN frac14 376 in

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFP

frac14 1277324

frac14 3941 in2

bull Bearing available Aa

Aa frac14 D2tL frac14 8$6 frac14 48 in2

20 Check Lug Base Plate

bull Uniform load w

w frac14 PEA

frac14 127724

frac14 532kipsin

bull End reaction R1

R1 frac14 PE2

frac14 12772

frac14 6385 kips

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

Ma frac14 0985eth8748 2496thorn 768thorn 2304 17 496THORNfrac14 8049 in kips

bull Moment at mid Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

Mx frac14 8049thorn 17 240 3831

frac14 5360 in kips

bull Section modulus Z

Z frac14t2bG

6

frac1462$40

6

frac14 240 in3

bull Bending stress sb

sb frac14 Mx

Zfrac14 5360

240frac14 2233 ksi

bull Allowable bending stress Fb

Fb frac14 066Fy frac14 06636 frac14 2376 ksi

30 Check of Vessel Flange

bull Unit load w

w frac14 PEpBc

frac14 1277p54

frac14 752kipsin

bull Bending moment Mb

Mb frac14 whD frac14 752eth92THORN frac14 6925 in kips

bull Bending stress sb

sb frac14 6Mb

t2ffrac14 frac126eth6925THORN

11252frac14 328 ksi

704 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 705

Procedure 10-8 Design of Trunnions

Lug Dimensions

Dimensions for Trunnion

Type 1 Trunnion and Fixed Lug

Type 2 Trunnion and Rotating Lug

Type 3 Trunnion Only

706 Pressure Vessel Design Manual

Type 1 Trunnion and Fixed Lug

There are four checks to be performed

1 Check lug2 Check trunnion3 Check welds4 Check vessel shell

Check Lug

Transverse (vessel horizontal)

M frac14 PTE and Z frac14 4R2otL6

Therefore

tL frac14 15PTE

R2oFb

Longitudinal (vessel vertical)

bull Cross-sectional area at pin hole Ap

Ap frac14 213tL thorn 2tpethD3 D1

bull Cross-sectional area at top of lug An

An frac14 tL

RT D1

2

thorn 2tp

D3 D1

2

bull Shear stress s

s frac14 PLAP

or s frac14 PLAn

bull Pin bearing stress sp

sp frac14 PLD2

tL thorn 2tp

Check Trunnion

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Torsional moment MT (vessel horizontal)

MT frac14 PTE

bull Bending stress sb

sb frac14 ML

Z

bull Torsional shear stress sT

sT frac14 MT

2pRnto

Check Welds

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Polar moment of inertia Jw

Jw frac14 2pR3n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Torsional shear stress in weld sT

sT frac14 MTRn

Jw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 2 Trunnion and Rotating Lug

bull Net section at Section A-A Ap

Ap frac14 213tL thorn 2tpD3 D1

Transportation and Erection of Pressure Vessels 707

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at Section B-B An

An frac14 2tLethRo RiTHORNbull Shear stress at trunnion s

s frac14 PLAn

bull Minimum bearing contact angle for lug at trun-nion qB

qB frac14 eth159PLTHORNRntLFp

bull Pin hole bearing stress sp

sp frac14 PLD3

tL thorn 2tp

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Swbull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 3 Trunnion Only

Vessel Vertical

bull Longitudinal moment ML

ML frac14 PLe

bull Bending stress in trunnion sb

sb frac14 ML

Z

Vessel Horizontal

bull Circumferential moment Mc

Mc frac14 PTe

bull Bending stress in trunnion sb

sb frac14 Mc

Z

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

708 Pressure Vessel Design Manual

TYPE 1 TYPE 2

W

K

DIA

A

DIA

= F

DIA

= M

K

C

KT

2 X 125 DIAVENT HOLES

DIA

A

125

D

250

DIA

= F

W

K

B

NUTS WELDED

GRIND WELDSMOOTH

DIA

= M

K

E

KT

2 X 125 DIAVENT HOLES

Table 10-13Dimensions of trunnions

Allowable Load Tons Pipe Size A C D E F M N T W Weight Lbs

1 0-5 4 Std 4 - - 85 8 - 05 025 30

2 5-10 6 Std 5 - - 105 12 - 05 025 55

3 10-15 8 Std 6 0625 8 125 15 4 05 0375 90

4 15-25 10 Std 6 0625 8 15 18 4 075 0375 150

5 25-35 12 Sch 80 6 075 8 17 21 4 075 0375 240

6 35-45 12 Sch 80 6 075 8 17 21 4 075 05 240

7 45-60 14 Sch 80 6 075 8 18 24 8 1 05 375

8 60-75 14 Sch 80 7 0875 8 18 24 8 1 0625 400

9 75-100 16 Sch 80 7 0875 8 25 27 8 1 0625 625

10 100-125 16 Sch 80 7 0875 8 25 27 8 1125 0875 660

11 125-150 18 Sch 80 7 0875 8 27 30 12 1125 0875 850

12 150-200 18 Sch 80 8 0875 8 27 30 12 1125 1 875

13 200-250 20 Sch 80 8 0875 10 30 36 16 125 1 1000

14 300 24 Sch 80 8 1 10 34 36 16 125 1125 1440

15 400 24 Sch 80 8 1 10 34 40 20 1375 1125 1675

16 500 30 125 10 125 12 42 48 20 1375 1375 2400

17 600 36 125 10 125 12 48 60 24 15 1375 3600

Notes

1 Do not use re-pads for cyclic service

2 B frac14 D - 125

3 K frac14 Pipe Wall Thk

4 Dimensions are given for reference only All loadings and stress shall be checked prior to use

Transportation and Erection of Pressure Vessels 709

Procedure 10-9 Local Loads in Shell Due to Erection Forces

Trunnions

Fixed Lug Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Maximum torsional moment MT

MT frac14 PTE

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

Rotating Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

TrunniondNo Lug

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

710 Pressure Vessel Design Manual

Side Lugs Notes

1 Optional internal pipe Remove after erection2 Radial load Pr is the axial load in the internal pipe

stiffener if used in lieu of radial load in shell3 Circumferential ring stiffeners are optional at these

elevations

bull Circumferential moment Mc

Mc frac14 PTe

bull Longitudinal moment Mx

Mx frac14 PLe

bull Load on weld group f

f frac14 PTELT

bull Radial loads Pr and Pa

Pr frac14 PLe

Pa frac14 PL sin f

Top Flange Lug

bull Loads PT and PL

PT frac14 P cos q

PL frac14 P sin q

Transportation and Erection of Pressure Vessels 711

bull Moment on flange M

M frac14 PTB

bull Moment on head M

M frac14 PTethBthorn JTHORNbull Moment on vessel M

M frac14 PTG

bull Radial load on head and nozzle frac14 PL

Side Flange Lug

bull Loads PT and PL

PL frac14 P cos q

PT frac14 P sin q

bull Moment on flange M

M frac14 PLB

bull Longitudinal moment on shell Mx

M frac14 PTethBthorn JTHORNbull Radial load on shell and nozzle frac14 PT

712 Pressure Vessel Design Manual

Procedure 10-10 Miscellaneous

Figure 10-7 Fundamental handling operations Reprinted by permission of the Babcock and Wilcox Companya McDermott Company

Transportation and Erection of Pressure Vessels 713

Figure 10-8 Loads on wire rope for various sheave configurations

714 Pressure Vessel Design Manual

Table 10-14Forged Steel Shackles

Dimensions in Inches

Size D (in)Safe Load

(lb)D (min) A

Tolerance

A DimB B (min) C G

Tolerance C

and G DimE F

frac14 475 73232 153232 11616 51616 93232 1⅛ ⅞ 11616 frac34 111616

⅜ 1050 113232 213232 11616 71616 256464 171616 1frac14 ⅛ 1 313232

71616 1450 256464 233232 11616 frac12 296464 1111616 171616 ⅛ 1⅛ 111616

frac12 1900 296464 131616 11616 ⅝ 91616 1⅞ 1⅝ ⅛ 1⅜ 151616

⅝ 2950 91616 111616 11616 frac34 436464 2133232 2 ⅛ 1⅝ 191616

frac34 4250 436464 1frac14 11616 ⅞ 253232 2273232 2⅜ frac14 2 1⅞

⅞ 5750 253232 171616 11616 1 576464 351616 2131616 frac14 2frac14 2⅛

1 7550 576464 1111616 11616 1⅛ 113232 3frac34 331616 frac14 2frac12 2⅜

1⅛ 8900 113232 1271616 ⅛ 1frac14 176464 4frac14 391616 frac14 2frac34 2⅝

1frac14 11000 176464 213232 ⅛ 1⅜ 1156464 4111616 3151616 frac14 3⅛ 3

1⅜ 13300 1156464 2frac14 ⅛ 1frac12 1113232 5frac14 471616 frac14 3frac12 351616

1frac12 15600 1113232 2⅜ ⅛ 1⅝ 1296464 5frac34 4⅞ frac14 3frac34 3⅝

1frac34 21500 1356464 2⅞ ⅛ 2 1253232 7 5frac34 frac14 4frac14 4⅛

2 28100 1253232 3frac14 ⅛ 2frac14 216464 7frac34 6frac34 frac14 5frac14 5

2frac14 36000 216464 3frac34 ⅛ 2frac12 2156464 9frac14 7⅛ frac34 5frac12 5frac14

2frac12 45100 2156464 4⅛ ⅛ 2frac34 2153232 10frac12 8 frac34 6frac14 6

3 64700 2111616 5 ⅛ 3frac14 2293232 13 11frac12 frac34 6frac34 6frac12

Notes

For shackles with safe loads greater than the maximum shown use CrosbyndashLaughlin (The Crosby Group Div of American Hoist amp Derrick Co Tulsa

OK 74101) Skookum (Skookum Co Inc Portland OR 97203) or equal with an ultimate strength at least 5 times the safe working load

Allowable loads are lower than OSHA requirements tabulated in Section 1926251 Table H-19

Transportation and Erection of Pressure Vessels 715

Figure 10-9 Wire rope end configurations

716 Pressure Vessel Design Manual

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 3: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

Loads

bull Overall load factor KL

KL frac14 Ki thorn Ks

bull Design lift weight WL

WL frac14 KLWE

bull Tailing load T

T frac14 WL cos q L2

cos q L1 thorn sin q L4

At q frac14 0 initial pick point vessel horizontal

T frac14 WLL2

L1and P frac14 WLL3

L1or P frac14 WL T

At q frac14 90 vessel vertical

T frac14 0 and P frac14 WL

bull Calculate the loads for various lift angles q

Lift angles shown are suggested only to help find theworst case for loads T and P

bull Maximum transverse load per lug PT

PT frac14 P cos qnL

bull Maximum longitudinal load per lug PL

PL frac14 P sin q

nL

bull Radial loads in shell due to sling angles qy or qH

Pr frac14 PT tan qH Vessel in horizontal

Pr frac14 PL tan qv Vessel in vertical

bull Tailing loads fL and fr

fL frac14 T cos q

fr frac14 T sin q

bull Longitudinal bending stress in vessel shell sb

sb frac14 4M

pD2mt

Maximum moment occurs at initial pick when q frac14 0 Seecases 1 through 4 for maximum moment M

Note

If the tailing point is below the CG as is the casewhen a tailing frame or sled is used the tail supportcould see the entire weight of the vessel as erectionapproaches 90

Transportation and Erection of Pressure Vessels 677

Dimensions and Moments for Various VesselConfigurations

Case 1 Top Head Lug Top Head Trunnion or TopHead Flange

M1 frac14 WLL3L2

L1

Case 2 Side Lug or Side Trunnion

w5 frac14 WL

L5

M1 frac14 w5

8L21

ethL1 thorn L4THORN2ethL1 L4THORN2

M2 frac14 w5L24

2

Case 3 Cone Lug or Trunnion

w5 frac14 WL1

L4w6 frac14 WL2

L1

M1 frac14 w6

8L21

ethL1 thorn L4THORN2ethL1 L4THORN2

M2 frac14 w5L24

2

Case 4 Cone Lug or Trunnion with IntermediateSkirt Tail

w5 frac14 WL1

L4w6 frac14 WL2

L1 thorn L5

M1 frac14 w6L25

2

M2 frac14 w5L24

2

M3 frac14M1 thornM3

2

w6L2

1

8

678 Pressure Vessel Design Manual

Find Lifting Loads at Any Lift Angle for a Symmetrical Horizontal Drum

Dimensions and Forces

Example

Steam drum

WL frac14 600 kips

L1 frac14 80 ft

L4 frac14 5 ft

L1

2L4frac14 80

10frac14 8

Free-Body Diagram

Curve is based on the following equation

PWL

frac14 L4

L1ethtan qTHORN thorn 05

Results from curve

q frac14 15 frac14 516 q frac14 30 frac14 536 q frac14 45 frac14 563 q frac14 60 frac14 608 q frac14 75 frac14 733

Transportation and Erection of Pressure Vessels 679

Sample Problem

Case 1 L3 gt L2

L1 frac14 280 thorn 2833 thorn 1 frac14 28383 ftL2 frac14 28383 ndash 162 frac14 12183 ftL3 frac14 161 thorn 1 frac14 162 ftL4 frac14 10 ft

Case 2 L3 lt L2

L1 frac14 28383 ftL2 frac14 162 ftL3 frac14 12183 ftL4 frac14 10 ft

680 Pressure Vessel Design Manual

Procedure 10-5 Design of Tail Beams Lugs and Base Ring Details

Transportation and Erection of Pressure Vessels 681

682 Pressure Vessel Design Manual

Base Ring Design Check

C1 frac14 SAYSA

C2 frac14 WB C1

I frac14 SAY2 thorn SIo C1SAY

RB frac14 inside radius of base platethorn C2

Internal Forces and Moments in the Skirt BaseDuring Lifting

To determine the stresses in the base ring as a result ofthe tailing load the designer must find the coefficients Krand KT based on angle a as shown and the type of stiff-ening in the skirtbase ring configuration

M frac14 KrTRB

Tt frac14 KTT

Transportation and Erection of Pressure Vessels 683

SkirtTail Beam Calculations

Tail Beam

bull Tailing loads fL and fr

fL frac14 T cos q

fr frac14 T sin q

bull Maximum bending moment Mb

Mb frac14 xfr thorn yfL

bull Maximum bending stress sb

sb frac14 Mb

Z

Tail Beam Bolts

bull Shear load fs

fs frac14 05frn

bull Shear stress s

s frac14 fsAb

bull Tension force ft

Note y1 frac14 mean skirt diameter or centerline of boltgroup if a filler plate is used

ft frac14 Mb

y1

Skirt

bull Tension stress in bolts sT

sT frac14 fTNbAb

bull Compressive force in skirt fc

fc frac14 fL thorn ft

bull Skirt crippling is dependent on the base configura-tion and lengths l1 through l4

N frac14 1 in if web stiffeners are not usedN frac14 width of top flange of tail beam if web stiffeners are

used

bull Compressive stress in skirt sc

sc frac14 fctskln

bull Check shear stress s in base to skirt weld

s frac14 frpDsk 0707w4

Base Plate

bull Bending moment in base plate Mb

Mb frac14 KrTRB

bull Find tangential force Tt

Tt frac14 KTT

bull Total combined stress s

sTfrac14 MbC1

Ithorn Tt

A

tension

sCfrac14 MbC2

I Tt

A

compression

684 Pressure Vessel Design Manual

Size Base Ring Stiffeners

F1 frac14 force in strut or tailing beam lbF1 is (thorn) for tension and (ndash) for compression

bull Tension stress sT

sT frac14 FnAs

bull Critical buckling stress per AISC scr

Cc frac14ffiffiffiffiffiffiffiffi2p2

Fy

s

scr frac141

KL2s=r

2C2

c

Fy

eth5=3THORN thorn etheth3KLs=rTHORN=8CcTHORN ethKLs=rTHORN3=8C3

c

bull Actual compressive stress sc

sc frac14 FnAs

Note Evaluate all struts as tension and compressionmembers regardless of sign because when the vessel issitting on the ground the loads are the reverse of the signsshown

Two Point

F1 frac14 eththornTHORN05T

Three Point

F1 frac14 eththornTHORN0453TF2 frac14 ethTHORN0329T

Parallel BeamsStruts

F1 frac14 eththornTHORN025T

Four Point

F1 frac14 eththornTHORN05TF2 frac14 ethTHORN0273TF3 frac14 eththornTHORN0273T

Transportation and Erection of Pressure Vessels 685

Table 10-7Internal moment coefficients for base ring

One Point Two Point Three Point Four Point

Angle a Kr KT Kr KT Kr KT Kr KT

0 02387 e02387 00795 e02387 e00229 01651 00093 e01156

5 01961 e02802 00587 e02584 e00148 01708 00048 e01188

10 01555 e03171 00398 e02736 e00067 01764 00012 e01188

15 01174 e03492 00229 e02845 e00055 01747 e00015 e01155

20 00819 e03763 00043 e02908 e00042 01729 e00033 e01089

25 00493 e03983 e00042 e02926 00028 01640 e00043 e00993

30 00197 e04151 e00145 e02900 00098 01551 e00045 e00867

35 e00067 e04266 e00225 e02831 00103 01397 e00041 e00713

40 e00299 e04328 e00284 e02721 00107 01242 e00031 e00534

45 e00497 e04340 e00321 e02571 00093 01032 e00017 e00333

50 e00663 e04301 e00335 e02385 00078 00821 e00001 e00112

55 e00796 e04214 e00340 e02165 00052 00567 00017 00126

60 e00897 e04080 e00324 e01915 00025 00313 00033 00376

65 e00967 e03904 e00293 e01638 00031 00031 00046 00636

70 e01008 e03688 e00250 e01338 00037 e00252 00055 00901

75 e01020 e03435 e00197 e01020 e00028 e00548 00056 01167

80 e01006 e03150 e00136 e00688 e00092 e00843 00049 01431

85 e00968 e02837 e00069 e00346 e00107 e01134 00031 01688

90 e00908 e02500 0 0 e00121 e01425 0 01935

95 e00830 e02144 00069 00416 e00114 e01694 e00031 e01688

100 e00735 e01774 00135 00688 e00107 e01963 e00049 e01431

105 e00627 e01394 00198 01020 e00074 e02194 e00057 e01167

110 e00508 e01011 00250 01338 e00033 e02425 e00055 e00901

115 e00381 e00627 00293 01638 00041 e02603 e00046 e00636

120 e00250 e00250 00324 01915 00114 e02781 e00033 e00376

125 e00016 00118 00340 02165 00107 e01060 e00017 e00126

130 00116 00471 00335 02385 00100 00661 00001 00112

135 00145 00804 00321 02571 00083 00448 00017 00333

140 00268 01115 00284 02721 00066 00234 00031 00534

145 00382 01398 00225 02831 00045 00104 00041 00713

150 00486 01551 00145 02900 00024 e00026 00045 00867

155 00577 01870 00042 02926 e00005 e00213 00043 00993

160 00654 02053 e00083 02908 e00015 e00399 00033 01089

165 00715 02198 e00225 02845 e00028 e00484 00015 01155

170 00760 02301 e00398 02736 e00041 e00569 e00012 01188

175 00787 02366 e00587 02584 e00046 e00597 e00048 01188

180 00796 02387 e00795 02387 e00051 e00626 e00093 01156

686 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 687

Design of Vessel for Choker (Cinch) Lift at Base

bull Uniform load p

p frac14 TR

bull Moments in ring at points A and C

MA frac14 01271TR

Mc frac14 00723TR

bull Tensioncompression forces in ring at points Aand C

TA frac14 06421T

Tc frac14 12232T

bull Combined stress at point A inside of ring

sA frac14 TA

AthornMA

Zin

bull Combined stress at point A outside of ring

sA frac14 TA

A MA

Zout

bull Combined stress at point C inside of ring

sc frac14 Tc

AthornMc

Zin

bull Combined stress at point C outside of ring

sc frac14 Tc

A Mc

Zout

Note Assume that the choker is attached immediately atthe base ring even though this may be impossible toachieve Then use the properties of the base ring for Aand Z

From R J Roark Formulas for Stress and Strain 5thEdition McGraw-Hill Book Co Table 17 Cases 12 and18 combined

688 Pressure Vessel Design Manual

Design of Tailing Lugs

Table 10-8Dimensions for tailing lugs

Tail Load (kips) tL tP E Ro RP D1 e

lt10 None required

10 to 20 075 NR 3 4 NR 2375 NR

21 to 40 075 0375 3 4 35 2375 03125

41 to 70 1 05 3 4 35 2375 03125

71 to 100 1 05 4 5 45 34375 03125

101 to 130 15 05 4 5 45 34375 03125

131 to 170 1625 075 4 5 45 34375 0375

171 to 210 1625 075 5 6 55 45 0375

211 to 250 2 075 5 6 55 45 04375

251 to 300 225 1 5 6 55 45 05

gt300 Special design required

Transportation and Erection of Pressure Vessels 689

Formulas

The tailing lug is designed like all other lugs Theforces are determined from the tailing load T calcu-lated per this procedure The ideal position for thetailing lug is to be as close as possible to the baseplate for stiffness and transmitting these loads throughthe base to the skirt The option of using a tailing lugversus a tailing beam is the designerrsquos choice Eithercan accommodate internal skirt rings stiffeners andstruts

Design as follows

bull Area required at pin hole Ar

Ar frac14 TFs

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN-ethD1tLTHORN

bull Bending moment in lug Mb

Mb frac14 fLE

bull Section modulus of lug Z

Z frac14 tLA2

6bull Bending stress in lug sb

sb frac14 Mb

Zbull Area required at pin hole for bearing Ar

Ar frac14 TFp

bull Area available at pin hole for bearing Aa

Aa frac14 D2tL

Note Substitute tL thorn 2tp for tL in the preceding equationsif pad eyes are used

690 Pressure Vessel Design Manual

Procedure 10-6 Design of Top Head and Cone Lifting Lugs

Design of Top HeadCone Lug

Dimensions

NT frac14 B2

Athorn 2B

LT frac14 Ethorn B NT

q1 frac14 arctan2L1

A

L2 frac14 L1

sin q1

q2 frac14 arcsinR3

L2

q3 frac14 q1 thorn q2

L3 frac14 R3

sin q3

L4 frac14 05A L1 05D3

tan q3

L5 frac14 05A L1 Ctan q3

Transportation and Erection of Pressure Vessels 691

Lug

bull Maximum bending moment in lug ML

ML frac14 PE

bull Section modulus lug Z

Z frac14 A2tL6

bull Bending stress lug sb

sb frac14 ML

Z

bull Thickness of lug required tL

tL frac14 6ML

A2Fb

bull Tension at edge of pad sT

sT frac14 PL2L4tL

bull Net section at pin hole Ap

Ap frac14 2L3tL thorn 2tpD3 D1

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at top of lug An

An frac14 tL

R3 D1

2

thorn 2tp

D3 D1

2

bull Shear stress at top of lug s

s frac14 PTAn

bull Pin bearing stress sp

sp frac14 PTD3

tL thorn 2tp

Check Welds

bull Polar moment of inertia Jw

Re-pad Jw frac14 ethA1 thorn L6THORN36

Lug Jw frac14 ethAthorn 2BTHORN312

B2ethAthorn BTHORN2ethAthorn 2BTHORN

bull Moment M1

M1 frac14 LTPT

Lug Weld

bull Find loads on weldsbull Transverse shear due to PT f1

f1 frac14 PTAthorn 2B

bull Transverse shear due to M1 f2

f2 frac14 M1ethB NTTHORNJw

bull Longitudinal shear due to M1 f3

f3 frac14 M1BJw

bull Combined shear load fr

fr frac14ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiethf1 thorn f2THORN2thornf23

q

692 Pressure Vessel Design Manual

bull Size of weld required w1

w1 frac14 fr0707Fs

Note If w1 exceeds the shell plate thickness then a re-padmust be used

Re-pad Weld

bull Moment M2

M2 frac14 PTethEthorn 05L6THORN

bull Transverse shear due to PT f1

f1 frac14 PT2A1 thorn 2L6

bull Transverse shear due to M2 f2

f2 frac14 05M2L6

Jw

bull Longitudinal shear due to M2 f3

f3 frac14 M2L6

Jw

bull Combined shear load fr

fr frac14ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiethf1 thorn f2THORN2thornf23

q

bull Size of weld required w1

w2 frac14 fr0707Fs

Pad Eye Weld

bull Unit shear load on pad f4

f4 frac14 PTtppD2

2tp thorn tL

bull Size of weld required w3

w3 frac14 f40707Fs

Top Head Lug for Large Loads

Transportation and Erection of Pressure Vessels 693

Table 10-9Dimensions for top head or cone lugs

694 Pressure Vessel Design Manual

Procedure 10-7 Design of Flange Lugs

Transportation and Erection of Pressure Vessels 695

Table 10-10Flange lug dimensions

Load Capacity (tons) D1 tL tb A B G H E

50 338 2 2 8 11 12 30 9

100 5 3 3 14 12 24 36 9

200 6 4 4 18 14 30 40 10

400 8 5 5 20 16 36 46 11

600 9 6 6 24 22 40 58 16

800 10 9 7 28 24 42 60 17

Table 10-11Bolt properties

Bolt Size Ab As Tb

05e13 0196 0112 12

0625e11 0307 0199 19

075e10 0442 0309 28

0875e9 0601 0446 39

1e8 0785 0605 51

1125e8 0994 079 56

125e8 1227 1 71

1375e8 1485 1233 85

15e8 1767 1492 103

175e8 2405 2082 182

2e8 3142 2771 243

225e8 3976 3557 311

25e8 4909 4442 389

275e8 594 543 418

3e8 7069 6506 501

325e8 83 7686 592

35e8 962 896 690

375e8 1104 1034 796

4e8 1257 1181 910

Table 10-12Values of Su

Bolt Dia db Material Su (ksi)

lt 1 A-325 120

1125e15 A-325 105

1625e25 A-193-B7 125

2625e4 A-193-B7 110

696 Pressure Vessel Design Manual

Top Flange Lug

PL frac14 P sin q

PT frac14 P cos q

PE frac14 PLA

thorn 3PTe

A2

M1frac14 PTB

M2frac14 PT(B thorn J)

M3frac14 PTe

Mufrac14 Xn cos an Nb

Mafrac14 MuM1PMu

Xn frac14 Rb cos an

yn frac14 Rb sin an

Side Flange Lug

Fn frac14 Ma

XnNb

fs frac14 PTN

sT frac14 FnAs

Fs frac14 15 ksi

1 sTAb

Tb

As frac14 07854 ethd 01218THORN2

s frac14 fsAs

lt Fs

Tb frac14 075uAs

06Fy lt FT lt 40 ksi

Transportation and Erection of Pressure Vessels 697

Design Process

1 Determine loads2 Check of lug

a Shear at pin holeb Bending of lugc Bearing at pin hole

3 Check of base plate4 Check of nozzle flange5 Check of flange bolting6 Check of local load at nozzle to head or shell

junction

Step 1 Determine loads

bull Determine loads PT and PL for various lift angles qbull Determine uniform loads w1 and w2 for variousangles q

bull Using w1 and w2 solve for worst case of combinedload PE

bull Determine worst-case bending moment in lug M3

Step 2 Check of lug

a Shear at pin holebull Area required Ar

Ar frac14 PEFs

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN

b Bending of lug due to M3

bull Section modulus Z

Z frac14 tLA2

6

bull Bending stress lug sb

sb frac14 M3

Z

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFp

bull Bearing available Aa

Aa frac14 D2tL

Maximum Tension in Lug

Check of Nozzle Flange

bull Unit load w

w frac14 PEpBc

bull Bending moment M

M frac14 whDbull Bending stress sb

sb frac14 6M

t2f

698 Pressure Vessel Design Manual

Bolt Loads for Rectangular Lugs Design of Full Circular Base Plate for Lug

bull If a full circular plate is used in lieu of a rectangularplate the following evaluation may be used

bull Unit load on bolt circle w

w frac14 PEpBc

bull Edge distance from point of load hp

hp frac14 BC tL2

bull Bending moment M

M frac14 whp

bull Bending stress sb

sb frac14 6M

t2b

bull Check bolting same as rectangular flange

Transportation and Erection of Pressure Vessels 699

Design of Lug Base Plate

(From R J Roark Formulas for Stress and StrainMcGraw-Hill Book Co 4th Edition Table III Case 34)

bull Uniform load w

w frac14 PEA

bull End reaction R1

R1 frac14 wA2

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

bull Moment at midspan Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

bull Thickness required tb

tb frac14ffiffiffiffiffiffiffiffiffi6Mx

GFb

s

700 Pressure Vessel Design Manual

Check of Bolts

Case 1 Bolts on Centerline Case 2 Bolts Straddle Centerline

Bolt 1 2 3 4 5 Bolt 1 2 3 4 5

an an

xn xn

yn yn

Nb Nb

Mu Mu

Ma Ma

Fn Fn

sT sT

Fs Fs

Transportation and Erection of Pressure Vessels 701

Sample Problem Top Flange Lug

GivenL1 frac14 90 ftL2 frac14 50 ftL3 frac14 40 ftL4 frac14 95 ft

Fy bolting frac14 75 ksiFy lug frac14 36 ksi

Fy flange frac14 36 ksiFs frac14 04(36) frac14 144 ksiFT frac14 06(36) frac14 216 ksiFb frac14 066(36) frac14 2376 ksiWL frac14 1200 kipsBc frac14 54 inRc frac14 27 inB frac14 22 intb frac14 6 intL frac14 6 intf frac14 11 in

D1 frac14 9 in

D2 frac14 8 in

Bolt size frac14 3-14-8 UNC

Ab frac14 83 in2

As frac14 7686 in2

Tb frac14 592 kips

Su frac14 110 ksi

e frac14 16 in

G frac14 40 in

A frac14 24 in

hD frac14 95 in

b frac14 05ethBc ATHORN

Results

PT max frac14 537 kips q frac14 10

PL max frac141200 kips q frac14 90

PE max frac141277 kips q frac14 40

sT bolt max frac14 2011 ksi 40 ksi

s bolt max frac14 698 ksi 1077 ksi

702 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 703

10 Check Lug

a Shear at pin hole

bull Area required Ar

Ar frac14 PEFS

frac14 1277144

frac14 8868 in2

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN frac14 eth24$6THORN eth9$6THORN frac14 90 in2

b Bending of lug due to M3

bull Maximum moment M3

M3 frac14 PTe frac14 537eth16THORN frac14 8592 in kips

bull Section modulus Z

Z frac14 tLA2

6frac14

6$242

6

frac14 576 in3

bull Bending stress lug sb

sb frac14 M3

Zfrac14 8592

576frac14 1491 ksi

bull Thickness required tL

tL frac14 6M

FbA2 frac14 6$85922376eth242THORN frac14 376 in

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFP

frac14 1277324

frac14 3941 in2

bull Bearing available Aa

Aa frac14 D2tL frac14 8$6 frac14 48 in2

20 Check Lug Base Plate

bull Uniform load w

w frac14 PEA

frac14 127724

frac14 532kipsin

bull End reaction R1

R1 frac14 PE2

frac14 12772

frac14 6385 kips

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

Ma frac14 0985eth8748 2496thorn 768thorn 2304 17 496THORNfrac14 8049 in kips

bull Moment at mid Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

Mx frac14 8049thorn 17 240 3831

frac14 5360 in kips

bull Section modulus Z

Z frac14t2bG

6

frac1462$40

6

frac14 240 in3

bull Bending stress sb

sb frac14 Mx

Zfrac14 5360

240frac14 2233 ksi

bull Allowable bending stress Fb

Fb frac14 066Fy frac14 06636 frac14 2376 ksi

30 Check of Vessel Flange

bull Unit load w

w frac14 PEpBc

frac14 1277p54

frac14 752kipsin

bull Bending moment Mb

Mb frac14 whD frac14 752eth92THORN frac14 6925 in kips

bull Bending stress sb

sb frac14 6Mb

t2ffrac14 frac126eth6925THORN

11252frac14 328 ksi

704 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 705

Procedure 10-8 Design of Trunnions

Lug Dimensions

Dimensions for Trunnion

Type 1 Trunnion and Fixed Lug

Type 2 Trunnion and Rotating Lug

Type 3 Trunnion Only

706 Pressure Vessel Design Manual

Type 1 Trunnion and Fixed Lug

There are four checks to be performed

1 Check lug2 Check trunnion3 Check welds4 Check vessel shell

Check Lug

Transverse (vessel horizontal)

M frac14 PTE and Z frac14 4R2otL6

Therefore

tL frac14 15PTE

R2oFb

Longitudinal (vessel vertical)

bull Cross-sectional area at pin hole Ap

Ap frac14 213tL thorn 2tpethD3 D1

bull Cross-sectional area at top of lug An

An frac14 tL

RT D1

2

thorn 2tp

D3 D1

2

bull Shear stress s

s frac14 PLAP

or s frac14 PLAn

bull Pin bearing stress sp

sp frac14 PLD2

tL thorn 2tp

Check Trunnion

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Torsional moment MT (vessel horizontal)

MT frac14 PTE

bull Bending stress sb

sb frac14 ML

Z

bull Torsional shear stress sT

sT frac14 MT

2pRnto

Check Welds

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Polar moment of inertia Jw

Jw frac14 2pR3n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Torsional shear stress in weld sT

sT frac14 MTRn

Jw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 2 Trunnion and Rotating Lug

bull Net section at Section A-A Ap

Ap frac14 213tL thorn 2tpD3 D1

Transportation and Erection of Pressure Vessels 707

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at Section B-B An

An frac14 2tLethRo RiTHORNbull Shear stress at trunnion s

s frac14 PLAn

bull Minimum bearing contact angle for lug at trun-nion qB

qB frac14 eth159PLTHORNRntLFp

bull Pin hole bearing stress sp

sp frac14 PLD3

tL thorn 2tp

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Swbull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 3 Trunnion Only

Vessel Vertical

bull Longitudinal moment ML

ML frac14 PLe

bull Bending stress in trunnion sb

sb frac14 ML

Z

Vessel Horizontal

bull Circumferential moment Mc

Mc frac14 PTe

bull Bending stress in trunnion sb

sb frac14 Mc

Z

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

708 Pressure Vessel Design Manual

TYPE 1 TYPE 2

W

K

DIA

A

DIA

= F

DIA

= M

K

C

KT

2 X 125 DIAVENT HOLES

DIA

A

125

D

250

DIA

= F

W

K

B

NUTS WELDED

GRIND WELDSMOOTH

DIA

= M

K

E

KT

2 X 125 DIAVENT HOLES

Table 10-13Dimensions of trunnions

Allowable Load Tons Pipe Size A C D E F M N T W Weight Lbs

1 0-5 4 Std 4 - - 85 8 - 05 025 30

2 5-10 6 Std 5 - - 105 12 - 05 025 55

3 10-15 8 Std 6 0625 8 125 15 4 05 0375 90

4 15-25 10 Std 6 0625 8 15 18 4 075 0375 150

5 25-35 12 Sch 80 6 075 8 17 21 4 075 0375 240

6 35-45 12 Sch 80 6 075 8 17 21 4 075 05 240

7 45-60 14 Sch 80 6 075 8 18 24 8 1 05 375

8 60-75 14 Sch 80 7 0875 8 18 24 8 1 0625 400

9 75-100 16 Sch 80 7 0875 8 25 27 8 1 0625 625

10 100-125 16 Sch 80 7 0875 8 25 27 8 1125 0875 660

11 125-150 18 Sch 80 7 0875 8 27 30 12 1125 0875 850

12 150-200 18 Sch 80 8 0875 8 27 30 12 1125 1 875

13 200-250 20 Sch 80 8 0875 10 30 36 16 125 1 1000

14 300 24 Sch 80 8 1 10 34 36 16 125 1125 1440

15 400 24 Sch 80 8 1 10 34 40 20 1375 1125 1675

16 500 30 125 10 125 12 42 48 20 1375 1375 2400

17 600 36 125 10 125 12 48 60 24 15 1375 3600

Notes

1 Do not use re-pads for cyclic service

2 B frac14 D - 125

3 K frac14 Pipe Wall Thk

4 Dimensions are given for reference only All loadings and stress shall be checked prior to use

Transportation and Erection of Pressure Vessels 709

Procedure 10-9 Local Loads in Shell Due to Erection Forces

Trunnions

Fixed Lug Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Maximum torsional moment MT

MT frac14 PTE

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

Rotating Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

TrunniondNo Lug

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

710 Pressure Vessel Design Manual

Side Lugs Notes

1 Optional internal pipe Remove after erection2 Radial load Pr is the axial load in the internal pipe

stiffener if used in lieu of radial load in shell3 Circumferential ring stiffeners are optional at these

elevations

bull Circumferential moment Mc

Mc frac14 PTe

bull Longitudinal moment Mx

Mx frac14 PLe

bull Load on weld group f

f frac14 PTELT

bull Radial loads Pr and Pa

Pr frac14 PLe

Pa frac14 PL sin f

Top Flange Lug

bull Loads PT and PL

PT frac14 P cos q

PL frac14 P sin q

Transportation and Erection of Pressure Vessels 711

bull Moment on flange M

M frac14 PTB

bull Moment on head M

M frac14 PTethBthorn JTHORNbull Moment on vessel M

M frac14 PTG

bull Radial load on head and nozzle frac14 PL

Side Flange Lug

bull Loads PT and PL

PL frac14 P cos q

PT frac14 P sin q

bull Moment on flange M

M frac14 PLB

bull Longitudinal moment on shell Mx

M frac14 PTethBthorn JTHORNbull Radial load on shell and nozzle frac14 PT

712 Pressure Vessel Design Manual

Procedure 10-10 Miscellaneous

Figure 10-7 Fundamental handling operations Reprinted by permission of the Babcock and Wilcox Companya McDermott Company

Transportation and Erection of Pressure Vessels 713

Figure 10-8 Loads on wire rope for various sheave configurations

714 Pressure Vessel Design Manual

Table 10-14Forged Steel Shackles

Dimensions in Inches

Size D (in)Safe Load

(lb)D (min) A

Tolerance

A DimB B (min) C G

Tolerance C

and G DimE F

frac14 475 73232 153232 11616 51616 93232 1⅛ ⅞ 11616 frac34 111616

⅜ 1050 113232 213232 11616 71616 256464 171616 1frac14 ⅛ 1 313232

71616 1450 256464 233232 11616 frac12 296464 1111616 171616 ⅛ 1⅛ 111616

frac12 1900 296464 131616 11616 ⅝ 91616 1⅞ 1⅝ ⅛ 1⅜ 151616

⅝ 2950 91616 111616 11616 frac34 436464 2133232 2 ⅛ 1⅝ 191616

frac34 4250 436464 1frac14 11616 ⅞ 253232 2273232 2⅜ frac14 2 1⅞

⅞ 5750 253232 171616 11616 1 576464 351616 2131616 frac14 2frac14 2⅛

1 7550 576464 1111616 11616 1⅛ 113232 3frac34 331616 frac14 2frac12 2⅜

1⅛ 8900 113232 1271616 ⅛ 1frac14 176464 4frac14 391616 frac14 2frac34 2⅝

1frac14 11000 176464 213232 ⅛ 1⅜ 1156464 4111616 3151616 frac14 3⅛ 3

1⅜ 13300 1156464 2frac14 ⅛ 1frac12 1113232 5frac14 471616 frac14 3frac12 351616

1frac12 15600 1113232 2⅜ ⅛ 1⅝ 1296464 5frac34 4⅞ frac14 3frac34 3⅝

1frac34 21500 1356464 2⅞ ⅛ 2 1253232 7 5frac34 frac14 4frac14 4⅛

2 28100 1253232 3frac14 ⅛ 2frac14 216464 7frac34 6frac34 frac14 5frac14 5

2frac14 36000 216464 3frac34 ⅛ 2frac12 2156464 9frac14 7⅛ frac34 5frac12 5frac14

2frac12 45100 2156464 4⅛ ⅛ 2frac34 2153232 10frac12 8 frac34 6frac14 6

3 64700 2111616 5 ⅛ 3frac14 2293232 13 11frac12 frac34 6frac34 6frac12

Notes

For shackles with safe loads greater than the maximum shown use CrosbyndashLaughlin (The Crosby Group Div of American Hoist amp Derrick Co Tulsa

OK 74101) Skookum (Skookum Co Inc Portland OR 97203) or equal with an ultimate strength at least 5 times the safe working load

Allowable loads are lower than OSHA requirements tabulated in Section 1926251 Table H-19

Transportation and Erection of Pressure Vessels 715

Figure 10-9 Wire rope end configurations

716 Pressure Vessel Design Manual

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 4: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

Dimensions and Moments for Various VesselConfigurations

Case 1 Top Head Lug Top Head Trunnion or TopHead Flange

M1 frac14 WLL3L2

L1

Case 2 Side Lug or Side Trunnion

w5 frac14 WL

L5

M1 frac14 w5

8L21

ethL1 thorn L4THORN2ethL1 L4THORN2

M2 frac14 w5L24

2

Case 3 Cone Lug or Trunnion

w5 frac14 WL1

L4w6 frac14 WL2

L1

M1 frac14 w6

8L21

ethL1 thorn L4THORN2ethL1 L4THORN2

M2 frac14 w5L24

2

Case 4 Cone Lug or Trunnion with IntermediateSkirt Tail

w5 frac14 WL1

L4w6 frac14 WL2

L1 thorn L5

M1 frac14 w6L25

2

M2 frac14 w5L24

2

M3 frac14M1 thornM3

2

w6L2

1

8

678 Pressure Vessel Design Manual

Find Lifting Loads at Any Lift Angle for a Symmetrical Horizontal Drum

Dimensions and Forces

Example

Steam drum

WL frac14 600 kips

L1 frac14 80 ft

L4 frac14 5 ft

L1

2L4frac14 80

10frac14 8

Free-Body Diagram

Curve is based on the following equation

PWL

frac14 L4

L1ethtan qTHORN thorn 05

Results from curve

q frac14 15 frac14 516 q frac14 30 frac14 536 q frac14 45 frac14 563 q frac14 60 frac14 608 q frac14 75 frac14 733

Transportation and Erection of Pressure Vessels 679

Sample Problem

Case 1 L3 gt L2

L1 frac14 280 thorn 2833 thorn 1 frac14 28383 ftL2 frac14 28383 ndash 162 frac14 12183 ftL3 frac14 161 thorn 1 frac14 162 ftL4 frac14 10 ft

Case 2 L3 lt L2

L1 frac14 28383 ftL2 frac14 162 ftL3 frac14 12183 ftL4 frac14 10 ft

680 Pressure Vessel Design Manual

Procedure 10-5 Design of Tail Beams Lugs and Base Ring Details

Transportation and Erection of Pressure Vessels 681

682 Pressure Vessel Design Manual

Base Ring Design Check

C1 frac14 SAYSA

C2 frac14 WB C1

I frac14 SAY2 thorn SIo C1SAY

RB frac14 inside radius of base platethorn C2

Internal Forces and Moments in the Skirt BaseDuring Lifting

To determine the stresses in the base ring as a result ofthe tailing load the designer must find the coefficients Krand KT based on angle a as shown and the type of stiff-ening in the skirtbase ring configuration

M frac14 KrTRB

Tt frac14 KTT

Transportation and Erection of Pressure Vessels 683

SkirtTail Beam Calculations

Tail Beam

bull Tailing loads fL and fr

fL frac14 T cos q

fr frac14 T sin q

bull Maximum bending moment Mb

Mb frac14 xfr thorn yfL

bull Maximum bending stress sb

sb frac14 Mb

Z

Tail Beam Bolts

bull Shear load fs

fs frac14 05frn

bull Shear stress s

s frac14 fsAb

bull Tension force ft

Note y1 frac14 mean skirt diameter or centerline of boltgroup if a filler plate is used

ft frac14 Mb

y1

Skirt

bull Tension stress in bolts sT

sT frac14 fTNbAb

bull Compressive force in skirt fc

fc frac14 fL thorn ft

bull Skirt crippling is dependent on the base configura-tion and lengths l1 through l4

N frac14 1 in if web stiffeners are not usedN frac14 width of top flange of tail beam if web stiffeners are

used

bull Compressive stress in skirt sc

sc frac14 fctskln

bull Check shear stress s in base to skirt weld

s frac14 frpDsk 0707w4

Base Plate

bull Bending moment in base plate Mb

Mb frac14 KrTRB

bull Find tangential force Tt

Tt frac14 KTT

bull Total combined stress s

sTfrac14 MbC1

Ithorn Tt

A

tension

sCfrac14 MbC2

I Tt

A

compression

684 Pressure Vessel Design Manual

Size Base Ring Stiffeners

F1 frac14 force in strut or tailing beam lbF1 is (thorn) for tension and (ndash) for compression

bull Tension stress sT

sT frac14 FnAs

bull Critical buckling stress per AISC scr

Cc frac14ffiffiffiffiffiffiffiffi2p2

Fy

s

scr frac141

KL2s=r

2C2

c

Fy

eth5=3THORN thorn etheth3KLs=rTHORN=8CcTHORN ethKLs=rTHORN3=8C3

c

bull Actual compressive stress sc

sc frac14 FnAs

Note Evaluate all struts as tension and compressionmembers regardless of sign because when the vessel issitting on the ground the loads are the reverse of the signsshown

Two Point

F1 frac14 eththornTHORN05T

Three Point

F1 frac14 eththornTHORN0453TF2 frac14 ethTHORN0329T

Parallel BeamsStruts

F1 frac14 eththornTHORN025T

Four Point

F1 frac14 eththornTHORN05TF2 frac14 ethTHORN0273TF3 frac14 eththornTHORN0273T

Transportation and Erection of Pressure Vessels 685

Table 10-7Internal moment coefficients for base ring

One Point Two Point Three Point Four Point

Angle a Kr KT Kr KT Kr KT Kr KT

0 02387 e02387 00795 e02387 e00229 01651 00093 e01156

5 01961 e02802 00587 e02584 e00148 01708 00048 e01188

10 01555 e03171 00398 e02736 e00067 01764 00012 e01188

15 01174 e03492 00229 e02845 e00055 01747 e00015 e01155

20 00819 e03763 00043 e02908 e00042 01729 e00033 e01089

25 00493 e03983 e00042 e02926 00028 01640 e00043 e00993

30 00197 e04151 e00145 e02900 00098 01551 e00045 e00867

35 e00067 e04266 e00225 e02831 00103 01397 e00041 e00713

40 e00299 e04328 e00284 e02721 00107 01242 e00031 e00534

45 e00497 e04340 e00321 e02571 00093 01032 e00017 e00333

50 e00663 e04301 e00335 e02385 00078 00821 e00001 e00112

55 e00796 e04214 e00340 e02165 00052 00567 00017 00126

60 e00897 e04080 e00324 e01915 00025 00313 00033 00376

65 e00967 e03904 e00293 e01638 00031 00031 00046 00636

70 e01008 e03688 e00250 e01338 00037 e00252 00055 00901

75 e01020 e03435 e00197 e01020 e00028 e00548 00056 01167

80 e01006 e03150 e00136 e00688 e00092 e00843 00049 01431

85 e00968 e02837 e00069 e00346 e00107 e01134 00031 01688

90 e00908 e02500 0 0 e00121 e01425 0 01935

95 e00830 e02144 00069 00416 e00114 e01694 e00031 e01688

100 e00735 e01774 00135 00688 e00107 e01963 e00049 e01431

105 e00627 e01394 00198 01020 e00074 e02194 e00057 e01167

110 e00508 e01011 00250 01338 e00033 e02425 e00055 e00901

115 e00381 e00627 00293 01638 00041 e02603 e00046 e00636

120 e00250 e00250 00324 01915 00114 e02781 e00033 e00376

125 e00016 00118 00340 02165 00107 e01060 e00017 e00126

130 00116 00471 00335 02385 00100 00661 00001 00112

135 00145 00804 00321 02571 00083 00448 00017 00333

140 00268 01115 00284 02721 00066 00234 00031 00534

145 00382 01398 00225 02831 00045 00104 00041 00713

150 00486 01551 00145 02900 00024 e00026 00045 00867

155 00577 01870 00042 02926 e00005 e00213 00043 00993

160 00654 02053 e00083 02908 e00015 e00399 00033 01089

165 00715 02198 e00225 02845 e00028 e00484 00015 01155

170 00760 02301 e00398 02736 e00041 e00569 e00012 01188

175 00787 02366 e00587 02584 e00046 e00597 e00048 01188

180 00796 02387 e00795 02387 e00051 e00626 e00093 01156

686 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 687

Design of Vessel for Choker (Cinch) Lift at Base

bull Uniform load p

p frac14 TR

bull Moments in ring at points A and C

MA frac14 01271TR

Mc frac14 00723TR

bull Tensioncompression forces in ring at points Aand C

TA frac14 06421T

Tc frac14 12232T

bull Combined stress at point A inside of ring

sA frac14 TA

AthornMA

Zin

bull Combined stress at point A outside of ring

sA frac14 TA

A MA

Zout

bull Combined stress at point C inside of ring

sc frac14 Tc

AthornMc

Zin

bull Combined stress at point C outside of ring

sc frac14 Tc

A Mc

Zout

Note Assume that the choker is attached immediately atthe base ring even though this may be impossible toachieve Then use the properties of the base ring for Aand Z

From R J Roark Formulas for Stress and Strain 5thEdition McGraw-Hill Book Co Table 17 Cases 12 and18 combined

688 Pressure Vessel Design Manual

Design of Tailing Lugs

Table 10-8Dimensions for tailing lugs

Tail Load (kips) tL tP E Ro RP D1 e

lt10 None required

10 to 20 075 NR 3 4 NR 2375 NR

21 to 40 075 0375 3 4 35 2375 03125

41 to 70 1 05 3 4 35 2375 03125

71 to 100 1 05 4 5 45 34375 03125

101 to 130 15 05 4 5 45 34375 03125

131 to 170 1625 075 4 5 45 34375 0375

171 to 210 1625 075 5 6 55 45 0375

211 to 250 2 075 5 6 55 45 04375

251 to 300 225 1 5 6 55 45 05

gt300 Special design required

Transportation and Erection of Pressure Vessels 689

Formulas

The tailing lug is designed like all other lugs Theforces are determined from the tailing load T calcu-lated per this procedure The ideal position for thetailing lug is to be as close as possible to the baseplate for stiffness and transmitting these loads throughthe base to the skirt The option of using a tailing lugversus a tailing beam is the designerrsquos choice Eithercan accommodate internal skirt rings stiffeners andstruts

Design as follows

bull Area required at pin hole Ar

Ar frac14 TFs

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN-ethD1tLTHORN

bull Bending moment in lug Mb

Mb frac14 fLE

bull Section modulus of lug Z

Z frac14 tLA2

6bull Bending stress in lug sb

sb frac14 Mb

Zbull Area required at pin hole for bearing Ar

Ar frac14 TFp

bull Area available at pin hole for bearing Aa

Aa frac14 D2tL

Note Substitute tL thorn 2tp for tL in the preceding equationsif pad eyes are used

690 Pressure Vessel Design Manual

Procedure 10-6 Design of Top Head and Cone Lifting Lugs

Design of Top HeadCone Lug

Dimensions

NT frac14 B2

Athorn 2B

LT frac14 Ethorn B NT

q1 frac14 arctan2L1

A

L2 frac14 L1

sin q1

q2 frac14 arcsinR3

L2

q3 frac14 q1 thorn q2

L3 frac14 R3

sin q3

L4 frac14 05A L1 05D3

tan q3

L5 frac14 05A L1 Ctan q3

Transportation and Erection of Pressure Vessels 691

Lug

bull Maximum bending moment in lug ML

ML frac14 PE

bull Section modulus lug Z

Z frac14 A2tL6

bull Bending stress lug sb

sb frac14 ML

Z

bull Thickness of lug required tL

tL frac14 6ML

A2Fb

bull Tension at edge of pad sT

sT frac14 PL2L4tL

bull Net section at pin hole Ap

Ap frac14 2L3tL thorn 2tpD3 D1

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at top of lug An

An frac14 tL

R3 D1

2

thorn 2tp

D3 D1

2

bull Shear stress at top of lug s

s frac14 PTAn

bull Pin bearing stress sp

sp frac14 PTD3

tL thorn 2tp

Check Welds

bull Polar moment of inertia Jw

Re-pad Jw frac14 ethA1 thorn L6THORN36

Lug Jw frac14 ethAthorn 2BTHORN312

B2ethAthorn BTHORN2ethAthorn 2BTHORN

bull Moment M1

M1 frac14 LTPT

Lug Weld

bull Find loads on weldsbull Transverse shear due to PT f1

f1 frac14 PTAthorn 2B

bull Transverse shear due to M1 f2

f2 frac14 M1ethB NTTHORNJw

bull Longitudinal shear due to M1 f3

f3 frac14 M1BJw

bull Combined shear load fr

fr frac14ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiethf1 thorn f2THORN2thornf23

q

692 Pressure Vessel Design Manual

bull Size of weld required w1

w1 frac14 fr0707Fs

Note If w1 exceeds the shell plate thickness then a re-padmust be used

Re-pad Weld

bull Moment M2

M2 frac14 PTethEthorn 05L6THORN

bull Transverse shear due to PT f1

f1 frac14 PT2A1 thorn 2L6

bull Transverse shear due to M2 f2

f2 frac14 05M2L6

Jw

bull Longitudinal shear due to M2 f3

f3 frac14 M2L6

Jw

bull Combined shear load fr

fr frac14ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiethf1 thorn f2THORN2thornf23

q

bull Size of weld required w1

w2 frac14 fr0707Fs

Pad Eye Weld

bull Unit shear load on pad f4

f4 frac14 PTtppD2

2tp thorn tL

bull Size of weld required w3

w3 frac14 f40707Fs

Top Head Lug for Large Loads

Transportation and Erection of Pressure Vessels 693

Table 10-9Dimensions for top head or cone lugs

694 Pressure Vessel Design Manual

Procedure 10-7 Design of Flange Lugs

Transportation and Erection of Pressure Vessels 695

Table 10-10Flange lug dimensions

Load Capacity (tons) D1 tL tb A B G H E

50 338 2 2 8 11 12 30 9

100 5 3 3 14 12 24 36 9

200 6 4 4 18 14 30 40 10

400 8 5 5 20 16 36 46 11

600 9 6 6 24 22 40 58 16

800 10 9 7 28 24 42 60 17

Table 10-11Bolt properties

Bolt Size Ab As Tb

05e13 0196 0112 12

0625e11 0307 0199 19

075e10 0442 0309 28

0875e9 0601 0446 39

1e8 0785 0605 51

1125e8 0994 079 56

125e8 1227 1 71

1375e8 1485 1233 85

15e8 1767 1492 103

175e8 2405 2082 182

2e8 3142 2771 243

225e8 3976 3557 311

25e8 4909 4442 389

275e8 594 543 418

3e8 7069 6506 501

325e8 83 7686 592

35e8 962 896 690

375e8 1104 1034 796

4e8 1257 1181 910

Table 10-12Values of Su

Bolt Dia db Material Su (ksi)

lt 1 A-325 120

1125e15 A-325 105

1625e25 A-193-B7 125

2625e4 A-193-B7 110

696 Pressure Vessel Design Manual

Top Flange Lug

PL frac14 P sin q

PT frac14 P cos q

PE frac14 PLA

thorn 3PTe

A2

M1frac14 PTB

M2frac14 PT(B thorn J)

M3frac14 PTe

Mufrac14 Xn cos an Nb

Mafrac14 MuM1PMu

Xn frac14 Rb cos an

yn frac14 Rb sin an

Side Flange Lug

Fn frac14 Ma

XnNb

fs frac14 PTN

sT frac14 FnAs

Fs frac14 15 ksi

1 sTAb

Tb

As frac14 07854 ethd 01218THORN2

s frac14 fsAs

lt Fs

Tb frac14 075uAs

06Fy lt FT lt 40 ksi

Transportation and Erection of Pressure Vessels 697

Design Process

1 Determine loads2 Check of lug

a Shear at pin holeb Bending of lugc Bearing at pin hole

3 Check of base plate4 Check of nozzle flange5 Check of flange bolting6 Check of local load at nozzle to head or shell

junction

Step 1 Determine loads

bull Determine loads PT and PL for various lift angles qbull Determine uniform loads w1 and w2 for variousangles q

bull Using w1 and w2 solve for worst case of combinedload PE

bull Determine worst-case bending moment in lug M3

Step 2 Check of lug

a Shear at pin holebull Area required Ar

Ar frac14 PEFs

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN

b Bending of lug due to M3

bull Section modulus Z

Z frac14 tLA2

6

bull Bending stress lug sb

sb frac14 M3

Z

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFp

bull Bearing available Aa

Aa frac14 D2tL

Maximum Tension in Lug

Check of Nozzle Flange

bull Unit load w

w frac14 PEpBc

bull Bending moment M

M frac14 whDbull Bending stress sb

sb frac14 6M

t2f

698 Pressure Vessel Design Manual

Bolt Loads for Rectangular Lugs Design of Full Circular Base Plate for Lug

bull If a full circular plate is used in lieu of a rectangularplate the following evaluation may be used

bull Unit load on bolt circle w

w frac14 PEpBc

bull Edge distance from point of load hp

hp frac14 BC tL2

bull Bending moment M

M frac14 whp

bull Bending stress sb

sb frac14 6M

t2b

bull Check bolting same as rectangular flange

Transportation and Erection of Pressure Vessels 699

Design of Lug Base Plate

(From R J Roark Formulas for Stress and StrainMcGraw-Hill Book Co 4th Edition Table III Case 34)

bull Uniform load w

w frac14 PEA

bull End reaction R1

R1 frac14 wA2

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

bull Moment at midspan Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

bull Thickness required tb

tb frac14ffiffiffiffiffiffiffiffiffi6Mx

GFb

s

700 Pressure Vessel Design Manual

Check of Bolts

Case 1 Bolts on Centerline Case 2 Bolts Straddle Centerline

Bolt 1 2 3 4 5 Bolt 1 2 3 4 5

an an

xn xn

yn yn

Nb Nb

Mu Mu

Ma Ma

Fn Fn

sT sT

Fs Fs

Transportation and Erection of Pressure Vessels 701

Sample Problem Top Flange Lug

GivenL1 frac14 90 ftL2 frac14 50 ftL3 frac14 40 ftL4 frac14 95 ft

Fy bolting frac14 75 ksiFy lug frac14 36 ksi

Fy flange frac14 36 ksiFs frac14 04(36) frac14 144 ksiFT frac14 06(36) frac14 216 ksiFb frac14 066(36) frac14 2376 ksiWL frac14 1200 kipsBc frac14 54 inRc frac14 27 inB frac14 22 intb frac14 6 intL frac14 6 intf frac14 11 in

D1 frac14 9 in

D2 frac14 8 in

Bolt size frac14 3-14-8 UNC

Ab frac14 83 in2

As frac14 7686 in2

Tb frac14 592 kips

Su frac14 110 ksi

e frac14 16 in

G frac14 40 in

A frac14 24 in

hD frac14 95 in

b frac14 05ethBc ATHORN

Results

PT max frac14 537 kips q frac14 10

PL max frac141200 kips q frac14 90

PE max frac141277 kips q frac14 40

sT bolt max frac14 2011 ksi 40 ksi

s bolt max frac14 698 ksi 1077 ksi

702 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 703

10 Check Lug

a Shear at pin hole

bull Area required Ar

Ar frac14 PEFS

frac14 1277144

frac14 8868 in2

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN frac14 eth24$6THORN eth9$6THORN frac14 90 in2

b Bending of lug due to M3

bull Maximum moment M3

M3 frac14 PTe frac14 537eth16THORN frac14 8592 in kips

bull Section modulus Z

Z frac14 tLA2

6frac14

6$242

6

frac14 576 in3

bull Bending stress lug sb

sb frac14 M3

Zfrac14 8592

576frac14 1491 ksi

bull Thickness required tL

tL frac14 6M

FbA2 frac14 6$85922376eth242THORN frac14 376 in

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFP

frac14 1277324

frac14 3941 in2

bull Bearing available Aa

Aa frac14 D2tL frac14 8$6 frac14 48 in2

20 Check Lug Base Plate

bull Uniform load w

w frac14 PEA

frac14 127724

frac14 532kipsin

bull End reaction R1

R1 frac14 PE2

frac14 12772

frac14 6385 kips

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

Ma frac14 0985eth8748 2496thorn 768thorn 2304 17 496THORNfrac14 8049 in kips

bull Moment at mid Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

Mx frac14 8049thorn 17 240 3831

frac14 5360 in kips

bull Section modulus Z

Z frac14t2bG

6

frac1462$40

6

frac14 240 in3

bull Bending stress sb

sb frac14 Mx

Zfrac14 5360

240frac14 2233 ksi

bull Allowable bending stress Fb

Fb frac14 066Fy frac14 06636 frac14 2376 ksi

30 Check of Vessel Flange

bull Unit load w

w frac14 PEpBc

frac14 1277p54

frac14 752kipsin

bull Bending moment Mb

Mb frac14 whD frac14 752eth92THORN frac14 6925 in kips

bull Bending stress sb

sb frac14 6Mb

t2ffrac14 frac126eth6925THORN

11252frac14 328 ksi

704 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 705

Procedure 10-8 Design of Trunnions

Lug Dimensions

Dimensions for Trunnion

Type 1 Trunnion and Fixed Lug

Type 2 Trunnion and Rotating Lug

Type 3 Trunnion Only

706 Pressure Vessel Design Manual

Type 1 Trunnion and Fixed Lug

There are four checks to be performed

1 Check lug2 Check trunnion3 Check welds4 Check vessel shell

Check Lug

Transverse (vessel horizontal)

M frac14 PTE and Z frac14 4R2otL6

Therefore

tL frac14 15PTE

R2oFb

Longitudinal (vessel vertical)

bull Cross-sectional area at pin hole Ap

Ap frac14 213tL thorn 2tpethD3 D1

bull Cross-sectional area at top of lug An

An frac14 tL

RT D1

2

thorn 2tp

D3 D1

2

bull Shear stress s

s frac14 PLAP

or s frac14 PLAn

bull Pin bearing stress sp

sp frac14 PLD2

tL thorn 2tp

Check Trunnion

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Torsional moment MT (vessel horizontal)

MT frac14 PTE

bull Bending stress sb

sb frac14 ML

Z

bull Torsional shear stress sT

sT frac14 MT

2pRnto

Check Welds

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Polar moment of inertia Jw

Jw frac14 2pR3n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Torsional shear stress in weld sT

sT frac14 MTRn

Jw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 2 Trunnion and Rotating Lug

bull Net section at Section A-A Ap

Ap frac14 213tL thorn 2tpD3 D1

Transportation and Erection of Pressure Vessels 707

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at Section B-B An

An frac14 2tLethRo RiTHORNbull Shear stress at trunnion s

s frac14 PLAn

bull Minimum bearing contact angle for lug at trun-nion qB

qB frac14 eth159PLTHORNRntLFp

bull Pin hole bearing stress sp

sp frac14 PLD3

tL thorn 2tp

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Swbull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 3 Trunnion Only

Vessel Vertical

bull Longitudinal moment ML

ML frac14 PLe

bull Bending stress in trunnion sb

sb frac14 ML

Z

Vessel Horizontal

bull Circumferential moment Mc

Mc frac14 PTe

bull Bending stress in trunnion sb

sb frac14 Mc

Z

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

708 Pressure Vessel Design Manual

TYPE 1 TYPE 2

W

K

DIA

A

DIA

= F

DIA

= M

K

C

KT

2 X 125 DIAVENT HOLES

DIA

A

125

D

250

DIA

= F

W

K

B

NUTS WELDED

GRIND WELDSMOOTH

DIA

= M

K

E

KT

2 X 125 DIAVENT HOLES

Table 10-13Dimensions of trunnions

Allowable Load Tons Pipe Size A C D E F M N T W Weight Lbs

1 0-5 4 Std 4 - - 85 8 - 05 025 30

2 5-10 6 Std 5 - - 105 12 - 05 025 55

3 10-15 8 Std 6 0625 8 125 15 4 05 0375 90

4 15-25 10 Std 6 0625 8 15 18 4 075 0375 150

5 25-35 12 Sch 80 6 075 8 17 21 4 075 0375 240

6 35-45 12 Sch 80 6 075 8 17 21 4 075 05 240

7 45-60 14 Sch 80 6 075 8 18 24 8 1 05 375

8 60-75 14 Sch 80 7 0875 8 18 24 8 1 0625 400

9 75-100 16 Sch 80 7 0875 8 25 27 8 1 0625 625

10 100-125 16 Sch 80 7 0875 8 25 27 8 1125 0875 660

11 125-150 18 Sch 80 7 0875 8 27 30 12 1125 0875 850

12 150-200 18 Sch 80 8 0875 8 27 30 12 1125 1 875

13 200-250 20 Sch 80 8 0875 10 30 36 16 125 1 1000

14 300 24 Sch 80 8 1 10 34 36 16 125 1125 1440

15 400 24 Sch 80 8 1 10 34 40 20 1375 1125 1675

16 500 30 125 10 125 12 42 48 20 1375 1375 2400

17 600 36 125 10 125 12 48 60 24 15 1375 3600

Notes

1 Do not use re-pads for cyclic service

2 B frac14 D - 125

3 K frac14 Pipe Wall Thk

4 Dimensions are given for reference only All loadings and stress shall be checked prior to use

Transportation and Erection of Pressure Vessels 709

Procedure 10-9 Local Loads in Shell Due to Erection Forces

Trunnions

Fixed Lug Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Maximum torsional moment MT

MT frac14 PTE

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

Rotating Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

TrunniondNo Lug

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

710 Pressure Vessel Design Manual

Side Lugs Notes

1 Optional internal pipe Remove after erection2 Radial load Pr is the axial load in the internal pipe

stiffener if used in lieu of radial load in shell3 Circumferential ring stiffeners are optional at these

elevations

bull Circumferential moment Mc

Mc frac14 PTe

bull Longitudinal moment Mx

Mx frac14 PLe

bull Load on weld group f

f frac14 PTELT

bull Radial loads Pr and Pa

Pr frac14 PLe

Pa frac14 PL sin f

Top Flange Lug

bull Loads PT and PL

PT frac14 P cos q

PL frac14 P sin q

Transportation and Erection of Pressure Vessels 711

bull Moment on flange M

M frac14 PTB

bull Moment on head M

M frac14 PTethBthorn JTHORNbull Moment on vessel M

M frac14 PTG

bull Radial load on head and nozzle frac14 PL

Side Flange Lug

bull Loads PT and PL

PL frac14 P cos q

PT frac14 P sin q

bull Moment on flange M

M frac14 PLB

bull Longitudinal moment on shell Mx

M frac14 PTethBthorn JTHORNbull Radial load on shell and nozzle frac14 PT

712 Pressure Vessel Design Manual

Procedure 10-10 Miscellaneous

Figure 10-7 Fundamental handling operations Reprinted by permission of the Babcock and Wilcox Companya McDermott Company

Transportation and Erection of Pressure Vessels 713

Figure 10-8 Loads on wire rope for various sheave configurations

714 Pressure Vessel Design Manual

Table 10-14Forged Steel Shackles

Dimensions in Inches

Size D (in)Safe Load

(lb)D (min) A

Tolerance

A DimB B (min) C G

Tolerance C

and G DimE F

frac14 475 73232 153232 11616 51616 93232 1⅛ ⅞ 11616 frac34 111616

⅜ 1050 113232 213232 11616 71616 256464 171616 1frac14 ⅛ 1 313232

71616 1450 256464 233232 11616 frac12 296464 1111616 171616 ⅛ 1⅛ 111616

frac12 1900 296464 131616 11616 ⅝ 91616 1⅞ 1⅝ ⅛ 1⅜ 151616

⅝ 2950 91616 111616 11616 frac34 436464 2133232 2 ⅛ 1⅝ 191616

frac34 4250 436464 1frac14 11616 ⅞ 253232 2273232 2⅜ frac14 2 1⅞

⅞ 5750 253232 171616 11616 1 576464 351616 2131616 frac14 2frac14 2⅛

1 7550 576464 1111616 11616 1⅛ 113232 3frac34 331616 frac14 2frac12 2⅜

1⅛ 8900 113232 1271616 ⅛ 1frac14 176464 4frac14 391616 frac14 2frac34 2⅝

1frac14 11000 176464 213232 ⅛ 1⅜ 1156464 4111616 3151616 frac14 3⅛ 3

1⅜ 13300 1156464 2frac14 ⅛ 1frac12 1113232 5frac14 471616 frac14 3frac12 351616

1frac12 15600 1113232 2⅜ ⅛ 1⅝ 1296464 5frac34 4⅞ frac14 3frac34 3⅝

1frac34 21500 1356464 2⅞ ⅛ 2 1253232 7 5frac34 frac14 4frac14 4⅛

2 28100 1253232 3frac14 ⅛ 2frac14 216464 7frac34 6frac34 frac14 5frac14 5

2frac14 36000 216464 3frac34 ⅛ 2frac12 2156464 9frac14 7⅛ frac34 5frac12 5frac14

2frac12 45100 2156464 4⅛ ⅛ 2frac34 2153232 10frac12 8 frac34 6frac14 6

3 64700 2111616 5 ⅛ 3frac14 2293232 13 11frac12 frac34 6frac34 6frac12

Notes

For shackles with safe loads greater than the maximum shown use CrosbyndashLaughlin (The Crosby Group Div of American Hoist amp Derrick Co Tulsa

OK 74101) Skookum (Skookum Co Inc Portland OR 97203) or equal with an ultimate strength at least 5 times the safe working load

Allowable loads are lower than OSHA requirements tabulated in Section 1926251 Table H-19

Transportation and Erection of Pressure Vessels 715

Figure 10-9 Wire rope end configurations

716 Pressure Vessel Design Manual

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 5: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

Find Lifting Loads at Any Lift Angle for a Symmetrical Horizontal Drum

Dimensions and Forces

Example

Steam drum

WL frac14 600 kips

L1 frac14 80 ft

L4 frac14 5 ft

L1

2L4frac14 80

10frac14 8

Free-Body Diagram

Curve is based on the following equation

PWL

frac14 L4

L1ethtan qTHORN thorn 05

Results from curve

q frac14 15 frac14 516 q frac14 30 frac14 536 q frac14 45 frac14 563 q frac14 60 frac14 608 q frac14 75 frac14 733

Transportation and Erection of Pressure Vessels 679

Sample Problem

Case 1 L3 gt L2

L1 frac14 280 thorn 2833 thorn 1 frac14 28383 ftL2 frac14 28383 ndash 162 frac14 12183 ftL3 frac14 161 thorn 1 frac14 162 ftL4 frac14 10 ft

Case 2 L3 lt L2

L1 frac14 28383 ftL2 frac14 162 ftL3 frac14 12183 ftL4 frac14 10 ft

680 Pressure Vessel Design Manual

Procedure 10-5 Design of Tail Beams Lugs and Base Ring Details

Transportation and Erection of Pressure Vessels 681

682 Pressure Vessel Design Manual

Base Ring Design Check

C1 frac14 SAYSA

C2 frac14 WB C1

I frac14 SAY2 thorn SIo C1SAY

RB frac14 inside radius of base platethorn C2

Internal Forces and Moments in the Skirt BaseDuring Lifting

To determine the stresses in the base ring as a result ofthe tailing load the designer must find the coefficients Krand KT based on angle a as shown and the type of stiff-ening in the skirtbase ring configuration

M frac14 KrTRB

Tt frac14 KTT

Transportation and Erection of Pressure Vessels 683

SkirtTail Beam Calculations

Tail Beam

bull Tailing loads fL and fr

fL frac14 T cos q

fr frac14 T sin q

bull Maximum bending moment Mb

Mb frac14 xfr thorn yfL

bull Maximum bending stress sb

sb frac14 Mb

Z

Tail Beam Bolts

bull Shear load fs

fs frac14 05frn

bull Shear stress s

s frac14 fsAb

bull Tension force ft

Note y1 frac14 mean skirt diameter or centerline of boltgroup if a filler plate is used

ft frac14 Mb

y1

Skirt

bull Tension stress in bolts sT

sT frac14 fTNbAb

bull Compressive force in skirt fc

fc frac14 fL thorn ft

bull Skirt crippling is dependent on the base configura-tion and lengths l1 through l4

N frac14 1 in if web stiffeners are not usedN frac14 width of top flange of tail beam if web stiffeners are

used

bull Compressive stress in skirt sc

sc frac14 fctskln

bull Check shear stress s in base to skirt weld

s frac14 frpDsk 0707w4

Base Plate

bull Bending moment in base plate Mb

Mb frac14 KrTRB

bull Find tangential force Tt

Tt frac14 KTT

bull Total combined stress s

sTfrac14 MbC1

Ithorn Tt

A

tension

sCfrac14 MbC2

I Tt

A

compression

684 Pressure Vessel Design Manual

Size Base Ring Stiffeners

F1 frac14 force in strut or tailing beam lbF1 is (thorn) for tension and (ndash) for compression

bull Tension stress sT

sT frac14 FnAs

bull Critical buckling stress per AISC scr

Cc frac14ffiffiffiffiffiffiffiffi2p2

Fy

s

scr frac141

KL2s=r

2C2

c

Fy

eth5=3THORN thorn etheth3KLs=rTHORN=8CcTHORN ethKLs=rTHORN3=8C3

c

bull Actual compressive stress sc

sc frac14 FnAs

Note Evaluate all struts as tension and compressionmembers regardless of sign because when the vessel issitting on the ground the loads are the reverse of the signsshown

Two Point

F1 frac14 eththornTHORN05T

Three Point

F1 frac14 eththornTHORN0453TF2 frac14 ethTHORN0329T

Parallel BeamsStruts

F1 frac14 eththornTHORN025T

Four Point

F1 frac14 eththornTHORN05TF2 frac14 ethTHORN0273TF3 frac14 eththornTHORN0273T

Transportation and Erection of Pressure Vessels 685

Table 10-7Internal moment coefficients for base ring

One Point Two Point Three Point Four Point

Angle a Kr KT Kr KT Kr KT Kr KT

0 02387 e02387 00795 e02387 e00229 01651 00093 e01156

5 01961 e02802 00587 e02584 e00148 01708 00048 e01188

10 01555 e03171 00398 e02736 e00067 01764 00012 e01188

15 01174 e03492 00229 e02845 e00055 01747 e00015 e01155

20 00819 e03763 00043 e02908 e00042 01729 e00033 e01089

25 00493 e03983 e00042 e02926 00028 01640 e00043 e00993

30 00197 e04151 e00145 e02900 00098 01551 e00045 e00867

35 e00067 e04266 e00225 e02831 00103 01397 e00041 e00713

40 e00299 e04328 e00284 e02721 00107 01242 e00031 e00534

45 e00497 e04340 e00321 e02571 00093 01032 e00017 e00333

50 e00663 e04301 e00335 e02385 00078 00821 e00001 e00112

55 e00796 e04214 e00340 e02165 00052 00567 00017 00126

60 e00897 e04080 e00324 e01915 00025 00313 00033 00376

65 e00967 e03904 e00293 e01638 00031 00031 00046 00636

70 e01008 e03688 e00250 e01338 00037 e00252 00055 00901

75 e01020 e03435 e00197 e01020 e00028 e00548 00056 01167

80 e01006 e03150 e00136 e00688 e00092 e00843 00049 01431

85 e00968 e02837 e00069 e00346 e00107 e01134 00031 01688

90 e00908 e02500 0 0 e00121 e01425 0 01935

95 e00830 e02144 00069 00416 e00114 e01694 e00031 e01688

100 e00735 e01774 00135 00688 e00107 e01963 e00049 e01431

105 e00627 e01394 00198 01020 e00074 e02194 e00057 e01167

110 e00508 e01011 00250 01338 e00033 e02425 e00055 e00901

115 e00381 e00627 00293 01638 00041 e02603 e00046 e00636

120 e00250 e00250 00324 01915 00114 e02781 e00033 e00376

125 e00016 00118 00340 02165 00107 e01060 e00017 e00126

130 00116 00471 00335 02385 00100 00661 00001 00112

135 00145 00804 00321 02571 00083 00448 00017 00333

140 00268 01115 00284 02721 00066 00234 00031 00534

145 00382 01398 00225 02831 00045 00104 00041 00713

150 00486 01551 00145 02900 00024 e00026 00045 00867

155 00577 01870 00042 02926 e00005 e00213 00043 00993

160 00654 02053 e00083 02908 e00015 e00399 00033 01089

165 00715 02198 e00225 02845 e00028 e00484 00015 01155

170 00760 02301 e00398 02736 e00041 e00569 e00012 01188

175 00787 02366 e00587 02584 e00046 e00597 e00048 01188

180 00796 02387 e00795 02387 e00051 e00626 e00093 01156

686 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 687

Design of Vessel for Choker (Cinch) Lift at Base

bull Uniform load p

p frac14 TR

bull Moments in ring at points A and C

MA frac14 01271TR

Mc frac14 00723TR

bull Tensioncompression forces in ring at points Aand C

TA frac14 06421T

Tc frac14 12232T

bull Combined stress at point A inside of ring

sA frac14 TA

AthornMA

Zin

bull Combined stress at point A outside of ring

sA frac14 TA

A MA

Zout

bull Combined stress at point C inside of ring

sc frac14 Tc

AthornMc

Zin

bull Combined stress at point C outside of ring

sc frac14 Tc

A Mc

Zout

Note Assume that the choker is attached immediately atthe base ring even though this may be impossible toachieve Then use the properties of the base ring for Aand Z

From R J Roark Formulas for Stress and Strain 5thEdition McGraw-Hill Book Co Table 17 Cases 12 and18 combined

688 Pressure Vessel Design Manual

Design of Tailing Lugs

Table 10-8Dimensions for tailing lugs

Tail Load (kips) tL tP E Ro RP D1 e

lt10 None required

10 to 20 075 NR 3 4 NR 2375 NR

21 to 40 075 0375 3 4 35 2375 03125

41 to 70 1 05 3 4 35 2375 03125

71 to 100 1 05 4 5 45 34375 03125

101 to 130 15 05 4 5 45 34375 03125

131 to 170 1625 075 4 5 45 34375 0375

171 to 210 1625 075 5 6 55 45 0375

211 to 250 2 075 5 6 55 45 04375

251 to 300 225 1 5 6 55 45 05

gt300 Special design required

Transportation and Erection of Pressure Vessels 689

Formulas

The tailing lug is designed like all other lugs Theforces are determined from the tailing load T calcu-lated per this procedure The ideal position for thetailing lug is to be as close as possible to the baseplate for stiffness and transmitting these loads throughthe base to the skirt The option of using a tailing lugversus a tailing beam is the designerrsquos choice Eithercan accommodate internal skirt rings stiffeners andstruts

Design as follows

bull Area required at pin hole Ar

Ar frac14 TFs

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN-ethD1tLTHORN

bull Bending moment in lug Mb

Mb frac14 fLE

bull Section modulus of lug Z

Z frac14 tLA2

6bull Bending stress in lug sb

sb frac14 Mb

Zbull Area required at pin hole for bearing Ar

Ar frac14 TFp

bull Area available at pin hole for bearing Aa

Aa frac14 D2tL

Note Substitute tL thorn 2tp for tL in the preceding equationsif pad eyes are used

690 Pressure Vessel Design Manual

Procedure 10-6 Design of Top Head and Cone Lifting Lugs

Design of Top HeadCone Lug

Dimensions

NT frac14 B2

Athorn 2B

LT frac14 Ethorn B NT

q1 frac14 arctan2L1

A

L2 frac14 L1

sin q1

q2 frac14 arcsinR3

L2

q3 frac14 q1 thorn q2

L3 frac14 R3

sin q3

L4 frac14 05A L1 05D3

tan q3

L5 frac14 05A L1 Ctan q3

Transportation and Erection of Pressure Vessels 691

Lug

bull Maximum bending moment in lug ML

ML frac14 PE

bull Section modulus lug Z

Z frac14 A2tL6

bull Bending stress lug sb

sb frac14 ML

Z

bull Thickness of lug required tL

tL frac14 6ML

A2Fb

bull Tension at edge of pad sT

sT frac14 PL2L4tL

bull Net section at pin hole Ap

Ap frac14 2L3tL thorn 2tpD3 D1

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at top of lug An

An frac14 tL

R3 D1

2

thorn 2tp

D3 D1

2

bull Shear stress at top of lug s

s frac14 PTAn

bull Pin bearing stress sp

sp frac14 PTD3

tL thorn 2tp

Check Welds

bull Polar moment of inertia Jw

Re-pad Jw frac14 ethA1 thorn L6THORN36

Lug Jw frac14 ethAthorn 2BTHORN312

B2ethAthorn BTHORN2ethAthorn 2BTHORN

bull Moment M1

M1 frac14 LTPT

Lug Weld

bull Find loads on weldsbull Transverse shear due to PT f1

f1 frac14 PTAthorn 2B

bull Transverse shear due to M1 f2

f2 frac14 M1ethB NTTHORNJw

bull Longitudinal shear due to M1 f3

f3 frac14 M1BJw

bull Combined shear load fr

fr frac14ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiethf1 thorn f2THORN2thornf23

q

692 Pressure Vessel Design Manual

bull Size of weld required w1

w1 frac14 fr0707Fs

Note If w1 exceeds the shell plate thickness then a re-padmust be used

Re-pad Weld

bull Moment M2

M2 frac14 PTethEthorn 05L6THORN

bull Transverse shear due to PT f1

f1 frac14 PT2A1 thorn 2L6

bull Transverse shear due to M2 f2

f2 frac14 05M2L6

Jw

bull Longitudinal shear due to M2 f3

f3 frac14 M2L6

Jw

bull Combined shear load fr

fr frac14ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiethf1 thorn f2THORN2thornf23

q

bull Size of weld required w1

w2 frac14 fr0707Fs

Pad Eye Weld

bull Unit shear load on pad f4

f4 frac14 PTtppD2

2tp thorn tL

bull Size of weld required w3

w3 frac14 f40707Fs

Top Head Lug for Large Loads

Transportation and Erection of Pressure Vessels 693

Table 10-9Dimensions for top head or cone lugs

694 Pressure Vessel Design Manual

Procedure 10-7 Design of Flange Lugs

Transportation and Erection of Pressure Vessels 695

Table 10-10Flange lug dimensions

Load Capacity (tons) D1 tL tb A B G H E

50 338 2 2 8 11 12 30 9

100 5 3 3 14 12 24 36 9

200 6 4 4 18 14 30 40 10

400 8 5 5 20 16 36 46 11

600 9 6 6 24 22 40 58 16

800 10 9 7 28 24 42 60 17

Table 10-11Bolt properties

Bolt Size Ab As Tb

05e13 0196 0112 12

0625e11 0307 0199 19

075e10 0442 0309 28

0875e9 0601 0446 39

1e8 0785 0605 51

1125e8 0994 079 56

125e8 1227 1 71

1375e8 1485 1233 85

15e8 1767 1492 103

175e8 2405 2082 182

2e8 3142 2771 243

225e8 3976 3557 311

25e8 4909 4442 389

275e8 594 543 418

3e8 7069 6506 501

325e8 83 7686 592

35e8 962 896 690

375e8 1104 1034 796

4e8 1257 1181 910

Table 10-12Values of Su

Bolt Dia db Material Su (ksi)

lt 1 A-325 120

1125e15 A-325 105

1625e25 A-193-B7 125

2625e4 A-193-B7 110

696 Pressure Vessel Design Manual

Top Flange Lug

PL frac14 P sin q

PT frac14 P cos q

PE frac14 PLA

thorn 3PTe

A2

M1frac14 PTB

M2frac14 PT(B thorn J)

M3frac14 PTe

Mufrac14 Xn cos an Nb

Mafrac14 MuM1PMu

Xn frac14 Rb cos an

yn frac14 Rb sin an

Side Flange Lug

Fn frac14 Ma

XnNb

fs frac14 PTN

sT frac14 FnAs

Fs frac14 15 ksi

1 sTAb

Tb

As frac14 07854 ethd 01218THORN2

s frac14 fsAs

lt Fs

Tb frac14 075uAs

06Fy lt FT lt 40 ksi

Transportation and Erection of Pressure Vessels 697

Design Process

1 Determine loads2 Check of lug

a Shear at pin holeb Bending of lugc Bearing at pin hole

3 Check of base plate4 Check of nozzle flange5 Check of flange bolting6 Check of local load at nozzle to head or shell

junction

Step 1 Determine loads

bull Determine loads PT and PL for various lift angles qbull Determine uniform loads w1 and w2 for variousangles q

bull Using w1 and w2 solve for worst case of combinedload PE

bull Determine worst-case bending moment in lug M3

Step 2 Check of lug

a Shear at pin holebull Area required Ar

Ar frac14 PEFs

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN

b Bending of lug due to M3

bull Section modulus Z

Z frac14 tLA2

6

bull Bending stress lug sb

sb frac14 M3

Z

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFp

bull Bearing available Aa

Aa frac14 D2tL

Maximum Tension in Lug

Check of Nozzle Flange

bull Unit load w

w frac14 PEpBc

bull Bending moment M

M frac14 whDbull Bending stress sb

sb frac14 6M

t2f

698 Pressure Vessel Design Manual

Bolt Loads for Rectangular Lugs Design of Full Circular Base Plate for Lug

bull If a full circular plate is used in lieu of a rectangularplate the following evaluation may be used

bull Unit load on bolt circle w

w frac14 PEpBc

bull Edge distance from point of load hp

hp frac14 BC tL2

bull Bending moment M

M frac14 whp

bull Bending stress sb

sb frac14 6M

t2b

bull Check bolting same as rectangular flange

Transportation and Erection of Pressure Vessels 699

Design of Lug Base Plate

(From R J Roark Formulas for Stress and StrainMcGraw-Hill Book Co 4th Edition Table III Case 34)

bull Uniform load w

w frac14 PEA

bull End reaction R1

R1 frac14 wA2

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

bull Moment at midspan Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

bull Thickness required tb

tb frac14ffiffiffiffiffiffiffiffiffi6Mx

GFb

s

700 Pressure Vessel Design Manual

Check of Bolts

Case 1 Bolts on Centerline Case 2 Bolts Straddle Centerline

Bolt 1 2 3 4 5 Bolt 1 2 3 4 5

an an

xn xn

yn yn

Nb Nb

Mu Mu

Ma Ma

Fn Fn

sT sT

Fs Fs

Transportation and Erection of Pressure Vessels 701

Sample Problem Top Flange Lug

GivenL1 frac14 90 ftL2 frac14 50 ftL3 frac14 40 ftL4 frac14 95 ft

Fy bolting frac14 75 ksiFy lug frac14 36 ksi

Fy flange frac14 36 ksiFs frac14 04(36) frac14 144 ksiFT frac14 06(36) frac14 216 ksiFb frac14 066(36) frac14 2376 ksiWL frac14 1200 kipsBc frac14 54 inRc frac14 27 inB frac14 22 intb frac14 6 intL frac14 6 intf frac14 11 in

D1 frac14 9 in

D2 frac14 8 in

Bolt size frac14 3-14-8 UNC

Ab frac14 83 in2

As frac14 7686 in2

Tb frac14 592 kips

Su frac14 110 ksi

e frac14 16 in

G frac14 40 in

A frac14 24 in

hD frac14 95 in

b frac14 05ethBc ATHORN

Results

PT max frac14 537 kips q frac14 10

PL max frac141200 kips q frac14 90

PE max frac141277 kips q frac14 40

sT bolt max frac14 2011 ksi 40 ksi

s bolt max frac14 698 ksi 1077 ksi

702 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 703

10 Check Lug

a Shear at pin hole

bull Area required Ar

Ar frac14 PEFS

frac14 1277144

frac14 8868 in2

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN frac14 eth24$6THORN eth9$6THORN frac14 90 in2

b Bending of lug due to M3

bull Maximum moment M3

M3 frac14 PTe frac14 537eth16THORN frac14 8592 in kips

bull Section modulus Z

Z frac14 tLA2

6frac14

6$242

6

frac14 576 in3

bull Bending stress lug sb

sb frac14 M3

Zfrac14 8592

576frac14 1491 ksi

bull Thickness required tL

tL frac14 6M

FbA2 frac14 6$85922376eth242THORN frac14 376 in

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFP

frac14 1277324

frac14 3941 in2

bull Bearing available Aa

Aa frac14 D2tL frac14 8$6 frac14 48 in2

20 Check Lug Base Plate

bull Uniform load w

w frac14 PEA

frac14 127724

frac14 532kipsin

bull End reaction R1

R1 frac14 PE2

frac14 12772

frac14 6385 kips

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

Ma frac14 0985eth8748 2496thorn 768thorn 2304 17 496THORNfrac14 8049 in kips

bull Moment at mid Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

Mx frac14 8049thorn 17 240 3831

frac14 5360 in kips

bull Section modulus Z

Z frac14t2bG

6

frac1462$40

6

frac14 240 in3

bull Bending stress sb

sb frac14 Mx

Zfrac14 5360

240frac14 2233 ksi

bull Allowable bending stress Fb

Fb frac14 066Fy frac14 06636 frac14 2376 ksi

30 Check of Vessel Flange

bull Unit load w

w frac14 PEpBc

frac14 1277p54

frac14 752kipsin

bull Bending moment Mb

Mb frac14 whD frac14 752eth92THORN frac14 6925 in kips

bull Bending stress sb

sb frac14 6Mb

t2ffrac14 frac126eth6925THORN

11252frac14 328 ksi

704 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 705

Procedure 10-8 Design of Trunnions

Lug Dimensions

Dimensions for Trunnion

Type 1 Trunnion and Fixed Lug

Type 2 Trunnion and Rotating Lug

Type 3 Trunnion Only

706 Pressure Vessel Design Manual

Type 1 Trunnion and Fixed Lug

There are four checks to be performed

1 Check lug2 Check trunnion3 Check welds4 Check vessel shell

Check Lug

Transverse (vessel horizontal)

M frac14 PTE and Z frac14 4R2otL6

Therefore

tL frac14 15PTE

R2oFb

Longitudinal (vessel vertical)

bull Cross-sectional area at pin hole Ap

Ap frac14 213tL thorn 2tpethD3 D1

bull Cross-sectional area at top of lug An

An frac14 tL

RT D1

2

thorn 2tp

D3 D1

2

bull Shear stress s

s frac14 PLAP

or s frac14 PLAn

bull Pin bearing stress sp

sp frac14 PLD2

tL thorn 2tp

Check Trunnion

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Torsional moment MT (vessel horizontal)

MT frac14 PTE

bull Bending stress sb

sb frac14 ML

Z

bull Torsional shear stress sT

sT frac14 MT

2pRnto

Check Welds

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Polar moment of inertia Jw

Jw frac14 2pR3n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Torsional shear stress in weld sT

sT frac14 MTRn

Jw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 2 Trunnion and Rotating Lug

bull Net section at Section A-A Ap

Ap frac14 213tL thorn 2tpD3 D1

Transportation and Erection of Pressure Vessels 707

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at Section B-B An

An frac14 2tLethRo RiTHORNbull Shear stress at trunnion s

s frac14 PLAn

bull Minimum bearing contact angle for lug at trun-nion qB

qB frac14 eth159PLTHORNRntLFp

bull Pin hole bearing stress sp

sp frac14 PLD3

tL thorn 2tp

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Swbull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 3 Trunnion Only

Vessel Vertical

bull Longitudinal moment ML

ML frac14 PLe

bull Bending stress in trunnion sb

sb frac14 ML

Z

Vessel Horizontal

bull Circumferential moment Mc

Mc frac14 PTe

bull Bending stress in trunnion sb

sb frac14 Mc

Z

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

708 Pressure Vessel Design Manual

TYPE 1 TYPE 2

W

K

DIA

A

DIA

= F

DIA

= M

K

C

KT

2 X 125 DIAVENT HOLES

DIA

A

125

D

250

DIA

= F

W

K

B

NUTS WELDED

GRIND WELDSMOOTH

DIA

= M

K

E

KT

2 X 125 DIAVENT HOLES

Table 10-13Dimensions of trunnions

Allowable Load Tons Pipe Size A C D E F M N T W Weight Lbs

1 0-5 4 Std 4 - - 85 8 - 05 025 30

2 5-10 6 Std 5 - - 105 12 - 05 025 55

3 10-15 8 Std 6 0625 8 125 15 4 05 0375 90

4 15-25 10 Std 6 0625 8 15 18 4 075 0375 150

5 25-35 12 Sch 80 6 075 8 17 21 4 075 0375 240

6 35-45 12 Sch 80 6 075 8 17 21 4 075 05 240

7 45-60 14 Sch 80 6 075 8 18 24 8 1 05 375

8 60-75 14 Sch 80 7 0875 8 18 24 8 1 0625 400

9 75-100 16 Sch 80 7 0875 8 25 27 8 1 0625 625

10 100-125 16 Sch 80 7 0875 8 25 27 8 1125 0875 660

11 125-150 18 Sch 80 7 0875 8 27 30 12 1125 0875 850

12 150-200 18 Sch 80 8 0875 8 27 30 12 1125 1 875

13 200-250 20 Sch 80 8 0875 10 30 36 16 125 1 1000

14 300 24 Sch 80 8 1 10 34 36 16 125 1125 1440

15 400 24 Sch 80 8 1 10 34 40 20 1375 1125 1675

16 500 30 125 10 125 12 42 48 20 1375 1375 2400

17 600 36 125 10 125 12 48 60 24 15 1375 3600

Notes

1 Do not use re-pads for cyclic service

2 B frac14 D - 125

3 K frac14 Pipe Wall Thk

4 Dimensions are given for reference only All loadings and stress shall be checked prior to use

Transportation and Erection of Pressure Vessels 709

Procedure 10-9 Local Loads in Shell Due to Erection Forces

Trunnions

Fixed Lug Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Maximum torsional moment MT

MT frac14 PTE

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

Rotating Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

TrunniondNo Lug

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

710 Pressure Vessel Design Manual

Side Lugs Notes

1 Optional internal pipe Remove after erection2 Radial load Pr is the axial load in the internal pipe

stiffener if used in lieu of radial load in shell3 Circumferential ring stiffeners are optional at these

elevations

bull Circumferential moment Mc

Mc frac14 PTe

bull Longitudinal moment Mx

Mx frac14 PLe

bull Load on weld group f

f frac14 PTELT

bull Radial loads Pr and Pa

Pr frac14 PLe

Pa frac14 PL sin f

Top Flange Lug

bull Loads PT and PL

PT frac14 P cos q

PL frac14 P sin q

Transportation and Erection of Pressure Vessels 711

bull Moment on flange M

M frac14 PTB

bull Moment on head M

M frac14 PTethBthorn JTHORNbull Moment on vessel M

M frac14 PTG

bull Radial load on head and nozzle frac14 PL

Side Flange Lug

bull Loads PT and PL

PL frac14 P cos q

PT frac14 P sin q

bull Moment on flange M

M frac14 PLB

bull Longitudinal moment on shell Mx

M frac14 PTethBthorn JTHORNbull Radial load on shell and nozzle frac14 PT

712 Pressure Vessel Design Manual

Procedure 10-10 Miscellaneous

Figure 10-7 Fundamental handling operations Reprinted by permission of the Babcock and Wilcox Companya McDermott Company

Transportation and Erection of Pressure Vessels 713

Figure 10-8 Loads on wire rope for various sheave configurations

714 Pressure Vessel Design Manual

Table 10-14Forged Steel Shackles

Dimensions in Inches

Size D (in)Safe Load

(lb)D (min) A

Tolerance

A DimB B (min) C G

Tolerance C

and G DimE F

frac14 475 73232 153232 11616 51616 93232 1⅛ ⅞ 11616 frac34 111616

⅜ 1050 113232 213232 11616 71616 256464 171616 1frac14 ⅛ 1 313232

71616 1450 256464 233232 11616 frac12 296464 1111616 171616 ⅛ 1⅛ 111616

frac12 1900 296464 131616 11616 ⅝ 91616 1⅞ 1⅝ ⅛ 1⅜ 151616

⅝ 2950 91616 111616 11616 frac34 436464 2133232 2 ⅛ 1⅝ 191616

frac34 4250 436464 1frac14 11616 ⅞ 253232 2273232 2⅜ frac14 2 1⅞

⅞ 5750 253232 171616 11616 1 576464 351616 2131616 frac14 2frac14 2⅛

1 7550 576464 1111616 11616 1⅛ 113232 3frac34 331616 frac14 2frac12 2⅜

1⅛ 8900 113232 1271616 ⅛ 1frac14 176464 4frac14 391616 frac14 2frac34 2⅝

1frac14 11000 176464 213232 ⅛ 1⅜ 1156464 4111616 3151616 frac14 3⅛ 3

1⅜ 13300 1156464 2frac14 ⅛ 1frac12 1113232 5frac14 471616 frac14 3frac12 351616

1frac12 15600 1113232 2⅜ ⅛ 1⅝ 1296464 5frac34 4⅞ frac14 3frac34 3⅝

1frac34 21500 1356464 2⅞ ⅛ 2 1253232 7 5frac34 frac14 4frac14 4⅛

2 28100 1253232 3frac14 ⅛ 2frac14 216464 7frac34 6frac34 frac14 5frac14 5

2frac14 36000 216464 3frac34 ⅛ 2frac12 2156464 9frac14 7⅛ frac34 5frac12 5frac14

2frac12 45100 2156464 4⅛ ⅛ 2frac34 2153232 10frac12 8 frac34 6frac14 6

3 64700 2111616 5 ⅛ 3frac14 2293232 13 11frac12 frac34 6frac34 6frac12

Notes

For shackles with safe loads greater than the maximum shown use CrosbyndashLaughlin (The Crosby Group Div of American Hoist amp Derrick Co Tulsa

OK 74101) Skookum (Skookum Co Inc Portland OR 97203) or equal with an ultimate strength at least 5 times the safe working load

Allowable loads are lower than OSHA requirements tabulated in Section 1926251 Table H-19

Transportation and Erection of Pressure Vessels 715

Figure 10-9 Wire rope end configurations

716 Pressure Vessel Design Manual

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 6: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

Sample Problem

Case 1 L3 gt L2

L1 frac14 280 thorn 2833 thorn 1 frac14 28383 ftL2 frac14 28383 ndash 162 frac14 12183 ftL3 frac14 161 thorn 1 frac14 162 ftL4 frac14 10 ft

Case 2 L3 lt L2

L1 frac14 28383 ftL2 frac14 162 ftL3 frac14 12183 ftL4 frac14 10 ft

680 Pressure Vessel Design Manual

Procedure 10-5 Design of Tail Beams Lugs and Base Ring Details

Transportation and Erection of Pressure Vessels 681

682 Pressure Vessel Design Manual

Base Ring Design Check

C1 frac14 SAYSA

C2 frac14 WB C1

I frac14 SAY2 thorn SIo C1SAY

RB frac14 inside radius of base platethorn C2

Internal Forces and Moments in the Skirt BaseDuring Lifting

To determine the stresses in the base ring as a result ofthe tailing load the designer must find the coefficients Krand KT based on angle a as shown and the type of stiff-ening in the skirtbase ring configuration

M frac14 KrTRB

Tt frac14 KTT

Transportation and Erection of Pressure Vessels 683

SkirtTail Beam Calculations

Tail Beam

bull Tailing loads fL and fr

fL frac14 T cos q

fr frac14 T sin q

bull Maximum bending moment Mb

Mb frac14 xfr thorn yfL

bull Maximum bending stress sb

sb frac14 Mb

Z

Tail Beam Bolts

bull Shear load fs

fs frac14 05frn

bull Shear stress s

s frac14 fsAb

bull Tension force ft

Note y1 frac14 mean skirt diameter or centerline of boltgroup if a filler plate is used

ft frac14 Mb

y1

Skirt

bull Tension stress in bolts sT

sT frac14 fTNbAb

bull Compressive force in skirt fc

fc frac14 fL thorn ft

bull Skirt crippling is dependent on the base configura-tion and lengths l1 through l4

N frac14 1 in if web stiffeners are not usedN frac14 width of top flange of tail beam if web stiffeners are

used

bull Compressive stress in skirt sc

sc frac14 fctskln

bull Check shear stress s in base to skirt weld

s frac14 frpDsk 0707w4

Base Plate

bull Bending moment in base plate Mb

Mb frac14 KrTRB

bull Find tangential force Tt

Tt frac14 KTT

bull Total combined stress s

sTfrac14 MbC1

Ithorn Tt

A

tension

sCfrac14 MbC2

I Tt

A

compression

684 Pressure Vessel Design Manual

Size Base Ring Stiffeners

F1 frac14 force in strut or tailing beam lbF1 is (thorn) for tension and (ndash) for compression

bull Tension stress sT

sT frac14 FnAs

bull Critical buckling stress per AISC scr

Cc frac14ffiffiffiffiffiffiffiffi2p2

Fy

s

scr frac141

KL2s=r

2C2

c

Fy

eth5=3THORN thorn etheth3KLs=rTHORN=8CcTHORN ethKLs=rTHORN3=8C3

c

bull Actual compressive stress sc

sc frac14 FnAs

Note Evaluate all struts as tension and compressionmembers regardless of sign because when the vessel issitting on the ground the loads are the reverse of the signsshown

Two Point

F1 frac14 eththornTHORN05T

Three Point

F1 frac14 eththornTHORN0453TF2 frac14 ethTHORN0329T

Parallel BeamsStruts

F1 frac14 eththornTHORN025T

Four Point

F1 frac14 eththornTHORN05TF2 frac14 ethTHORN0273TF3 frac14 eththornTHORN0273T

Transportation and Erection of Pressure Vessels 685

Table 10-7Internal moment coefficients for base ring

One Point Two Point Three Point Four Point

Angle a Kr KT Kr KT Kr KT Kr KT

0 02387 e02387 00795 e02387 e00229 01651 00093 e01156

5 01961 e02802 00587 e02584 e00148 01708 00048 e01188

10 01555 e03171 00398 e02736 e00067 01764 00012 e01188

15 01174 e03492 00229 e02845 e00055 01747 e00015 e01155

20 00819 e03763 00043 e02908 e00042 01729 e00033 e01089

25 00493 e03983 e00042 e02926 00028 01640 e00043 e00993

30 00197 e04151 e00145 e02900 00098 01551 e00045 e00867

35 e00067 e04266 e00225 e02831 00103 01397 e00041 e00713

40 e00299 e04328 e00284 e02721 00107 01242 e00031 e00534

45 e00497 e04340 e00321 e02571 00093 01032 e00017 e00333

50 e00663 e04301 e00335 e02385 00078 00821 e00001 e00112

55 e00796 e04214 e00340 e02165 00052 00567 00017 00126

60 e00897 e04080 e00324 e01915 00025 00313 00033 00376

65 e00967 e03904 e00293 e01638 00031 00031 00046 00636

70 e01008 e03688 e00250 e01338 00037 e00252 00055 00901

75 e01020 e03435 e00197 e01020 e00028 e00548 00056 01167

80 e01006 e03150 e00136 e00688 e00092 e00843 00049 01431

85 e00968 e02837 e00069 e00346 e00107 e01134 00031 01688

90 e00908 e02500 0 0 e00121 e01425 0 01935

95 e00830 e02144 00069 00416 e00114 e01694 e00031 e01688

100 e00735 e01774 00135 00688 e00107 e01963 e00049 e01431

105 e00627 e01394 00198 01020 e00074 e02194 e00057 e01167

110 e00508 e01011 00250 01338 e00033 e02425 e00055 e00901

115 e00381 e00627 00293 01638 00041 e02603 e00046 e00636

120 e00250 e00250 00324 01915 00114 e02781 e00033 e00376

125 e00016 00118 00340 02165 00107 e01060 e00017 e00126

130 00116 00471 00335 02385 00100 00661 00001 00112

135 00145 00804 00321 02571 00083 00448 00017 00333

140 00268 01115 00284 02721 00066 00234 00031 00534

145 00382 01398 00225 02831 00045 00104 00041 00713

150 00486 01551 00145 02900 00024 e00026 00045 00867

155 00577 01870 00042 02926 e00005 e00213 00043 00993

160 00654 02053 e00083 02908 e00015 e00399 00033 01089

165 00715 02198 e00225 02845 e00028 e00484 00015 01155

170 00760 02301 e00398 02736 e00041 e00569 e00012 01188

175 00787 02366 e00587 02584 e00046 e00597 e00048 01188

180 00796 02387 e00795 02387 e00051 e00626 e00093 01156

686 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 687

Design of Vessel for Choker (Cinch) Lift at Base

bull Uniform load p

p frac14 TR

bull Moments in ring at points A and C

MA frac14 01271TR

Mc frac14 00723TR

bull Tensioncompression forces in ring at points Aand C

TA frac14 06421T

Tc frac14 12232T

bull Combined stress at point A inside of ring

sA frac14 TA

AthornMA

Zin

bull Combined stress at point A outside of ring

sA frac14 TA

A MA

Zout

bull Combined stress at point C inside of ring

sc frac14 Tc

AthornMc

Zin

bull Combined stress at point C outside of ring

sc frac14 Tc

A Mc

Zout

Note Assume that the choker is attached immediately atthe base ring even though this may be impossible toachieve Then use the properties of the base ring for Aand Z

From R J Roark Formulas for Stress and Strain 5thEdition McGraw-Hill Book Co Table 17 Cases 12 and18 combined

688 Pressure Vessel Design Manual

Design of Tailing Lugs

Table 10-8Dimensions for tailing lugs

Tail Load (kips) tL tP E Ro RP D1 e

lt10 None required

10 to 20 075 NR 3 4 NR 2375 NR

21 to 40 075 0375 3 4 35 2375 03125

41 to 70 1 05 3 4 35 2375 03125

71 to 100 1 05 4 5 45 34375 03125

101 to 130 15 05 4 5 45 34375 03125

131 to 170 1625 075 4 5 45 34375 0375

171 to 210 1625 075 5 6 55 45 0375

211 to 250 2 075 5 6 55 45 04375

251 to 300 225 1 5 6 55 45 05

gt300 Special design required

Transportation and Erection of Pressure Vessels 689

Formulas

The tailing lug is designed like all other lugs Theforces are determined from the tailing load T calcu-lated per this procedure The ideal position for thetailing lug is to be as close as possible to the baseplate for stiffness and transmitting these loads throughthe base to the skirt The option of using a tailing lugversus a tailing beam is the designerrsquos choice Eithercan accommodate internal skirt rings stiffeners andstruts

Design as follows

bull Area required at pin hole Ar

Ar frac14 TFs

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN-ethD1tLTHORN

bull Bending moment in lug Mb

Mb frac14 fLE

bull Section modulus of lug Z

Z frac14 tLA2

6bull Bending stress in lug sb

sb frac14 Mb

Zbull Area required at pin hole for bearing Ar

Ar frac14 TFp

bull Area available at pin hole for bearing Aa

Aa frac14 D2tL

Note Substitute tL thorn 2tp for tL in the preceding equationsif pad eyes are used

690 Pressure Vessel Design Manual

Procedure 10-6 Design of Top Head and Cone Lifting Lugs

Design of Top HeadCone Lug

Dimensions

NT frac14 B2

Athorn 2B

LT frac14 Ethorn B NT

q1 frac14 arctan2L1

A

L2 frac14 L1

sin q1

q2 frac14 arcsinR3

L2

q3 frac14 q1 thorn q2

L3 frac14 R3

sin q3

L4 frac14 05A L1 05D3

tan q3

L5 frac14 05A L1 Ctan q3

Transportation and Erection of Pressure Vessels 691

Lug

bull Maximum bending moment in lug ML

ML frac14 PE

bull Section modulus lug Z

Z frac14 A2tL6

bull Bending stress lug sb

sb frac14 ML

Z

bull Thickness of lug required tL

tL frac14 6ML

A2Fb

bull Tension at edge of pad sT

sT frac14 PL2L4tL

bull Net section at pin hole Ap

Ap frac14 2L3tL thorn 2tpD3 D1

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at top of lug An

An frac14 tL

R3 D1

2

thorn 2tp

D3 D1

2

bull Shear stress at top of lug s

s frac14 PTAn

bull Pin bearing stress sp

sp frac14 PTD3

tL thorn 2tp

Check Welds

bull Polar moment of inertia Jw

Re-pad Jw frac14 ethA1 thorn L6THORN36

Lug Jw frac14 ethAthorn 2BTHORN312

B2ethAthorn BTHORN2ethAthorn 2BTHORN

bull Moment M1

M1 frac14 LTPT

Lug Weld

bull Find loads on weldsbull Transverse shear due to PT f1

f1 frac14 PTAthorn 2B

bull Transverse shear due to M1 f2

f2 frac14 M1ethB NTTHORNJw

bull Longitudinal shear due to M1 f3

f3 frac14 M1BJw

bull Combined shear load fr

fr frac14ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiethf1 thorn f2THORN2thornf23

q

692 Pressure Vessel Design Manual

bull Size of weld required w1

w1 frac14 fr0707Fs

Note If w1 exceeds the shell plate thickness then a re-padmust be used

Re-pad Weld

bull Moment M2

M2 frac14 PTethEthorn 05L6THORN

bull Transverse shear due to PT f1

f1 frac14 PT2A1 thorn 2L6

bull Transverse shear due to M2 f2

f2 frac14 05M2L6

Jw

bull Longitudinal shear due to M2 f3

f3 frac14 M2L6

Jw

bull Combined shear load fr

fr frac14ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiethf1 thorn f2THORN2thornf23

q

bull Size of weld required w1

w2 frac14 fr0707Fs

Pad Eye Weld

bull Unit shear load on pad f4

f4 frac14 PTtppD2

2tp thorn tL

bull Size of weld required w3

w3 frac14 f40707Fs

Top Head Lug for Large Loads

Transportation and Erection of Pressure Vessels 693

Table 10-9Dimensions for top head or cone lugs

694 Pressure Vessel Design Manual

Procedure 10-7 Design of Flange Lugs

Transportation and Erection of Pressure Vessels 695

Table 10-10Flange lug dimensions

Load Capacity (tons) D1 tL tb A B G H E

50 338 2 2 8 11 12 30 9

100 5 3 3 14 12 24 36 9

200 6 4 4 18 14 30 40 10

400 8 5 5 20 16 36 46 11

600 9 6 6 24 22 40 58 16

800 10 9 7 28 24 42 60 17

Table 10-11Bolt properties

Bolt Size Ab As Tb

05e13 0196 0112 12

0625e11 0307 0199 19

075e10 0442 0309 28

0875e9 0601 0446 39

1e8 0785 0605 51

1125e8 0994 079 56

125e8 1227 1 71

1375e8 1485 1233 85

15e8 1767 1492 103

175e8 2405 2082 182

2e8 3142 2771 243

225e8 3976 3557 311

25e8 4909 4442 389

275e8 594 543 418

3e8 7069 6506 501

325e8 83 7686 592

35e8 962 896 690

375e8 1104 1034 796

4e8 1257 1181 910

Table 10-12Values of Su

Bolt Dia db Material Su (ksi)

lt 1 A-325 120

1125e15 A-325 105

1625e25 A-193-B7 125

2625e4 A-193-B7 110

696 Pressure Vessel Design Manual

Top Flange Lug

PL frac14 P sin q

PT frac14 P cos q

PE frac14 PLA

thorn 3PTe

A2

M1frac14 PTB

M2frac14 PT(B thorn J)

M3frac14 PTe

Mufrac14 Xn cos an Nb

Mafrac14 MuM1PMu

Xn frac14 Rb cos an

yn frac14 Rb sin an

Side Flange Lug

Fn frac14 Ma

XnNb

fs frac14 PTN

sT frac14 FnAs

Fs frac14 15 ksi

1 sTAb

Tb

As frac14 07854 ethd 01218THORN2

s frac14 fsAs

lt Fs

Tb frac14 075uAs

06Fy lt FT lt 40 ksi

Transportation and Erection of Pressure Vessels 697

Design Process

1 Determine loads2 Check of lug

a Shear at pin holeb Bending of lugc Bearing at pin hole

3 Check of base plate4 Check of nozzle flange5 Check of flange bolting6 Check of local load at nozzle to head or shell

junction

Step 1 Determine loads

bull Determine loads PT and PL for various lift angles qbull Determine uniform loads w1 and w2 for variousangles q

bull Using w1 and w2 solve for worst case of combinedload PE

bull Determine worst-case bending moment in lug M3

Step 2 Check of lug

a Shear at pin holebull Area required Ar

Ar frac14 PEFs

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN

b Bending of lug due to M3

bull Section modulus Z

Z frac14 tLA2

6

bull Bending stress lug sb

sb frac14 M3

Z

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFp

bull Bearing available Aa

Aa frac14 D2tL

Maximum Tension in Lug

Check of Nozzle Flange

bull Unit load w

w frac14 PEpBc

bull Bending moment M

M frac14 whDbull Bending stress sb

sb frac14 6M

t2f

698 Pressure Vessel Design Manual

Bolt Loads for Rectangular Lugs Design of Full Circular Base Plate for Lug

bull If a full circular plate is used in lieu of a rectangularplate the following evaluation may be used

bull Unit load on bolt circle w

w frac14 PEpBc

bull Edge distance from point of load hp

hp frac14 BC tL2

bull Bending moment M

M frac14 whp

bull Bending stress sb

sb frac14 6M

t2b

bull Check bolting same as rectangular flange

Transportation and Erection of Pressure Vessels 699

Design of Lug Base Plate

(From R J Roark Formulas for Stress and StrainMcGraw-Hill Book Co 4th Edition Table III Case 34)

bull Uniform load w

w frac14 PEA

bull End reaction R1

R1 frac14 wA2

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

bull Moment at midspan Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

bull Thickness required tb

tb frac14ffiffiffiffiffiffiffiffiffi6Mx

GFb

s

700 Pressure Vessel Design Manual

Check of Bolts

Case 1 Bolts on Centerline Case 2 Bolts Straddle Centerline

Bolt 1 2 3 4 5 Bolt 1 2 3 4 5

an an

xn xn

yn yn

Nb Nb

Mu Mu

Ma Ma

Fn Fn

sT sT

Fs Fs

Transportation and Erection of Pressure Vessels 701

Sample Problem Top Flange Lug

GivenL1 frac14 90 ftL2 frac14 50 ftL3 frac14 40 ftL4 frac14 95 ft

Fy bolting frac14 75 ksiFy lug frac14 36 ksi

Fy flange frac14 36 ksiFs frac14 04(36) frac14 144 ksiFT frac14 06(36) frac14 216 ksiFb frac14 066(36) frac14 2376 ksiWL frac14 1200 kipsBc frac14 54 inRc frac14 27 inB frac14 22 intb frac14 6 intL frac14 6 intf frac14 11 in

D1 frac14 9 in

D2 frac14 8 in

Bolt size frac14 3-14-8 UNC

Ab frac14 83 in2

As frac14 7686 in2

Tb frac14 592 kips

Su frac14 110 ksi

e frac14 16 in

G frac14 40 in

A frac14 24 in

hD frac14 95 in

b frac14 05ethBc ATHORN

Results

PT max frac14 537 kips q frac14 10

PL max frac141200 kips q frac14 90

PE max frac141277 kips q frac14 40

sT bolt max frac14 2011 ksi 40 ksi

s bolt max frac14 698 ksi 1077 ksi

702 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 703

10 Check Lug

a Shear at pin hole

bull Area required Ar

Ar frac14 PEFS

frac14 1277144

frac14 8868 in2

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN frac14 eth24$6THORN eth9$6THORN frac14 90 in2

b Bending of lug due to M3

bull Maximum moment M3

M3 frac14 PTe frac14 537eth16THORN frac14 8592 in kips

bull Section modulus Z

Z frac14 tLA2

6frac14

6$242

6

frac14 576 in3

bull Bending stress lug sb

sb frac14 M3

Zfrac14 8592

576frac14 1491 ksi

bull Thickness required tL

tL frac14 6M

FbA2 frac14 6$85922376eth242THORN frac14 376 in

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFP

frac14 1277324

frac14 3941 in2

bull Bearing available Aa

Aa frac14 D2tL frac14 8$6 frac14 48 in2

20 Check Lug Base Plate

bull Uniform load w

w frac14 PEA

frac14 127724

frac14 532kipsin

bull End reaction R1

R1 frac14 PE2

frac14 12772

frac14 6385 kips

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

Ma frac14 0985eth8748 2496thorn 768thorn 2304 17 496THORNfrac14 8049 in kips

bull Moment at mid Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

Mx frac14 8049thorn 17 240 3831

frac14 5360 in kips

bull Section modulus Z

Z frac14t2bG

6

frac1462$40

6

frac14 240 in3

bull Bending stress sb

sb frac14 Mx

Zfrac14 5360

240frac14 2233 ksi

bull Allowable bending stress Fb

Fb frac14 066Fy frac14 06636 frac14 2376 ksi

30 Check of Vessel Flange

bull Unit load w

w frac14 PEpBc

frac14 1277p54

frac14 752kipsin

bull Bending moment Mb

Mb frac14 whD frac14 752eth92THORN frac14 6925 in kips

bull Bending stress sb

sb frac14 6Mb

t2ffrac14 frac126eth6925THORN

11252frac14 328 ksi

704 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 705

Procedure 10-8 Design of Trunnions

Lug Dimensions

Dimensions for Trunnion

Type 1 Trunnion and Fixed Lug

Type 2 Trunnion and Rotating Lug

Type 3 Trunnion Only

706 Pressure Vessel Design Manual

Type 1 Trunnion and Fixed Lug

There are four checks to be performed

1 Check lug2 Check trunnion3 Check welds4 Check vessel shell

Check Lug

Transverse (vessel horizontal)

M frac14 PTE and Z frac14 4R2otL6

Therefore

tL frac14 15PTE

R2oFb

Longitudinal (vessel vertical)

bull Cross-sectional area at pin hole Ap

Ap frac14 213tL thorn 2tpethD3 D1

bull Cross-sectional area at top of lug An

An frac14 tL

RT D1

2

thorn 2tp

D3 D1

2

bull Shear stress s

s frac14 PLAP

or s frac14 PLAn

bull Pin bearing stress sp

sp frac14 PLD2

tL thorn 2tp

Check Trunnion

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Torsional moment MT (vessel horizontal)

MT frac14 PTE

bull Bending stress sb

sb frac14 ML

Z

bull Torsional shear stress sT

sT frac14 MT

2pRnto

Check Welds

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Polar moment of inertia Jw

Jw frac14 2pR3n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Torsional shear stress in weld sT

sT frac14 MTRn

Jw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 2 Trunnion and Rotating Lug

bull Net section at Section A-A Ap

Ap frac14 213tL thorn 2tpD3 D1

Transportation and Erection of Pressure Vessels 707

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at Section B-B An

An frac14 2tLethRo RiTHORNbull Shear stress at trunnion s

s frac14 PLAn

bull Minimum bearing contact angle for lug at trun-nion qB

qB frac14 eth159PLTHORNRntLFp

bull Pin hole bearing stress sp

sp frac14 PLD3

tL thorn 2tp

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Swbull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 3 Trunnion Only

Vessel Vertical

bull Longitudinal moment ML

ML frac14 PLe

bull Bending stress in trunnion sb

sb frac14 ML

Z

Vessel Horizontal

bull Circumferential moment Mc

Mc frac14 PTe

bull Bending stress in trunnion sb

sb frac14 Mc

Z

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

708 Pressure Vessel Design Manual

TYPE 1 TYPE 2

W

K

DIA

A

DIA

= F

DIA

= M

K

C

KT

2 X 125 DIAVENT HOLES

DIA

A

125

D

250

DIA

= F

W

K

B

NUTS WELDED

GRIND WELDSMOOTH

DIA

= M

K

E

KT

2 X 125 DIAVENT HOLES

Table 10-13Dimensions of trunnions

Allowable Load Tons Pipe Size A C D E F M N T W Weight Lbs

1 0-5 4 Std 4 - - 85 8 - 05 025 30

2 5-10 6 Std 5 - - 105 12 - 05 025 55

3 10-15 8 Std 6 0625 8 125 15 4 05 0375 90

4 15-25 10 Std 6 0625 8 15 18 4 075 0375 150

5 25-35 12 Sch 80 6 075 8 17 21 4 075 0375 240

6 35-45 12 Sch 80 6 075 8 17 21 4 075 05 240

7 45-60 14 Sch 80 6 075 8 18 24 8 1 05 375

8 60-75 14 Sch 80 7 0875 8 18 24 8 1 0625 400

9 75-100 16 Sch 80 7 0875 8 25 27 8 1 0625 625

10 100-125 16 Sch 80 7 0875 8 25 27 8 1125 0875 660

11 125-150 18 Sch 80 7 0875 8 27 30 12 1125 0875 850

12 150-200 18 Sch 80 8 0875 8 27 30 12 1125 1 875

13 200-250 20 Sch 80 8 0875 10 30 36 16 125 1 1000

14 300 24 Sch 80 8 1 10 34 36 16 125 1125 1440

15 400 24 Sch 80 8 1 10 34 40 20 1375 1125 1675

16 500 30 125 10 125 12 42 48 20 1375 1375 2400

17 600 36 125 10 125 12 48 60 24 15 1375 3600

Notes

1 Do not use re-pads for cyclic service

2 B frac14 D - 125

3 K frac14 Pipe Wall Thk

4 Dimensions are given for reference only All loadings and stress shall be checked prior to use

Transportation and Erection of Pressure Vessels 709

Procedure 10-9 Local Loads in Shell Due to Erection Forces

Trunnions

Fixed Lug Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Maximum torsional moment MT

MT frac14 PTE

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

Rotating Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

TrunniondNo Lug

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

710 Pressure Vessel Design Manual

Side Lugs Notes

1 Optional internal pipe Remove after erection2 Radial load Pr is the axial load in the internal pipe

stiffener if used in lieu of radial load in shell3 Circumferential ring stiffeners are optional at these

elevations

bull Circumferential moment Mc

Mc frac14 PTe

bull Longitudinal moment Mx

Mx frac14 PLe

bull Load on weld group f

f frac14 PTELT

bull Radial loads Pr and Pa

Pr frac14 PLe

Pa frac14 PL sin f

Top Flange Lug

bull Loads PT and PL

PT frac14 P cos q

PL frac14 P sin q

Transportation and Erection of Pressure Vessels 711

bull Moment on flange M

M frac14 PTB

bull Moment on head M

M frac14 PTethBthorn JTHORNbull Moment on vessel M

M frac14 PTG

bull Radial load on head and nozzle frac14 PL

Side Flange Lug

bull Loads PT and PL

PL frac14 P cos q

PT frac14 P sin q

bull Moment on flange M

M frac14 PLB

bull Longitudinal moment on shell Mx

M frac14 PTethBthorn JTHORNbull Radial load on shell and nozzle frac14 PT

712 Pressure Vessel Design Manual

Procedure 10-10 Miscellaneous

Figure 10-7 Fundamental handling operations Reprinted by permission of the Babcock and Wilcox Companya McDermott Company

Transportation and Erection of Pressure Vessels 713

Figure 10-8 Loads on wire rope for various sheave configurations

714 Pressure Vessel Design Manual

Table 10-14Forged Steel Shackles

Dimensions in Inches

Size D (in)Safe Load

(lb)D (min) A

Tolerance

A DimB B (min) C G

Tolerance C

and G DimE F

frac14 475 73232 153232 11616 51616 93232 1⅛ ⅞ 11616 frac34 111616

⅜ 1050 113232 213232 11616 71616 256464 171616 1frac14 ⅛ 1 313232

71616 1450 256464 233232 11616 frac12 296464 1111616 171616 ⅛ 1⅛ 111616

frac12 1900 296464 131616 11616 ⅝ 91616 1⅞ 1⅝ ⅛ 1⅜ 151616

⅝ 2950 91616 111616 11616 frac34 436464 2133232 2 ⅛ 1⅝ 191616

frac34 4250 436464 1frac14 11616 ⅞ 253232 2273232 2⅜ frac14 2 1⅞

⅞ 5750 253232 171616 11616 1 576464 351616 2131616 frac14 2frac14 2⅛

1 7550 576464 1111616 11616 1⅛ 113232 3frac34 331616 frac14 2frac12 2⅜

1⅛ 8900 113232 1271616 ⅛ 1frac14 176464 4frac14 391616 frac14 2frac34 2⅝

1frac14 11000 176464 213232 ⅛ 1⅜ 1156464 4111616 3151616 frac14 3⅛ 3

1⅜ 13300 1156464 2frac14 ⅛ 1frac12 1113232 5frac14 471616 frac14 3frac12 351616

1frac12 15600 1113232 2⅜ ⅛ 1⅝ 1296464 5frac34 4⅞ frac14 3frac34 3⅝

1frac34 21500 1356464 2⅞ ⅛ 2 1253232 7 5frac34 frac14 4frac14 4⅛

2 28100 1253232 3frac14 ⅛ 2frac14 216464 7frac34 6frac34 frac14 5frac14 5

2frac14 36000 216464 3frac34 ⅛ 2frac12 2156464 9frac14 7⅛ frac34 5frac12 5frac14

2frac12 45100 2156464 4⅛ ⅛ 2frac34 2153232 10frac12 8 frac34 6frac14 6

3 64700 2111616 5 ⅛ 3frac14 2293232 13 11frac12 frac34 6frac34 6frac12

Notes

For shackles with safe loads greater than the maximum shown use CrosbyndashLaughlin (The Crosby Group Div of American Hoist amp Derrick Co Tulsa

OK 74101) Skookum (Skookum Co Inc Portland OR 97203) or equal with an ultimate strength at least 5 times the safe working load

Allowable loads are lower than OSHA requirements tabulated in Section 1926251 Table H-19

Transportation and Erection of Pressure Vessels 715

Figure 10-9 Wire rope end configurations

716 Pressure Vessel Design Manual

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 7: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

Procedure 10-5 Design of Tail Beams Lugs and Base Ring Details

Transportation and Erection of Pressure Vessels 681

682 Pressure Vessel Design Manual

Base Ring Design Check

C1 frac14 SAYSA

C2 frac14 WB C1

I frac14 SAY2 thorn SIo C1SAY

RB frac14 inside radius of base platethorn C2

Internal Forces and Moments in the Skirt BaseDuring Lifting

To determine the stresses in the base ring as a result ofthe tailing load the designer must find the coefficients Krand KT based on angle a as shown and the type of stiff-ening in the skirtbase ring configuration

M frac14 KrTRB

Tt frac14 KTT

Transportation and Erection of Pressure Vessels 683

SkirtTail Beam Calculations

Tail Beam

bull Tailing loads fL and fr

fL frac14 T cos q

fr frac14 T sin q

bull Maximum bending moment Mb

Mb frac14 xfr thorn yfL

bull Maximum bending stress sb

sb frac14 Mb

Z

Tail Beam Bolts

bull Shear load fs

fs frac14 05frn

bull Shear stress s

s frac14 fsAb

bull Tension force ft

Note y1 frac14 mean skirt diameter or centerline of boltgroup if a filler plate is used

ft frac14 Mb

y1

Skirt

bull Tension stress in bolts sT

sT frac14 fTNbAb

bull Compressive force in skirt fc

fc frac14 fL thorn ft

bull Skirt crippling is dependent on the base configura-tion and lengths l1 through l4

N frac14 1 in if web stiffeners are not usedN frac14 width of top flange of tail beam if web stiffeners are

used

bull Compressive stress in skirt sc

sc frac14 fctskln

bull Check shear stress s in base to skirt weld

s frac14 frpDsk 0707w4

Base Plate

bull Bending moment in base plate Mb

Mb frac14 KrTRB

bull Find tangential force Tt

Tt frac14 KTT

bull Total combined stress s

sTfrac14 MbC1

Ithorn Tt

A

tension

sCfrac14 MbC2

I Tt

A

compression

684 Pressure Vessel Design Manual

Size Base Ring Stiffeners

F1 frac14 force in strut or tailing beam lbF1 is (thorn) for tension and (ndash) for compression

bull Tension stress sT

sT frac14 FnAs

bull Critical buckling stress per AISC scr

Cc frac14ffiffiffiffiffiffiffiffi2p2

Fy

s

scr frac141

KL2s=r

2C2

c

Fy

eth5=3THORN thorn etheth3KLs=rTHORN=8CcTHORN ethKLs=rTHORN3=8C3

c

bull Actual compressive stress sc

sc frac14 FnAs

Note Evaluate all struts as tension and compressionmembers regardless of sign because when the vessel issitting on the ground the loads are the reverse of the signsshown

Two Point

F1 frac14 eththornTHORN05T

Three Point

F1 frac14 eththornTHORN0453TF2 frac14 ethTHORN0329T

Parallel BeamsStruts

F1 frac14 eththornTHORN025T

Four Point

F1 frac14 eththornTHORN05TF2 frac14 ethTHORN0273TF3 frac14 eththornTHORN0273T

Transportation and Erection of Pressure Vessels 685

Table 10-7Internal moment coefficients for base ring

One Point Two Point Three Point Four Point

Angle a Kr KT Kr KT Kr KT Kr KT

0 02387 e02387 00795 e02387 e00229 01651 00093 e01156

5 01961 e02802 00587 e02584 e00148 01708 00048 e01188

10 01555 e03171 00398 e02736 e00067 01764 00012 e01188

15 01174 e03492 00229 e02845 e00055 01747 e00015 e01155

20 00819 e03763 00043 e02908 e00042 01729 e00033 e01089

25 00493 e03983 e00042 e02926 00028 01640 e00043 e00993

30 00197 e04151 e00145 e02900 00098 01551 e00045 e00867

35 e00067 e04266 e00225 e02831 00103 01397 e00041 e00713

40 e00299 e04328 e00284 e02721 00107 01242 e00031 e00534

45 e00497 e04340 e00321 e02571 00093 01032 e00017 e00333

50 e00663 e04301 e00335 e02385 00078 00821 e00001 e00112

55 e00796 e04214 e00340 e02165 00052 00567 00017 00126

60 e00897 e04080 e00324 e01915 00025 00313 00033 00376

65 e00967 e03904 e00293 e01638 00031 00031 00046 00636

70 e01008 e03688 e00250 e01338 00037 e00252 00055 00901

75 e01020 e03435 e00197 e01020 e00028 e00548 00056 01167

80 e01006 e03150 e00136 e00688 e00092 e00843 00049 01431

85 e00968 e02837 e00069 e00346 e00107 e01134 00031 01688

90 e00908 e02500 0 0 e00121 e01425 0 01935

95 e00830 e02144 00069 00416 e00114 e01694 e00031 e01688

100 e00735 e01774 00135 00688 e00107 e01963 e00049 e01431

105 e00627 e01394 00198 01020 e00074 e02194 e00057 e01167

110 e00508 e01011 00250 01338 e00033 e02425 e00055 e00901

115 e00381 e00627 00293 01638 00041 e02603 e00046 e00636

120 e00250 e00250 00324 01915 00114 e02781 e00033 e00376

125 e00016 00118 00340 02165 00107 e01060 e00017 e00126

130 00116 00471 00335 02385 00100 00661 00001 00112

135 00145 00804 00321 02571 00083 00448 00017 00333

140 00268 01115 00284 02721 00066 00234 00031 00534

145 00382 01398 00225 02831 00045 00104 00041 00713

150 00486 01551 00145 02900 00024 e00026 00045 00867

155 00577 01870 00042 02926 e00005 e00213 00043 00993

160 00654 02053 e00083 02908 e00015 e00399 00033 01089

165 00715 02198 e00225 02845 e00028 e00484 00015 01155

170 00760 02301 e00398 02736 e00041 e00569 e00012 01188

175 00787 02366 e00587 02584 e00046 e00597 e00048 01188

180 00796 02387 e00795 02387 e00051 e00626 e00093 01156

686 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 687

Design of Vessel for Choker (Cinch) Lift at Base

bull Uniform load p

p frac14 TR

bull Moments in ring at points A and C

MA frac14 01271TR

Mc frac14 00723TR

bull Tensioncompression forces in ring at points Aand C

TA frac14 06421T

Tc frac14 12232T

bull Combined stress at point A inside of ring

sA frac14 TA

AthornMA

Zin

bull Combined stress at point A outside of ring

sA frac14 TA

A MA

Zout

bull Combined stress at point C inside of ring

sc frac14 Tc

AthornMc

Zin

bull Combined stress at point C outside of ring

sc frac14 Tc

A Mc

Zout

Note Assume that the choker is attached immediately atthe base ring even though this may be impossible toachieve Then use the properties of the base ring for Aand Z

From R J Roark Formulas for Stress and Strain 5thEdition McGraw-Hill Book Co Table 17 Cases 12 and18 combined

688 Pressure Vessel Design Manual

Design of Tailing Lugs

Table 10-8Dimensions for tailing lugs

Tail Load (kips) tL tP E Ro RP D1 e

lt10 None required

10 to 20 075 NR 3 4 NR 2375 NR

21 to 40 075 0375 3 4 35 2375 03125

41 to 70 1 05 3 4 35 2375 03125

71 to 100 1 05 4 5 45 34375 03125

101 to 130 15 05 4 5 45 34375 03125

131 to 170 1625 075 4 5 45 34375 0375

171 to 210 1625 075 5 6 55 45 0375

211 to 250 2 075 5 6 55 45 04375

251 to 300 225 1 5 6 55 45 05

gt300 Special design required

Transportation and Erection of Pressure Vessels 689

Formulas

The tailing lug is designed like all other lugs Theforces are determined from the tailing load T calcu-lated per this procedure The ideal position for thetailing lug is to be as close as possible to the baseplate for stiffness and transmitting these loads throughthe base to the skirt The option of using a tailing lugversus a tailing beam is the designerrsquos choice Eithercan accommodate internal skirt rings stiffeners andstruts

Design as follows

bull Area required at pin hole Ar

Ar frac14 TFs

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN-ethD1tLTHORN

bull Bending moment in lug Mb

Mb frac14 fLE

bull Section modulus of lug Z

Z frac14 tLA2

6bull Bending stress in lug sb

sb frac14 Mb

Zbull Area required at pin hole for bearing Ar

Ar frac14 TFp

bull Area available at pin hole for bearing Aa

Aa frac14 D2tL

Note Substitute tL thorn 2tp for tL in the preceding equationsif pad eyes are used

690 Pressure Vessel Design Manual

Procedure 10-6 Design of Top Head and Cone Lifting Lugs

Design of Top HeadCone Lug

Dimensions

NT frac14 B2

Athorn 2B

LT frac14 Ethorn B NT

q1 frac14 arctan2L1

A

L2 frac14 L1

sin q1

q2 frac14 arcsinR3

L2

q3 frac14 q1 thorn q2

L3 frac14 R3

sin q3

L4 frac14 05A L1 05D3

tan q3

L5 frac14 05A L1 Ctan q3

Transportation and Erection of Pressure Vessels 691

Lug

bull Maximum bending moment in lug ML

ML frac14 PE

bull Section modulus lug Z

Z frac14 A2tL6

bull Bending stress lug sb

sb frac14 ML

Z

bull Thickness of lug required tL

tL frac14 6ML

A2Fb

bull Tension at edge of pad sT

sT frac14 PL2L4tL

bull Net section at pin hole Ap

Ap frac14 2L3tL thorn 2tpD3 D1

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at top of lug An

An frac14 tL

R3 D1

2

thorn 2tp

D3 D1

2

bull Shear stress at top of lug s

s frac14 PTAn

bull Pin bearing stress sp

sp frac14 PTD3

tL thorn 2tp

Check Welds

bull Polar moment of inertia Jw

Re-pad Jw frac14 ethA1 thorn L6THORN36

Lug Jw frac14 ethAthorn 2BTHORN312

B2ethAthorn BTHORN2ethAthorn 2BTHORN

bull Moment M1

M1 frac14 LTPT

Lug Weld

bull Find loads on weldsbull Transverse shear due to PT f1

f1 frac14 PTAthorn 2B

bull Transverse shear due to M1 f2

f2 frac14 M1ethB NTTHORNJw

bull Longitudinal shear due to M1 f3

f3 frac14 M1BJw

bull Combined shear load fr

fr frac14ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiethf1 thorn f2THORN2thornf23

q

692 Pressure Vessel Design Manual

bull Size of weld required w1

w1 frac14 fr0707Fs

Note If w1 exceeds the shell plate thickness then a re-padmust be used

Re-pad Weld

bull Moment M2

M2 frac14 PTethEthorn 05L6THORN

bull Transverse shear due to PT f1

f1 frac14 PT2A1 thorn 2L6

bull Transverse shear due to M2 f2

f2 frac14 05M2L6

Jw

bull Longitudinal shear due to M2 f3

f3 frac14 M2L6

Jw

bull Combined shear load fr

fr frac14ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiethf1 thorn f2THORN2thornf23

q

bull Size of weld required w1

w2 frac14 fr0707Fs

Pad Eye Weld

bull Unit shear load on pad f4

f4 frac14 PTtppD2

2tp thorn tL

bull Size of weld required w3

w3 frac14 f40707Fs

Top Head Lug for Large Loads

Transportation and Erection of Pressure Vessels 693

Table 10-9Dimensions for top head or cone lugs

694 Pressure Vessel Design Manual

Procedure 10-7 Design of Flange Lugs

Transportation and Erection of Pressure Vessels 695

Table 10-10Flange lug dimensions

Load Capacity (tons) D1 tL tb A B G H E

50 338 2 2 8 11 12 30 9

100 5 3 3 14 12 24 36 9

200 6 4 4 18 14 30 40 10

400 8 5 5 20 16 36 46 11

600 9 6 6 24 22 40 58 16

800 10 9 7 28 24 42 60 17

Table 10-11Bolt properties

Bolt Size Ab As Tb

05e13 0196 0112 12

0625e11 0307 0199 19

075e10 0442 0309 28

0875e9 0601 0446 39

1e8 0785 0605 51

1125e8 0994 079 56

125e8 1227 1 71

1375e8 1485 1233 85

15e8 1767 1492 103

175e8 2405 2082 182

2e8 3142 2771 243

225e8 3976 3557 311

25e8 4909 4442 389

275e8 594 543 418

3e8 7069 6506 501

325e8 83 7686 592

35e8 962 896 690

375e8 1104 1034 796

4e8 1257 1181 910

Table 10-12Values of Su

Bolt Dia db Material Su (ksi)

lt 1 A-325 120

1125e15 A-325 105

1625e25 A-193-B7 125

2625e4 A-193-B7 110

696 Pressure Vessel Design Manual

Top Flange Lug

PL frac14 P sin q

PT frac14 P cos q

PE frac14 PLA

thorn 3PTe

A2

M1frac14 PTB

M2frac14 PT(B thorn J)

M3frac14 PTe

Mufrac14 Xn cos an Nb

Mafrac14 MuM1PMu

Xn frac14 Rb cos an

yn frac14 Rb sin an

Side Flange Lug

Fn frac14 Ma

XnNb

fs frac14 PTN

sT frac14 FnAs

Fs frac14 15 ksi

1 sTAb

Tb

As frac14 07854 ethd 01218THORN2

s frac14 fsAs

lt Fs

Tb frac14 075uAs

06Fy lt FT lt 40 ksi

Transportation and Erection of Pressure Vessels 697

Design Process

1 Determine loads2 Check of lug

a Shear at pin holeb Bending of lugc Bearing at pin hole

3 Check of base plate4 Check of nozzle flange5 Check of flange bolting6 Check of local load at nozzle to head or shell

junction

Step 1 Determine loads

bull Determine loads PT and PL for various lift angles qbull Determine uniform loads w1 and w2 for variousangles q

bull Using w1 and w2 solve for worst case of combinedload PE

bull Determine worst-case bending moment in lug M3

Step 2 Check of lug

a Shear at pin holebull Area required Ar

Ar frac14 PEFs

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN

b Bending of lug due to M3

bull Section modulus Z

Z frac14 tLA2

6

bull Bending stress lug sb

sb frac14 M3

Z

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFp

bull Bearing available Aa

Aa frac14 D2tL

Maximum Tension in Lug

Check of Nozzle Flange

bull Unit load w

w frac14 PEpBc

bull Bending moment M

M frac14 whDbull Bending stress sb

sb frac14 6M

t2f

698 Pressure Vessel Design Manual

Bolt Loads for Rectangular Lugs Design of Full Circular Base Plate for Lug

bull If a full circular plate is used in lieu of a rectangularplate the following evaluation may be used

bull Unit load on bolt circle w

w frac14 PEpBc

bull Edge distance from point of load hp

hp frac14 BC tL2

bull Bending moment M

M frac14 whp

bull Bending stress sb

sb frac14 6M

t2b

bull Check bolting same as rectangular flange

Transportation and Erection of Pressure Vessels 699

Design of Lug Base Plate

(From R J Roark Formulas for Stress and StrainMcGraw-Hill Book Co 4th Edition Table III Case 34)

bull Uniform load w

w frac14 PEA

bull End reaction R1

R1 frac14 wA2

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

bull Moment at midspan Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

bull Thickness required tb

tb frac14ffiffiffiffiffiffiffiffiffi6Mx

GFb

s

700 Pressure Vessel Design Manual

Check of Bolts

Case 1 Bolts on Centerline Case 2 Bolts Straddle Centerline

Bolt 1 2 3 4 5 Bolt 1 2 3 4 5

an an

xn xn

yn yn

Nb Nb

Mu Mu

Ma Ma

Fn Fn

sT sT

Fs Fs

Transportation and Erection of Pressure Vessels 701

Sample Problem Top Flange Lug

GivenL1 frac14 90 ftL2 frac14 50 ftL3 frac14 40 ftL4 frac14 95 ft

Fy bolting frac14 75 ksiFy lug frac14 36 ksi

Fy flange frac14 36 ksiFs frac14 04(36) frac14 144 ksiFT frac14 06(36) frac14 216 ksiFb frac14 066(36) frac14 2376 ksiWL frac14 1200 kipsBc frac14 54 inRc frac14 27 inB frac14 22 intb frac14 6 intL frac14 6 intf frac14 11 in

D1 frac14 9 in

D2 frac14 8 in

Bolt size frac14 3-14-8 UNC

Ab frac14 83 in2

As frac14 7686 in2

Tb frac14 592 kips

Su frac14 110 ksi

e frac14 16 in

G frac14 40 in

A frac14 24 in

hD frac14 95 in

b frac14 05ethBc ATHORN

Results

PT max frac14 537 kips q frac14 10

PL max frac141200 kips q frac14 90

PE max frac141277 kips q frac14 40

sT bolt max frac14 2011 ksi 40 ksi

s bolt max frac14 698 ksi 1077 ksi

702 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 703

10 Check Lug

a Shear at pin hole

bull Area required Ar

Ar frac14 PEFS

frac14 1277144

frac14 8868 in2

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN frac14 eth24$6THORN eth9$6THORN frac14 90 in2

b Bending of lug due to M3

bull Maximum moment M3

M3 frac14 PTe frac14 537eth16THORN frac14 8592 in kips

bull Section modulus Z

Z frac14 tLA2

6frac14

6$242

6

frac14 576 in3

bull Bending stress lug sb

sb frac14 M3

Zfrac14 8592

576frac14 1491 ksi

bull Thickness required tL

tL frac14 6M

FbA2 frac14 6$85922376eth242THORN frac14 376 in

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFP

frac14 1277324

frac14 3941 in2

bull Bearing available Aa

Aa frac14 D2tL frac14 8$6 frac14 48 in2

20 Check Lug Base Plate

bull Uniform load w

w frac14 PEA

frac14 127724

frac14 532kipsin

bull End reaction R1

R1 frac14 PE2

frac14 12772

frac14 6385 kips

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

Ma frac14 0985eth8748 2496thorn 768thorn 2304 17 496THORNfrac14 8049 in kips

bull Moment at mid Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

Mx frac14 8049thorn 17 240 3831

frac14 5360 in kips

bull Section modulus Z

Z frac14t2bG

6

frac1462$40

6

frac14 240 in3

bull Bending stress sb

sb frac14 Mx

Zfrac14 5360

240frac14 2233 ksi

bull Allowable bending stress Fb

Fb frac14 066Fy frac14 06636 frac14 2376 ksi

30 Check of Vessel Flange

bull Unit load w

w frac14 PEpBc

frac14 1277p54

frac14 752kipsin

bull Bending moment Mb

Mb frac14 whD frac14 752eth92THORN frac14 6925 in kips

bull Bending stress sb

sb frac14 6Mb

t2ffrac14 frac126eth6925THORN

11252frac14 328 ksi

704 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 705

Procedure 10-8 Design of Trunnions

Lug Dimensions

Dimensions for Trunnion

Type 1 Trunnion and Fixed Lug

Type 2 Trunnion and Rotating Lug

Type 3 Trunnion Only

706 Pressure Vessel Design Manual

Type 1 Trunnion and Fixed Lug

There are four checks to be performed

1 Check lug2 Check trunnion3 Check welds4 Check vessel shell

Check Lug

Transverse (vessel horizontal)

M frac14 PTE and Z frac14 4R2otL6

Therefore

tL frac14 15PTE

R2oFb

Longitudinal (vessel vertical)

bull Cross-sectional area at pin hole Ap

Ap frac14 213tL thorn 2tpethD3 D1

bull Cross-sectional area at top of lug An

An frac14 tL

RT D1

2

thorn 2tp

D3 D1

2

bull Shear stress s

s frac14 PLAP

or s frac14 PLAn

bull Pin bearing stress sp

sp frac14 PLD2

tL thorn 2tp

Check Trunnion

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Torsional moment MT (vessel horizontal)

MT frac14 PTE

bull Bending stress sb

sb frac14 ML

Z

bull Torsional shear stress sT

sT frac14 MT

2pRnto

Check Welds

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Polar moment of inertia Jw

Jw frac14 2pR3n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Torsional shear stress in weld sT

sT frac14 MTRn

Jw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 2 Trunnion and Rotating Lug

bull Net section at Section A-A Ap

Ap frac14 213tL thorn 2tpD3 D1

Transportation and Erection of Pressure Vessels 707

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at Section B-B An

An frac14 2tLethRo RiTHORNbull Shear stress at trunnion s

s frac14 PLAn

bull Minimum bearing contact angle for lug at trun-nion qB

qB frac14 eth159PLTHORNRntLFp

bull Pin hole bearing stress sp

sp frac14 PLD3

tL thorn 2tp

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Swbull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 3 Trunnion Only

Vessel Vertical

bull Longitudinal moment ML

ML frac14 PLe

bull Bending stress in trunnion sb

sb frac14 ML

Z

Vessel Horizontal

bull Circumferential moment Mc

Mc frac14 PTe

bull Bending stress in trunnion sb

sb frac14 Mc

Z

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

708 Pressure Vessel Design Manual

TYPE 1 TYPE 2

W

K

DIA

A

DIA

= F

DIA

= M

K

C

KT

2 X 125 DIAVENT HOLES

DIA

A

125

D

250

DIA

= F

W

K

B

NUTS WELDED

GRIND WELDSMOOTH

DIA

= M

K

E

KT

2 X 125 DIAVENT HOLES

Table 10-13Dimensions of trunnions

Allowable Load Tons Pipe Size A C D E F M N T W Weight Lbs

1 0-5 4 Std 4 - - 85 8 - 05 025 30

2 5-10 6 Std 5 - - 105 12 - 05 025 55

3 10-15 8 Std 6 0625 8 125 15 4 05 0375 90

4 15-25 10 Std 6 0625 8 15 18 4 075 0375 150

5 25-35 12 Sch 80 6 075 8 17 21 4 075 0375 240

6 35-45 12 Sch 80 6 075 8 17 21 4 075 05 240

7 45-60 14 Sch 80 6 075 8 18 24 8 1 05 375

8 60-75 14 Sch 80 7 0875 8 18 24 8 1 0625 400

9 75-100 16 Sch 80 7 0875 8 25 27 8 1 0625 625

10 100-125 16 Sch 80 7 0875 8 25 27 8 1125 0875 660

11 125-150 18 Sch 80 7 0875 8 27 30 12 1125 0875 850

12 150-200 18 Sch 80 8 0875 8 27 30 12 1125 1 875

13 200-250 20 Sch 80 8 0875 10 30 36 16 125 1 1000

14 300 24 Sch 80 8 1 10 34 36 16 125 1125 1440

15 400 24 Sch 80 8 1 10 34 40 20 1375 1125 1675

16 500 30 125 10 125 12 42 48 20 1375 1375 2400

17 600 36 125 10 125 12 48 60 24 15 1375 3600

Notes

1 Do not use re-pads for cyclic service

2 B frac14 D - 125

3 K frac14 Pipe Wall Thk

4 Dimensions are given for reference only All loadings and stress shall be checked prior to use

Transportation and Erection of Pressure Vessels 709

Procedure 10-9 Local Loads in Shell Due to Erection Forces

Trunnions

Fixed Lug Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Maximum torsional moment MT

MT frac14 PTE

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

Rotating Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

TrunniondNo Lug

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

710 Pressure Vessel Design Manual

Side Lugs Notes

1 Optional internal pipe Remove after erection2 Radial load Pr is the axial load in the internal pipe

stiffener if used in lieu of radial load in shell3 Circumferential ring stiffeners are optional at these

elevations

bull Circumferential moment Mc

Mc frac14 PTe

bull Longitudinal moment Mx

Mx frac14 PLe

bull Load on weld group f

f frac14 PTELT

bull Radial loads Pr and Pa

Pr frac14 PLe

Pa frac14 PL sin f

Top Flange Lug

bull Loads PT and PL

PT frac14 P cos q

PL frac14 P sin q

Transportation and Erection of Pressure Vessels 711

bull Moment on flange M

M frac14 PTB

bull Moment on head M

M frac14 PTethBthorn JTHORNbull Moment on vessel M

M frac14 PTG

bull Radial load on head and nozzle frac14 PL

Side Flange Lug

bull Loads PT and PL

PL frac14 P cos q

PT frac14 P sin q

bull Moment on flange M

M frac14 PLB

bull Longitudinal moment on shell Mx

M frac14 PTethBthorn JTHORNbull Radial load on shell and nozzle frac14 PT

712 Pressure Vessel Design Manual

Procedure 10-10 Miscellaneous

Figure 10-7 Fundamental handling operations Reprinted by permission of the Babcock and Wilcox Companya McDermott Company

Transportation and Erection of Pressure Vessels 713

Figure 10-8 Loads on wire rope for various sheave configurations

714 Pressure Vessel Design Manual

Table 10-14Forged Steel Shackles

Dimensions in Inches

Size D (in)Safe Load

(lb)D (min) A

Tolerance

A DimB B (min) C G

Tolerance C

and G DimE F

frac14 475 73232 153232 11616 51616 93232 1⅛ ⅞ 11616 frac34 111616

⅜ 1050 113232 213232 11616 71616 256464 171616 1frac14 ⅛ 1 313232

71616 1450 256464 233232 11616 frac12 296464 1111616 171616 ⅛ 1⅛ 111616

frac12 1900 296464 131616 11616 ⅝ 91616 1⅞ 1⅝ ⅛ 1⅜ 151616

⅝ 2950 91616 111616 11616 frac34 436464 2133232 2 ⅛ 1⅝ 191616

frac34 4250 436464 1frac14 11616 ⅞ 253232 2273232 2⅜ frac14 2 1⅞

⅞ 5750 253232 171616 11616 1 576464 351616 2131616 frac14 2frac14 2⅛

1 7550 576464 1111616 11616 1⅛ 113232 3frac34 331616 frac14 2frac12 2⅜

1⅛ 8900 113232 1271616 ⅛ 1frac14 176464 4frac14 391616 frac14 2frac34 2⅝

1frac14 11000 176464 213232 ⅛ 1⅜ 1156464 4111616 3151616 frac14 3⅛ 3

1⅜ 13300 1156464 2frac14 ⅛ 1frac12 1113232 5frac14 471616 frac14 3frac12 351616

1frac12 15600 1113232 2⅜ ⅛ 1⅝ 1296464 5frac34 4⅞ frac14 3frac34 3⅝

1frac34 21500 1356464 2⅞ ⅛ 2 1253232 7 5frac34 frac14 4frac14 4⅛

2 28100 1253232 3frac14 ⅛ 2frac14 216464 7frac34 6frac34 frac14 5frac14 5

2frac14 36000 216464 3frac34 ⅛ 2frac12 2156464 9frac14 7⅛ frac34 5frac12 5frac14

2frac12 45100 2156464 4⅛ ⅛ 2frac34 2153232 10frac12 8 frac34 6frac14 6

3 64700 2111616 5 ⅛ 3frac14 2293232 13 11frac12 frac34 6frac34 6frac12

Notes

For shackles with safe loads greater than the maximum shown use CrosbyndashLaughlin (The Crosby Group Div of American Hoist amp Derrick Co Tulsa

OK 74101) Skookum (Skookum Co Inc Portland OR 97203) or equal with an ultimate strength at least 5 times the safe working load

Allowable loads are lower than OSHA requirements tabulated in Section 1926251 Table H-19

Transportation and Erection of Pressure Vessels 715

Figure 10-9 Wire rope end configurations

716 Pressure Vessel Design Manual

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 8: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

682 Pressure Vessel Design Manual

Base Ring Design Check

C1 frac14 SAYSA

C2 frac14 WB C1

I frac14 SAY2 thorn SIo C1SAY

RB frac14 inside radius of base platethorn C2

Internal Forces and Moments in the Skirt BaseDuring Lifting

To determine the stresses in the base ring as a result ofthe tailing load the designer must find the coefficients Krand KT based on angle a as shown and the type of stiff-ening in the skirtbase ring configuration

M frac14 KrTRB

Tt frac14 KTT

Transportation and Erection of Pressure Vessels 683

SkirtTail Beam Calculations

Tail Beam

bull Tailing loads fL and fr

fL frac14 T cos q

fr frac14 T sin q

bull Maximum bending moment Mb

Mb frac14 xfr thorn yfL

bull Maximum bending stress sb

sb frac14 Mb

Z

Tail Beam Bolts

bull Shear load fs

fs frac14 05frn

bull Shear stress s

s frac14 fsAb

bull Tension force ft

Note y1 frac14 mean skirt diameter or centerline of boltgroup if a filler plate is used

ft frac14 Mb

y1

Skirt

bull Tension stress in bolts sT

sT frac14 fTNbAb

bull Compressive force in skirt fc

fc frac14 fL thorn ft

bull Skirt crippling is dependent on the base configura-tion and lengths l1 through l4

N frac14 1 in if web stiffeners are not usedN frac14 width of top flange of tail beam if web stiffeners are

used

bull Compressive stress in skirt sc

sc frac14 fctskln

bull Check shear stress s in base to skirt weld

s frac14 frpDsk 0707w4

Base Plate

bull Bending moment in base plate Mb

Mb frac14 KrTRB

bull Find tangential force Tt

Tt frac14 KTT

bull Total combined stress s

sTfrac14 MbC1

Ithorn Tt

A

tension

sCfrac14 MbC2

I Tt

A

compression

684 Pressure Vessel Design Manual

Size Base Ring Stiffeners

F1 frac14 force in strut or tailing beam lbF1 is (thorn) for tension and (ndash) for compression

bull Tension stress sT

sT frac14 FnAs

bull Critical buckling stress per AISC scr

Cc frac14ffiffiffiffiffiffiffiffi2p2

Fy

s

scr frac141

KL2s=r

2C2

c

Fy

eth5=3THORN thorn etheth3KLs=rTHORN=8CcTHORN ethKLs=rTHORN3=8C3

c

bull Actual compressive stress sc

sc frac14 FnAs

Note Evaluate all struts as tension and compressionmembers regardless of sign because when the vessel issitting on the ground the loads are the reverse of the signsshown

Two Point

F1 frac14 eththornTHORN05T

Three Point

F1 frac14 eththornTHORN0453TF2 frac14 ethTHORN0329T

Parallel BeamsStruts

F1 frac14 eththornTHORN025T

Four Point

F1 frac14 eththornTHORN05TF2 frac14 ethTHORN0273TF3 frac14 eththornTHORN0273T

Transportation and Erection of Pressure Vessels 685

Table 10-7Internal moment coefficients for base ring

One Point Two Point Three Point Four Point

Angle a Kr KT Kr KT Kr KT Kr KT

0 02387 e02387 00795 e02387 e00229 01651 00093 e01156

5 01961 e02802 00587 e02584 e00148 01708 00048 e01188

10 01555 e03171 00398 e02736 e00067 01764 00012 e01188

15 01174 e03492 00229 e02845 e00055 01747 e00015 e01155

20 00819 e03763 00043 e02908 e00042 01729 e00033 e01089

25 00493 e03983 e00042 e02926 00028 01640 e00043 e00993

30 00197 e04151 e00145 e02900 00098 01551 e00045 e00867

35 e00067 e04266 e00225 e02831 00103 01397 e00041 e00713

40 e00299 e04328 e00284 e02721 00107 01242 e00031 e00534

45 e00497 e04340 e00321 e02571 00093 01032 e00017 e00333

50 e00663 e04301 e00335 e02385 00078 00821 e00001 e00112

55 e00796 e04214 e00340 e02165 00052 00567 00017 00126

60 e00897 e04080 e00324 e01915 00025 00313 00033 00376

65 e00967 e03904 e00293 e01638 00031 00031 00046 00636

70 e01008 e03688 e00250 e01338 00037 e00252 00055 00901

75 e01020 e03435 e00197 e01020 e00028 e00548 00056 01167

80 e01006 e03150 e00136 e00688 e00092 e00843 00049 01431

85 e00968 e02837 e00069 e00346 e00107 e01134 00031 01688

90 e00908 e02500 0 0 e00121 e01425 0 01935

95 e00830 e02144 00069 00416 e00114 e01694 e00031 e01688

100 e00735 e01774 00135 00688 e00107 e01963 e00049 e01431

105 e00627 e01394 00198 01020 e00074 e02194 e00057 e01167

110 e00508 e01011 00250 01338 e00033 e02425 e00055 e00901

115 e00381 e00627 00293 01638 00041 e02603 e00046 e00636

120 e00250 e00250 00324 01915 00114 e02781 e00033 e00376

125 e00016 00118 00340 02165 00107 e01060 e00017 e00126

130 00116 00471 00335 02385 00100 00661 00001 00112

135 00145 00804 00321 02571 00083 00448 00017 00333

140 00268 01115 00284 02721 00066 00234 00031 00534

145 00382 01398 00225 02831 00045 00104 00041 00713

150 00486 01551 00145 02900 00024 e00026 00045 00867

155 00577 01870 00042 02926 e00005 e00213 00043 00993

160 00654 02053 e00083 02908 e00015 e00399 00033 01089

165 00715 02198 e00225 02845 e00028 e00484 00015 01155

170 00760 02301 e00398 02736 e00041 e00569 e00012 01188

175 00787 02366 e00587 02584 e00046 e00597 e00048 01188

180 00796 02387 e00795 02387 e00051 e00626 e00093 01156

686 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 687

Design of Vessel for Choker (Cinch) Lift at Base

bull Uniform load p

p frac14 TR

bull Moments in ring at points A and C

MA frac14 01271TR

Mc frac14 00723TR

bull Tensioncompression forces in ring at points Aand C

TA frac14 06421T

Tc frac14 12232T

bull Combined stress at point A inside of ring

sA frac14 TA

AthornMA

Zin

bull Combined stress at point A outside of ring

sA frac14 TA

A MA

Zout

bull Combined stress at point C inside of ring

sc frac14 Tc

AthornMc

Zin

bull Combined stress at point C outside of ring

sc frac14 Tc

A Mc

Zout

Note Assume that the choker is attached immediately atthe base ring even though this may be impossible toachieve Then use the properties of the base ring for Aand Z

From R J Roark Formulas for Stress and Strain 5thEdition McGraw-Hill Book Co Table 17 Cases 12 and18 combined

688 Pressure Vessel Design Manual

Design of Tailing Lugs

Table 10-8Dimensions for tailing lugs

Tail Load (kips) tL tP E Ro RP D1 e

lt10 None required

10 to 20 075 NR 3 4 NR 2375 NR

21 to 40 075 0375 3 4 35 2375 03125

41 to 70 1 05 3 4 35 2375 03125

71 to 100 1 05 4 5 45 34375 03125

101 to 130 15 05 4 5 45 34375 03125

131 to 170 1625 075 4 5 45 34375 0375

171 to 210 1625 075 5 6 55 45 0375

211 to 250 2 075 5 6 55 45 04375

251 to 300 225 1 5 6 55 45 05

gt300 Special design required

Transportation and Erection of Pressure Vessels 689

Formulas

The tailing lug is designed like all other lugs Theforces are determined from the tailing load T calcu-lated per this procedure The ideal position for thetailing lug is to be as close as possible to the baseplate for stiffness and transmitting these loads throughthe base to the skirt The option of using a tailing lugversus a tailing beam is the designerrsquos choice Eithercan accommodate internal skirt rings stiffeners andstruts

Design as follows

bull Area required at pin hole Ar

Ar frac14 TFs

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN-ethD1tLTHORN

bull Bending moment in lug Mb

Mb frac14 fLE

bull Section modulus of lug Z

Z frac14 tLA2

6bull Bending stress in lug sb

sb frac14 Mb

Zbull Area required at pin hole for bearing Ar

Ar frac14 TFp

bull Area available at pin hole for bearing Aa

Aa frac14 D2tL

Note Substitute tL thorn 2tp for tL in the preceding equationsif pad eyes are used

690 Pressure Vessel Design Manual

Procedure 10-6 Design of Top Head and Cone Lifting Lugs

Design of Top HeadCone Lug

Dimensions

NT frac14 B2

Athorn 2B

LT frac14 Ethorn B NT

q1 frac14 arctan2L1

A

L2 frac14 L1

sin q1

q2 frac14 arcsinR3

L2

q3 frac14 q1 thorn q2

L3 frac14 R3

sin q3

L4 frac14 05A L1 05D3

tan q3

L5 frac14 05A L1 Ctan q3

Transportation and Erection of Pressure Vessels 691

Lug

bull Maximum bending moment in lug ML

ML frac14 PE

bull Section modulus lug Z

Z frac14 A2tL6

bull Bending stress lug sb

sb frac14 ML

Z

bull Thickness of lug required tL

tL frac14 6ML

A2Fb

bull Tension at edge of pad sT

sT frac14 PL2L4tL

bull Net section at pin hole Ap

Ap frac14 2L3tL thorn 2tpD3 D1

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at top of lug An

An frac14 tL

R3 D1

2

thorn 2tp

D3 D1

2

bull Shear stress at top of lug s

s frac14 PTAn

bull Pin bearing stress sp

sp frac14 PTD3

tL thorn 2tp

Check Welds

bull Polar moment of inertia Jw

Re-pad Jw frac14 ethA1 thorn L6THORN36

Lug Jw frac14 ethAthorn 2BTHORN312

B2ethAthorn BTHORN2ethAthorn 2BTHORN

bull Moment M1

M1 frac14 LTPT

Lug Weld

bull Find loads on weldsbull Transverse shear due to PT f1

f1 frac14 PTAthorn 2B

bull Transverse shear due to M1 f2

f2 frac14 M1ethB NTTHORNJw

bull Longitudinal shear due to M1 f3

f3 frac14 M1BJw

bull Combined shear load fr

fr frac14ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiethf1 thorn f2THORN2thornf23

q

692 Pressure Vessel Design Manual

bull Size of weld required w1

w1 frac14 fr0707Fs

Note If w1 exceeds the shell plate thickness then a re-padmust be used

Re-pad Weld

bull Moment M2

M2 frac14 PTethEthorn 05L6THORN

bull Transverse shear due to PT f1

f1 frac14 PT2A1 thorn 2L6

bull Transverse shear due to M2 f2

f2 frac14 05M2L6

Jw

bull Longitudinal shear due to M2 f3

f3 frac14 M2L6

Jw

bull Combined shear load fr

fr frac14ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiethf1 thorn f2THORN2thornf23

q

bull Size of weld required w1

w2 frac14 fr0707Fs

Pad Eye Weld

bull Unit shear load on pad f4

f4 frac14 PTtppD2

2tp thorn tL

bull Size of weld required w3

w3 frac14 f40707Fs

Top Head Lug for Large Loads

Transportation and Erection of Pressure Vessels 693

Table 10-9Dimensions for top head or cone lugs

694 Pressure Vessel Design Manual

Procedure 10-7 Design of Flange Lugs

Transportation and Erection of Pressure Vessels 695

Table 10-10Flange lug dimensions

Load Capacity (tons) D1 tL tb A B G H E

50 338 2 2 8 11 12 30 9

100 5 3 3 14 12 24 36 9

200 6 4 4 18 14 30 40 10

400 8 5 5 20 16 36 46 11

600 9 6 6 24 22 40 58 16

800 10 9 7 28 24 42 60 17

Table 10-11Bolt properties

Bolt Size Ab As Tb

05e13 0196 0112 12

0625e11 0307 0199 19

075e10 0442 0309 28

0875e9 0601 0446 39

1e8 0785 0605 51

1125e8 0994 079 56

125e8 1227 1 71

1375e8 1485 1233 85

15e8 1767 1492 103

175e8 2405 2082 182

2e8 3142 2771 243

225e8 3976 3557 311

25e8 4909 4442 389

275e8 594 543 418

3e8 7069 6506 501

325e8 83 7686 592

35e8 962 896 690

375e8 1104 1034 796

4e8 1257 1181 910

Table 10-12Values of Su

Bolt Dia db Material Su (ksi)

lt 1 A-325 120

1125e15 A-325 105

1625e25 A-193-B7 125

2625e4 A-193-B7 110

696 Pressure Vessel Design Manual

Top Flange Lug

PL frac14 P sin q

PT frac14 P cos q

PE frac14 PLA

thorn 3PTe

A2

M1frac14 PTB

M2frac14 PT(B thorn J)

M3frac14 PTe

Mufrac14 Xn cos an Nb

Mafrac14 MuM1PMu

Xn frac14 Rb cos an

yn frac14 Rb sin an

Side Flange Lug

Fn frac14 Ma

XnNb

fs frac14 PTN

sT frac14 FnAs

Fs frac14 15 ksi

1 sTAb

Tb

As frac14 07854 ethd 01218THORN2

s frac14 fsAs

lt Fs

Tb frac14 075uAs

06Fy lt FT lt 40 ksi

Transportation and Erection of Pressure Vessels 697

Design Process

1 Determine loads2 Check of lug

a Shear at pin holeb Bending of lugc Bearing at pin hole

3 Check of base plate4 Check of nozzle flange5 Check of flange bolting6 Check of local load at nozzle to head or shell

junction

Step 1 Determine loads

bull Determine loads PT and PL for various lift angles qbull Determine uniform loads w1 and w2 for variousangles q

bull Using w1 and w2 solve for worst case of combinedload PE

bull Determine worst-case bending moment in lug M3

Step 2 Check of lug

a Shear at pin holebull Area required Ar

Ar frac14 PEFs

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN

b Bending of lug due to M3

bull Section modulus Z

Z frac14 tLA2

6

bull Bending stress lug sb

sb frac14 M3

Z

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFp

bull Bearing available Aa

Aa frac14 D2tL

Maximum Tension in Lug

Check of Nozzle Flange

bull Unit load w

w frac14 PEpBc

bull Bending moment M

M frac14 whDbull Bending stress sb

sb frac14 6M

t2f

698 Pressure Vessel Design Manual

Bolt Loads for Rectangular Lugs Design of Full Circular Base Plate for Lug

bull If a full circular plate is used in lieu of a rectangularplate the following evaluation may be used

bull Unit load on bolt circle w

w frac14 PEpBc

bull Edge distance from point of load hp

hp frac14 BC tL2

bull Bending moment M

M frac14 whp

bull Bending stress sb

sb frac14 6M

t2b

bull Check bolting same as rectangular flange

Transportation and Erection of Pressure Vessels 699

Design of Lug Base Plate

(From R J Roark Formulas for Stress and StrainMcGraw-Hill Book Co 4th Edition Table III Case 34)

bull Uniform load w

w frac14 PEA

bull End reaction R1

R1 frac14 wA2

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

bull Moment at midspan Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

bull Thickness required tb

tb frac14ffiffiffiffiffiffiffiffiffi6Mx

GFb

s

700 Pressure Vessel Design Manual

Check of Bolts

Case 1 Bolts on Centerline Case 2 Bolts Straddle Centerline

Bolt 1 2 3 4 5 Bolt 1 2 3 4 5

an an

xn xn

yn yn

Nb Nb

Mu Mu

Ma Ma

Fn Fn

sT sT

Fs Fs

Transportation and Erection of Pressure Vessels 701

Sample Problem Top Flange Lug

GivenL1 frac14 90 ftL2 frac14 50 ftL3 frac14 40 ftL4 frac14 95 ft

Fy bolting frac14 75 ksiFy lug frac14 36 ksi

Fy flange frac14 36 ksiFs frac14 04(36) frac14 144 ksiFT frac14 06(36) frac14 216 ksiFb frac14 066(36) frac14 2376 ksiWL frac14 1200 kipsBc frac14 54 inRc frac14 27 inB frac14 22 intb frac14 6 intL frac14 6 intf frac14 11 in

D1 frac14 9 in

D2 frac14 8 in

Bolt size frac14 3-14-8 UNC

Ab frac14 83 in2

As frac14 7686 in2

Tb frac14 592 kips

Su frac14 110 ksi

e frac14 16 in

G frac14 40 in

A frac14 24 in

hD frac14 95 in

b frac14 05ethBc ATHORN

Results

PT max frac14 537 kips q frac14 10

PL max frac141200 kips q frac14 90

PE max frac141277 kips q frac14 40

sT bolt max frac14 2011 ksi 40 ksi

s bolt max frac14 698 ksi 1077 ksi

702 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 703

10 Check Lug

a Shear at pin hole

bull Area required Ar

Ar frac14 PEFS

frac14 1277144

frac14 8868 in2

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN frac14 eth24$6THORN eth9$6THORN frac14 90 in2

b Bending of lug due to M3

bull Maximum moment M3

M3 frac14 PTe frac14 537eth16THORN frac14 8592 in kips

bull Section modulus Z

Z frac14 tLA2

6frac14

6$242

6

frac14 576 in3

bull Bending stress lug sb

sb frac14 M3

Zfrac14 8592

576frac14 1491 ksi

bull Thickness required tL

tL frac14 6M

FbA2 frac14 6$85922376eth242THORN frac14 376 in

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFP

frac14 1277324

frac14 3941 in2

bull Bearing available Aa

Aa frac14 D2tL frac14 8$6 frac14 48 in2

20 Check Lug Base Plate

bull Uniform load w

w frac14 PEA

frac14 127724

frac14 532kipsin

bull End reaction R1

R1 frac14 PE2

frac14 12772

frac14 6385 kips

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

Ma frac14 0985eth8748 2496thorn 768thorn 2304 17 496THORNfrac14 8049 in kips

bull Moment at mid Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

Mx frac14 8049thorn 17 240 3831

frac14 5360 in kips

bull Section modulus Z

Z frac14t2bG

6

frac1462$40

6

frac14 240 in3

bull Bending stress sb

sb frac14 Mx

Zfrac14 5360

240frac14 2233 ksi

bull Allowable bending stress Fb

Fb frac14 066Fy frac14 06636 frac14 2376 ksi

30 Check of Vessel Flange

bull Unit load w

w frac14 PEpBc

frac14 1277p54

frac14 752kipsin

bull Bending moment Mb

Mb frac14 whD frac14 752eth92THORN frac14 6925 in kips

bull Bending stress sb

sb frac14 6Mb

t2ffrac14 frac126eth6925THORN

11252frac14 328 ksi

704 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 705

Procedure 10-8 Design of Trunnions

Lug Dimensions

Dimensions for Trunnion

Type 1 Trunnion and Fixed Lug

Type 2 Trunnion and Rotating Lug

Type 3 Trunnion Only

706 Pressure Vessel Design Manual

Type 1 Trunnion and Fixed Lug

There are four checks to be performed

1 Check lug2 Check trunnion3 Check welds4 Check vessel shell

Check Lug

Transverse (vessel horizontal)

M frac14 PTE and Z frac14 4R2otL6

Therefore

tL frac14 15PTE

R2oFb

Longitudinal (vessel vertical)

bull Cross-sectional area at pin hole Ap

Ap frac14 213tL thorn 2tpethD3 D1

bull Cross-sectional area at top of lug An

An frac14 tL

RT D1

2

thorn 2tp

D3 D1

2

bull Shear stress s

s frac14 PLAP

or s frac14 PLAn

bull Pin bearing stress sp

sp frac14 PLD2

tL thorn 2tp

Check Trunnion

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Torsional moment MT (vessel horizontal)

MT frac14 PTE

bull Bending stress sb

sb frac14 ML

Z

bull Torsional shear stress sT

sT frac14 MT

2pRnto

Check Welds

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Polar moment of inertia Jw

Jw frac14 2pR3n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Torsional shear stress in weld sT

sT frac14 MTRn

Jw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 2 Trunnion and Rotating Lug

bull Net section at Section A-A Ap

Ap frac14 213tL thorn 2tpD3 D1

Transportation and Erection of Pressure Vessels 707

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at Section B-B An

An frac14 2tLethRo RiTHORNbull Shear stress at trunnion s

s frac14 PLAn

bull Minimum bearing contact angle for lug at trun-nion qB

qB frac14 eth159PLTHORNRntLFp

bull Pin hole bearing stress sp

sp frac14 PLD3

tL thorn 2tp

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Swbull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 3 Trunnion Only

Vessel Vertical

bull Longitudinal moment ML

ML frac14 PLe

bull Bending stress in trunnion sb

sb frac14 ML

Z

Vessel Horizontal

bull Circumferential moment Mc

Mc frac14 PTe

bull Bending stress in trunnion sb

sb frac14 Mc

Z

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

708 Pressure Vessel Design Manual

TYPE 1 TYPE 2

W

K

DIA

A

DIA

= F

DIA

= M

K

C

KT

2 X 125 DIAVENT HOLES

DIA

A

125

D

250

DIA

= F

W

K

B

NUTS WELDED

GRIND WELDSMOOTH

DIA

= M

K

E

KT

2 X 125 DIAVENT HOLES

Table 10-13Dimensions of trunnions

Allowable Load Tons Pipe Size A C D E F M N T W Weight Lbs

1 0-5 4 Std 4 - - 85 8 - 05 025 30

2 5-10 6 Std 5 - - 105 12 - 05 025 55

3 10-15 8 Std 6 0625 8 125 15 4 05 0375 90

4 15-25 10 Std 6 0625 8 15 18 4 075 0375 150

5 25-35 12 Sch 80 6 075 8 17 21 4 075 0375 240

6 35-45 12 Sch 80 6 075 8 17 21 4 075 05 240

7 45-60 14 Sch 80 6 075 8 18 24 8 1 05 375

8 60-75 14 Sch 80 7 0875 8 18 24 8 1 0625 400

9 75-100 16 Sch 80 7 0875 8 25 27 8 1 0625 625

10 100-125 16 Sch 80 7 0875 8 25 27 8 1125 0875 660

11 125-150 18 Sch 80 7 0875 8 27 30 12 1125 0875 850

12 150-200 18 Sch 80 8 0875 8 27 30 12 1125 1 875

13 200-250 20 Sch 80 8 0875 10 30 36 16 125 1 1000

14 300 24 Sch 80 8 1 10 34 36 16 125 1125 1440

15 400 24 Sch 80 8 1 10 34 40 20 1375 1125 1675

16 500 30 125 10 125 12 42 48 20 1375 1375 2400

17 600 36 125 10 125 12 48 60 24 15 1375 3600

Notes

1 Do not use re-pads for cyclic service

2 B frac14 D - 125

3 K frac14 Pipe Wall Thk

4 Dimensions are given for reference only All loadings and stress shall be checked prior to use

Transportation and Erection of Pressure Vessels 709

Procedure 10-9 Local Loads in Shell Due to Erection Forces

Trunnions

Fixed Lug Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Maximum torsional moment MT

MT frac14 PTE

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

Rotating Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

TrunniondNo Lug

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

710 Pressure Vessel Design Manual

Side Lugs Notes

1 Optional internal pipe Remove after erection2 Radial load Pr is the axial load in the internal pipe

stiffener if used in lieu of radial load in shell3 Circumferential ring stiffeners are optional at these

elevations

bull Circumferential moment Mc

Mc frac14 PTe

bull Longitudinal moment Mx

Mx frac14 PLe

bull Load on weld group f

f frac14 PTELT

bull Radial loads Pr and Pa

Pr frac14 PLe

Pa frac14 PL sin f

Top Flange Lug

bull Loads PT and PL

PT frac14 P cos q

PL frac14 P sin q

Transportation and Erection of Pressure Vessels 711

bull Moment on flange M

M frac14 PTB

bull Moment on head M

M frac14 PTethBthorn JTHORNbull Moment on vessel M

M frac14 PTG

bull Radial load on head and nozzle frac14 PL

Side Flange Lug

bull Loads PT and PL

PL frac14 P cos q

PT frac14 P sin q

bull Moment on flange M

M frac14 PLB

bull Longitudinal moment on shell Mx

M frac14 PTethBthorn JTHORNbull Radial load on shell and nozzle frac14 PT

712 Pressure Vessel Design Manual

Procedure 10-10 Miscellaneous

Figure 10-7 Fundamental handling operations Reprinted by permission of the Babcock and Wilcox Companya McDermott Company

Transportation and Erection of Pressure Vessels 713

Figure 10-8 Loads on wire rope for various sheave configurations

714 Pressure Vessel Design Manual

Table 10-14Forged Steel Shackles

Dimensions in Inches

Size D (in)Safe Load

(lb)D (min) A

Tolerance

A DimB B (min) C G

Tolerance C

and G DimE F

frac14 475 73232 153232 11616 51616 93232 1⅛ ⅞ 11616 frac34 111616

⅜ 1050 113232 213232 11616 71616 256464 171616 1frac14 ⅛ 1 313232

71616 1450 256464 233232 11616 frac12 296464 1111616 171616 ⅛ 1⅛ 111616

frac12 1900 296464 131616 11616 ⅝ 91616 1⅞ 1⅝ ⅛ 1⅜ 151616

⅝ 2950 91616 111616 11616 frac34 436464 2133232 2 ⅛ 1⅝ 191616

frac34 4250 436464 1frac14 11616 ⅞ 253232 2273232 2⅜ frac14 2 1⅞

⅞ 5750 253232 171616 11616 1 576464 351616 2131616 frac14 2frac14 2⅛

1 7550 576464 1111616 11616 1⅛ 113232 3frac34 331616 frac14 2frac12 2⅜

1⅛ 8900 113232 1271616 ⅛ 1frac14 176464 4frac14 391616 frac14 2frac34 2⅝

1frac14 11000 176464 213232 ⅛ 1⅜ 1156464 4111616 3151616 frac14 3⅛ 3

1⅜ 13300 1156464 2frac14 ⅛ 1frac12 1113232 5frac14 471616 frac14 3frac12 351616

1frac12 15600 1113232 2⅜ ⅛ 1⅝ 1296464 5frac34 4⅞ frac14 3frac34 3⅝

1frac34 21500 1356464 2⅞ ⅛ 2 1253232 7 5frac34 frac14 4frac14 4⅛

2 28100 1253232 3frac14 ⅛ 2frac14 216464 7frac34 6frac34 frac14 5frac14 5

2frac14 36000 216464 3frac34 ⅛ 2frac12 2156464 9frac14 7⅛ frac34 5frac12 5frac14

2frac12 45100 2156464 4⅛ ⅛ 2frac34 2153232 10frac12 8 frac34 6frac14 6

3 64700 2111616 5 ⅛ 3frac14 2293232 13 11frac12 frac34 6frac34 6frac12

Notes

For shackles with safe loads greater than the maximum shown use CrosbyndashLaughlin (The Crosby Group Div of American Hoist amp Derrick Co Tulsa

OK 74101) Skookum (Skookum Co Inc Portland OR 97203) or equal with an ultimate strength at least 5 times the safe working load

Allowable loads are lower than OSHA requirements tabulated in Section 1926251 Table H-19

Transportation and Erection of Pressure Vessels 715

Figure 10-9 Wire rope end configurations

716 Pressure Vessel Design Manual

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 9: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

Base Ring Design Check

C1 frac14 SAYSA

C2 frac14 WB C1

I frac14 SAY2 thorn SIo C1SAY

RB frac14 inside radius of base platethorn C2

Internal Forces and Moments in the Skirt BaseDuring Lifting

To determine the stresses in the base ring as a result ofthe tailing load the designer must find the coefficients Krand KT based on angle a as shown and the type of stiff-ening in the skirtbase ring configuration

M frac14 KrTRB

Tt frac14 KTT

Transportation and Erection of Pressure Vessels 683

SkirtTail Beam Calculations

Tail Beam

bull Tailing loads fL and fr

fL frac14 T cos q

fr frac14 T sin q

bull Maximum bending moment Mb

Mb frac14 xfr thorn yfL

bull Maximum bending stress sb

sb frac14 Mb

Z

Tail Beam Bolts

bull Shear load fs

fs frac14 05frn

bull Shear stress s

s frac14 fsAb

bull Tension force ft

Note y1 frac14 mean skirt diameter or centerline of boltgroup if a filler plate is used

ft frac14 Mb

y1

Skirt

bull Tension stress in bolts sT

sT frac14 fTNbAb

bull Compressive force in skirt fc

fc frac14 fL thorn ft

bull Skirt crippling is dependent on the base configura-tion and lengths l1 through l4

N frac14 1 in if web stiffeners are not usedN frac14 width of top flange of tail beam if web stiffeners are

used

bull Compressive stress in skirt sc

sc frac14 fctskln

bull Check shear stress s in base to skirt weld

s frac14 frpDsk 0707w4

Base Plate

bull Bending moment in base plate Mb

Mb frac14 KrTRB

bull Find tangential force Tt

Tt frac14 KTT

bull Total combined stress s

sTfrac14 MbC1

Ithorn Tt

A

tension

sCfrac14 MbC2

I Tt

A

compression

684 Pressure Vessel Design Manual

Size Base Ring Stiffeners

F1 frac14 force in strut or tailing beam lbF1 is (thorn) for tension and (ndash) for compression

bull Tension stress sT

sT frac14 FnAs

bull Critical buckling stress per AISC scr

Cc frac14ffiffiffiffiffiffiffiffi2p2

Fy

s

scr frac141

KL2s=r

2C2

c

Fy

eth5=3THORN thorn etheth3KLs=rTHORN=8CcTHORN ethKLs=rTHORN3=8C3

c

bull Actual compressive stress sc

sc frac14 FnAs

Note Evaluate all struts as tension and compressionmembers regardless of sign because when the vessel issitting on the ground the loads are the reverse of the signsshown

Two Point

F1 frac14 eththornTHORN05T

Three Point

F1 frac14 eththornTHORN0453TF2 frac14 ethTHORN0329T

Parallel BeamsStruts

F1 frac14 eththornTHORN025T

Four Point

F1 frac14 eththornTHORN05TF2 frac14 ethTHORN0273TF3 frac14 eththornTHORN0273T

Transportation and Erection of Pressure Vessels 685

Table 10-7Internal moment coefficients for base ring

One Point Two Point Three Point Four Point

Angle a Kr KT Kr KT Kr KT Kr KT

0 02387 e02387 00795 e02387 e00229 01651 00093 e01156

5 01961 e02802 00587 e02584 e00148 01708 00048 e01188

10 01555 e03171 00398 e02736 e00067 01764 00012 e01188

15 01174 e03492 00229 e02845 e00055 01747 e00015 e01155

20 00819 e03763 00043 e02908 e00042 01729 e00033 e01089

25 00493 e03983 e00042 e02926 00028 01640 e00043 e00993

30 00197 e04151 e00145 e02900 00098 01551 e00045 e00867

35 e00067 e04266 e00225 e02831 00103 01397 e00041 e00713

40 e00299 e04328 e00284 e02721 00107 01242 e00031 e00534

45 e00497 e04340 e00321 e02571 00093 01032 e00017 e00333

50 e00663 e04301 e00335 e02385 00078 00821 e00001 e00112

55 e00796 e04214 e00340 e02165 00052 00567 00017 00126

60 e00897 e04080 e00324 e01915 00025 00313 00033 00376

65 e00967 e03904 e00293 e01638 00031 00031 00046 00636

70 e01008 e03688 e00250 e01338 00037 e00252 00055 00901

75 e01020 e03435 e00197 e01020 e00028 e00548 00056 01167

80 e01006 e03150 e00136 e00688 e00092 e00843 00049 01431

85 e00968 e02837 e00069 e00346 e00107 e01134 00031 01688

90 e00908 e02500 0 0 e00121 e01425 0 01935

95 e00830 e02144 00069 00416 e00114 e01694 e00031 e01688

100 e00735 e01774 00135 00688 e00107 e01963 e00049 e01431

105 e00627 e01394 00198 01020 e00074 e02194 e00057 e01167

110 e00508 e01011 00250 01338 e00033 e02425 e00055 e00901

115 e00381 e00627 00293 01638 00041 e02603 e00046 e00636

120 e00250 e00250 00324 01915 00114 e02781 e00033 e00376

125 e00016 00118 00340 02165 00107 e01060 e00017 e00126

130 00116 00471 00335 02385 00100 00661 00001 00112

135 00145 00804 00321 02571 00083 00448 00017 00333

140 00268 01115 00284 02721 00066 00234 00031 00534

145 00382 01398 00225 02831 00045 00104 00041 00713

150 00486 01551 00145 02900 00024 e00026 00045 00867

155 00577 01870 00042 02926 e00005 e00213 00043 00993

160 00654 02053 e00083 02908 e00015 e00399 00033 01089

165 00715 02198 e00225 02845 e00028 e00484 00015 01155

170 00760 02301 e00398 02736 e00041 e00569 e00012 01188

175 00787 02366 e00587 02584 e00046 e00597 e00048 01188

180 00796 02387 e00795 02387 e00051 e00626 e00093 01156

686 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 687

Design of Vessel for Choker (Cinch) Lift at Base

bull Uniform load p

p frac14 TR

bull Moments in ring at points A and C

MA frac14 01271TR

Mc frac14 00723TR

bull Tensioncompression forces in ring at points Aand C

TA frac14 06421T

Tc frac14 12232T

bull Combined stress at point A inside of ring

sA frac14 TA

AthornMA

Zin

bull Combined stress at point A outside of ring

sA frac14 TA

A MA

Zout

bull Combined stress at point C inside of ring

sc frac14 Tc

AthornMc

Zin

bull Combined stress at point C outside of ring

sc frac14 Tc

A Mc

Zout

Note Assume that the choker is attached immediately atthe base ring even though this may be impossible toachieve Then use the properties of the base ring for Aand Z

From R J Roark Formulas for Stress and Strain 5thEdition McGraw-Hill Book Co Table 17 Cases 12 and18 combined

688 Pressure Vessel Design Manual

Design of Tailing Lugs

Table 10-8Dimensions for tailing lugs

Tail Load (kips) tL tP E Ro RP D1 e

lt10 None required

10 to 20 075 NR 3 4 NR 2375 NR

21 to 40 075 0375 3 4 35 2375 03125

41 to 70 1 05 3 4 35 2375 03125

71 to 100 1 05 4 5 45 34375 03125

101 to 130 15 05 4 5 45 34375 03125

131 to 170 1625 075 4 5 45 34375 0375

171 to 210 1625 075 5 6 55 45 0375

211 to 250 2 075 5 6 55 45 04375

251 to 300 225 1 5 6 55 45 05

gt300 Special design required

Transportation and Erection of Pressure Vessels 689

Formulas

The tailing lug is designed like all other lugs Theforces are determined from the tailing load T calcu-lated per this procedure The ideal position for thetailing lug is to be as close as possible to the baseplate for stiffness and transmitting these loads throughthe base to the skirt The option of using a tailing lugversus a tailing beam is the designerrsquos choice Eithercan accommodate internal skirt rings stiffeners andstruts

Design as follows

bull Area required at pin hole Ar

Ar frac14 TFs

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN-ethD1tLTHORN

bull Bending moment in lug Mb

Mb frac14 fLE

bull Section modulus of lug Z

Z frac14 tLA2

6bull Bending stress in lug sb

sb frac14 Mb

Zbull Area required at pin hole for bearing Ar

Ar frac14 TFp

bull Area available at pin hole for bearing Aa

Aa frac14 D2tL

Note Substitute tL thorn 2tp for tL in the preceding equationsif pad eyes are used

690 Pressure Vessel Design Manual

Procedure 10-6 Design of Top Head and Cone Lifting Lugs

Design of Top HeadCone Lug

Dimensions

NT frac14 B2

Athorn 2B

LT frac14 Ethorn B NT

q1 frac14 arctan2L1

A

L2 frac14 L1

sin q1

q2 frac14 arcsinR3

L2

q3 frac14 q1 thorn q2

L3 frac14 R3

sin q3

L4 frac14 05A L1 05D3

tan q3

L5 frac14 05A L1 Ctan q3

Transportation and Erection of Pressure Vessels 691

Lug

bull Maximum bending moment in lug ML

ML frac14 PE

bull Section modulus lug Z

Z frac14 A2tL6

bull Bending stress lug sb

sb frac14 ML

Z

bull Thickness of lug required tL

tL frac14 6ML

A2Fb

bull Tension at edge of pad sT

sT frac14 PL2L4tL

bull Net section at pin hole Ap

Ap frac14 2L3tL thorn 2tpD3 D1

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at top of lug An

An frac14 tL

R3 D1

2

thorn 2tp

D3 D1

2

bull Shear stress at top of lug s

s frac14 PTAn

bull Pin bearing stress sp

sp frac14 PTD3

tL thorn 2tp

Check Welds

bull Polar moment of inertia Jw

Re-pad Jw frac14 ethA1 thorn L6THORN36

Lug Jw frac14 ethAthorn 2BTHORN312

B2ethAthorn BTHORN2ethAthorn 2BTHORN

bull Moment M1

M1 frac14 LTPT

Lug Weld

bull Find loads on weldsbull Transverse shear due to PT f1

f1 frac14 PTAthorn 2B

bull Transverse shear due to M1 f2

f2 frac14 M1ethB NTTHORNJw

bull Longitudinal shear due to M1 f3

f3 frac14 M1BJw

bull Combined shear load fr

fr frac14ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiethf1 thorn f2THORN2thornf23

q

692 Pressure Vessel Design Manual

bull Size of weld required w1

w1 frac14 fr0707Fs

Note If w1 exceeds the shell plate thickness then a re-padmust be used

Re-pad Weld

bull Moment M2

M2 frac14 PTethEthorn 05L6THORN

bull Transverse shear due to PT f1

f1 frac14 PT2A1 thorn 2L6

bull Transverse shear due to M2 f2

f2 frac14 05M2L6

Jw

bull Longitudinal shear due to M2 f3

f3 frac14 M2L6

Jw

bull Combined shear load fr

fr frac14ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiethf1 thorn f2THORN2thornf23

q

bull Size of weld required w1

w2 frac14 fr0707Fs

Pad Eye Weld

bull Unit shear load on pad f4

f4 frac14 PTtppD2

2tp thorn tL

bull Size of weld required w3

w3 frac14 f40707Fs

Top Head Lug for Large Loads

Transportation and Erection of Pressure Vessels 693

Table 10-9Dimensions for top head or cone lugs

694 Pressure Vessel Design Manual

Procedure 10-7 Design of Flange Lugs

Transportation and Erection of Pressure Vessels 695

Table 10-10Flange lug dimensions

Load Capacity (tons) D1 tL tb A B G H E

50 338 2 2 8 11 12 30 9

100 5 3 3 14 12 24 36 9

200 6 4 4 18 14 30 40 10

400 8 5 5 20 16 36 46 11

600 9 6 6 24 22 40 58 16

800 10 9 7 28 24 42 60 17

Table 10-11Bolt properties

Bolt Size Ab As Tb

05e13 0196 0112 12

0625e11 0307 0199 19

075e10 0442 0309 28

0875e9 0601 0446 39

1e8 0785 0605 51

1125e8 0994 079 56

125e8 1227 1 71

1375e8 1485 1233 85

15e8 1767 1492 103

175e8 2405 2082 182

2e8 3142 2771 243

225e8 3976 3557 311

25e8 4909 4442 389

275e8 594 543 418

3e8 7069 6506 501

325e8 83 7686 592

35e8 962 896 690

375e8 1104 1034 796

4e8 1257 1181 910

Table 10-12Values of Su

Bolt Dia db Material Su (ksi)

lt 1 A-325 120

1125e15 A-325 105

1625e25 A-193-B7 125

2625e4 A-193-B7 110

696 Pressure Vessel Design Manual

Top Flange Lug

PL frac14 P sin q

PT frac14 P cos q

PE frac14 PLA

thorn 3PTe

A2

M1frac14 PTB

M2frac14 PT(B thorn J)

M3frac14 PTe

Mufrac14 Xn cos an Nb

Mafrac14 MuM1PMu

Xn frac14 Rb cos an

yn frac14 Rb sin an

Side Flange Lug

Fn frac14 Ma

XnNb

fs frac14 PTN

sT frac14 FnAs

Fs frac14 15 ksi

1 sTAb

Tb

As frac14 07854 ethd 01218THORN2

s frac14 fsAs

lt Fs

Tb frac14 075uAs

06Fy lt FT lt 40 ksi

Transportation and Erection of Pressure Vessels 697

Design Process

1 Determine loads2 Check of lug

a Shear at pin holeb Bending of lugc Bearing at pin hole

3 Check of base plate4 Check of nozzle flange5 Check of flange bolting6 Check of local load at nozzle to head or shell

junction

Step 1 Determine loads

bull Determine loads PT and PL for various lift angles qbull Determine uniform loads w1 and w2 for variousangles q

bull Using w1 and w2 solve for worst case of combinedload PE

bull Determine worst-case bending moment in lug M3

Step 2 Check of lug

a Shear at pin holebull Area required Ar

Ar frac14 PEFs

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN

b Bending of lug due to M3

bull Section modulus Z

Z frac14 tLA2

6

bull Bending stress lug sb

sb frac14 M3

Z

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFp

bull Bearing available Aa

Aa frac14 D2tL

Maximum Tension in Lug

Check of Nozzle Flange

bull Unit load w

w frac14 PEpBc

bull Bending moment M

M frac14 whDbull Bending stress sb

sb frac14 6M

t2f

698 Pressure Vessel Design Manual

Bolt Loads for Rectangular Lugs Design of Full Circular Base Plate for Lug

bull If a full circular plate is used in lieu of a rectangularplate the following evaluation may be used

bull Unit load on bolt circle w

w frac14 PEpBc

bull Edge distance from point of load hp

hp frac14 BC tL2

bull Bending moment M

M frac14 whp

bull Bending stress sb

sb frac14 6M

t2b

bull Check bolting same as rectangular flange

Transportation and Erection of Pressure Vessels 699

Design of Lug Base Plate

(From R J Roark Formulas for Stress and StrainMcGraw-Hill Book Co 4th Edition Table III Case 34)

bull Uniform load w

w frac14 PEA

bull End reaction R1

R1 frac14 wA2

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

bull Moment at midspan Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

bull Thickness required tb

tb frac14ffiffiffiffiffiffiffiffiffi6Mx

GFb

s

700 Pressure Vessel Design Manual

Check of Bolts

Case 1 Bolts on Centerline Case 2 Bolts Straddle Centerline

Bolt 1 2 3 4 5 Bolt 1 2 3 4 5

an an

xn xn

yn yn

Nb Nb

Mu Mu

Ma Ma

Fn Fn

sT sT

Fs Fs

Transportation and Erection of Pressure Vessels 701

Sample Problem Top Flange Lug

GivenL1 frac14 90 ftL2 frac14 50 ftL3 frac14 40 ftL4 frac14 95 ft

Fy bolting frac14 75 ksiFy lug frac14 36 ksi

Fy flange frac14 36 ksiFs frac14 04(36) frac14 144 ksiFT frac14 06(36) frac14 216 ksiFb frac14 066(36) frac14 2376 ksiWL frac14 1200 kipsBc frac14 54 inRc frac14 27 inB frac14 22 intb frac14 6 intL frac14 6 intf frac14 11 in

D1 frac14 9 in

D2 frac14 8 in

Bolt size frac14 3-14-8 UNC

Ab frac14 83 in2

As frac14 7686 in2

Tb frac14 592 kips

Su frac14 110 ksi

e frac14 16 in

G frac14 40 in

A frac14 24 in

hD frac14 95 in

b frac14 05ethBc ATHORN

Results

PT max frac14 537 kips q frac14 10

PL max frac141200 kips q frac14 90

PE max frac141277 kips q frac14 40

sT bolt max frac14 2011 ksi 40 ksi

s bolt max frac14 698 ksi 1077 ksi

702 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 703

10 Check Lug

a Shear at pin hole

bull Area required Ar

Ar frac14 PEFS

frac14 1277144

frac14 8868 in2

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN frac14 eth24$6THORN eth9$6THORN frac14 90 in2

b Bending of lug due to M3

bull Maximum moment M3

M3 frac14 PTe frac14 537eth16THORN frac14 8592 in kips

bull Section modulus Z

Z frac14 tLA2

6frac14

6$242

6

frac14 576 in3

bull Bending stress lug sb

sb frac14 M3

Zfrac14 8592

576frac14 1491 ksi

bull Thickness required tL

tL frac14 6M

FbA2 frac14 6$85922376eth242THORN frac14 376 in

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFP

frac14 1277324

frac14 3941 in2

bull Bearing available Aa

Aa frac14 D2tL frac14 8$6 frac14 48 in2

20 Check Lug Base Plate

bull Uniform load w

w frac14 PEA

frac14 127724

frac14 532kipsin

bull End reaction R1

R1 frac14 PE2

frac14 12772

frac14 6385 kips

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

Ma frac14 0985eth8748 2496thorn 768thorn 2304 17 496THORNfrac14 8049 in kips

bull Moment at mid Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

Mx frac14 8049thorn 17 240 3831

frac14 5360 in kips

bull Section modulus Z

Z frac14t2bG

6

frac1462$40

6

frac14 240 in3

bull Bending stress sb

sb frac14 Mx

Zfrac14 5360

240frac14 2233 ksi

bull Allowable bending stress Fb

Fb frac14 066Fy frac14 06636 frac14 2376 ksi

30 Check of Vessel Flange

bull Unit load w

w frac14 PEpBc

frac14 1277p54

frac14 752kipsin

bull Bending moment Mb

Mb frac14 whD frac14 752eth92THORN frac14 6925 in kips

bull Bending stress sb

sb frac14 6Mb

t2ffrac14 frac126eth6925THORN

11252frac14 328 ksi

704 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 705

Procedure 10-8 Design of Trunnions

Lug Dimensions

Dimensions for Trunnion

Type 1 Trunnion and Fixed Lug

Type 2 Trunnion and Rotating Lug

Type 3 Trunnion Only

706 Pressure Vessel Design Manual

Type 1 Trunnion and Fixed Lug

There are four checks to be performed

1 Check lug2 Check trunnion3 Check welds4 Check vessel shell

Check Lug

Transverse (vessel horizontal)

M frac14 PTE and Z frac14 4R2otL6

Therefore

tL frac14 15PTE

R2oFb

Longitudinal (vessel vertical)

bull Cross-sectional area at pin hole Ap

Ap frac14 213tL thorn 2tpethD3 D1

bull Cross-sectional area at top of lug An

An frac14 tL

RT D1

2

thorn 2tp

D3 D1

2

bull Shear stress s

s frac14 PLAP

or s frac14 PLAn

bull Pin bearing stress sp

sp frac14 PLD2

tL thorn 2tp

Check Trunnion

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Torsional moment MT (vessel horizontal)

MT frac14 PTE

bull Bending stress sb

sb frac14 ML

Z

bull Torsional shear stress sT

sT frac14 MT

2pRnto

Check Welds

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Polar moment of inertia Jw

Jw frac14 2pR3n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Torsional shear stress in weld sT

sT frac14 MTRn

Jw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 2 Trunnion and Rotating Lug

bull Net section at Section A-A Ap

Ap frac14 213tL thorn 2tpD3 D1

Transportation and Erection of Pressure Vessels 707

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at Section B-B An

An frac14 2tLethRo RiTHORNbull Shear stress at trunnion s

s frac14 PLAn

bull Minimum bearing contact angle for lug at trun-nion qB

qB frac14 eth159PLTHORNRntLFp

bull Pin hole bearing stress sp

sp frac14 PLD3

tL thorn 2tp

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Swbull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 3 Trunnion Only

Vessel Vertical

bull Longitudinal moment ML

ML frac14 PLe

bull Bending stress in trunnion sb

sb frac14 ML

Z

Vessel Horizontal

bull Circumferential moment Mc

Mc frac14 PTe

bull Bending stress in trunnion sb

sb frac14 Mc

Z

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

708 Pressure Vessel Design Manual

TYPE 1 TYPE 2

W

K

DIA

A

DIA

= F

DIA

= M

K

C

KT

2 X 125 DIAVENT HOLES

DIA

A

125

D

250

DIA

= F

W

K

B

NUTS WELDED

GRIND WELDSMOOTH

DIA

= M

K

E

KT

2 X 125 DIAVENT HOLES

Table 10-13Dimensions of trunnions

Allowable Load Tons Pipe Size A C D E F M N T W Weight Lbs

1 0-5 4 Std 4 - - 85 8 - 05 025 30

2 5-10 6 Std 5 - - 105 12 - 05 025 55

3 10-15 8 Std 6 0625 8 125 15 4 05 0375 90

4 15-25 10 Std 6 0625 8 15 18 4 075 0375 150

5 25-35 12 Sch 80 6 075 8 17 21 4 075 0375 240

6 35-45 12 Sch 80 6 075 8 17 21 4 075 05 240

7 45-60 14 Sch 80 6 075 8 18 24 8 1 05 375

8 60-75 14 Sch 80 7 0875 8 18 24 8 1 0625 400

9 75-100 16 Sch 80 7 0875 8 25 27 8 1 0625 625

10 100-125 16 Sch 80 7 0875 8 25 27 8 1125 0875 660

11 125-150 18 Sch 80 7 0875 8 27 30 12 1125 0875 850

12 150-200 18 Sch 80 8 0875 8 27 30 12 1125 1 875

13 200-250 20 Sch 80 8 0875 10 30 36 16 125 1 1000

14 300 24 Sch 80 8 1 10 34 36 16 125 1125 1440

15 400 24 Sch 80 8 1 10 34 40 20 1375 1125 1675

16 500 30 125 10 125 12 42 48 20 1375 1375 2400

17 600 36 125 10 125 12 48 60 24 15 1375 3600

Notes

1 Do not use re-pads for cyclic service

2 B frac14 D - 125

3 K frac14 Pipe Wall Thk

4 Dimensions are given for reference only All loadings and stress shall be checked prior to use

Transportation and Erection of Pressure Vessels 709

Procedure 10-9 Local Loads in Shell Due to Erection Forces

Trunnions

Fixed Lug Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Maximum torsional moment MT

MT frac14 PTE

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

Rotating Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

TrunniondNo Lug

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

710 Pressure Vessel Design Manual

Side Lugs Notes

1 Optional internal pipe Remove after erection2 Radial load Pr is the axial load in the internal pipe

stiffener if used in lieu of radial load in shell3 Circumferential ring stiffeners are optional at these

elevations

bull Circumferential moment Mc

Mc frac14 PTe

bull Longitudinal moment Mx

Mx frac14 PLe

bull Load on weld group f

f frac14 PTELT

bull Radial loads Pr and Pa

Pr frac14 PLe

Pa frac14 PL sin f

Top Flange Lug

bull Loads PT and PL

PT frac14 P cos q

PL frac14 P sin q

Transportation and Erection of Pressure Vessels 711

bull Moment on flange M

M frac14 PTB

bull Moment on head M

M frac14 PTethBthorn JTHORNbull Moment on vessel M

M frac14 PTG

bull Radial load on head and nozzle frac14 PL

Side Flange Lug

bull Loads PT and PL

PL frac14 P cos q

PT frac14 P sin q

bull Moment on flange M

M frac14 PLB

bull Longitudinal moment on shell Mx

M frac14 PTethBthorn JTHORNbull Radial load on shell and nozzle frac14 PT

712 Pressure Vessel Design Manual

Procedure 10-10 Miscellaneous

Figure 10-7 Fundamental handling operations Reprinted by permission of the Babcock and Wilcox Companya McDermott Company

Transportation and Erection of Pressure Vessels 713

Figure 10-8 Loads on wire rope for various sheave configurations

714 Pressure Vessel Design Manual

Table 10-14Forged Steel Shackles

Dimensions in Inches

Size D (in)Safe Load

(lb)D (min) A

Tolerance

A DimB B (min) C G

Tolerance C

and G DimE F

frac14 475 73232 153232 11616 51616 93232 1⅛ ⅞ 11616 frac34 111616

⅜ 1050 113232 213232 11616 71616 256464 171616 1frac14 ⅛ 1 313232

71616 1450 256464 233232 11616 frac12 296464 1111616 171616 ⅛ 1⅛ 111616

frac12 1900 296464 131616 11616 ⅝ 91616 1⅞ 1⅝ ⅛ 1⅜ 151616

⅝ 2950 91616 111616 11616 frac34 436464 2133232 2 ⅛ 1⅝ 191616

frac34 4250 436464 1frac14 11616 ⅞ 253232 2273232 2⅜ frac14 2 1⅞

⅞ 5750 253232 171616 11616 1 576464 351616 2131616 frac14 2frac14 2⅛

1 7550 576464 1111616 11616 1⅛ 113232 3frac34 331616 frac14 2frac12 2⅜

1⅛ 8900 113232 1271616 ⅛ 1frac14 176464 4frac14 391616 frac14 2frac34 2⅝

1frac14 11000 176464 213232 ⅛ 1⅜ 1156464 4111616 3151616 frac14 3⅛ 3

1⅜ 13300 1156464 2frac14 ⅛ 1frac12 1113232 5frac14 471616 frac14 3frac12 351616

1frac12 15600 1113232 2⅜ ⅛ 1⅝ 1296464 5frac34 4⅞ frac14 3frac34 3⅝

1frac34 21500 1356464 2⅞ ⅛ 2 1253232 7 5frac34 frac14 4frac14 4⅛

2 28100 1253232 3frac14 ⅛ 2frac14 216464 7frac34 6frac34 frac14 5frac14 5

2frac14 36000 216464 3frac34 ⅛ 2frac12 2156464 9frac14 7⅛ frac34 5frac12 5frac14

2frac12 45100 2156464 4⅛ ⅛ 2frac34 2153232 10frac12 8 frac34 6frac14 6

3 64700 2111616 5 ⅛ 3frac14 2293232 13 11frac12 frac34 6frac34 6frac12

Notes

For shackles with safe loads greater than the maximum shown use CrosbyndashLaughlin (The Crosby Group Div of American Hoist amp Derrick Co Tulsa

OK 74101) Skookum (Skookum Co Inc Portland OR 97203) or equal with an ultimate strength at least 5 times the safe working load

Allowable loads are lower than OSHA requirements tabulated in Section 1926251 Table H-19

Transportation and Erection of Pressure Vessels 715

Figure 10-9 Wire rope end configurations

716 Pressure Vessel Design Manual

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 10: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

SkirtTail Beam Calculations

Tail Beam

bull Tailing loads fL and fr

fL frac14 T cos q

fr frac14 T sin q

bull Maximum bending moment Mb

Mb frac14 xfr thorn yfL

bull Maximum bending stress sb

sb frac14 Mb

Z

Tail Beam Bolts

bull Shear load fs

fs frac14 05frn

bull Shear stress s

s frac14 fsAb

bull Tension force ft

Note y1 frac14 mean skirt diameter or centerline of boltgroup if a filler plate is used

ft frac14 Mb

y1

Skirt

bull Tension stress in bolts sT

sT frac14 fTNbAb

bull Compressive force in skirt fc

fc frac14 fL thorn ft

bull Skirt crippling is dependent on the base configura-tion and lengths l1 through l4

N frac14 1 in if web stiffeners are not usedN frac14 width of top flange of tail beam if web stiffeners are

used

bull Compressive stress in skirt sc

sc frac14 fctskln

bull Check shear stress s in base to skirt weld

s frac14 frpDsk 0707w4

Base Plate

bull Bending moment in base plate Mb

Mb frac14 KrTRB

bull Find tangential force Tt

Tt frac14 KTT

bull Total combined stress s

sTfrac14 MbC1

Ithorn Tt

A

tension

sCfrac14 MbC2

I Tt

A

compression

684 Pressure Vessel Design Manual

Size Base Ring Stiffeners

F1 frac14 force in strut or tailing beam lbF1 is (thorn) for tension and (ndash) for compression

bull Tension stress sT

sT frac14 FnAs

bull Critical buckling stress per AISC scr

Cc frac14ffiffiffiffiffiffiffiffi2p2

Fy

s

scr frac141

KL2s=r

2C2

c

Fy

eth5=3THORN thorn etheth3KLs=rTHORN=8CcTHORN ethKLs=rTHORN3=8C3

c

bull Actual compressive stress sc

sc frac14 FnAs

Note Evaluate all struts as tension and compressionmembers regardless of sign because when the vessel issitting on the ground the loads are the reverse of the signsshown

Two Point

F1 frac14 eththornTHORN05T

Three Point

F1 frac14 eththornTHORN0453TF2 frac14 ethTHORN0329T

Parallel BeamsStruts

F1 frac14 eththornTHORN025T

Four Point

F1 frac14 eththornTHORN05TF2 frac14 ethTHORN0273TF3 frac14 eththornTHORN0273T

Transportation and Erection of Pressure Vessels 685

Table 10-7Internal moment coefficients for base ring

One Point Two Point Three Point Four Point

Angle a Kr KT Kr KT Kr KT Kr KT

0 02387 e02387 00795 e02387 e00229 01651 00093 e01156

5 01961 e02802 00587 e02584 e00148 01708 00048 e01188

10 01555 e03171 00398 e02736 e00067 01764 00012 e01188

15 01174 e03492 00229 e02845 e00055 01747 e00015 e01155

20 00819 e03763 00043 e02908 e00042 01729 e00033 e01089

25 00493 e03983 e00042 e02926 00028 01640 e00043 e00993

30 00197 e04151 e00145 e02900 00098 01551 e00045 e00867

35 e00067 e04266 e00225 e02831 00103 01397 e00041 e00713

40 e00299 e04328 e00284 e02721 00107 01242 e00031 e00534

45 e00497 e04340 e00321 e02571 00093 01032 e00017 e00333

50 e00663 e04301 e00335 e02385 00078 00821 e00001 e00112

55 e00796 e04214 e00340 e02165 00052 00567 00017 00126

60 e00897 e04080 e00324 e01915 00025 00313 00033 00376

65 e00967 e03904 e00293 e01638 00031 00031 00046 00636

70 e01008 e03688 e00250 e01338 00037 e00252 00055 00901

75 e01020 e03435 e00197 e01020 e00028 e00548 00056 01167

80 e01006 e03150 e00136 e00688 e00092 e00843 00049 01431

85 e00968 e02837 e00069 e00346 e00107 e01134 00031 01688

90 e00908 e02500 0 0 e00121 e01425 0 01935

95 e00830 e02144 00069 00416 e00114 e01694 e00031 e01688

100 e00735 e01774 00135 00688 e00107 e01963 e00049 e01431

105 e00627 e01394 00198 01020 e00074 e02194 e00057 e01167

110 e00508 e01011 00250 01338 e00033 e02425 e00055 e00901

115 e00381 e00627 00293 01638 00041 e02603 e00046 e00636

120 e00250 e00250 00324 01915 00114 e02781 e00033 e00376

125 e00016 00118 00340 02165 00107 e01060 e00017 e00126

130 00116 00471 00335 02385 00100 00661 00001 00112

135 00145 00804 00321 02571 00083 00448 00017 00333

140 00268 01115 00284 02721 00066 00234 00031 00534

145 00382 01398 00225 02831 00045 00104 00041 00713

150 00486 01551 00145 02900 00024 e00026 00045 00867

155 00577 01870 00042 02926 e00005 e00213 00043 00993

160 00654 02053 e00083 02908 e00015 e00399 00033 01089

165 00715 02198 e00225 02845 e00028 e00484 00015 01155

170 00760 02301 e00398 02736 e00041 e00569 e00012 01188

175 00787 02366 e00587 02584 e00046 e00597 e00048 01188

180 00796 02387 e00795 02387 e00051 e00626 e00093 01156

686 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 687

Design of Vessel for Choker (Cinch) Lift at Base

bull Uniform load p

p frac14 TR

bull Moments in ring at points A and C

MA frac14 01271TR

Mc frac14 00723TR

bull Tensioncompression forces in ring at points Aand C

TA frac14 06421T

Tc frac14 12232T

bull Combined stress at point A inside of ring

sA frac14 TA

AthornMA

Zin

bull Combined stress at point A outside of ring

sA frac14 TA

A MA

Zout

bull Combined stress at point C inside of ring

sc frac14 Tc

AthornMc

Zin

bull Combined stress at point C outside of ring

sc frac14 Tc

A Mc

Zout

Note Assume that the choker is attached immediately atthe base ring even though this may be impossible toachieve Then use the properties of the base ring for Aand Z

From R J Roark Formulas for Stress and Strain 5thEdition McGraw-Hill Book Co Table 17 Cases 12 and18 combined

688 Pressure Vessel Design Manual

Design of Tailing Lugs

Table 10-8Dimensions for tailing lugs

Tail Load (kips) tL tP E Ro RP D1 e

lt10 None required

10 to 20 075 NR 3 4 NR 2375 NR

21 to 40 075 0375 3 4 35 2375 03125

41 to 70 1 05 3 4 35 2375 03125

71 to 100 1 05 4 5 45 34375 03125

101 to 130 15 05 4 5 45 34375 03125

131 to 170 1625 075 4 5 45 34375 0375

171 to 210 1625 075 5 6 55 45 0375

211 to 250 2 075 5 6 55 45 04375

251 to 300 225 1 5 6 55 45 05

gt300 Special design required

Transportation and Erection of Pressure Vessels 689

Formulas

The tailing lug is designed like all other lugs Theforces are determined from the tailing load T calcu-lated per this procedure The ideal position for thetailing lug is to be as close as possible to the baseplate for stiffness and transmitting these loads throughthe base to the skirt The option of using a tailing lugversus a tailing beam is the designerrsquos choice Eithercan accommodate internal skirt rings stiffeners andstruts

Design as follows

bull Area required at pin hole Ar

Ar frac14 TFs

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN-ethD1tLTHORN

bull Bending moment in lug Mb

Mb frac14 fLE

bull Section modulus of lug Z

Z frac14 tLA2

6bull Bending stress in lug sb

sb frac14 Mb

Zbull Area required at pin hole for bearing Ar

Ar frac14 TFp

bull Area available at pin hole for bearing Aa

Aa frac14 D2tL

Note Substitute tL thorn 2tp for tL in the preceding equationsif pad eyes are used

690 Pressure Vessel Design Manual

Procedure 10-6 Design of Top Head and Cone Lifting Lugs

Design of Top HeadCone Lug

Dimensions

NT frac14 B2

Athorn 2B

LT frac14 Ethorn B NT

q1 frac14 arctan2L1

A

L2 frac14 L1

sin q1

q2 frac14 arcsinR3

L2

q3 frac14 q1 thorn q2

L3 frac14 R3

sin q3

L4 frac14 05A L1 05D3

tan q3

L5 frac14 05A L1 Ctan q3

Transportation and Erection of Pressure Vessels 691

Lug

bull Maximum bending moment in lug ML

ML frac14 PE

bull Section modulus lug Z

Z frac14 A2tL6

bull Bending stress lug sb

sb frac14 ML

Z

bull Thickness of lug required tL

tL frac14 6ML

A2Fb

bull Tension at edge of pad sT

sT frac14 PL2L4tL

bull Net section at pin hole Ap

Ap frac14 2L3tL thorn 2tpD3 D1

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at top of lug An

An frac14 tL

R3 D1

2

thorn 2tp

D3 D1

2

bull Shear stress at top of lug s

s frac14 PTAn

bull Pin bearing stress sp

sp frac14 PTD3

tL thorn 2tp

Check Welds

bull Polar moment of inertia Jw

Re-pad Jw frac14 ethA1 thorn L6THORN36

Lug Jw frac14 ethAthorn 2BTHORN312

B2ethAthorn BTHORN2ethAthorn 2BTHORN

bull Moment M1

M1 frac14 LTPT

Lug Weld

bull Find loads on weldsbull Transverse shear due to PT f1

f1 frac14 PTAthorn 2B

bull Transverse shear due to M1 f2

f2 frac14 M1ethB NTTHORNJw

bull Longitudinal shear due to M1 f3

f3 frac14 M1BJw

bull Combined shear load fr

fr frac14ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiethf1 thorn f2THORN2thornf23

q

692 Pressure Vessel Design Manual

bull Size of weld required w1

w1 frac14 fr0707Fs

Note If w1 exceeds the shell plate thickness then a re-padmust be used

Re-pad Weld

bull Moment M2

M2 frac14 PTethEthorn 05L6THORN

bull Transverse shear due to PT f1

f1 frac14 PT2A1 thorn 2L6

bull Transverse shear due to M2 f2

f2 frac14 05M2L6

Jw

bull Longitudinal shear due to M2 f3

f3 frac14 M2L6

Jw

bull Combined shear load fr

fr frac14ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiethf1 thorn f2THORN2thornf23

q

bull Size of weld required w1

w2 frac14 fr0707Fs

Pad Eye Weld

bull Unit shear load on pad f4

f4 frac14 PTtppD2

2tp thorn tL

bull Size of weld required w3

w3 frac14 f40707Fs

Top Head Lug for Large Loads

Transportation and Erection of Pressure Vessels 693

Table 10-9Dimensions for top head or cone lugs

694 Pressure Vessel Design Manual

Procedure 10-7 Design of Flange Lugs

Transportation and Erection of Pressure Vessels 695

Table 10-10Flange lug dimensions

Load Capacity (tons) D1 tL tb A B G H E

50 338 2 2 8 11 12 30 9

100 5 3 3 14 12 24 36 9

200 6 4 4 18 14 30 40 10

400 8 5 5 20 16 36 46 11

600 9 6 6 24 22 40 58 16

800 10 9 7 28 24 42 60 17

Table 10-11Bolt properties

Bolt Size Ab As Tb

05e13 0196 0112 12

0625e11 0307 0199 19

075e10 0442 0309 28

0875e9 0601 0446 39

1e8 0785 0605 51

1125e8 0994 079 56

125e8 1227 1 71

1375e8 1485 1233 85

15e8 1767 1492 103

175e8 2405 2082 182

2e8 3142 2771 243

225e8 3976 3557 311

25e8 4909 4442 389

275e8 594 543 418

3e8 7069 6506 501

325e8 83 7686 592

35e8 962 896 690

375e8 1104 1034 796

4e8 1257 1181 910

Table 10-12Values of Su

Bolt Dia db Material Su (ksi)

lt 1 A-325 120

1125e15 A-325 105

1625e25 A-193-B7 125

2625e4 A-193-B7 110

696 Pressure Vessel Design Manual

Top Flange Lug

PL frac14 P sin q

PT frac14 P cos q

PE frac14 PLA

thorn 3PTe

A2

M1frac14 PTB

M2frac14 PT(B thorn J)

M3frac14 PTe

Mufrac14 Xn cos an Nb

Mafrac14 MuM1PMu

Xn frac14 Rb cos an

yn frac14 Rb sin an

Side Flange Lug

Fn frac14 Ma

XnNb

fs frac14 PTN

sT frac14 FnAs

Fs frac14 15 ksi

1 sTAb

Tb

As frac14 07854 ethd 01218THORN2

s frac14 fsAs

lt Fs

Tb frac14 075uAs

06Fy lt FT lt 40 ksi

Transportation and Erection of Pressure Vessels 697

Design Process

1 Determine loads2 Check of lug

a Shear at pin holeb Bending of lugc Bearing at pin hole

3 Check of base plate4 Check of nozzle flange5 Check of flange bolting6 Check of local load at nozzle to head or shell

junction

Step 1 Determine loads

bull Determine loads PT and PL for various lift angles qbull Determine uniform loads w1 and w2 for variousangles q

bull Using w1 and w2 solve for worst case of combinedload PE

bull Determine worst-case bending moment in lug M3

Step 2 Check of lug

a Shear at pin holebull Area required Ar

Ar frac14 PEFs

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN

b Bending of lug due to M3

bull Section modulus Z

Z frac14 tLA2

6

bull Bending stress lug sb

sb frac14 M3

Z

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFp

bull Bearing available Aa

Aa frac14 D2tL

Maximum Tension in Lug

Check of Nozzle Flange

bull Unit load w

w frac14 PEpBc

bull Bending moment M

M frac14 whDbull Bending stress sb

sb frac14 6M

t2f

698 Pressure Vessel Design Manual

Bolt Loads for Rectangular Lugs Design of Full Circular Base Plate for Lug

bull If a full circular plate is used in lieu of a rectangularplate the following evaluation may be used

bull Unit load on bolt circle w

w frac14 PEpBc

bull Edge distance from point of load hp

hp frac14 BC tL2

bull Bending moment M

M frac14 whp

bull Bending stress sb

sb frac14 6M

t2b

bull Check bolting same as rectangular flange

Transportation and Erection of Pressure Vessels 699

Design of Lug Base Plate

(From R J Roark Formulas for Stress and StrainMcGraw-Hill Book Co 4th Edition Table III Case 34)

bull Uniform load w

w frac14 PEA

bull End reaction R1

R1 frac14 wA2

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

bull Moment at midspan Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

bull Thickness required tb

tb frac14ffiffiffiffiffiffiffiffiffi6Mx

GFb

s

700 Pressure Vessel Design Manual

Check of Bolts

Case 1 Bolts on Centerline Case 2 Bolts Straddle Centerline

Bolt 1 2 3 4 5 Bolt 1 2 3 4 5

an an

xn xn

yn yn

Nb Nb

Mu Mu

Ma Ma

Fn Fn

sT sT

Fs Fs

Transportation and Erection of Pressure Vessels 701

Sample Problem Top Flange Lug

GivenL1 frac14 90 ftL2 frac14 50 ftL3 frac14 40 ftL4 frac14 95 ft

Fy bolting frac14 75 ksiFy lug frac14 36 ksi

Fy flange frac14 36 ksiFs frac14 04(36) frac14 144 ksiFT frac14 06(36) frac14 216 ksiFb frac14 066(36) frac14 2376 ksiWL frac14 1200 kipsBc frac14 54 inRc frac14 27 inB frac14 22 intb frac14 6 intL frac14 6 intf frac14 11 in

D1 frac14 9 in

D2 frac14 8 in

Bolt size frac14 3-14-8 UNC

Ab frac14 83 in2

As frac14 7686 in2

Tb frac14 592 kips

Su frac14 110 ksi

e frac14 16 in

G frac14 40 in

A frac14 24 in

hD frac14 95 in

b frac14 05ethBc ATHORN

Results

PT max frac14 537 kips q frac14 10

PL max frac141200 kips q frac14 90

PE max frac141277 kips q frac14 40

sT bolt max frac14 2011 ksi 40 ksi

s bolt max frac14 698 ksi 1077 ksi

702 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 703

10 Check Lug

a Shear at pin hole

bull Area required Ar

Ar frac14 PEFS

frac14 1277144

frac14 8868 in2

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN frac14 eth24$6THORN eth9$6THORN frac14 90 in2

b Bending of lug due to M3

bull Maximum moment M3

M3 frac14 PTe frac14 537eth16THORN frac14 8592 in kips

bull Section modulus Z

Z frac14 tLA2

6frac14

6$242

6

frac14 576 in3

bull Bending stress lug sb

sb frac14 M3

Zfrac14 8592

576frac14 1491 ksi

bull Thickness required tL

tL frac14 6M

FbA2 frac14 6$85922376eth242THORN frac14 376 in

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFP

frac14 1277324

frac14 3941 in2

bull Bearing available Aa

Aa frac14 D2tL frac14 8$6 frac14 48 in2

20 Check Lug Base Plate

bull Uniform load w

w frac14 PEA

frac14 127724

frac14 532kipsin

bull End reaction R1

R1 frac14 PE2

frac14 12772

frac14 6385 kips

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

Ma frac14 0985eth8748 2496thorn 768thorn 2304 17 496THORNfrac14 8049 in kips

bull Moment at mid Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

Mx frac14 8049thorn 17 240 3831

frac14 5360 in kips

bull Section modulus Z

Z frac14t2bG

6

frac1462$40

6

frac14 240 in3

bull Bending stress sb

sb frac14 Mx

Zfrac14 5360

240frac14 2233 ksi

bull Allowable bending stress Fb

Fb frac14 066Fy frac14 06636 frac14 2376 ksi

30 Check of Vessel Flange

bull Unit load w

w frac14 PEpBc

frac14 1277p54

frac14 752kipsin

bull Bending moment Mb

Mb frac14 whD frac14 752eth92THORN frac14 6925 in kips

bull Bending stress sb

sb frac14 6Mb

t2ffrac14 frac126eth6925THORN

11252frac14 328 ksi

704 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 705

Procedure 10-8 Design of Trunnions

Lug Dimensions

Dimensions for Trunnion

Type 1 Trunnion and Fixed Lug

Type 2 Trunnion and Rotating Lug

Type 3 Trunnion Only

706 Pressure Vessel Design Manual

Type 1 Trunnion and Fixed Lug

There are four checks to be performed

1 Check lug2 Check trunnion3 Check welds4 Check vessel shell

Check Lug

Transverse (vessel horizontal)

M frac14 PTE and Z frac14 4R2otL6

Therefore

tL frac14 15PTE

R2oFb

Longitudinal (vessel vertical)

bull Cross-sectional area at pin hole Ap

Ap frac14 213tL thorn 2tpethD3 D1

bull Cross-sectional area at top of lug An

An frac14 tL

RT D1

2

thorn 2tp

D3 D1

2

bull Shear stress s

s frac14 PLAP

or s frac14 PLAn

bull Pin bearing stress sp

sp frac14 PLD2

tL thorn 2tp

Check Trunnion

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Torsional moment MT (vessel horizontal)

MT frac14 PTE

bull Bending stress sb

sb frac14 ML

Z

bull Torsional shear stress sT

sT frac14 MT

2pRnto

Check Welds

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Polar moment of inertia Jw

Jw frac14 2pR3n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Torsional shear stress in weld sT

sT frac14 MTRn

Jw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 2 Trunnion and Rotating Lug

bull Net section at Section A-A Ap

Ap frac14 213tL thorn 2tpD3 D1

Transportation and Erection of Pressure Vessels 707

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at Section B-B An

An frac14 2tLethRo RiTHORNbull Shear stress at trunnion s

s frac14 PLAn

bull Minimum bearing contact angle for lug at trun-nion qB

qB frac14 eth159PLTHORNRntLFp

bull Pin hole bearing stress sp

sp frac14 PLD3

tL thorn 2tp

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Swbull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 3 Trunnion Only

Vessel Vertical

bull Longitudinal moment ML

ML frac14 PLe

bull Bending stress in trunnion sb

sb frac14 ML

Z

Vessel Horizontal

bull Circumferential moment Mc

Mc frac14 PTe

bull Bending stress in trunnion sb

sb frac14 Mc

Z

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

708 Pressure Vessel Design Manual

TYPE 1 TYPE 2

W

K

DIA

A

DIA

= F

DIA

= M

K

C

KT

2 X 125 DIAVENT HOLES

DIA

A

125

D

250

DIA

= F

W

K

B

NUTS WELDED

GRIND WELDSMOOTH

DIA

= M

K

E

KT

2 X 125 DIAVENT HOLES

Table 10-13Dimensions of trunnions

Allowable Load Tons Pipe Size A C D E F M N T W Weight Lbs

1 0-5 4 Std 4 - - 85 8 - 05 025 30

2 5-10 6 Std 5 - - 105 12 - 05 025 55

3 10-15 8 Std 6 0625 8 125 15 4 05 0375 90

4 15-25 10 Std 6 0625 8 15 18 4 075 0375 150

5 25-35 12 Sch 80 6 075 8 17 21 4 075 0375 240

6 35-45 12 Sch 80 6 075 8 17 21 4 075 05 240

7 45-60 14 Sch 80 6 075 8 18 24 8 1 05 375

8 60-75 14 Sch 80 7 0875 8 18 24 8 1 0625 400

9 75-100 16 Sch 80 7 0875 8 25 27 8 1 0625 625

10 100-125 16 Sch 80 7 0875 8 25 27 8 1125 0875 660

11 125-150 18 Sch 80 7 0875 8 27 30 12 1125 0875 850

12 150-200 18 Sch 80 8 0875 8 27 30 12 1125 1 875

13 200-250 20 Sch 80 8 0875 10 30 36 16 125 1 1000

14 300 24 Sch 80 8 1 10 34 36 16 125 1125 1440

15 400 24 Sch 80 8 1 10 34 40 20 1375 1125 1675

16 500 30 125 10 125 12 42 48 20 1375 1375 2400

17 600 36 125 10 125 12 48 60 24 15 1375 3600

Notes

1 Do not use re-pads for cyclic service

2 B frac14 D - 125

3 K frac14 Pipe Wall Thk

4 Dimensions are given for reference only All loadings and stress shall be checked prior to use

Transportation and Erection of Pressure Vessels 709

Procedure 10-9 Local Loads in Shell Due to Erection Forces

Trunnions

Fixed Lug Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Maximum torsional moment MT

MT frac14 PTE

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

Rotating Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

TrunniondNo Lug

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

710 Pressure Vessel Design Manual

Side Lugs Notes

1 Optional internal pipe Remove after erection2 Radial load Pr is the axial load in the internal pipe

stiffener if used in lieu of radial load in shell3 Circumferential ring stiffeners are optional at these

elevations

bull Circumferential moment Mc

Mc frac14 PTe

bull Longitudinal moment Mx

Mx frac14 PLe

bull Load on weld group f

f frac14 PTELT

bull Radial loads Pr and Pa

Pr frac14 PLe

Pa frac14 PL sin f

Top Flange Lug

bull Loads PT and PL

PT frac14 P cos q

PL frac14 P sin q

Transportation and Erection of Pressure Vessels 711

bull Moment on flange M

M frac14 PTB

bull Moment on head M

M frac14 PTethBthorn JTHORNbull Moment on vessel M

M frac14 PTG

bull Radial load on head and nozzle frac14 PL

Side Flange Lug

bull Loads PT and PL

PL frac14 P cos q

PT frac14 P sin q

bull Moment on flange M

M frac14 PLB

bull Longitudinal moment on shell Mx

M frac14 PTethBthorn JTHORNbull Radial load on shell and nozzle frac14 PT

712 Pressure Vessel Design Manual

Procedure 10-10 Miscellaneous

Figure 10-7 Fundamental handling operations Reprinted by permission of the Babcock and Wilcox Companya McDermott Company

Transportation and Erection of Pressure Vessels 713

Figure 10-8 Loads on wire rope for various sheave configurations

714 Pressure Vessel Design Manual

Table 10-14Forged Steel Shackles

Dimensions in Inches

Size D (in)Safe Load

(lb)D (min) A

Tolerance

A DimB B (min) C G

Tolerance C

and G DimE F

frac14 475 73232 153232 11616 51616 93232 1⅛ ⅞ 11616 frac34 111616

⅜ 1050 113232 213232 11616 71616 256464 171616 1frac14 ⅛ 1 313232

71616 1450 256464 233232 11616 frac12 296464 1111616 171616 ⅛ 1⅛ 111616

frac12 1900 296464 131616 11616 ⅝ 91616 1⅞ 1⅝ ⅛ 1⅜ 151616

⅝ 2950 91616 111616 11616 frac34 436464 2133232 2 ⅛ 1⅝ 191616

frac34 4250 436464 1frac14 11616 ⅞ 253232 2273232 2⅜ frac14 2 1⅞

⅞ 5750 253232 171616 11616 1 576464 351616 2131616 frac14 2frac14 2⅛

1 7550 576464 1111616 11616 1⅛ 113232 3frac34 331616 frac14 2frac12 2⅜

1⅛ 8900 113232 1271616 ⅛ 1frac14 176464 4frac14 391616 frac14 2frac34 2⅝

1frac14 11000 176464 213232 ⅛ 1⅜ 1156464 4111616 3151616 frac14 3⅛ 3

1⅜ 13300 1156464 2frac14 ⅛ 1frac12 1113232 5frac14 471616 frac14 3frac12 351616

1frac12 15600 1113232 2⅜ ⅛ 1⅝ 1296464 5frac34 4⅞ frac14 3frac34 3⅝

1frac34 21500 1356464 2⅞ ⅛ 2 1253232 7 5frac34 frac14 4frac14 4⅛

2 28100 1253232 3frac14 ⅛ 2frac14 216464 7frac34 6frac34 frac14 5frac14 5

2frac14 36000 216464 3frac34 ⅛ 2frac12 2156464 9frac14 7⅛ frac34 5frac12 5frac14

2frac12 45100 2156464 4⅛ ⅛ 2frac34 2153232 10frac12 8 frac34 6frac14 6

3 64700 2111616 5 ⅛ 3frac14 2293232 13 11frac12 frac34 6frac34 6frac12

Notes

For shackles with safe loads greater than the maximum shown use CrosbyndashLaughlin (The Crosby Group Div of American Hoist amp Derrick Co Tulsa

OK 74101) Skookum (Skookum Co Inc Portland OR 97203) or equal with an ultimate strength at least 5 times the safe working load

Allowable loads are lower than OSHA requirements tabulated in Section 1926251 Table H-19

Transportation and Erection of Pressure Vessels 715

Figure 10-9 Wire rope end configurations

716 Pressure Vessel Design Manual

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 11: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

Size Base Ring Stiffeners

F1 frac14 force in strut or tailing beam lbF1 is (thorn) for tension and (ndash) for compression

bull Tension stress sT

sT frac14 FnAs

bull Critical buckling stress per AISC scr

Cc frac14ffiffiffiffiffiffiffiffi2p2

Fy

s

scr frac141

KL2s=r

2C2

c

Fy

eth5=3THORN thorn etheth3KLs=rTHORN=8CcTHORN ethKLs=rTHORN3=8C3

c

bull Actual compressive stress sc

sc frac14 FnAs

Note Evaluate all struts as tension and compressionmembers regardless of sign because when the vessel issitting on the ground the loads are the reverse of the signsshown

Two Point

F1 frac14 eththornTHORN05T

Three Point

F1 frac14 eththornTHORN0453TF2 frac14 ethTHORN0329T

Parallel BeamsStruts

F1 frac14 eththornTHORN025T

Four Point

F1 frac14 eththornTHORN05TF2 frac14 ethTHORN0273TF3 frac14 eththornTHORN0273T

Transportation and Erection of Pressure Vessels 685

Table 10-7Internal moment coefficients for base ring

One Point Two Point Three Point Four Point

Angle a Kr KT Kr KT Kr KT Kr KT

0 02387 e02387 00795 e02387 e00229 01651 00093 e01156

5 01961 e02802 00587 e02584 e00148 01708 00048 e01188

10 01555 e03171 00398 e02736 e00067 01764 00012 e01188

15 01174 e03492 00229 e02845 e00055 01747 e00015 e01155

20 00819 e03763 00043 e02908 e00042 01729 e00033 e01089

25 00493 e03983 e00042 e02926 00028 01640 e00043 e00993

30 00197 e04151 e00145 e02900 00098 01551 e00045 e00867

35 e00067 e04266 e00225 e02831 00103 01397 e00041 e00713

40 e00299 e04328 e00284 e02721 00107 01242 e00031 e00534

45 e00497 e04340 e00321 e02571 00093 01032 e00017 e00333

50 e00663 e04301 e00335 e02385 00078 00821 e00001 e00112

55 e00796 e04214 e00340 e02165 00052 00567 00017 00126

60 e00897 e04080 e00324 e01915 00025 00313 00033 00376

65 e00967 e03904 e00293 e01638 00031 00031 00046 00636

70 e01008 e03688 e00250 e01338 00037 e00252 00055 00901

75 e01020 e03435 e00197 e01020 e00028 e00548 00056 01167

80 e01006 e03150 e00136 e00688 e00092 e00843 00049 01431

85 e00968 e02837 e00069 e00346 e00107 e01134 00031 01688

90 e00908 e02500 0 0 e00121 e01425 0 01935

95 e00830 e02144 00069 00416 e00114 e01694 e00031 e01688

100 e00735 e01774 00135 00688 e00107 e01963 e00049 e01431

105 e00627 e01394 00198 01020 e00074 e02194 e00057 e01167

110 e00508 e01011 00250 01338 e00033 e02425 e00055 e00901

115 e00381 e00627 00293 01638 00041 e02603 e00046 e00636

120 e00250 e00250 00324 01915 00114 e02781 e00033 e00376

125 e00016 00118 00340 02165 00107 e01060 e00017 e00126

130 00116 00471 00335 02385 00100 00661 00001 00112

135 00145 00804 00321 02571 00083 00448 00017 00333

140 00268 01115 00284 02721 00066 00234 00031 00534

145 00382 01398 00225 02831 00045 00104 00041 00713

150 00486 01551 00145 02900 00024 e00026 00045 00867

155 00577 01870 00042 02926 e00005 e00213 00043 00993

160 00654 02053 e00083 02908 e00015 e00399 00033 01089

165 00715 02198 e00225 02845 e00028 e00484 00015 01155

170 00760 02301 e00398 02736 e00041 e00569 e00012 01188

175 00787 02366 e00587 02584 e00046 e00597 e00048 01188

180 00796 02387 e00795 02387 e00051 e00626 e00093 01156

686 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 687

Design of Vessel for Choker (Cinch) Lift at Base

bull Uniform load p

p frac14 TR

bull Moments in ring at points A and C

MA frac14 01271TR

Mc frac14 00723TR

bull Tensioncompression forces in ring at points Aand C

TA frac14 06421T

Tc frac14 12232T

bull Combined stress at point A inside of ring

sA frac14 TA

AthornMA

Zin

bull Combined stress at point A outside of ring

sA frac14 TA

A MA

Zout

bull Combined stress at point C inside of ring

sc frac14 Tc

AthornMc

Zin

bull Combined stress at point C outside of ring

sc frac14 Tc

A Mc

Zout

Note Assume that the choker is attached immediately atthe base ring even though this may be impossible toachieve Then use the properties of the base ring for Aand Z

From R J Roark Formulas for Stress and Strain 5thEdition McGraw-Hill Book Co Table 17 Cases 12 and18 combined

688 Pressure Vessel Design Manual

Design of Tailing Lugs

Table 10-8Dimensions for tailing lugs

Tail Load (kips) tL tP E Ro RP D1 e

lt10 None required

10 to 20 075 NR 3 4 NR 2375 NR

21 to 40 075 0375 3 4 35 2375 03125

41 to 70 1 05 3 4 35 2375 03125

71 to 100 1 05 4 5 45 34375 03125

101 to 130 15 05 4 5 45 34375 03125

131 to 170 1625 075 4 5 45 34375 0375

171 to 210 1625 075 5 6 55 45 0375

211 to 250 2 075 5 6 55 45 04375

251 to 300 225 1 5 6 55 45 05

gt300 Special design required

Transportation and Erection of Pressure Vessels 689

Formulas

The tailing lug is designed like all other lugs Theforces are determined from the tailing load T calcu-lated per this procedure The ideal position for thetailing lug is to be as close as possible to the baseplate for stiffness and transmitting these loads throughthe base to the skirt The option of using a tailing lugversus a tailing beam is the designerrsquos choice Eithercan accommodate internal skirt rings stiffeners andstruts

Design as follows

bull Area required at pin hole Ar

Ar frac14 TFs

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN-ethD1tLTHORN

bull Bending moment in lug Mb

Mb frac14 fLE

bull Section modulus of lug Z

Z frac14 tLA2

6bull Bending stress in lug sb

sb frac14 Mb

Zbull Area required at pin hole for bearing Ar

Ar frac14 TFp

bull Area available at pin hole for bearing Aa

Aa frac14 D2tL

Note Substitute tL thorn 2tp for tL in the preceding equationsif pad eyes are used

690 Pressure Vessel Design Manual

Procedure 10-6 Design of Top Head and Cone Lifting Lugs

Design of Top HeadCone Lug

Dimensions

NT frac14 B2

Athorn 2B

LT frac14 Ethorn B NT

q1 frac14 arctan2L1

A

L2 frac14 L1

sin q1

q2 frac14 arcsinR3

L2

q3 frac14 q1 thorn q2

L3 frac14 R3

sin q3

L4 frac14 05A L1 05D3

tan q3

L5 frac14 05A L1 Ctan q3

Transportation and Erection of Pressure Vessels 691

Lug

bull Maximum bending moment in lug ML

ML frac14 PE

bull Section modulus lug Z

Z frac14 A2tL6

bull Bending stress lug sb

sb frac14 ML

Z

bull Thickness of lug required tL

tL frac14 6ML

A2Fb

bull Tension at edge of pad sT

sT frac14 PL2L4tL

bull Net section at pin hole Ap

Ap frac14 2L3tL thorn 2tpD3 D1

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at top of lug An

An frac14 tL

R3 D1

2

thorn 2tp

D3 D1

2

bull Shear stress at top of lug s

s frac14 PTAn

bull Pin bearing stress sp

sp frac14 PTD3

tL thorn 2tp

Check Welds

bull Polar moment of inertia Jw

Re-pad Jw frac14 ethA1 thorn L6THORN36

Lug Jw frac14 ethAthorn 2BTHORN312

B2ethAthorn BTHORN2ethAthorn 2BTHORN

bull Moment M1

M1 frac14 LTPT

Lug Weld

bull Find loads on weldsbull Transverse shear due to PT f1

f1 frac14 PTAthorn 2B

bull Transverse shear due to M1 f2

f2 frac14 M1ethB NTTHORNJw

bull Longitudinal shear due to M1 f3

f3 frac14 M1BJw

bull Combined shear load fr

fr frac14ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiethf1 thorn f2THORN2thornf23

q

692 Pressure Vessel Design Manual

bull Size of weld required w1

w1 frac14 fr0707Fs

Note If w1 exceeds the shell plate thickness then a re-padmust be used

Re-pad Weld

bull Moment M2

M2 frac14 PTethEthorn 05L6THORN

bull Transverse shear due to PT f1

f1 frac14 PT2A1 thorn 2L6

bull Transverse shear due to M2 f2

f2 frac14 05M2L6

Jw

bull Longitudinal shear due to M2 f3

f3 frac14 M2L6

Jw

bull Combined shear load fr

fr frac14ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiethf1 thorn f2THORN2thornf23

q

bull Size of weld required w1

w2 frac14 fr0707Fs

Pad Eye Weld

bull Unit shear load on pad f4

f4 frac14 PTtppD2

2tp thorn tL

bull Size of weld required w3

w3 frac14 f40707Fs

Top Head Lug for Large Loads

Transportation and Erection of Pressure Vessels 693

Table 10-9Dimensions for top head or cone lugs

694 Pressure Vessel Design Manual

Procedure 10-7 Design of Flange Lugs

Transportation and Erection of Pressure Vessels 695

Table 10-10Flange lug dimensions

Load Capacity (tons) D1 tL tb A B G H E

50 338 2 2 8 11 12 30 9

100 5 3 3 14 12 24 36 9

200 6 4 4 18 14 30 40 10

400 8 5 5 20 16 36 46 11

600 9 6 6 24 22 40 58 16

800 10 9 7 28 24 42 60 17

Table 10-11Bolt properties

Bolt Size Ab As Tb

05e13 0196 0112 12

0625e11 0307 0199 19

075e10 0442 0309 28

0875e9 0601 0446 39

1e8 0785 0605 51

1125e8 0994 079 56

125e8 1227 1 71

1375e8 1485 1233 85

15e8 1767 1492 103

175e8 2405 2082 182

2e8 3142 2771 243

225e8 3976 3557 311

25e8 4909 4442 389

275e8 594 543 418

3e8 7069 6506 501

325e8 83 7686 592

35e8 962 896 690

375e8 1104 1034 796

4e8 1257 1181 910

Table 10-12Values of Su

Bolt Dia db Material Su (ksi)

lt 1 A-325 120

1125e15 A-325 105

1625e25 A-193-B7 125

2625e4 A-193-B7 110

696 Pressure Vessel Design Manual

Top Flange Lug

PL frac14 P sin q

PT frac14 P cos q

PE frac14 PLA

thorn 3PTe

A2

M1frac14 PTB

M2frac14 PT(B thorn J)

M3frac14 PTe

Mufrac14 Xn cos an Nb

Mafrac14 MuM1PMu

Xn frac14 Rb cos an

yn frac14 Rb sin an

Side Flange Lug

Fn frac14 Ma

XnNb

fs frac14 PTN

sT frac14 FnAs

Fs frac14 15 ksi

1 sTAb

Tb

As frac14 07854 ethd 01218THORN2

s frac14 fsAs

lt Fs

Tb frac14 075uAs

06Fy lt FT lt 40 ksi

Transportation and Erection of Pressure Vessels 697

Design Process

1 Determine loads2 Check of lug

a Shear at pin holeb Bending of lugc Bearing at pin hole

3 Check of base plate4 Check of nozzle flange5 Check of flange bolting6 Check of local load at nozzle to head or shell

junction

Step 1 Determine loads

bull Determine loads PT and PL for various lift angles qbull Determine uniform loads w1 and w2 for variousangles q

bull Using w1 and w2 solve for worst case of combinedload PE

bull Determine worst-case bending moment in lug M3

Step 2 Check of lug

a Shear at pin holebull Area required Ar

Ar frac14 PEFs

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN

b Bending of lug due to M3

bull Section modulus Z

Z frac14 tLA2

6

bull Bending stress lug sb

sb frac14 M3

Z

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFp

bull Bearing available Aa

Aa frac14 D2tL

Maximum Tension in Lug

Check of Nozzle Flange

bull Unit load w

w frac14 PEpBc

bull Bending moment M

M frac14 whDbull Bending stress sb

sb frac14 6M

t2f

698 Pressure Vessel Design Manual

Bolt Loads for Rectangular Lugs Design of Full Circular Base Plate for Lug

bull If a full circular plate is used in lieu of a rectangularplate the following evaluation may be used

bull Unit load on bolt circle w

w frac14 PEpBc

bull Edge distance from point of load hp

hp frac14 BC tL2

bull Bending moment M

M frac14 whp

bull Bending stress sb

sb frac14 6M

t2b

bull Check bolting same as rectangular flange

Transportation and Erection of Pressure Vessels 699

Design of Lug Base Plate

(From R J Roark Formulas for Stress and StrainMcGraw-Hill Book Co 4th Edition Table III Case 34)

bull Uniform load w

w frac14 PEA

bull End reaction R1

R1 frac14 wA2

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

bull Moment at midspan Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

bull Thickness required tb

tb frac14ffiffiffiffiffiffiffiffiffi6Mx

GFb

s

700 Pressure Vessel Design Manual

Check of Bolts

Case 1 Bolts on Centerline Case 2 Bolts Straddle Centerline

Bolt 1 2 3 4 5 Bolt 1 2 3 4 5

an an

xn xn

yn yn

Nb Nb

Mu Mu

Ma Ma

Fn Fn

sT sT

Fs Fs

Transportation and Erection of Pressure Vessels 701

Sample Problem Top Flange Lug

GivenL1 frac14 90 ftL2 frac14 50 ftL3 frac14 40 ftL4 frac14 95 ft

Fy bolting frac14 75 ksiFy lug frac14 36 ksi

Fy flange frac14 36 ksiFs frac14 04(36) frac14 144 ksiFT frac14 06(36) frac14 216 ksiFb frac14 066(36) frac14 2376 ksiWL frac14 1200 kipsBc frac14 54 inRc frac14 27 inB frac14 22 intb frac14 6 intL frac14 6 intf frac14 11 in

D1 frac14 9 in

D2 frac14 8 in

Bolt size frac14 3-14-8 UNC

Ab frac14 83 in2

As frac14 7686 in2

Tb frac14 592 kips

Su frac14 110 ksi

e frac14 16 in

G frac14 40 in

A frac14 24 in

hD frac14 95 in

b frac14 05ethBc ATHORN

Results

PT max frac14 537 kips q frac14 10

PL max frac141200 kips q frac14 90

PE max frac141277 kips q frac14 40

sT bolt max frac14 2011 ksi 40 ksi

s bolt max frac14 698 ksi 1077 ksi

702 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 703

10 Check Lug

a Shear at pin hole

bull Area required Ar

Ar frac14 PEFS

frac14 1277144

frac14 8868 in2

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN frac14 eth24$6THORN eth9$6THORN frac14 90 in2

b Bending of lug due to M3

bull Maximum moment M3

M3 frac14 PTe frac14 537eth16THORN frac14 8592 in kips

bull Section modulus Z

Z frac14 tLA2

6frac14

6$242

6

frac14 576 in3

bull Bending stress lug sb

sb frac14 M3

Zfrac14 8592

576frac14 1491 ksi

bull Thickness required tL

tL frac14 6M

FbA2 frac14 6$85922376eth242THORN frac14 376 in

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFP

frac14 1277324

frac14 3941 in2

bull Bearing available Aa

Aa frac14 D2tL frac14 8$6 frac14 48 in2

20 Check Lug Base Plate

bull Uniform load w

w frac14 PEA

frac14 127724

frac14 532kipsin

bull End reaction R1

R1 frac14 PE2

frac14 12772

frac14 6385 kips

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

Ma frac14 0985eth8748 2496thorn 768thorn 2304 17 496THORNfrac14 8049 in kips

bull Moment at mid Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

Mx frac14 8049thorn 17 240 3831

frac14 5360 in kips

bull Section modulus Z

Z frac14t2bG

6

frac1462$40

6

frac14 240 in3

bull Bending stress sb

sb frac14 Mx

Zfrac14 5360

240frac14 2233 ksi

bull Allowable bending stress Fb

Fb frac14 066Fy frac14 06636 frac14 2376 ksi

30 Check of Vessel Flange

bull Unit load w

w frac14 PEpBc

frac14 1277p54

frac14 752kipsin

bull Bending moment Mb

Mb frac14 whD frac14 752eth92THORN frac14 6925 in kips

bull Bending stress sb

sb frac14 6Mb

t2ffrac14 frac126eth6925THORN

11252frac14 328 ksi

704 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 705

Procedure 10-8 Design of Trunnions

Lug Dimensions

Dimensions for Trunnion

Type 1 Trunnion and Fixed Lug

Type 2 Trunnion and Rotating Lug

Type 3 Trunnion Only

706 Pressure Vessel Design Manual

Type 1 Trunnion and Fixed Lug

There are four checks to be performed

1 Check lug2 Check trunnion3 Check welds4 Check vessel shell

Check Lug

Transverse (vessel horizontal)

M frac14 PTE and Z frac14 4R2otL6

Therefore

tL frac14 15PTE

R2oFb

Longitudinal (vessel vertical)

bull Cross-sectional area at pin hole Ap

Ap frac14 213tL thorn 2tpethD3 D1

bull Cross-sectional area at top of lug An

An frac14 tL

RT D1

2

thorn 2tp

D3 D1

2

bull Shear stress s

s frac14 PLAP

or s frac14 PLAn

bull Pin bearing stress sp

sp frac14 PLD2

tL thorn 2tp

Check Trunnion

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Torsional moment MT (vessel horizontal)

MT frac14 PTE

bull Bending stress sb

sb frac14 ML

Z

bull Torsional shear stress sT

sT frac14 MT

2pRnto

Check Welds

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Polar moment of inertia Jw

Jw frac14 2pR3n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Torsional shear stress in weld sT

sT frac14 MTRn

Jw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 2 Trunnion and Rotating Lug

bull Net section at Section A-A Ap

Ap frac14 213tL thorn 2tpD3 D1

Transportation and Erection of Pressure Vessels 707

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at Section B-B An

An frac14 2tLethRo RiTHORNbull Shear stress at trunnion s

s frac14 PLAn

bull Minimum bearing contact angle for lug at trun-nion qB

qB frac14 eth159PLTHORNRntLFp

bull Pin hole bearing stress sp

sp frac14 PLD3

tL thorn 2tp

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Swbull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 3 Trunnion Only

Vessel Vertical

bull Longitudinal moment ML

ML frac14 PLe

bull Bending stress in trunnion sb

sb frac14 ML

Z

Vessel Horizontal

bull Circumferential moment Mc

Mc frac14 PTe

bull Bending stress in trunnion sb

sb frac14 Mc

Z

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

708 Pressure Vessel Design Manual

TYPE 1 TYPE 2

W

K

DIA

A

DIA

= F

DIA

= M

K

C

KT

2 X 125 DIAVENT HOLES

DIA

A

125

D

250

DIA

= F

W

K

B

NUTS WELDED

GRIND WELDSMOOTH

DIA

= M

K

E

KT

2 X 125 DIAVENT HOLES

Table 10-13Dimensions of trunnions

Allowable Load Tons Pipe Size A C D E F M N T W Weight Lbs

1 0-5 4 Std 4 - - 85 8 - 05 025 30

2 5-10 6 Std 5 - - 105 12 - 05 025 55

3 10-15 8 Std 6 0625 8 125 15 4 05 0375 90

4 15-25 10 Std 6 0625 8 15 18 4 075 0375 150

5 25-35 12 Sch 80 6 075 8 17 21 4 075 0375 240

6 35-45 12 Sch 80 6 075 8 17 21 4 075 05 240

7 45-60 14 Sch 80 6 075 8 18 24 8 1 05 375

8 60-75 14 Sch 80 7 0875 8 18 24 8 1 0625 400

9 75-100 16 Sch 80 7 0875 8 25 27 8 1 0625 625

10 100-125 16 Sch 80 7 0875 8 25 27 8 1125 0875 660

11 125-150 18 Sch 80 7 0875 8 27 30 12 1125 0875 850

12 150-200 18 Sch 80 8 0875 8 27 30 12 1125 1 875

13 200-250 20 Sch 80 8 0875 10 30 36 16 125 1 1000

14 300 24 Sch 80 8 1 10 34 36 16 125 1125 1440

15 400 24 Sch 80 8 1 10 34 40 20 1375 1125 1675

16 500 30 125 10 125 12 42 48 20 1375 1375 2400

17 600 36 125 10 125 12 48 60 24 15 1375 3600

Notes

1 Do not use re-pads for cyclic service

2 B frac14 D - 125

3 K frac14 Pipe Wall Thk

4 Dimensions are given for reference only All loadings and stress shall be checked prior to use

Transportation and Erection of Pressure Vessels 709

Procedure 10-9 Local Loads in Shell Due to Erection Forces

Trunnions

Fixed Lug Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Maximum torsional moment MT

MT frac14 PTE

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

Rotating Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

TrunniondNo Lug

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

710 Pressure Vessel Design Manual

Side Lugs Notes

1 Optional internal pipe Remove after erection2 Radial load Pr is the axial load in the internal pipe

stiffener if used in lieu of radial load in shell3 Circumferential ring stiffeners are optional at these

elevations

bull Circumferential moment Mc

Mc frac14 PTe

bull Longitudinal moment Mx

Mx frac14 PLe

bull Load on weld group f

f frac14 PTELT

bull Radial loads Pr and Pa

Pr frac14 PLe

Pa frac14 PL sin f

Top Flange Lug

bull Loads PT and PL

PT frac14 P cos q

PL frac14 P sin q

Transportation and Erection of Pressure Vessels 711

bull Moment on flange M

M frac14 PTB

bull Moment on head M

M frac14 PTethBthorn JTHORNbull Moment on vessel M

M frac14 PTG

bull Radial load on head and nozzle frac14 PL

Side Flange Lug

bull Loads PT and PL

PL frac14 P cos q

PT frac14 P sin q

bull Moment on flange M

M frac14 PLB

bull Longitudinal moment on shell Mx

M frac14 PTethBthorn JTHORNbull Radial load on shell and nozzle frac14 PT

712 Pressure Vessel Design Manual

Procedure 10-10 Miscellaneous

Figure 10-7 Fundamental handling operations Reprinted by permission of the Babcock and Wilcox Companya McDermott Company

Transportation and Erection of Pressure Vessels 713

Figure 10-8 Loads on wire rope for various sheave configurations

714 Pressure Vessel Design Manual

Table 10-14Forged Steel Shackles

Dimensions in Inches

Size D (in)Safe Load

(lb)D (min) A

Tolerance

A DimB B (min) C G

Tolerance C

and G DimE F

frac14 475 73232 153232 11616 51616 93232 1⅛ ⅞ 11616 frac34 111616

⅜ 1050 113232 213232 11616 71616 256464 171616 1frac14 ⅛ 1 313232

71616 1450 256464 233232 11616 frac12 296464 1111616 171616 ⅛ 1⅛ 111616

frac12 1900 296464 131616 11616 ⅝ 91616 1⅞ 1⅝ ⅛ 1⅜ 151616

⅝ 2950 91616 111616 11616 frac34 436464 2133232 2 ⅛ 1⅝ 191616

frac34 4250 436464 1frac14 11616 ⅞ 253232 2273232 2⅜ frac14 2 1⅞

⅞ 5750 253232 171616 11616 1 576464 351616 2131616 frac14 2frac14 2⅛

1 7550 576464 1111616 11616 1⅛ 113232 3frac34 331616 frac14 2frac12 2⅜

1⅛ 8900 113232 1271616 ⅛ 1frac14 176464 4frac14 391616 frac14 2frac34 2⅝

1frac14 11000 176464 213232 ⅛ 1⅜ 1156464 4111616 3151616 frac14 3⅛ 3

1⅜ 13300 1156464 2frac14 ⅛ 1frac12 1113232 5frac14 471616 frac14 3frac12 351616

1frac12 15600 1113232 2⅜ ⅛ 1⅝ 1296464 5frac34 4⅞ frac14 3frac34 3⅝

1frac34 21500 1356464 2⅞ ⅛ 2 1253232 7 5frac34 frac14 4frac14 4⅛

2 28100 1253232 3frac14 ⅛ 2frac14 216464 7frac34 6frac34 frac14 5frac14 5

2frac14 36000 216464 3frac34 ⅛ 2frac12 2156464 9frac14 7⅛ frac34 5frac12 5frac14

2frac12 45100 2156464 4⅛ ⅛ 2frac34 2153232 10frac12 8 frac34 6frac14 6

3 64700 2111616 5 ⅛ 3frac14 2293232 13 11frac12 frac34 6frac34 6frac12

Notes

For shackles with safe loads greater than the maximum shown use CrosbyndashLaughlin (The Crosby Group Div of American Hoist amp Derrick Co Tulsa

OK 74101) Skookum (Skookum Co Inc Portland OR 97203) or equal with an ultimate strength at least 5 times the safe working load

Allowable loads are lower than OSHA requirements tabulated in Section 1926251 Table H-19

Transportation and Erection of Pressure Vessels 715

Figure 10-9 Wire rope end configurations

716 Pressure Vessel Design Manual

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 12: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

Table 10-7Internal moment coefficients for base ring

One Point Two Point Three Point Four Point

Angle a Kr KT Kr KT Kr KT Kr KT

0 02387 e02387 00795 e02387 e00229 01651 00093 e01156

5 01961 e02802 00587 e02584 e00148 01708 00048 e01188

10 01555 e03171 00398 e02736 e00067 01764 00012 e01188

15 01174 e03492 00229 e02845 e00055 01747 e00015 e01155

20 00819 e03763 00043 e02908 e00042 01729 e00033 e01089

25 00493 e03983 e00042 e02926 00028 01640 e00043 e00993

30 00197 e04151 e00145 e02900 00098 01551 e00045 e00867

35 e00067 e04266 e00225 e02831 00103 01397 e00041 e00713

40 e00299 e04328 e00284 e02721 00107 01242 e00031 e00534

45 e00497 e04340 e00321 e02571 00093 01032 e00017 e00333

50 e00663 e04301 e00335 e02385 00078 00821 e00001 e00112

55 e00796 e04214 e00340 e02165 00052 00567 00017 00126

60 e00897 e04080 e00324 e01915 00025 00313 00033 00376

65 e00967 e03904 e00293 e01638 00031 00031 00046 00636

70 e01008 e03688 e00250 e01338 00037 e00252 00055 00901

75 e01020 e03435 e00197 e01020 e00028 e00548 00056 01167

80 e01006 e03150 e00136 e00688 e00092 e00843 00049 01431

85 e00968 e02837 e00069 e00346 e00107 e01134 00031 01688

90 e00908 e02500 0 0 e00121 e01425 0 01935

95 e00830 e02144 00069 00416 e00114 e01694 e00031 e01688

100 e00735 e01774 00135 00688 e00107 e01963 e00049 e01431

105 e00627 e01394 00198 01020 e00074 e02194 e00057 e01167

110 e00508 e01011 00250 01338 e00033 e02425 e00055 e00901

115 e00381 e00627 00293 01638 00041 e02603 e00046 e00636

120 e00250 e00250 00324 01915 00114 e02781 e00033 e00376

125 e00016 00118 00340 02165 00107 e01060 e00017 e00126

130 00116 00471 00335 02385 00100 00661 00001 00112

135 00145 00804 00321 02571 00083 00448 00017 00333

140 00268 01115 00284 02721 00066 00234 00031 00534

145 00382 01398 00225 02831 00045 00104 00041 00713

150 00486 01551 00145 02900 00024 e00026 00045 00867

155 00577 01870 00042 02926 e00005 e00213 00043 00993

160 00654 02053 e00083 02908 e00015 e00399 00033 01089

165 00715 02198 e00225 02845 e00028 e00484 00015 01155

170 00760 02301 e00398 02736 e00041 e00569 e00012 01188

175 00787 02366 e00587 02584 e00046 e00597 e00048 01188

180 00796 02387 e00795 02387 e00051 e00626 e00093 01156

686 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 687

Design of Vessel for Choker (Cinch) Lift at Base

bull Uniform load p

p frac14 TR

bull Moments in ring at points A and C

MA frac14 01271TR

Mc frac14 00723TR

bull Tensioncompression forces in ring at points Aand C

TA frac14 06421T

Tc frac14 12232T

bull Combined stress at point A inside of ring

sA frac14 TA

AthornMA

Zin

bull Combined stress at point A outside of ring

sA frac14 TA

A MA

Zout

bull Combined stress at point C inside of ring

sc frac14 Tc

AthornMc

Zin

bull Combined stress at point C outside of ring

sc frac14 Tc

A Mc

Zout

Note Assume that the choker is attached immediately atthe base ring even though this may be impossible toachieve Then use the properties of the base ring for Aand Z

From R J Roark Formulas for Stress and Strain 5thEdition McGraw-Hill Book Co Table 17 Cases 12 and18 combined

688 Pressure Vessel Design Manual

Design of Tailing Lugs

Table 10-8Dimensions for tailing lugs

Tail Load (kips) tL tP E Ro RP D1 e

lt10 None required

10 to 20 075 NR 3 4 NR 2375 NR

21 to 40 075 0375 3 4 35 2375 03125

41 to 70 1 05 3 4 35 2375 03125

71 to 100 1 05 4 5 45 34375 03125

101 to 130 15 05 4 5 45 34375 03125

131 to 170 1625 075 4 5 45 34375 0375

171 to 210 1625 075 5 6 55 45 0375

211 to 250 2 075 5 6 55 45 04375

251 to 300 225 1 5 6 55 45 05

gt300 Special design required

Transportation and Erection of Pressure Vessels 689

Formulas

The tailing lug is designed like all other lugs Theforces are determined from the tailing load T calcu-lated per this procedure The ideal position for thetailing lug is to be as close as possible to the baseplate for stiffness and transmitting these loads throughthe base to the skirt The option of using a tailing lugversus a tailing beam is the designerrsquos choice Eithercan accommodate internal skirt rings stiffeners andstruts

Design as follows

bull Area required at pin hole Ar

Ar frac14 TFs

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN-ethD1tLTHORN

bull Bending moment in lug Mb

Mb frac14 fLE

bull Section modulus of lug Z

Z frac14 tLA2

6bull Bending stress in lug sb

sb frac14 Mb

Zbull Area required at pin hole for bearing Ar

Ar frac14 TFp

bull Area available at pin hole for bearing Aa

Aa frac14 D2tL

Note Substitute tL thorn 2tp for tL in the preceding equationsif pad eyes are used

690 Pressure Vessel Design Manual

Procedure 10-6 Design of Top Head and Cone Lifting Lugs

Design of Top HeadCone Lug

Dimensions

NT frac14 B2

Athorn 2B

LT frac14 Ethorn B NT

q1 frac14 arctan2L1

A

L2 frac14 L1

sin q1

q2 frac14 arcsinR3

L2

q3 frac14 q1 thorn q2

L3 frac14 R3

sin q3

L4 frac14 05A L1 05D3

tan q3

L5 frac14 05A L1 Ctan q3

Transportation and Erection of Pressure Vessels 691

Lug

bull Maximum bending moment in lug ML

ML frac14 PE

bull Section modulus lug Z

Z frac14 A2tL6

bull Bending stress lug sb

sb frac14 ML

Z

bull Thickness of lug required tL

tL frac14 6ML

A2Fb

bull Tension at edge of pad sT

sT frac14 PL2L4tL

bull Net section at pin hole Ap

Ap frac14 2L3tL thorn 2tpD3 D1

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at top of lug An

An frac14 tL

R3 D1

2

thorn 2tp

D3 D1

2

bull Shear stress at top of lug s

s frac14 PTAn

bull Pin bearing stress sp

sp frac14 PTD3

tL thorn 2tp

Check Welds

bull Polar moment of inertia Jw

Re-pad Jw frac14 ethA1 thorn L6THORN36

Lug Jw frac14 ethAthorn 2BTHORN312

B2ethAthorn BTHORN2ethAthorn 2BTHORN

bull Moment M1

M1 frac14 LTPT

Lug Weld

bull Find loads on weldsbull Transverse shear due to PT f1

f1 frac14 PTAthorn 2B

bull Transverse shear due to M1 f2

f2 frac14 M1ethB NTTHORNJw

bull Longitudinal shear due to M1 f3

f3 frac14 M1BJw

bull Combined shear load fr

fr frac14ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiethf1 thorn f2THORN2thornf23

q

692 Pressure Vessel Design Manual

bull Size of weld required w1

w1 frac14 fr0707Fs

Note If w1 exceeds the shell plate thickness then a re-padmust be used

Re-pad Weld

bull Moment M2

M2 frac14 PTethEthorn 05L6THORN

bull Transverse shear due to PT f1

f1 frac14 PT2A1 thorn 2L6

bull Transverse shear due to M2 f2

f2 frac14 05M2L6

Jw

bull Longitudinal shear due to M2 f3

f3 frac14 M2L6

Jw

bull Combined shear load fr

fr frac14ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiethf1 thorn f2THORN2thornf23

q

bull Size of weld required w1

w2 frac14 fr0707Fs

Pad Eye Weld

bull Unit shear load on pad f4

f4 frac14 PTtppD2

2tp thorn tL

bull Size of weld required w3

w3 frac14 f40707Fs

Top Head Lug for Large Loads

Transportation and Erection of Pressure Vessels 693

Table 10-9Dimensions for top head or cone lugs

694 Pressure Vessel Design Manual

Procedure 10-7 Design of Flange Lugs

Transportation and Erection of Pressure Vessels 695

Table 10-10Flange lug dimensions

Load Capacity (tons) D1 tL tb A B G H E

50 338 2 2 8 11 12 30 9

100 5 3 3 14 12 24 36 9

200 6 4 4 18 14 30 40 10

400 8 5 5 20 16 36 46 11

600 9 6 6 24 22 40 58 16

800 10 9 7 28 24 42 60 17

Table 10-11Bolt properties

Bolt Size Ab As Tb

05e13 0196 0112 12

0625e11 0307 0199 19

075e10 0442 0309 28

0875e9 0601 0446 39

1e8 0785 0605 51

1125e8 0994 079 56

125e8 1227 1 71

1375e8 1485 1233 85

15e8 1767 1492 103

175e8 2405 2082 182

2e8 3142 2771 243

225e8 3976 3557 311

25e8 4909 4442 389

275e8 594 543 418

3e8 7069 6506 501

325e8 83 7686 592

35e8 962 896 690

375e8 1104 1034 796

4e8 1257 1181 910

Table 10-12Values of Su

Bolt Dia db Material Su (ksi)

lt 1 A-325 120

1125e15 A-325 105

1625e25 A-193-B7 125

2625e4 A-193-B7 110

696 Pressure Vessel Design Manual

Top Flange Lug

PL frac14 P sin q

PT frac14 P cos q

PE frac14 PLA

thorn 3PTe

A2

M1frac14 PTB

M2frac14 PT(B thorn J)

M3frac14 PTe

Mufrac14 Xn cos an Nb

Mafrac14 MuM1PMu

Xn frac14 Rb cos an

yn frac14 Rb sin an

Side Flange Lug

Fn frac14 Ma

XnNb

fs frac14 PTN

sT frac14 FnAs

Fs frac14 15 ksi

1 sTAb

Tb

As frac14 07854 ethd 01218THORN2

s frac14 fsAs

lt Fs

Tb frac14 075uAs

06Fy lt FT lt 40 ksi

Transportation and Erection of Pressure Vessels 697

Design Process

1 Determine loads2 Check of lug

a Shear at pin holeb Bending of lugc Bearing at pin hole

3 Check of base plate4 Check of nozzle flange5 Check of flange bolting6 Check of local load at nozzle to head or shell

junction

Step 1 Determine loads

bull Determine loads PT and PL for various lift angles qbull Determine uniform loads w1 and w2 for variousangles q

bull Using w1 and w2 solve for worst case of combinedload PE

bull Determine worst-case bending moment in lug M3

Step 2 Check of lug

a Shear at pin holebull Area required Ar

Ar frac14 PEFs

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN

b Bending of lug due to M3

bull Section modulus Z

Z frac14 tLA2

6

bull Bending stress lug sb

sb frac14 M3

Z

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFp

bull Bearing available Aa

Aa frac14 D2tL

Maximum Tension in Lug

Check of Nozzle Flange

bull Unit load w

w frac14 PEpBc

bull Bending moment M

M frac14 whDbull Bending stress sb

sb frac14 6M

t2f

698 Pressure Vessel Design Manual

Bolt Loads for Rectangular Lugs Design of Full Circular Base Plate for Lug

bull If a full circular plate is used in lieu of a rectangularplate the following evaluation may be used

bull Unit load on bolt circle w

w frac14 PEpBc

bull Edge distance from point of load hp

hp frac14 BC tL2

bull Bending moment M

M frac14 whp

bull Bending stress sb

sb frac14 6M

t2b

bull Check bolting same as rectangular flange

Transportation and Erection of Pressure Vessels 699

Design of Lug Base Plate

(From R J Roark Formulas for Stress and StrainMcGraw-Hill Book Co 4th Edition Table III Case 34)

bull Uniform load w

w frac14 PEA

bull End reaction R1

R1 frac14 wA2

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

bull Moment at midspan Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

bull Thickness required tb

tb frac14ffiffiffiffiffiffiffiffiffi6Mx

GFb

s

700 Pressure Vessel Design Manual

Check of Bolts

Case 1 Bolts on Centerline Case 2 Bolts Straddle Centerline

Bolt 1 2 3 4 5 Bolt 1 2 3 4 5

an an

xn xn

yn yn

Nb Nb

Mu Mu

Ma Ma

Fn Fn

sT sT

Fs Fs

Transportation and Erection of Pressure Vessels 701

Sample Problem Top Flange Lug

GivenL1 frac14 90 ftL2 frac14 50 ftL3 frac14 40 ftL4 frac14 95 ft

Fy bolting frac14 75 ksiFy lug frac14 36 ksi

Fy flange frac14 36 ksiFs frac14 04(36) frac14 144 ksiFT frac14 06(36) frac14 216 ksiFb frac14 066(36) frac14 2376 ksiWL frac14 1200 kipsBc frac14 54 inRc frac14 27 inB frac14 22 intb frac14 6 intL frac14 6 intf frac14 11 in

D1 frac14 9 in

D2 frac14 8 in

Bolt size frac14 3-14-8 UNC

Ab frac14 83 in2

As frac14 7686 in2

Tb frac14 592 kips

Su frac14 110 ksi

e frac14 16 in

G frac14 40 in

A frac14 24 in

hD frac14 95 in

b frac14 05ethBc ATHORN

Results

PT max frac14 537 kips q frac14 10

PL max frac141200 kips q frac14 90

PE max frac141277 kips q frac14 40

sT bolt max frac14 2011 ksi 40 ksi

s bolt max frac14 698 ksi 1077 ksi

702 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 703

10 Check Lug

a Shear at pin hole

bull Area required Ar

Ar frac14 PEFS

frac14 1277144

frac14 8868 in2

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN frac14 eth24$6THORN eth9$6THORN frac14 90 in2

b Bending of lug due to M3

bull Maximum moment M3

M3 frac14 PTe frac14 537eth16THORN frac14 8592 in kips

bull Section modulus Z

Z frac14 tLA2

6frac14

6$242

6

frac14 576 in3

bull Bending stress lug sb

sb frac14 M3

Zfrac14 8592

576frac14 1491 ksi

bull Thickness required tL

tL frac14 6M

FbA2 frac14 6$85922376eth242THORN frac14 376 in

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFP

frac14 1277324

frac14 3941 in2

bull Bearing available Aa

Aa frac14 D2tL frac14 8$6 frac14 48 in2

20 Check Lug Base Plate

bull Uniform load w

w frac14 PEA

frac14 127724

frac14 532kipsin

bull End reaction R1

R1 frac14 PE2

frac14 12772

frac14 6385 kips

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

Ma frac14 0985eth8748 2496thorn 768thorn 2304 17 496THORNfrac14 8049 in kips

bull Moment at mid Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

Mx frac14 8049thorn 17 240 3831

frac14 5360 in kips

bull Section modulus Z

Z frac14t2bG

6

frac1462$40

6

frac14 240 in3

bull Bending stress sb

sb frac14 Mx

Zfrac14 5360

240frac14 2233 ksi

bull Allowable bending stress Fb

Fb frac14 066Fy frac14 06636 frac14 2376 ksi

30 Check of Vessel Flange

bull Unit load w

w frac14 PEpBc

frac14 1277p54

frac14 752kipsin

bull Bending moment Mb

Mb frac14 whD frac14 752eth92THORN frac14 6925 in kips

bull Bending stress sb

sb frac14 6Mb

t2ffrac14 frac126eth6925THORN

11252frac14 328 ksi

704 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 705

Procedure 10-8 Design of Trunnions

Lug Dimensions

Dimensions for Trunnion

Type 1 Trunnion and Fixed Lug

Type 2 Trunnion and Rotating Lug

Type 3 Trunnion Only

706 Pressure Vessel Design Manual

Type 1 Trunnion and Fixed Lug

There are four checks to be performed

1 Check lug2 Check trunnion3 Check welds4 Check vessel shell

Check Lug

Transverse (vessel horizontal)

M frac14 PTE and Z frac14 4R2otL6

Therefore

tL frac14 15PTE

R2oFb

Longitudinal (vessel vertical)

bull Cross-sectional area at pin hole Ap

Ap frac14 213tL thorn 2tpethD3 D1

bull Cross-sectional area at top of lug An

An frac14 tL

RT D1

2

thorn 2tp

D3 D1

2

bull Shear stress s

s frac14 PLAP

or s frac14 PLAn

bull Pin bearing stress sp

sp frac14 PLD2

tL thorn 2tp

Check Trunnion

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Torsional moment MT (vessel horizontal)

MT frac14 PTE

bull Bending stress sb

sb frac14 ML

Z

bull Torsional shear stress sT

sT frac14 MT

2pRnto

Check Welds

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Polar moment of inertia Jw

Jw frac14 2pR3n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Torsional shear stress in weld sT

sT frac14 MTRn

Jw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 2 Trunnion and Rotating Lug

bull Net section at Section A-A Ap

Ap frac14 213tL thorn 2tpD3 D1

Transportation and Erection of Pressure Vessels 707

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at Section B-B An

An frac14 2tLethRo RiTHORNbull Shear stress at trunnion s

s frac14 PLAn

bull Minimum bearing contact angle for lug at trun-nion qB

qB frac14 eth159PLTHORNRntLFp

bull Pin hole bearing stress sp

sp frac14 PLD3

tL thorn 2tp

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Swbull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 3 Trunnion Only

Vessel Vertical

bull Longitudinal moment ML

ML frac14 PLe

bull Bending stress in trunnion sb

sb frac14 ML

Z

Vessel Horizontal

bull Circumferential moment Mc

Mc frac14 PTe

bull Bending stress in trunnion sb

sb frac14 Mc

Z

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

708 Pressure Vessel Design Manual

TYPE 1 TYPE 2

W

K

DIA

A

DIA

= F

DIA

= M

K

C

KT

2 X 125 DIAVENT HOLES

DIA

A

125

D

250

DIA

= F

W

K

B

NUTS WELDED

GRIND WELDSMOOTH

DIA

= M

K

E

KT

2 X 125 DIAVENT HOLES

Table 10-13Dimensions of trunnions

Allowable Load Tons Pipe Size A C D E F M N T W Weight Lbs

1 0-5 4 Std 4 - - 85 8 - 05 025 30

2 5-10 6 Std 5 - - 105 12 - 05 025 55

3 10-15 8 Std 6 0625 8 125 15 4 05 0375 90

4 15-25 10 Std 6 0625 8 15 18 4 075 0375 150

5 25-35 12 Sch 80 6 075 8 17 21 4 075 0375 240

6 35-45 12 Sch 80 6 075 8 17 21 4 075 05 240

7 45-60 14 Sch 80 6 075 8 18 24 8 1 05 375

8 60-75 14 Sch 80 7 0875 8 18 24 8 1 0625 400

9 75-100 16 Sch 80 7 0875 8 25 27 8 1 0625 625

10 100-125 16 Sch 80 7 0875 8 25 27 8 1125 0875 660

11 125-150 18 Sch 80 7 0875 8 27 30 12 1125 0875 850

12 150-200 18 Sch 80 8 0875 8 27 30 12 1125 1 875

13 200-250 20 Sch 80 8 0875 10 30 36 16 125 1 1000

14 300 24 Sch 80 8 1 10 34 36 16 125 1125 1440

15 400 24 Sch 80 8 1 10 34 40 20 1375 1125 1675

16 500 30 125 10 125 12 42 48 20 1375 1375 2400

17 600 36 125 10 125 12 48 60 24 15 1375 3600

Notes

1 Do not use re-pads for cyclic service

2 B frac14 D - 125

3 K frac14 Pipe Wall Thk

4 Dimensions are given for reference only All loadings and stress shall be checked prior to use

Transportation and Erection of Pressure Vessels 709

Procedure 10-9 Local Loads in Shell Due to Erection Forces

Trunnions

Fixed Lug Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Maximum torsional moment MT

MT frac14 PTE

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

Rotating Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

TrunniondNo Lug

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

710 Pressure Vessel Design Manual

Side Lugs Notes

1 Optional internal pipe Remove after erection2 Radial load Pr is the axial load in the internal pipe

stiffener if used in lieu of radial load in shell3 Circumferential ring stiffeners are optional at these

elevations

bull Circumferential moment Mc

Mc frac14 PTe

bull Longitudinal moment Mx

Mx frac14 PLe

bull Load on weld group f

f frac14 PTELT

bull Radial loads Pr and Pa

Pr frac14 PLe

Pa frac14 PL sin f

Top Flange Lug

bull Loads PT and PL

PT frac14 P cos q

PL frac14 P sin q

Transportation and Erection of Pressure Vessels 711

bull Moment on flange M

M frac14 PTB

bull Moment on head M

M frac14 PTethBthorn JTHORNbull Moment on vessel M

M frac14 PTG

bull Radial load on head and nozzle frac14 PL

Side Flange Lug

bull Loads PT and PL

PL frac14 P cos q

PT frac14 P sin q

bull Moment on flange M

M frac14 PLB

bull Longitudinal moment on shell Mx

M frac14 PTethBthorn JTHORNbull Radial load on shell and nozzle frac14 PT

712 Pressure Vessel Design Manual

Procedure 10-10 Miscellaneous

Figure 10-7 Fundamental handling operations Reprinted by permission of the Babcock and Wilcox Companya McDermott Company

Transportation and Erection of Pressure Vessels 713

Figure 10-8 Loads on wire rope for various sheave configurations

714 Pressure Vessel Design Manual

Table 10-14Forged Steel Shackles

Dimensions in Inches

Size D (in)Safe Load

(lb)D (min) A

Tolerance

A DimB B (min) C G

Tolerance C

and G DimE F

frac14 475 73232 153232 11616 51616 93232 1⅛ ⅞ 11616 frac34 111616

⅜ 1050 113232 213232 11616 71616 256464 171616 1frac14 ⅛ 1 313232

71616 1450 256464 233232 11616 frac12 296464 1111616 171616 ⅛ 1⅛ 111616

frac12 1900 296464 131616 11616 ⅝ 91616 1⅞ 1⅝ ⅛ 1⅜ 151616

⅝ 2950 91616 111616 11616 frac34 436464 2133232 2 ⅛ 1⅝ 191616

frac34 4250 436464 1frac14 11616 ⅞ 253232 2273232 2⅜ frac14 2 1⅞

⅞ 5750 253232 171616 11616 1 576464 351616 2131616 frac14 2frac14 2⅛

1 7550 576464 1111616 11616 1⅛ 113232 3frac34 331616 frac14 2frac12 2⅜

1⅛ 8900 113232 1271616 ⅛ 1frac14 176464 4frac14 391616 frac14 2frac34 2⅝

1frac14 11000 176464 213232 ⅛ 1⅜ 1156464 4111616 3151616 frac14 3⅛ 3

1⅜ 13300 1156464 2frac14 ⅛ 1frac12 1113232 5frac14 471616 frac14 3frac12 351616

1frac12 15600 1113232 2⅜ ⅛ 1⅝ 1296464 5frac34 4⅞ frac14 3frac34 3⅝

1frac34 21500 1356464 2⅞ ⅛ 2 1253232 7 5frac34 frac14 4frac14 4⅛

2 28100 1253232 3frac14 ⅛ 2frac14 216464 7frac34 6frac34 frac14 5frac14 5

2frac14 36000 216464 3frac34 ⅛ 2frac12 2156464 9frac14 7⅛ frac34 5frac12 5frac14

2frac12 45100 2156464 4⅛ ⅛ 2frac34 2153232 10frac12 8 frac34 6frac14 6

3 64700 2111616 5 ⅛ 3frac14 2293232 13 11frac12 frac34 6frac34 6frac12

Notes

For shackles with safe loads greater than the maximum shown use CrosbyndashLaughlin (The Crosby Group Div of American Hoist amp Derrick Co Tulsa

OK 74101) Skookum (Skookum Co Inc Portland OR 97203) or equal with an ultimate strength at least 5 times the safe working load

Allowable loads are lower than OSHA requirements tabulated in Section 1926251 Table H-19

Transportation and Erection of Pressure Vessels 715

Figure 10-9 Wire rope end configurations

716 Pressure Vessel Design Manual

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 13: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

Transportation and Erection of Pressure Vessels 687

Design of Vessel for Choker (Cinch) Lift at Base

bull Uniform load p

p frac14 TR

bull Moments in ring at points A and C

MA frac14 01271TR

Mc frac14 00723TR

bull Tensioncompression forces in ring at points Aand C

TA frac14 06421T

Tc frac14 12232T

bull Combined stress at point A inside of ring

sA frac14 TA

AthornMA

Zin

bull Combined stress at point A outside of ring

sA frac14 TA

A MA

Zout

bull Combined stress at point C inside of ring

sc frac14 Tc

AthornMc

Zin

bull Combined stress at point C outside of ring

sc frac14 Tc

A Mc

Zout

Note Assume that the choker is attached immediately atthe base ring even though this may be impossible toachieve Then use the properties of the base ring for Aand Z

From R J Roark Formulas for Stress and Strain 5thEdition McGraw-Hill Book Co Table 17 Cases 12 and18 combined

688 Pressure Vessel Design Manual

Design of Tailing Lugs

Table 10-8Dimensions for tailing lugs

Tail Load (kips) tL tP E Ro RP D1 e

lt10 None required

10 to 20 075 NR 3 4 NR 2375 NR

21 to 40 075 0375 3 4 35 2375 03125

41 to 70 1 05 3 4 35 2375 03125

71 to 100 1 05 4 5 45 34375 03125

101 to 130 15 05 4 5 45 34375 03125

131 to 170 1625 075 4 5 45 34375 0375

171 to 210 1625 075 5 6 55 45 0375

211 to 250 2 075 5 6 55 45 04375

251 to 300 225 1 5 6 55 45 05

gt300 Special design required

Transportation and Erection of Pressure Vessels 689

Formulas

The tailing lug is designed like all other lugs Theforces are determined from the tailing load T calcu-lated per this procedure The ideal position for thetailing lug is to be as close as possible to the baseplate for stiffness and transmitting these loads throughthe base to the skirt The option of using a tailing lugversus a tailing beam is the designerrsquos choice Eithercan accommodate internal skirt rings stiffeners andstruts

Design as follows

bull Area required at pin hole Ar

Ar frac14 TFs

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN-ethD1tLTHORN

bull Bending moment in lug Mb

Mb frac14 fLE

bull Section modulus of lug Z

Z frac14 tLA2

6bull Bending stress in lug sb

sb frac14 Mb

Zbull Area required at pin hole for bearing Ar

Ar frac14 TFp

bull Area available at pin hole for bearing Aa

Aa frac14 D2tL

Note Substitute tL thorn 2tp for tL in the preceding equationsif pad eyes are used

690 Pressure Vessel Design Manual

Procedure 10-6 Design of Top Head and Cone Lifting Lugs

Design of Top HeadCone Lug

Dimensions

NT frac14 B2

Athorn 2B

LT frac14 Ethorn B NT

q1 frac14 arctan2L1

A

L2 frac14 L1

sin q1

q2 frac14 arcsinR3

L2

q3 frac14 q1 thorn q2

L3 frac14 R3

sin q3

L4 frac14 05A L1 05D3

tan q3

L5 frac14 05A L1 Ctan q3

Transportation and Erection of Pressure Vessels 691

Lug

bull Maximum bending moment in lug ML

ML frac14 PE

bull Section modulus lug Z

Z frac14 A2tL6

bull Bending stress lug sb

sb frac14 ML

Z

bull Thickness of lug required tL

tL frac14 6ML

A2Fb

bull Tension at edge of pad sT

sT frac14 PL2L4tL

bull Net section at pin hole Ap

Ap frac14 2L3tL thorn 2tpD3 D1

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at top of lug An

An frac14 tL

R3 D1

2

thorn 2tp

D3 D1

2

bull Shear stress at top of lug s

s frac14 PTAn

bull Pin bearing stress sp

sp frac14 PTD3

tL thorn 2tp

Check Welds

bull Polar moment of inertia Jw

Re-pad Jw frac14 ethA1 thorn L6THORN36

Lug Jw frac14 ethAthorn 2BTHORN312

B2ethAthorn BTHORN2ethAthorn 2BTHORN

bull Moment M1

M1 frac14 LTPT

Lug Weld

bull Find loads on weldsbull Transverse shear due to PT f1

f1 frac14 PTAthorn 2B

bull Transverse shear due to M1 f2

f2 frac14 M1ethB NTTHORNJw

bull Longitudinal shear due to M1 f3

f3 frac14 M1BJw

bull Combined shear load fr

fr frac14ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiethf1 thorn f2THORN2thornf23

q

692 Pressure Vessel Design Manual

bull Size of weld required w1

w1 frac14 fr0707Fs

Note If w1 exceeds the shell plate thickness then a re-padmust be used

Re-pad Weld

bull Moment M2

M2 frac14 PTethEthorn 05L6THORN

bull Transverse shear due to PT f1

f1 frac14 PT2A1 thorn 2L6

bull Transverse shear due to M2 f2

f2 frac14 05M2L6

Jw

bull Longitudinal shear due to M2 f3

f3 frac14 M2L6

Jw

bull Combined shear load fr

fr frac14ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiethf1 thorn f2THORN2thornf23

q

bull Size of weld required w1

w2 frac14 fr0707Fs

Pad Eye Weld

bull Unit shear load on pad f4

f4 frac14 PTtppD2

2tp thorn tL

bull Size of weld required w3

w3 frac14 f40707Fs

Top Head Lug for Large Loads

Transportation and Erection of Pressure Vessels 693

Table 10-9Dimensions for top head or cone lugs

694 Pressure Vessel Design Manual

Procedure 10-7 Design of Flange Lugs

Transportation and Erection of Pressure Vessels 695

Table 10-10Flange lug dimensions

Load Capacity (tons) D1 tL tb A B G H E

50 338 2 2 8 11 12 30 9

100 5 3 3 14 12 24 36 9

200 6 4 4 18 14 30 40 10

400 8 5 5 20 16 36 46 11

600 9 6 6 24 22 40 58 16

800 10 9 7 28 24 42 60 17

Table 10-11Bolt properties

Bolt Size Ab As Tb

05e13 0196 0112 12

0625e11 0307 0199 19

075e10 0442 0309 28

0875e9 0601 0446 39

1e8 0785 0605 51

1125e8 0994 079 56

125e8 1227 1 71

1375e8 1485 1233 85

15e8 1767 1492 103

175e8 2405 2082 182

2e8 3142 2771 243

225e8 3976 3557 311

25e8 4909 4442 389

275e8 594 543 418

3e8 7069 6506 501

325e8 83 7686 592

35e8 962 896 690

375e8 1104 1034 796

4e8 1257 1181 910

Table 10-12Values of Su

Bolt Dia db Material Su (ksi)

lt 1 A-325 120

1125e15 A-325 105

1625e25 A-193-B7 125

2625e4 A-193-B7 110

696 Pressure Vessel Design Manual

Top Flange Lug

PL frac14 P sin q

PT frac14 P cos q

PE frac14 PLA

thorn 3PTe

A2

M1frac14 PTB

M2frac14 PT(B thorn J)

M3frac14 PTe

Mufrac14 Xn cos an Nb

Mafrac14 MuM1PMu

Xn frac14 Rb cos an

yn frac14 Rb sin an

Side Flange Lug

Fn frac14 Ma

XnNb

fs frac14 PTN

sT frac14 FnAs

Fs frac14 15 ksi

1 sTAb

Tb

As frac14 07854 ethd 01218THORN2

s frac14 fsAs

lt Fs

Tb frac14 075uAs

06Fy lt FT lt 40 ksi

Transportation and Erection of Pressure Vessels 697

Design Process

1 Determine loads2 Check of lug

a Shear at pin holeb Bending of lugc Bearing at pin hole

3 Check of base plate4 Check of nozzle flange5 Check of flange bolting6 Check of local load at nozzle to head or shell

junction

Step 1 Determine loads

bull Determine loads PT and PL for various lift angles qbull Determine uniform loads w1 and w2 for variousangles q

bull Using w1 and w2 solve for worst case of combinedload PE

bull Determine worst-case bending moment in lug M3

Step 2 Check of lug

a Shear at pin holebull Area required Ar

Ar frac14 PEFs

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN

b Bending of lug due to M3

bull Section modulus Z

Z frac14 tLA2

6

bull Bending stress lug sb

sb frac14 M3

Z

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFp

bull Bearing available Aa

Aa frac14 D2tL

Maximum Tension in Lug

Check of Nozzle Flange

bull Unit load w

w frac14 PEpBc

bull Bending moment M

M frac14 whDbull Bending stress sb

sb frac14 6M

t2f

698 Pressure Vessel Design Manual

Bolt Loads for Rectangular Lugs Design of Full Circular Base Plate for Lug

bull If a full circular plate is used in lieu of a rectangularplate the following evaluation may be used

bull Unit load on bolt circle w

w frac14 PEpBc

bull Edge distance from point of load hp

hp frac14 BC tL2

bull Bending moment M

M frac14 whp

bull Bending stress sb

sb frac14 6M

t2b

bull Check bolting same as rectangular flange

Transportation and Erection of Pressure Vessels 699

Design of Lug Base Plate

(From R J Roark Formulas for Stress and StrainMcGraw-Hill Book Co 4th Edition Table III Case 34)

bull Uniform load w

w frac14 PEA

bull End reaction R1

R1 frac14 wA2

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

bull Moment at midspan Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

bull Thickness required tb

tb frac14ffiffiffiffiffiffiffiffiffi6Mx

GFb

s

700 Pressure Vessel Design Manual

Check of Bolts

Case 1 Bolts on Centerline Case 2 Bolts Straddle Centerline

Bolt 1 2 3 4 5 Bolt 1 2 3 4 5

an an

xn xn

yn yn

Nb Nb

Mu Mu

Ma Ma

Fn Fn

sT sT

Fs Fs

Transportation and Erection of Pressure Vessels 701

Sample Problem Top Flange Lug

GivenL1 frac14 90 ftL2 frac14 50 ftL3 frac14 40 ftL4 frac14 95 ft

Fy bolting frac14 75 ksiFy lug frac14 36 ksi

Fy flange frac14 36 ksiFs frac14 04(36) frac14 144 ksiFT frac14 06(36) frac14 216 ksiFb frac14 066(36) frac14 2376 ksiWL frac14 1200 kipsBc frac14 54 inRc frac14 27 inB frac14 22 intb frac14 6 intL frac14 6 intf frac14 11 in

D1 frac14 9 in

D2 frac14 8 in

Bolt size frac14 3-14-8 UNC

Ab frac14 83 in2

As frac14 7686 in2

Tb frac14 592 kips

Su frac14 110 ksi

e frac14 16 in

G frac14 40 in

A frac14 24 in

hD frac14 95 in

b frac14 05ethBc ATHORN

Results

PT max frac14 537 kips q frac14 10

PL max frac141200 kips q frac14 90

PE max frac141277 kips q frac14 40

sT bolt max frac14 2011 ksi 40 ksi

s bolt max frac14 698 ksi 1077 ksi

702 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 703

10 Check Lug

a Shear at pin hole

bull Area required Ar

Ar frac14 PEFS

frac14 1277144

frac14 8868 in2

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN frac14 eth24$6THORN eth9$6THORN frac14 90 in2

b Bending of lug due to M3

bull Maximum moment M3

M3 frac14 PTe frac14 537eth16THORN frac14 8592 in kips

bull Section modulus Z

Z frac14 tLA2

6frac14

6$242

6

frac14 576 in3

bull Bending stress lug sb

sb frac14 M3

Zfrac14 8592

576frac14 1491 ksi

bull Thickness required tL

tL frac14 6M

FbA2 frac14 6$85922376eth242THORN frac14 376 in

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFP

frac14 1277324

frac14 3941 in2

bull Bearing available Aa

Aa frac14 D2tL frac14 8$6 frac14 48 in2

20 Check Lug Base Plate

bull Uniform load w

w frac14 PEA

frac14 127724

frac14 532kipsin

bull End reaction R1

R1 frac14 PE2

frac14 12772

frac14 6385 kips

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

Ma frac14 0985eth8748 2496thorn 768thorn 2304 17 496THORNfrac14 8049 in kips

bull Moment at mid Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

Mx frac14 8049thorn 17 240 3831

frac14 5360 in kips

bull Section modulus Z

Z frac14t2bG

6

frac1462$40

6

frac14 240 in3

bull Bending stress sb

sb frac14 Mx

Zfrac14 5360

240frac14 2233 ksi

bull Allowable bending stress Fb

Fb frac14 066Fy frac14 06636 frac14 2376 ksi

30 Check of Vessel Flange

bull Unit load w

w frac14 PEpBc

frac14 1277p54

frac14 752kipsin

bull Bending moment Mb

Mb frac14 whD frac14 752eth92THORN frac14 6925 in kips

bull Bending stress sb

sb frac14 6Mb

t2ffrac14 frac126eth6925THORN

11252frac14 328 ksi

704 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 705

Procedure 10-8 Design of Trunnions

Lug Dimensions

Dimensions for Trunnion

Type 1 Trunnion and Fixed Lug

Type 2 Trunnion and Rotating Lug

Type 3 Trunnion Only

706 Pressure Vessel Design Manual

Type 1 Trunnion and Fixed Lug

There are four checks to be performed

1 Check lug2 Check trunnion3 Check welds4 Check vessel shell

Check Lug

Transverse (vessel horizontal)

M frac14 PTE and Z frac14 4R2otL6

Therefore

tL frac14 15PTE

R2oFb

Longitudinal (vessel vertical)

bull Cross-sectional area at pin hole Ap

Ap frac14 213tL thorn 2tpethD3 D1

bull Cross-sectional area at top of lug An

An frac14 tL

RT D1

2

thorn 2tp

D3 D1

2

bull Shear stress s

s frac14 PLAP

or s frac14 PLAn

bull Pin bearing stress sp

sp frac14 PLD2

tL thorn 2tp

Check Trunnion

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Torsional moment MT (vessel horizontal)

MT frac14 PTE

bull Bending stress sb

sb frac14 ML

Z

bull Torsional shear stress sT

sT frac14 MT

2pRnto

Check Welds

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Polar moment of inertia Jw

Jw frac14 2pR3n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Torsional shear stress in weld sT

sT frac14 MTRn

Jw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 2 Trunnion and Rotating Lug

bull Net section at Section A-A Ap

Ap frac14 213tL thorn 2tpD3 D1

Transportation and Erection of Pressure Vessels 707

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at Section B-B An

An frac14 2tLethRo RiTHORNbull Shear stress at trunnion s

s frac14 PLAn

bull Minimum bearing contact angle for lug at trun-nion qB

qB frac14 eth159PLTHORNRntLFp

bull Pin hole bearing stress sp

sp frac14 PLD3

tL thorn 2tp

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Swbull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 3 Trunnion Only

Vessel Vertical

bull Longitudinal moment ML

ML frac14 PLe

bull Bending stress in trunnion sb

sb frac14 ML

Z

Vessel Horizontal

bull Circumferential moment Mc

Mc frac14 PTe

bull Bending stress in trunnion sb

sb frac14 Mc

Z

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

708 Pressure Vessel Design Manual

TYPE 1 TYPE 2

W

K

DIA

A

DIA

= F

DIA

= M

K

C

KT

2 X 125 DIAVENT HOLES

DIA

A

125

D

250

DIA

= F

W

K

B

NUTS WELDED

GRIND WELDSMOOTH

DIA

= M

K

E

KT

2 X 125 DIAVENT HOLES

Table 10-13Dimensions of trunnions

Allowable Load Tons Pipe Size A C D E F M N T W Weight Lbs

1 0-5 4 Std 4 - - 85 8 - 05 025 30

2 5-10 6 Std 5 - - 105 12 - 05 025 55

3 10-15 8 Std 6 0625 8 125 15 4 05 0375 90

4 15-25 10 Std 6 0625 8 15 18 4 075 0375 150

5 25-35 12 Sch 80 6 075 8 17 21 4 075 0375 240

6 35-45 12 Sch 80 6 075 8 17 21 4 075 05 240

7 45-60 14 Sch 80 6 075 8 18 24 8 1 05 375

8 60-75 14 Sch 80 7 0875 8 18 24 8 1 0625 400

9 75-100 16 Sch 80 7 0875 8 25 27 8 1 0625 625

10 100-125 16 Sch 80 7 0875 8 25 27 8 1125 0875 660

11 125-150 18 Sch 80 7 0875 8 27 30 12 1125 0875 850

12 150-200 18 Sch 80 8 0875 8 27 30 12 1125 1 875

13 200-250 20 Sch 80 8 0875 10 30 36 16 125 1 1000

14 300 24 Sch 80 8 1 10 34 36 16 125 1125 1440

15 400 24 Sch 80 8 1 10 34 40 20 1375 1125 1675

16 500 30 125 10 125 12 42 48 20 1375 1375 2400

17 600 36 125 10 125 12 48 60 24 15 1375 3600

Notes

1 Do not use re-pads for cyclic service

2 B frac14 D - 125

3 K frac14 Pipe Wall Thk

4 Dimensions are given for reference only All loadings and stress shall be checked prior to use

Transportation and Erection of Pressure Vessels 709

Procedure 10-9 Local Loads in Shell Due to Erection Forces

Trunnions

Fixed Lug Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Maximum torsional moment MT

MT frac14 PTE

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

Rotating Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

TrunniondNo Lug

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

710 Pressure Vessel Design Manual

Side Lugs Notes

1 Optional internal pipe Remove after erection2 Radial load Pr is the axial load in the internal pipe

stiffener if used in lieu of radial load in shell3 Circumferential ring stiffeners are optional at these

elevations

bull Circumferential moment Mc

Mc frac14 PTe

bull Longitudinal moment Mx

Mx frac14 PLe

bull Load on weld group f

f frac14 PTELT

bull Radial loads Pr and Pa

Pr frac14 PLe

Pa frac14 PL sin f

Top Flange Lug

bull Loads PT and PL

PT frac14 P cos q

PL frac14 P sin q

Transportation and Erection of Pressure Vessels 711

bull Moment on flange M

M frac14 PTB

bull Moment on head M

M frac14 PTethBthorn JTHORNbull Moment on vessel M

M frac14 PTG

bull Radial load on head and nozzle frac14 PL

Side Flange Lug

bull Loads PT and PL

PL frac14 P cos q

PT frac14 P sin q

bull Moment on flange M

M frac14 PLB

bull Longitudinal moment on shell Mx

M frac14 PTethBthorn JTHORNbull Radial load on shell and nozzle frac14 PT

712 Pressure Vessel Design Manual

Procedure 10-10 Miscellaneous

Figure 10-7 Fundamental handling operations Reprinted by permission of the Babcock and Wilcox Companya McDermott Company

Transportation and Erection of Pressure Vessels 713

Figure 10-8 Loads on wire rope for various sheave configurations

714 Pressure Vessel Design Manual

Table 10-14Forged Steel Shackles

Dimensions in Inches

Size D (in)Safe Load

(lb)D (min) A

Tolerance

A DimB B (min) C G

Tolerance C

and G DimE F

frac14 475 73232 153232 11616 51616 93232 1⅛ ⅞ 11616 frac34 111616

⅜ 1050 113232 213232 11616 71616 256464 171616 1frac14 ⅛ 1 313232

71616 1450 256464 233232 11616 frac12 296464 1111616 171616 ⅛ 1⅛ 111616

frac12 1900 296464 131616 11616 ⅝ 91616 1⅞ 1⅝ ⅛ 1⅜ 151616

⅝ 2950 91616 111616 11616 frac34 436464 2133232 2 ⅛ 1⅝ 191616

frac34 4250 436464 1frac14 11616 ⅞ 253232 2273232 2⅜ frac14 2 1⅞

⅞ 5750 253232 171616 11616 1 576464 351616 2131616 frac14 2frac14 2⅛

1 7550 576464 1111616 11616 1⅛ 113232 3frac34 331616 frac14 2frac12 2⅜

1⅛ 8900 113232 1271616 ⅛ 1frac14 176464 4frac14 391616 frac14 2frac34 2⅝

1frac14 11000 176464 213232 ⅛ 1⅜ 1156464 4111616 3151616 frac14 3⅛ 3

1⅜ 13300 1156464 2frac14 ⅛ 1frac12 1113232 5frac14 471616 frac14 3frac12 351616

1frac12 15600 1113232 2⅜ ⅛ 1⅝ 1296464 5frac34 4⅞ frac14 3frac34 3⅝

1frac34 21500 1356464 2⅞ ⅛ 2 1253232 7 5frac34 frac14 4frac14 4⅛

2 28100 1253232 3frac14 ⅛ 2frac14 216464 7frac34 6frac34 frac14 5frac14 5

2frac14 36000 216464 3frac34 ⅛ 2frac12 2156464 9frac14 7⅛ frac34 5frac12 5frac14

2frac12 45100 2156464 4⅛ ⅛ 2frac34 2153232 10frac12 8 frac34 6frac14 6

3 64700 2111616 5 ⅛ 3frac14 2293232 13 11frac12 frac34 6frac34 6frac12

Notes

For shackles with safe loads greater than the maximum shown use CrosbyndashLaughlin (The Crosby Group Div of American Hoist amp Derrick Co Tulsa

OK 74101) Skookum (Skookum Co Inc Portland OR 97203) or equal with an ultimate strength at least 5 times the safe working load

Allowable loads are lower than OSHA requirements tabulated in Section 1926251 Table H-19

Transportation and Erection of Pressure Vessels 715

Figure 10-9 Wire rope end configurations

716 Pressure Vessel Design Manual

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 14: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

Design of Vessel for Choker (Cinch) Lift at Base

bull Uniform load p

p frac14 TR

bull Moments in ring at points A and C

MA frac14 01271TR

Mc frac14 00723TR

bull Tensioncompression forces in ring at points Aand C

TA frac14 06421T

Tc frac14 12232T

bull Combined stress at point A inside of ring

sA frac14 TA

AthornMA

Zin

bull Combined stress at point A outside of ring

sA frac14 TA

A MA

Zout

bull Combined stress at point C inside of ring

sc frac14 Tc

AthornMc

Zin

bull Combined stress at point C outside of ring

sc frac14 Tc

A Mc

Zout

Note Assume that the choker is attached immediately atthe base ring even though this may be impossible toachieve Then use the properties of the base ring for Aand Z

From R J Roark Formulas for Stress and Strain 5thEdition McGraw-Hill Book Co Table 17 Cases 12 and18 combined

688 Pressure Vessel Design Manual

Design of Tailing Lugs

Table 10-8Dimensions for tailing lugs

Tail Load (kips) tL tP E Ro RP D1 e

lt10 None required

10 to 20 075 NR 3 4 NR 2375 NR

21 to 40 075 0375 3 4 35 2375 03125

41 to 70 1 05 3 4 35 2375 03125

71 to 100 1 05 4 5 45 34375 03125

101 to 130 15 05 4 5 45 34375 03125

131 to 170 1625 075 4 5 45 34375 0375

171 to 210 1625 075 5 6 55 45 0375

211 to 250 2 075 5 6 55 45 04375

251 to 300 225 1 5 6 55 45 05

gt300 Special design required

Transportation and Erection of Pressure Vessels 689

Formulas

The tailing lug is designed like all other lugs Theforces are determined from the tailing load T calcu-lated per this procedure The ideal position for thetailing lug is to be as close as possible to the baseplate for stiffness and transmitting these loads throughthe base to the skirt The option of using a tailing lugversus a tailing beam is the designerrsquos choice Eithercan accommodate internal skirt rings stiffeners andstruts

Design as follows

bull Area required at pin hole Ar

Ar frac14 TFs

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN-ethD1tLTHORN

bull Bending moment in lug Mb

Mb frac14 fLE

bull Section modulus of lug Z

Z frac14 tLA2

6bull Bending stress in lug sb

sb frac14 Mb

Zbull Area required at pin hole for bearing Ar

Ar frac14 TFp

bull Area available at pin hole for bearing Aa

Aa frac14 D2tL

Note Substitute tL thorn 2tp for tL in the preceding equationsif pad eyes are used

690 Pressure Vessel Design Manual

Procedure 10-6 Design of Top Head and Cone Lifting Lugs

Design of Top HeadCone Lug

Dimensions

NT frac14 B2

Athorn 2B

LT frac14 Ethorn B NT

q1 frac14 arctan2L1

A

L2 frac14 L1

sin q1

q2 frac14 arcsinR3

L2

q3 frac14 q1 thorn q2

L3 frac14 R3

sin q3

L4 frac14 05A L1 05D3

tan q3

L5 frac14 05A L1 Ctan q3

Transportation and Erection of Pressure Vessels 691

Lug

bull Maximum bending moment in lug ML

ML frac14 PE

bull Section modulus lug Z

Z frac14 A2tL6

bull Bending stress lug sb

sb frac14 ML

Z

bull Thickness of lug required tL

tL frac14 6ML

A2Fb

bull Tension at edge of pad sT

sT frac14 PL2L4tL

bull Net section at pin hole Ap

Ap frac14 2L3tL thorn 2tpD3 D1

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at top of lug An

An frac14 tL

R3 D1

2

thorn 2tp

D3 D1

2

bull Shear stress at top of lug s

s frac14 PTAn

bull Pin bearing stress sp

sp frac14 PTD3

tL thorn 2tp

Check Welds

bull Polar moment of inertia Jw

Re-pad Jw frac14 ethA1 thorn L6THORN36

Lug Jw frac14 ethAthorn 2BTHORN312

B2ethAthorn BTHORN2ethAthorn 2BTHORN

bull Moment M1

M1 frac14 LTPT

Lug Weld

bull Find loads on weldsbull Transverse shear due to PT f1

f1 frac14 PTAthorn 2B

bull Transverse shear due to M1 f2

f2 frac14 M1ethB NTTHORNJw

bull Longitudinal shear due to M1 f3

f3 frac14 M1BJw

bull Combined shear load fr

fr frac14ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiethf1 thorn f2THORN2thornf23

q

692 Pressure Vessel Design Manual

bull Size of weld required w1

w1 frac14 fr0707Fs

Note If w1 exceeds the shell plate thickness then a re-padmust be used

Re-pad Weld

bull Moment M2

M2 frac14 PTethEthorn 05L6THORN

bull Transverse shear due to PT f1

f1 frac14 PT2A1 thorn 2L6

bull Transverse shear due to M2 f2

f2 frac14 05M2L6

Jw

bull Longitudinal shear due to M2 f3

f3 frac14 M2L6

Jw

bull Combined shear load fr

fr frac14ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiethf1 thorn f2THORN2thornf23

q

bull Size of weld required w1

w2 frac14 fr0707Fs

Pad Eye Weld

bull Unit shear load on pad f4

f4 frac14 PTtppD2

2tp thorn tL

bull Size of weld required w3

w3 frac14 f40707Fs

Top Head Lug for Large Loads

Transportation and Erection of Pressure Vessels 693

Table 10-9Dimensions for top head or cone lugs

694 Pressure Vessel Design Manual

Procedure 10-7 Design of Flange Lugs

Transportation and Erection of Pressure Vessels 695

Table 10-10Flange lug dimensions

Load Capacity (tons) D1 tL tb A B G H E

50 338 2 2 8 11 12 30 9

100 5 3 3 14 12 24 36 9

200 6 4 4 18 14 30 40 10

400 8 5 5 20 16 36 46 11

600 9 6 6 24 22 40 58 16

800 10 9 7 28 24 42 60 17

Table 10-11Bolt properties

Bolt Size Ab As Tb

05e13 0196 0112 12

0625e11 0307 0199 19

075e10 0442 0309 28

0875e9 0601 0446 39

1e8 0785 0605 51

1125e8 0994 079 56

125e8 1227 1 71

1375e8 1485 1233 85

15e8 1767 1492 103

175e8 2405 2082 182

2e8 3142 2771 243

225e8 3976 3557 311

25e8 4909 4442 389

275e8 594 543 418

3e8 7069 6506 501

325e8 83 7686 592

35e8 962 896 690

375e8 1104 1034 796

4e8 1257 1181 910

Table 10-12Values of Su

Bolt Dia db Material Su (ksi)

lt 1 A-325 120

1125e15 A-325 105

1625e25 A-193-B7 125

2625e4 A-193-B7 110

696 Pressure Vessel Design Manual

Top Flange Lug

PL frac14 P sin q

PT frac14 P cos q

PE frac14 PLA

thorn 3PTe

A2

M1frac14 PTB

M2frac14 PT(B thorn J)

M3frac14 PTe

Mufrac14 Xn cos an Nb

Mafrac14 MuM1PMu

Xn frac14 Rb cos an

yn frac14 Rb sin an

Side Flange Lug

Fn frac14 Ma

XnNb

fs frac14 PTN

sT frac14 FnAs

Fs frac14 15 ksi

1 sTAb

Tb

As frac14 07854 ethd 01218THORN2

s frac14 fsAs

lt Fs

Tb frac14 075uAs

06Fy lt FT lt 40 ksi

Transportation and Erection of Pressure Vessels 697

Design Process

1 Determine loads2 Check of lug

a Shear at pin holeb Bending of lugc Bearing at pin hole

3 Check of base plate4 Check of nozzle flange5 Check of flange bolting6 Check of local load at nozzle to head or shell

junction

Step 1 Determine loads

bull Determine loads PT and PL for various lift angles qbull Determine uniform loads w1 and w2 for variousangles q

bull Using w1 and w2 solve for worst case of combinedload PE

bull Determine worst-case bending moment in lug M3

Step 2 Check of lug

a Shear at pin holebull Area required Ar

Ar frac14 PEFs

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN

b Bending of lug due to M3

bull Section modulus Z

Z frac14 tLA2

6

bull Bending stress lug sb

sb frac14 M3

Z

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFp

bull Bearing available Aa

Aa frac14 D2tL

Maximum Tension in Lug

Check of Nozzle Flange

bull Unit load w

w frac14 PEpBc

bull Bending moment M

M frac14 whDbull Bending stress sb

sb frac14 6M

t2f

698 Pressure Vessel Design Manual

Bolt Loads for Rectangular Lugs Design of Full Circular Base Plate for Lug

bull If a full circular plate is used in lieu of a rectangularplate the following evaluation may be used

bull Unit load on bolt circle w

w frac14 PEpBc

bull Edge distance from point of load hp

hp frac14 BC tL2

bull Bending moment M

M frac14 whp

bull Bending stress sb

sb frac14 6M

t2b

bull Check bolting same as rectangular flange

Transportation and Erection of Pressure Vessels 699

Design of Lug Base Plate

(From R J Roark Formulas for Stress and StrainMcGraw-Hill Book Co 4th Edition Table III Case 34)

bull Uniform load w

w frac14 PEA

bull End reaction R1

R1 frac14 wA2

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

bull Moment at midspan Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

bull Thickness required tb

tb frac14ffiffiffiffiffiffiffiffiffi6Mx

GFb

s

700 Pressure Vessel Design Manual

Check of Bolts

Case 1 Bolts on Centerline Case 2 Bolts Straddle Centerline

Bolt 1 2 3 4 5 Bolt 1 2 3 4 5

an an

xn xn

yn yn

Nb Nb

Mu Mu

Ma Ma

Fn Fn

sT sT

Fs Fs

Transportation and Erection of Pressure Vessels 701

Sample Problem Top Flange Lug

GivenL1 frac14 90 ftL2 frac14 50 ftL3 frac14 40 ftL4 frac14 95 ft

Fy bolting frac14 75 ksiFy lug frac14 36 ksi

Fy flange frac14 36 ksiFs frac14 04(36) frac14 144 ksiFT frac14 06(36) frac14 216 ksiFb frac14 066(36) frac14 2376 ksiWL frac14 1200 kipsBc frac14 54 inRc frac14 27 inB frac14 22 intb frac14 6 intL frac14 6 intf frac14 11 in

D1 frac14 9 in

D2 frac14 8 in

Bolt size frac14 3-14-8 UNC

Ab frac14 83 in2

As frac14 7686 in2

Tb frac14 592 kips

Su frac14 110 ksi

e frac14 16 in

G frac14 40 in

A frac14 24 in

hD frac14 95 in

b frac14 05ethBc ATHORN

Results

PT max frac14 537 kips q frac14 10

PL max frac141200 kips q frac14 90

PE max frac141277 kips q frac14 40

sT bolt max frac14 2011 ksi 40 ksi

s bolt max frac14 698 ksi 1077 ksi

702 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 703

10 Check Lug

a Shear at pin hole

bull Area required Ar

Ar frac14 PEFS

frac14 1277144

frac14 8868 in2

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN frac14 eth24$6THORN eth9$6THORN frac14 90 in2

b Bending of lug due to M3

bull Maximum moment M3

M3 frac14 PTe frac14 537eth16THORN frac14 8592 in kips

bull Section modulus Z

Z frac14 tLA2

6frac14

6$242

6

frac14 576 in3

bull Bending stress lug sb

sb frac14 M3

Zfrac14 8592

576frac14 1491 ksi

bull Thickness required tL

tL frac14 6M

FbA2 frac14 6$85922376eth242THORN frac14 376 in

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFP

frac14 1277324

frac14 3941 in2

bull Bearing available Aa

Aa frac14 D2tL frac14 8$6 frac14 48 in2

20 Check Lug Base Plate

bull Uniform load w

w frac14 PEA

frac14 127724

frac14 532kipsin

bull End reaction R1

R1 frac14 PE2

frac14 12772

frac14 6385 kips

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

Ma frac14 0985eth8748 2496thorn 768thorn 2304 17 496THORNfrac14 8049 in kips

bull Moment at mid Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

Mx frac14 8049thorn 17 240 3831

frac14 5360 in kips

bull Section modulus Z

Z frac14t2bG

6

frac1462$40

6

frac14 240 in3

bull Bending stress sb

sb frac14 Mx

Zfrac14 5360

240frac14 2233 ksi

bull Allowable bending stress Fb

Fb frac14 066Fy frac14 06636 frac14 2376 ksi

30 Check of Vessel Flange

bull Unit load w

w frac14 PEpBc

frac14 1277p54

frac14 752kipsin

bull Bending moment Mb

Mb frac14 whD frac14 752eth92THORN frac14 6925 in kips

bull Bending stress sb

sb frac14 6Mb

t2ffrac14 frac126eth6925THORN

11252frac14 328 ksi

704 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 705

Procedure 10-8 Design of Trunnions

Lug Dimensions

Dimensions for Trunnion

Type 1 Trunnion and Fixed Lug

Type 2 Trunnion and Rotating Lug

Type 3 Trunnion Only

706 Pressure Vessel Design Manual

Type 1 Trunnion and Fixed Lug

There are four checks to be performed

1 Check lug2 Check trunnion3 Check welds4 Check vessel shell

Check Lug

Transverse (vessel horizontal)

M frac14 PTE and Z frac14 4R2otL6

Therefore

tL frac14 15PTE

R2oFb

Longitudinal (vessel vertical)

bull Cross-sectional area at pin hole Ap

Ap frac14 213tL thorn 2tpethD3 D1

bull Cross-sectional area at top of lug An

An frac14 tL

RT D1

2

thorn 2tp

D3 D1

2

bull Shear stress s

s frac14 PLAP

or s frac14 PLAn

bull Pin bearing stress sp

sp frac14 PLD2

tL thorn 2tp

Check Trunnion

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Torsional moment MT (vessel horizontal)

MT frac14 PTE

bull Bending stress sb

sb frac14 ML

Z

bull Torsional shear stress sT

sT frac14 MT

2pRnto

Check Welds

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Polar moment of inertia Jw

Jw frac14 2pR3n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Torsional shear stress in weld sT

sT frac14 MTRn

Jw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 2 Trunnion and Rotating Lug

bull Net section at Section A-A Ap

Ap frac14 213tL thorn 2tpD3 D1

Transportation and Erection of Pressure Vessels 707

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at Section B-B An

An frac14 2tLethRo RiTHORNbull Shear stress at trunnion s

s frac14 PLAn

bull Minimum bearing contact angle for lug at trun-nion qB

qB frac14 eth159PLTHORNRntLFp

bull Pin hole bearing stress sp

sp frac14 PLD3

tL thorn 2tp

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Swbull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 3 Trunnion Only

Vessel Vertical

bull Longitudinal moment ML

ML frac14 PLe

bull Bending stress in trunnion sb

sb frac14 ML

Z

Vessel Horizontal

bull Circumferential moment Mc

Mc frac14 PTe

bull Bending stress in trunnion sb

sb frac14 Mc

Z

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

708 Pressure Vessel Design Manual

TYPE 1 TYPE 2

W

K

DIA

A

DIA

= F

DIA

= M

K

C

KT

2 X 125 DIAVENT HOLES

DIA

A

125

D

250

DIA

= F

W

K

B

NUTS WELDED

GRIND WELDSMOOTH

DIA

= M

K

E

KT

2 X 125 DIAVENT HOLES

Table 10-13Dimensions of trunnions

Allowable Load Tons Pipe Size A C D E F M N T W Weight Lbs

1 0-5 4 Std 4 - - 85 8 - 05 025 30

2 5-10 6 Std 5 - - 105 12 - 05 025 55

3 10-15 8 Std 6 0625 8 125 15 4 05 0375 90

4 15-25 10 Std 6 0625 8 15 18 4 075 0375 150

5 25-35 12 Sch 80 6 075 8 17 21 4 075 0375 240

6 35-45 12 Sch 80 6 075 8 17 21 4 075 05 240

7 45-60 14 Sch 80 6 075 8 18 24 8 1 05 375

8 60-75 14 Sch 80 7 0875 8 18 24 8 1 0625 400

9 75-100 16 Sch 80 7 0875 8 25 27 8 1 0625 625

10 100-125 16 Sch 80 7 0875 8 25 27 8 1125 0875 660

11 125-150 18 Sch 80 7 0875 8 27 30 12 1125 0875 850

12 150-200 18 Sch 80 8 0875 8 27 30 12 1125 1 875

13 200-250 20 Sch 80 8 0875 10 30 36 16 125 1 1000

14 300 24 Sch 80 8 1 10 34 36 16 125 1125 1440

15 400 24 Sch 80 8 1 10 34 40 20 1375 1125 1675

16 500 30 125 10 125 12 42 48 20 1375 1375 2400

17 600 36 125 10 125 12 48 60 24 15 1375 3600

Notes

1 Do not use re-pads for cyclic service

2 B frac14 D - 125

3 K frac14 Pipe Wall Thk

4 Dimensions are given for reference only All loadings and stress shall be checked prior to use

Transportation and Erection of Pressure Vessels 709

Procedure 10-9 Local Loads in Shell Due to Erection Forces

Trunnions

Fixed Lug Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Maximum torsional moment MT

MT frac14 PTE

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

Rotating Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

TrunniondNo Lug

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

710 Pressure Vessel Design Manual

Side Lugs Notes

1 Optional internal pipe Remove after erection2 Radial load Pr is the axial load in the internal pipe

stiffener if used in lieu of radial load in shell3 Circumferential ring stiffeners are optional at these

elevations

bull Circumferential moment Mc

Mc frac14 PTe

bull Longitudinal moment Mx

Mx frac14 PLe

bull Load on weld group f

f frac14 PTELT

bull Radial loads Pr and Pa

Pr frac14 PLe

Pa frac14 PL sin f

Top Flange Lug

bull Loads PT and PL

PT frac14 P cos q

PL frac14 P sin q

Transportation and Erection of Pressure Vessels 711

bull Moment on flange M

M frac14 PTB

bull Moment on head M

M frac14 PTethBthorn JTHORNbull Moment on vessel M

M frac14 PTG

bull Radial load on head and nozzle frac14 PL

Side Flange Lug

bull Loads PT and PL

PL frac14 P cos q

PT frac14 P sin q

bull Moment on flange M

M frac14 PLB

bull Longitudinal moment on shell Mx

M frac14 PTethBthorn JTHORNbull Radial load on shell and nozzle frac14 PT

712 Pressure Vessel Design Manual

Procedure 10-10 Miscellaneous

Figure 10-7 Fundamental handling operations Reprinted by permission of the Babcock and Wilcox Companya McDermott Company

Transportation and Erection of Pressure Vessels 713

Figure 10-8 Loads on wire rope for various sheave configurations

714 Pressure Vessel Design Manual

Table 10-14Forged Steel Shackles

Dimensions in Inches

Size D (in)Safe Load

(lb)D (min) A

Tolerance

A DimB B (min) C G

Tolerance C

and G DimE F

frac14 475 73232 153232 11616 51616 93232 1⅛ ⅞ 11616 frac34 111616

⅜ 1050 113232 213232 11616 71616 256464 171616 1frac14 ⅛ 1 313232

71616 1450 256464 233232 11616 frac12 296464 1111616 171616 ⅛ 1⅛ 111616

frac12 1900 296464 131616 11616 ⅝ 91616 1⅞ 1⅝ ⅛ 1⅜ 151616

⅝ 2950 91616 111616 11616 frac34 436464 2133232 2 ⅛ 1⅝ 191616

frac34 4250 436464 1frac14 11616 ⅞ 253232 2273232 2⅜ frac14 2 1⅞

⅞ 5750 253232 171616 11616 1 576464 351616 2131616 frac14 2frac14 2⅛

1 7550 576464 1111616 11616 1⅛ 113232 3frac34 331616 frac14 2frac12 2⅜

1⅛ 8900 113232 1271616 ⅛ 1frac14 176464 4frac14 391616 frac14 2frac34 2⅝

1frac14 11000 176464 213232 ⅛ 1⅜ 1156464 4111616 3151616 frac14 3⅛ 3

1⅜ 13300 1156464 2frac14 ⅛ 1frac12 1113232 5frac14 471616 frac14 3frac12 351616

1frac12 15600 1113232 2⅜ ⅛ 1⅝ 1296464 5frac34 4⅞ frac14 3frac34 3⅝

1frac34 21500 1356464 2⅞ ⅛ 2 1253232 7 5frac34 frac14 4frac14 4⅛

2 28100 1253232 3frac14 ⅛ 2frac14 216464 7frac34 6frac34 frac14 5frac14 5

2frac14 36000 216464 3frac34 ⅛ 2frac12 2156464 9frac14 7⅛ frac34 5frac12 5frac14

2frac12 45100 2156464 4⅛ ⅛ 2frac34 2153232 10frac12 8 frac34 6frac14 6

3 64700 2111616 5 ⅛ 3frac14 2293232 13 11frac12 frac34 6frac34 6frac12

Notes

For shackles with safe loads greater than the maximum shown use CrosbyndashLaughlin (The Crosby Group Div of American Hoist amp Derrick Co Tulsa

OK 74101) Skookum (Skookum Co Inc Portland OR 97203) or equal with an ultimate strength at least 5 times the safe working load

Allowable loads are lower than OSHA requirements tabulated in Section 1926251 Table H-19

Transportation and Erection of Pressure Vessels 715

Figure 10-9 Wire rope end configurations

716 Pressure Vessel Design Manual

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 15: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

Design of Tailing Lugs

Table 10-8Dimensions for tailing lugs

Tail Load (kips) tL tP E Ro RP D1 e

lt10 None required

10 to 20 075 NR 3 4 NR 2375 NR

21 to 40 075 0375 3 4 35 2375 03125

41 to 70 1 05 3 4 35 2375 03125

71 to 100 1 05 4 5 45 34375 03125

101 to 130 15 05 4 5 45 34375 03125

131 to 170 1625 075 4 5 45 34375 0375

171 to 210 1625 075 5 6 55 45 0375

211 to 250 2 075 5 6 55 45 04375

251 to 300 225 1 5 6 55 45 05

gt300 Special design required

Transportation and Erection of Pressure Vessels 689

Formulas

The tailing lug is designed like all other lugs Theforces are determined from the tailing load T calcu-lated per this procedure The ideal position for thetailing lug is to be as close as possible to the baseplate for stiffness and transmitting these loads throughthe base to the skirt The option of using a tailing lugversus a tailing beam is the designerrsquos choice Eithercan accommodate internal skirt rings stiffeners andstruts

Design as follows

bull Area required at pin hole Ar

Ar frac14 TFs

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN-ethD1tLTHORN

bull Bending moment in lug Mb

Mb frac14 fLE

bull Section modulus of lug Z

Z frac14 tLA2

6bull Bending stress in lug sb

sb frac14 Mb

Zbull Area required at pin hole for bearing Ar

Ar frac14 TFp

bull Area available at pin hole for bearing Aa

Aa frac14 D2tL

Note Substitute tL thorn 2tp for tL in the preceding equationsif pad eyes are used

690 Pressure Vessel Design Manual

Procedure 10-6 Design of Top Head and Cone Lifting Lugs

Design of Top HeadCone Lug

Dimensions

NT frac14 B2

Athorn 2B

LT frac14 Ethorn B NT

q1 frac14 arctan2L1

A

L2 frac14 L1

sin q1

q2 frac14 arcsinR3

L2

q3 frac14 q1 thorn q2

L3 frac14 R3

sin q3

L4 frac14 05A L1 05D3

tan q3

L5 frac14 05A L1 Ctan q3

Transportation and Erection of Pressure Vessels 691

Lug

bull Maximum bending moment in lug ML

ML frac14 PE

bull Section modulus lug Z

Z frac14 A2tL6

bull Bending stress lug sb

sb frac14 ML

Z

bull Thickness of lug required tL

tL frac14 6ML

A2Fb

bull Tension at edge of pad sT

sT frac14 PL2L4tL

bull Net section at pin hole Ap

Ap frac14 2L3tL thorn 2tpD3 D1

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at top of lug An

An frac14 tL

R3 D1

2

thorn 2tp

D3 D1

2

bull Shear stress at top of lug s

s frac14 PTAn

bull Pin bearing stress sp

sp frac14 PTD3

tL thorn 2tp

Check Welds

bull Polar moment of inertia Jw

Re-pad Jw frac14 ethA1 thorn L6THORN36

Lug Jw frac14 ethAthorn 2BTHORN312

B2ethAthorn BTHORN2ethAthorn 2BTHORN

bull Moment M1

M1 frac14 LTPT

Lug Weld

bull Find loads on weldsbull Transverse shear due to PT f1

f1 frac14 PTAthorn 2B

bull Transverse shear due to M1 f2

f2 frac14 M1ethB NTTHORNJw

bull Longitudinal shear due to M1 f3

f3 frac14 M1BJw

bull Combined shear load fr

fr frac14ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiethf1 thorn f2THORN2thornf23

q

692 Pressure Vessel Design Manual

bull Size of weld required w1

w1 frac14 fr0707Fs

Note If w1 exceeds the shell plate thickness then a re-padmust be used

Re-pad Weld

bull Moment M2

M2 frac14 PTethEthorn 05L6THORN

bull Transverse shear due to PT f1

f1 frac14 PT2A1 thorn 2L6

bull Transverse shear due to M2 f2

f2 frac14 05M2L6

Jw

bull Longitudinal shear due to M2 f3

f3 frac14 M2L6

Jw

bull Combined shear load fr

fr frac14ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiethf1 thorn f2THORN2thornf23

q

bull Size of weld required w1

w2 frac14 fr0707Fs

Pad Eye Weld

bull Unit shear load on pad f4

f4 frac14 PTtppD2

2tp thorn tL

bull Size of weld required w3

w3 frac14 f40707Fs

Top Head Lug for Large Loads

Transportation and Erection of Pressure Vessels 693

Table 10-9Dimensions for top head or cone lugs

694 Pressure Vessel Design Manual

Procedure 10-7 Design of Flange Lugs

Transportation and Erection of Pressure Vessels 695

Table 10-10Flange lug dimensions

Load Capacity (tons) D1 tL tb A B G H E

50 338 2 2 8 11 12 30 9

100 5 3 3 14 12 24 36 9

200 6 4 4 18 14 30 40 10

400 8 5 5 20 16 36 46 11

600 9 6 6 24 22 40 58 16

800 10 9 7 28 24 42 60 17

Table 10-11Bolt properties

Bolt Size Ab As Tb

05e13 0196 0112 12

0625e11 0307 0199 19

075e10 0442 0309 28

0875e9 0601 0446 39

1e8 0785 0605 51

1125e8 0994 079 56

125e8 1227 1 71

1375e8 1485 1233 85

15e8 1767 1492 103

175e8 2405 2082 182

2e8 3142 2771 243

225e8 3976 3557 311

25e8 4909 4442 389

275e8 594 543 418

3e8 7069 6506 501

325e8 83 7686 592

35e8 962 896 690

375e8 1104 1034 796

4e8 1257 1181 910

Table 10-12Values of Su

Bolt Dia db Material Su (ksi)

lt 1 A-325 120

1125e15 A-325 105

1625e25 A-193-B7 125

2625e4 A-193-B7 110

696 Pressure Vessel Design Manual

Top Flange Lug

PL frac14 P sin q

PT frac14 P cos q

PE frac14 PLA

thorn 3PTe

A2

M1frac14 PTB

M2frac14 PT(B thorn J)

M3frac14 PTe

Mufrac14 Xn cos an Nb

Mafrac14 MuM1PMu

Xn frac14 Rb cos an

yn frac14 Rb sin an

Side Flange Lug

Fn frac14 Ma

XnNb

fs frac14 PTN

sT frac14 FnAs

Fs frac14 15 ksi

1 sTAb

Tb

As frac14 07854 ethd 01218THORN2

s frac14 fsAs

lt Fs

Tb frac14 075uAs

06Fy lt FT lt 40 ksi

Transportation and Erection of Pressure Vessels 697

Design Process

1 Determine loads2 Check of lug

a Shear at pin holeb Bending of lugc Bearing at pin hole

3 Check of base plate4 Check of nozzle flange5 Check of flange bolting6 Check of local load at nozzle to head or shell

junction

Step 1 Determine loads

bull Determine loads PT and PL for various lift angles qbull Determine uniform loads w1 and w2 for variousangles q

bull Using w1 and w2 solve for worst case of combinedload PE

bull Determine worst-case bending moment in lug M3

Step 2 Check of lug

a Shear at pin holebull Area required Ar

Ar frac14 PEFs

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN

b Bending of lug due to M3

bull Section modulus Z

Z frac14 tLA2

6

bull Bending stress lug sb

sb frac14 M3

Z

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFp

bull Bearing available Aa

Aa frac14 D2tL

Maximum Tension in Lug

Check of Nozzle Flange

bull Unit load w

w frac14 PEpBc

bull Bending moment M

M frac14 whDbull Bending stress sb

sb frac14 6M

t2f

698 Pressure Vessel Design Manual

Bolt Loads for Rectangular Lugs Design of Full Circular Base Plate for Lug

bull If a full circular plate is used in lieu of a rectangularplate the following evaluation may be used

bull Unit load on bolt circle w

w frac14 PEpBc

bull Edge distance from point of load hp

hp frac14 BC tL2

bull Bending moment M

M frac14 whp

bull Bending stress sb

sb frac14 6M

t2b

bull Check bolting same as rectangular flange

Transportation and Erection of Pressure Vessels 699

Design of Lug Base Plate

(From R J Roark Formulas for Stress and StrainMcGraw-Hill Book Co 4th Edition Table III Case 34)

bull Uniform load w

w frac14 PEA

bull End reaction R1

R1 frac14 wA2

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

bull Moment at midspan Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

bull Thickness required tb

tb frac14ffiffiffiffiffiffiffiffiffi6Mx

GFb

s

700 Pressure Vessel Design Manual

Check of Bolts

Case 1 Bolts on Centerline Case 2 Bolts Straddle Centerline

Bolt 1 2 3 4 5 Bolt 1 2 3 4 5

an an

xn xn

yn yn

Nb Nb

Mu Mu

Ma Ma

Fn Fn

sT sT

Fs Fs

Transportation and Erection of Pressure Vessels 701

Sample Problem Top Flange Lug

GivenL1 frac14 90 ftL2 frac14 50 ftL3 frac14 40 ftL4 frac14 95 ft

Fy bolting frac14 75 ksiFy lug frac14 36 ksi

Fy flange frac14 36 ksiFs frac14 04(36) frac14 144 ksiFT frac14 06(36) frac14 216 ksiFb frac14 066(36) frac14 2376 ksiWL frac14 1200 kipsBc frac14 54 inRc frac14 27 inB frac14 22 intb frac14 6 intL frac14 6 intf frac14 11 in

D1 frac14 9 in

D2 frac14 8 in

Bolt size frac14 3-14-8 UNC

Ab frac14 83 in2

As frac14 7686 in2

Tb frac14 592 kips

Su frac14 110 ksi

e frac14 16 in

G frac14 40 in

A frac14 24 in

hD frac14 95 in

b frac14 05ethBc ATHORN

Results

PT max frac14 537 kips q frac14 10

PL max frac141200 kips q frac14 90

PE max frac141277 kips q frac14 40

sT bolt max frac14 2011 ksi 40 ksi

s bolt max frac14 698 ksi 1077 ksi

702 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 703

10 Check Lug

a Shear at pin hole

bull Area required Ar

Ar frac14 PEFS

frac14 1277144

frac14 8868 in2

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN frac14 eth24$6THORN eth9$6THORN frac14 90 in2

b Bending of lug due to M3

bull Maximum moment M3

M3 frac14 PTe frac14 537eth16THORN frac14 8592 in kips

bull Section modulus Z

Z frac14 tLA2

6frac14

6$242

6

frac14 576 in3

bull Bending stress lug sb

sb frac14 M3

Zfrac14 8592

576frac14 1491 ksi

bull Thickness required tL

tL frac14 6M

FbA2 frac14 6$85922376eth242THORN frac14 376 in

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFP

frac14 1277324

frac14 3941 in2

bull Bearing available Aa

Aa frac14 D2tL frac14 8$6 frac14 48 in2

20 Check Lug Base Plate

bull Uniform load w

w frac14 PEA

frac14 127724

frac14 532kipsin

bull End reaction R1

R1 frac14 PE2

frac14 12772

frac14 6385 kips

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

Ma frac14 0985eth8748 2496thorn 768thorn 2304 17 496THORNfrac14 8049 in kips

bull Moment at mid Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

Mx frac14 8049thorn 17 240 3831

frac14 5360 in kips

bull Section modulus Z

Z frac14t2bG

6

frac1462$40

6

frac14 240 in3

bull Bending stress sb

sb frac14 Mx

Zfrac14 5360

240frac14 2233 ksi

bull Allowable bending stress Fb

Fb frac14 066Fy frac14 06636 frac14 2376 ksi

30 Check of Vessel Flange

bull Unit load w

w frac14 PEpBc

frac14 1277p54

frac14 752kipsin

bull Bending moment Mb

Mb frac14 whD frac14 752eth92THORN frac14 6925 in kips

bull Bending stress sb

sb frac14 6Mb

t2ffrac14 frac126eth6925THORN

11252frac14 328 ksi

704 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 705

Procedure 10-8 Design of Trunnions

Lug Dimensions

Dimensions for Trunnion

Type 1 Trunnion and Fixed Lug

Type 2 Trunnion and Rotating Lug

Type 3 Trunnion Only

706 Pressure Vessel Design Manual

Type 1 Trunnion and Fixed Lug

There are four checks to be performed

1 Check lug2 Check trunnion3 Check welds4 Check vessel shell

Check Lug

Transverse (vessel horizontal)

M frac14 PTE and Z frac14 4R2otL6

Therefore

tL frac14 15PTE

R2oFb

Longitudinal (vessel vertical)

bull Cross-sectional area at pin hole Ap

Ap frac14 213tL thorn 2tpethD3 D1

bull Cross-sectional area at top of lug An

An frac14 tL

RT D1

2

thorn 2tp

D3 D1

2

bull Shear stress s

s frac14 PLAP

or s frac14 PLAn

bull Pin bearing stress sp

sp frac14 PLD2

tL thorn 2tp

Check Trunnion

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Torsional moment MT (vessel horizontal)

MT frac14 PTE

bull Bending stress sb

sb frac14 ML

Z

bull Torsional shear stress sT

sT frac14 MT

2pRnto

Check Welds

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Polar moment of inertia Jw

Jw frac14 2pR3n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Torsional shear stress in weld sT

sT frac14 MTRn

Jw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 2 Trunnion and Rotating Lug

bull Net section at Section A-A Ap

Ap frac14 213tL thorn 2tpD3 D1

Transportation and Erection of Pressure Vessels 707

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at Section B-B An

An frac14 2tLethRo RiTHORNbull Shear stress at trunnion s

s frac14 PLAn

bull Minimum bearing contact angle for lug at trun-nion qB

qB frac14 eth159PLTHORNRntLFp

bull Pin hole bearing stress sp

sp frac14 PLD3

tL thorn 2tp

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Swbull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 3 Trunnion Only

Vessel Vertical

bull Longitudinal moment ML

ML frac14 PLe

bull Bending stress in trunnion sb

sb frac14 ML

Z

Vessel Horizontal

bull Circumferential moment Mc

Mc frac14 PTe

bull Bending stress in trunnion sb

sb frac14 Mc

Z

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

708 Pressure Vessel Design Manual

TYPE 1 TYPE 2

W

K

DIA

A

DIA

= F

DIA

= M

K

C

KT

2 X 125 DIAVENT HOLES

DIA

A

125

D

250

DIA

= F

W

K

B

NUTS WELDED

GRIND WELDSMOOTH

DIA

= M

K

E

KT

2 X 125 DIAVENT HOLES

Table 10-13Dimensions of trunnions

Allowable Load Tons Pipe Size A C D E F M N T W Weight Lbs

1 0-5 4 Std 4 - - 85 8 - 05 025 30

2 5-10 6 Std 5 - - 105 12 - 05 025 55

3 10-15 8 Std 6 0625 8 125 15 4 05 0375 90

4 15-25 10 Std 6 0625 8 15 18 4 075 0375 150

5 25-35 12 Sch 80 6 075 8 17 21 4 075 0375 240

6 35-45 12 Sch 80 6 075 8 17 21 4 075 05 240

7 45-60 14 Sch 80 6 075 8 18 24 8 1 05 375

8 60-75 14 Sch 80 7 0875 8 18 24 8 1 0625 400

9 75-100 16 Sch 80 7 0875 8 25 27 8 1 0625 625

10 100-125 16 Sch 80 7 0875 8 25 27 8 1125 0875 660

11 125-150 18 Sch 80 7 0875 8 27 30 12 1125 0875 850

12 150-200 18 Sch 80 8 0875 8 27 30 12 1125 1 875

13 200-250 20 Sch 80 8 0875 10 30 36 16 125 1 1000

14 300 24 Sch 80 8 1 10 34 36 16 125 1125 1440

15 400 24 Sch 80 8 1 10 34 40 20 1375 1125 1675

16 500 30 125 10 125 12 42 48 20 1375 1375 2400

17 600 36 125 10 125 12 48 60 24 15 1375 3600

Notes

1 Do not use re-pads for cyclic service

2 B frac14 D - 125

3 K frac14 Pipe Wall Thk

4 Dimensions are given for reference only All loadings and stress shall be checked prior to use

Transportation and Erection of Pressure Vessels 709

Procedure 10-9 Local Loads in Shell Due to Erection Forces

Trunnions

Fixed Lug Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Maximum torsional moment MT

MT frac14 PTE

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

Rotating Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

TrunniondNo Lug

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

710 Pressure Vessel Design Manual

Side Lugs Notes

1 Optional internal pipe Remove after erection2 Radial load Pr is the axial load in the internal pipe

stiffener if used in lieu of radial load in shell3 Circumferential ring stiffeners are optional at these

elevations

bull Circumferential moment Mc

Mc frac14 PTe

bull Longitudinal moment Mx

Mx frac14 PLe

bull Load on weld group f

f frac14 PTELT

bull Radial loads Pr and Pa

Pr frac14 PLe

Pa frac14 PL sin f

Top Flange Lug

bull Loads PT and PL

PT frac14 P cos q

PL frac14 P sin q

Transportation and Erection of Pressure Vessels 711

bull Moment on flange M

M frac14 PTB

bull Moment on head M

M frac14 PTethBthorn JTHORNbull Moment on vessel M

M frac14 PTG

bull Radial load on head and nozzle frac14 PL

Side Flange Lug

bull Loads PT and PL

PL frac14 P cos q

PT frac14 P sin q

bull Moment on flange M

M frac14 PLB

bull Longitudinal moment on shell Mx

M frac14 PTethBthorn JTHORNbull Radial load on shell and nozzle frac14 PT

712 Pressure Vessel Design Manual

Procedure 10-10 Miscellaneous

Figure 10-7 Fundamental handling operations Reprinted by permission of the Babcock and Wilcox Companya McDermott Company

Transportation and Erection of Pressure Vessels 713

Figure 10-8 Loads on wire rope for various sheave configurations

714 Pressure Vessel Design Manual

Table 10-14Forged Steel Shackles

Dimensions in Inches

Size D (in)Safe Load

(lb)D (min) A

Tolerance

A DimB B (min) C G

Tolerance C

and G DimE F

frac14 475 73232 153232 11616 51616 93232 1⅛ ⅞ 11616 frac34 111616

⅜ 1050 113232 213232 11616 71616 256464 171616 1frac14 ⅛ 1 313232

71616 1450 256464 233232 11616 frac12 296464 1111616 171616 ⅛ 1⅛ 111616

frac12 1900 296464 131616 11616 ⅝ 91616 1⅞ 1⅝ ⅛ 1⅜ 151616

⅝ 2950 91616 111616 11616 frac34 436464 2133232 2 ⅛ 1⅝ 191616

frac34 4250 436464 1frac14 11616 ⅞ 253232 2273232 2⅜ frac14 2 1⅞

⅞ 5750 253232 171616 11616 1 576464 351616 2131616 frac14 2frac14 2⅛

1 7550 576464 1111616 11616 1⅛ 113232 3frac34 331616 frac14 2frac12 2⅜

1⅛ 8900 113232 1271616 ⅛ 1frac14 176464 4frac14 391616 frac14 2frac34 2⅝

1frac14 11000 176464 213232 ⅛ 1⅜ 1156464 4111616 3151616 frac14 3⅛ 3

1⅜ 13300 1156464 2frac14 ⅛ 1frac12 1113232 5frac14 471616 frac14 3frac12 351616

1frac12 15600 1113232 2⅜ ⅛ 1⅝ 1296464 5frac34 4⅞ frac14 3frac34 3⅝

1frac34 21500 1356464 2⅞ ⅛ 2 1253232 7 5frac34 frac14 4frac14 4⅛

2 28100 1253232 3frac14 ⅛ 2frac14 216464 7frac34 6frac34 frac14 5frac14 5

2frac14 36000 216464 3frac34 ⅛ 2frac12 2156464 9frac14 7⅛ frac34 5frac12 5frac14

2frac12 45100 2156464 4⅛ ⅛ 2frac34 2153232 10frac12 8 frac34 6frac14 6

3 64700 2111616 5 ⅛ 3frac14 2293232 13 11frac12 frac34 6frac34 6frac12

Notes

For shackles with safe loads greater than the maximum shown use CrosbyndashLaughlin (The Crosby Group Div of American Hoist amp Derrick Co Tulsa

OK 74101) Skookum (Skookum Co Inc Portland OR 97203) or equal with an ultimate strength at least 5 times the safe working load

Allowable loads are lower than OSHA requirements tabulated in Section 1926251 Table H-19

Transportation and Erection of Pressure Vessels 715

Figure 10-9 Wire rope end configurations

716 Pressure Vessel Design Manual

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 16: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

Formulas

The tailing lug is designed like all other lugs Theforces are determined from the tailing load T calcu-lated per this procedure The ideal position for thetailing lug is to be as close as possible to the baseplate for stiffness and transmitting these loads throughthe base to the skirt The option of using a tailing lugversus a tailing beam is the designerrsquos choice Eithercan accommodate internal skirt rings stiffeners andstruts

Design as follows

bull Area required at pin hole Ar

Ar frac14 TFs

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN-ethD1tLTHORN

bull Bending moment in lug Mb

Mb frac14 fLE

bull Section modulus of lug Z

Z frac14 tLA2

6bull Bending stress in lug sb

sb frac14 Mb

Zbull Area required at pin hole for bearing Ar

Ar frac14 TFp

bull Area available at pin hole for bearing Aa

Aa frac14 D2tL

Note Substitute tL thorn 2tp for tL in the preceding equationsif pad eyes are used

690 Pressure Vessel Design Manual

Procedure 10-6 Design of Top Head and Cone Lifting Lugs

Design of Top HeadCone Lug

Dimensions

NT frac14 B2

Athorn 2B

LT frac14 Ethorn B NT

q1 frac14 arctan2L1

A

L2 frac14 L1

sin q1

q2 frac14 arcsinR3

L2

q3 frac14 q1 thorn q2

L3 frac14 R3

sin q3

L4 frac14 05A L1 05D3

tan q3

L5 frac14 05A L1 Ctan q3

Transportation and Erection of Pressure Vessels 691

Lug

bull Maximum bending moment in lug ML

ML frac14 PE

bull Section modulus lug Z

Z frac14 A2tL6

bull Bending stress lug sb

sb frac14 ML

Z

bull Thickness of lug required tL

tL frac14 6ML

A2Fb

bull Tension at edge of pad sT

sT frac14 PL2L4tL

bull Net section at pin hole Ap

Ap frac14 2L3tL thorn 2tpD3 D1

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at top of lug An

An frac14 tL

R3 D1

2

thorn 2tp

D3 D1

2

bull Shear stress at top of lug s

s frac14 PTAn

bull Pin bearing stress sp

sp frac14 PTD3

tL thorn 2tp

Check Welds

bull Polar moment of inertia Jw

Re-pad Jw frac14 ethA1 thorn L6THORN36

Lug Jw frac14 ethAthorn 2BTHORN312

B2ethAthorn BTHORN2ethAthorn 2BTHORN

bull Moment M1

M1 frac14 LTPT

Lug Weld

bull Find loads on weldsbull Transverse shear due to PT f1

f1 frac14 PTAthorn 2B

bull Transverse shear due to M1 f2

f2 frac14 M1ethB NTTHORNJw

bull Longitudinal shear due to M1 f3

f3 frac14 M1BJw

bull Combined shear load fr

fr frac14ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiethf1 thorn f2THORN2thornf23

q

692 Pressure Vessel Design Manual

bull Size of weld required w1

w1 frac14 fr0707Fs

Note If w1 exceeds the shell plate thickness then a re-padmust be used

Re-pad Weld

bull Moment M2

M2 frac14 PTethEthorn 05L6THORN

bull Transverse shear due to PT f1

f1 frac14 PT2A1 thorn 2L6

bull Transverse shear due to M2 f2

f2 frac14 05M2L6

Jw

bull Longitudinal shear due to M2 f3

f3 frac14 M2L6

Jw

bull Combined shear load fr

fr frac14ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiethf1 thorn f2THORN2thornf23

q

bull Size of weld required w1

w2 frac14 fr0707Fs

Pad Eye Weld

bull Unit shear load on pad f4

f4 frac14 PTtppD2

2tp thorn tL

bull Size of weld required w3

w3 frac14 f40707Fs

Top Head Lug for Large Loads

Transportation and Erection of Pressure Vessels 693

Table 10-9Dimensions for top head or cone lugs

694 Pressure Vessel Design Manual

Procedure 10-7 Design of Flange Lugs

Transportation and Erection of Pressure Vessels 695

Table 10-10Flange lug dimensions

Load Capacity (tons) D1 tL tb A B G H E

50 338 2 2 8 11 12 30 9

100 5 3 3 14 12 24 36 9

200 6 4 4 18 14 30 40 10

400 8 5 5 20 16 36 46 11

600 9 6 6 24 22 40 58 16

800 10 9 7 28 24 42 60 17

Table 10-11Bolt properties

Bolt Size Ab As Tb

05e13 0196 0112 12

0625e11 0307 0199 19

075e10 0442 0309 28

0875e9 0601 0446 39

1e8 0785 0605 51

1125e8 0994 079 56

125e8 1227 1 71

1375e8 1485 1233 85

15e8 1767 1492 103

175e8 2405 2082 182

2e8 3142 2771 243

225e8 3976 3557 311

25e8 4909 4442 389

275e8 594 543 418

3e8 7069 6506 501

325e8 83 7686 592

35e8 962 896 690

375e8 1104 1034 796

4e8 1257 1181 910

Table 10-12Values of Su

Bolt Dia db Material Su (ksi)

lt 1 A-325 120

1125e15 A-325 105

1625e25 A-193-B7 125

2625e4 A-193-B7 110

696 Pressure Vessel Design Manual

Top Flange Lug

PL frac14 P sin q

PT frac14 P cos q

PE frac14 PLA

thorn 3PTe

A2

M1frac14 PTB

M2frac14 PT(B thorn J)

M3frac14 PTe

Mufrac14 Xn cos an Nb

Mafrac14 MuM1PMu

Xn frac14 Rb cos an

yn frac14 Rb sin an

Side Flange Lug

Fn frac14 Ma

XnNb

fs frac14 PTN

sT frac14 FnAs

Fs frac14 15 ksi

1 sTAb

Tb

As frac14 07854 ethd 01218THORN2

s frac14 fsAs

lt Fs

Tb frac14 075uAs

06Fy lt FT lt 40 ksi

Transportation and Erection of Pressure Vessels 697

Design Process

1 Determine loads2 Check of lug

a Shear at pin holeb Bending of lugc Bearing at pin hole

3 Check of base plate4 Check of nozzle flange5 Check of flange bolting6 Check of local load at nozzle to head or shell

junction

Step 1 Determine loads

bull Determine loads PT and PL for various lift angles qbull Determine uniform loads w1 and w2 for variousangles q

bull Using w1 and w2 solve for worst case of combinedload PE

bull Determine worst-case bending moment in lug M3

Step 2 Check of lug

a Shear at pin holebull Area required Ar

Ar frac14 PEFs

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN

b Bending of lug due to M3

bull Section modulus Z

Z frac14 tLA2

6

bull Bending stress lug sb

sb frac14 M3

Z

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFp

bull Bearing available Aa

Aa frac14 D2tL

Maximum Tension in Lug

Check of Nozzle Flange

bull Unit load w

w frac14 PEpBc

bull Bending moment M

M frac14 whDbull Bending stress sb

sb frac14 6M

t2f

698 Pressure Vessel Design Manual

Bolt Loads for Rectangular Lugs Design of Full Circular Base Plate for Lug

bull If a full circular plate is used in lieu of a rectangularplate the following evaluation may be used

bull Unit load on bolt circle w

w frac14 PEpBc

bull Edge distance from point of load hp

hp frac14 BC tL2

bull Bending moment M

M frac14 whp

bull Bending stress sb

sb frac14 6M

t2b

bull Check bolting same as rectangular flange

Transportation and Erection of Pressure Vessels 699

Design of Lug Base Plate

(From R J Roark Formulas for Stress and StrainMcGraw-Hill Book Co 4th Edition Table III Case 34)

bull Uniform load w

w frac14 PEA

bull End reaction R1

R1 frac14 wA2

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

bull Moment at midspan Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

bull Thickness required tb

tb frac14ffiffiffiffiffiffiffiffiffi6Mx

GFb

s

700 Pressure Vessel Design Manual

Check of Bolts

Case 1 Bolts on Centerline Case 2 Bolts Straddle Centerline

Bolt 1 2 3 4 5 Bolt 1 2 3 4 5

an an

xn xn

yn yn

Nb Nb

Mu Mu

Ma Ma

Fn Fn

sT sT

Fs Fs

Transportation and Erection of Pressure Vessels 701

Sample Problem Top Flange Lug

GivenL1 frac14 90 ftL2 frac14 50 ftL3 frac14 40 ftL4 frac14 95 ft

Fy bolting frac14 75 ksiFy lug frac14 36 ksi

Fy flange frac14 36 ksiFs frac14 04(36) frac14 144 ksiFT frac14 06(36) frac14 216 ksiFb frac14 066(36) frac14 2376 ksiWL frac14 1200 kipsBc frac14 54 inRc frac14 27 inB frac14 22 intb frac14 6 intL frac14 6 intf frac14 11 in

D1 frac14 9 in

D2 frac14 8 in

Bolt size frac14 3-14-8 UNC

Ab frac14 83 in2

As frac14 7686 in2

Tb frac14 592 kips

Su frac14 110 ksi

e frac14 16 in

G frac14 40 in

A frac14 24 in

hD frac14 95 in

b frac14 05ethBc ATHORN

Results

PT max frac14 537 kips q frac14 10

PL max frac141200 kips q frac14 90

PE max frac141277 kips q frac14 40

sT bolt max frac14 2011 ksi 40 ksi

s bolt max frac14 698 ksi 1077 ksi

702 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 703

10 Check Lug

a Shear at pin hole

bull Area required Ar

Ar frac14 PEFS

frac14 1277144

frac14 8868 in2

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN frac14 eth24$6THORN eth9$6THORN frac14 90 in2

b Bending of lug due to M3

bull Maximum moment M3

M3 frac14 PTe frac14 537eth16THORN frac14 8592 in kips

bull Section modulus Z

Z frac14 tLA2

6frac14

6$242

6

frac14 576 in3

bull Bending stress lug sb

sb frac14 M3

Zfrac14 8592

576frac14 1491 ksi

bull Thickness required tL

tL frac14 6M

FbA2 frac14 6$85922376eth242THORN frac14 376 in

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFP

frac14 1277324

frac14 3941 in2

bull Bearing available Aa

Aa frac14 D2tL frac14 8$6 frac14 48 in2

20 Check Lug Base Plate

bull Uniform load w

w frac14 PEA

frac14 127724

frac14 532kipsin

bull End reaction R1

R1 frac14 PE2

frac14 12772

frac14 6385 kips

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

Ma frac14 0985eth8748 2496thorn 768thorn 2304 17 496THORNfrac14 8049 in kips

bull Moment at mid Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

Mx frac14 8049thorn 17 240 3831

frac14 5360 in kips

bull Section modulus Z

Z frac14t2bG

6

frac1462$40

6

frac14 240 in3

bull Bending stress sb

sb frac14 Mx

Zfrac14 5360

240frac14 2233 ksi

bull Allowable bending stress Fb

Fb frac14 066Fy frac14 06636 frac14 2376 ksi

30 Check of Vessel Flange

bull Unit load w

w frac14 PEpBc

frac14 1277p54

frac14 752kipsin

bull Bending moment Mb

Mb frac14 whD frac14 752eth92THORN frac14 6925 in kips

bull Bending stress sb

sb frac14 6Mb

t2ffrac14 frac126eth6925THORN

11252frac14 328 ksi

704 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 705

Procedure 10-8 Design of Trunnions

Lug Dimensions

Dimensions for Trunnion

Type 1 Trunnion and Fixed Lug

Type 2 Trunnion and Rotating Lug

Type 3 Trunnion Only

706 Pressure Vessel Design Manual

Type 1 Trunnion and Fixed Lug

There are four checks to be performed

1 Check lug2 Check trunnion3 Check welds4 Check vessel shell

Check Lug

Transverse (vessel horizontal)

M frac14 PTE and Z frac14 4R2otL6

Therefore

tL frac14 15PTE

R2oFb

Longitudinal (vessel vertical)

bull Cross-sectional area at pin hole Ap

Ap frac14 213tL thorn 2tpethD3 D1

bull Cross-sectional area at top of lug An

An frac14 tL

RT D1

2

thorn 2tp

D3 D1

2

bull Shear stress s

s frac14 PLAP

or s frac14 PLAn

bull Pin bearing stress sp

sp frac14 PLD2

tL thorn 2tp

Check Trunnion

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Torsional moment MT (vessel horizontal)

MT frac14 PTE

bull Bending stress sb

sb frac14 ML

Z

bull Torsional shear stress sT

sT frac14 MT

2pRnto

Check Welds

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Polar moment of inertia Jw

Jw frac14 2pR3n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Torsional shear stress in weld sT

sT frac14 MTRn

Jw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 2 Trunnion and Rotating Lug

bull Net section at Section A-A Ap

Ap frac14 213tL thorn 2tpD3 D1

Transportation and Erection of Pressure Vessels 707

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at Section B-B An

An frac14 2tLethRo RiTHORNbull Shear stress at trunnion s

s frac14 PLAn

bull Minimum bearing contact angle for lug at trun-nion qB

qB frac14 eth159PLTHORNRntLFp

bull Pin hole bearing stress sp

sp frac14 PLD3

tL thorn 2tp

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Swbull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 3 Trunnion Only

Vessel Vertical

bull Longitudinal moment ML

ML frac14 PLe

bull Bending stress in trunnion sb

sb frac14 ML

Z

Vessel Horizontal

bull Circumferential moment Mc

Mc frac14 PTe

bull Bending stress in trunnion sb

sb frac14 Mc

Z

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

708 Pressure Vessel Design Manual

TYPE 1 TYPE 2

W

K

DIA

A

DIA

= F

DIA

= M

K

C

KT

2 X 125 DIAVENT HOLES

DIA

A

125

D

250

DIA

= F

W

K

B

NUTS WELDED

GRIND WELDSMOOTH

DIA

= M

K

E

KT

2 X 125 DIAVENT HOLES

Table 10-13Dimensions of trunnions

Allowable Load Tons Pipe Size A C D E F M N T W Weight Lbs

1 0-5 4 Std 4 - - 85 8 - 05 025 30

2 5-10 6 Std 5 - - 105 12 - 05 025 55

3 10-15 8 Std 6 0625 8 125 15 4 05 0375 90

4 15-25 10 Std 6 0625 8 15 18 4 075 0375 150

5 25-35 12 Sch 80 6 075 8 17 21 4 075 0375 240

6 35-45 12 Sch 80 6 075 8 17 21 4 075 05 240

7 45-60 14 Sch 80 6 075 8 18 24 8 1 05 375

8 60-75 14 Sch 80 7 0875 8 18 24 8 1 0625 400

9 75-100 16 Sch 80 7 0875 8 25 27 8 1 0625 625

10 100-125 16 Sch 80 7 0875 8 25 27 8 1125 0875 660

11 125-150 18 Sch 80 7 0875 8 27 30 12 1125 0875 850

12 150-200 18 Sch 80 8 0875 8 27 30 12 1125 1 875

13 200-250 20 Sch 80 8 0875 10 30 36 16 125 1 1000

14 300 24 Sch 80 8 1 10 34 36 16 125 1125 1440

15 400 24 Sch 80 8 1 10 34 40 20 1375 1125 1675

16 500 30 125 10 125 12 42 48 20 1375 1375 2400

17 600 36 125 10 125 12 48 60 24 15 1375 3600

Notes

1 Do not use re-pads for cyclic service

2 B frac14 D - 125

3 K frac14 Pipe Wall Thk

4 Dimensions are given for reference only All loadings and stress shall be checked prior to use

Transportation and Erection of Pressure Vessels 709

Procedure 10-9 Local Loads in Shell Due to Erection Forces

Trunnions

Fixed Lug Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Maximum torsional moment MT

MT frac14 PTE

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

Rotating Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

TrunniondNo Lug

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

710 Pressure Vessel Design Manual

Side Lugs Notes

1 Optional internal pipe Remove after erection2 Radial load Pr is the axial load in the internal pipe

stiffener if used in lieu of radial load in shell3 Circumferential ring stiffeners are optional at these

elevations

bull Circumferential moment Mc

Mc frac14 PTe

bull Longitudinal moment Mx

Mx frac14 PLe

bull Load on weld group f

f frac14 PTELT

bull Radial loads Pr and Pa

Pr frac14 PLe

Pa frac14 PL sin f

Top Flange Lug

bull Loads PT and PL

PT frac14 P cos q

PL frac14 P sin q

Transportation and Erection of Pressure Vessels 711

bull Moment on flange M

M frac14 PTB

bull Moment on head M

M frac14 PTethBthorn JTHORNbull Moment on vessel M

M frac14 PTG

bull Radial load on head and nozzle frac14 PL

Side Flange Lug

bull Loads PT and PL

PL frac14 P cos q

PT frac14 P sin q

bull Moment on flange M

M frac14 PLB

bull Longitudinal moment on shell Mx

M frac14 PTethBthorn JTHORNbull Radial load on shell and nozzle frac14 PT

712 Pressure Vessel Design Manual

Procedure 10-10 Miscellaneous

Figure 10-7 Fundamental handling operations Reprinted by permission of the Babcock and Wilcox Companya McDermott Company

Transportation and Erection of Pressure Vessels 713

Figure 10-8 Loads on wire rope for various sheave configurations

714 Pressure Vessel Design Manual

Table 10-14Forged Steel Shackles

Dimensions in Inches

Size D (in)Safe Load

(lb)D (min) A

Tolerance

A DimB B (min) C G

Tolerance C

and G DimE F

frac14 475 73232 153232 11616 51616 93232 1⅛ ⅞ 11616 frac34 111616

⅜ 1050 113232 213232 11616 71616 256464 171616 1frac14 ⅛ 1 313232

71616 1450 256464 233232 11616 frac12 296464 1111616 171616 ⅛ 1⅛ 111616

frac12 1900 296464 131616 11616 ⅝ 91616 1⅞ 1⅝ ⅛ 1⅜ 151616

⅝ 2950 91616 111616 11616 frac34 436464 2133232 2 ⅛ 1⅝ 191616

frac34 4250 436464 1frac14 11616 ⅞ 253232 2273232 2⅜ frac14 2 1⅞

⅞ 5750 253232 171616 11616 1 576464 351616 2131616 frac14 2frac14 2⅛

1 7550 576464 1111616 11616 1⅛ 113232 3frac34 331616 frac14 2frac12 2⅜

1⅛ 8900 113232 1271616 ⅛ 1frac14 176464 4frac14 391616 frac14 2frac34 2⅝

1frac14 11000 176464 213232 ⅛ 1⅜ 1156464 4111616 3151616 frac14 3⅛ 3

1⅜ 13300 1156464 2frac14 ⅛ 1frac12 1113232 5frac14 471616 frac14 3frac12 351616

1frac12 15600 1113232 2⅜ ⅛ 1⅝ 1296464 5frac34 4⅞ frac14 3frac34 3⅝

1frac34 21500 1356464 2⅞ ⅛ 2 1253232 7 5frac34 frac14 4frac14 4⅛

2 28100 1253232 3frac14 ⅛ 2frac14 216464 7frac34 6frac34 frac14 5frac14 5

2frac14 36000 216464 3frac34 ⅛ 2frac12 2156464 9frac14 7⅛ frac34 5frac12 5frac14

2frac12 45100 2156464 4⅛ ⅛ 2frac34 2153232 10frac12 8 frac34 6frac14 6

3 64700 2111616 5 ⅛ 3frac14 2293232 13 11frac12 frac34 6frac34 6frac12

Notes

For shackles with safe loads greater than the maximum shown use CrosbyndashLaughlin (The Crosby Group Div of American Hoist amp Derrick Co Tulsa

OK 74101) Skookum (Skookum Co Inc Portland OR 97203) or equal with an ultimate strength at least 5 times the safe working load

Allowable loads are lower than OSHA requirements tabulated in Section 1926251 Table H-19

Transportation and Erection of Pressure Vessels 715

Figure 10-9 Wire rope end configurations

716 Pressure Vessel Design Manual

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 17: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

Procedure 10-6 Design of Top Head and Cone Lifting Lugs

Design of Top HeadCone Lug

Dimensions

NT frac14 B2

Athorn 2B

LT frac14 Ethorn B NT

q1 frac14 arctan2L1

A

L2 frac14 L1

sin q1

q2 frac14 arcsinR3

L2

q3 frac14 q1 thorn q2

L3 frac14 R3

sin q3

L4 frac14 05A L1 05D3

tan q3

L5 frac14 05A L1 Ctan q3

Transportation and Erection of Pressure Vessels 691

Lug

bull Maximum bending moment in lug ML

ML frac14 PE

bull Section modulus lug Z

Z frac14 A2tL6

bull Bending stress lug sb

sb frac14 ML

Z

bull Thickness of lug required tL

tL frac14 6ML

A2Fb

bull Tension at edge of pad sT

sT frac14 PL2L4tL

bull Net section at pin hole Ap

Ap frac14 2L3tL thorn 2tpD3 D1

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at top of lug An

An frac14 tL

R3 D1

2

thorn 2tp

D3 D1

2

bull Shear stress at top of lug s

s frac14 PTAn

bull Pin bearing stress sp

sp frac14 PTD3

tL thorn 2tp

Check Welds

bull Polar moment of inertia Jw

Re-pad Jw frac14 ethA1 thorn L6THORN36

Lug Jw frac14 ethAthorn 2BTHORN312

B2ethAthorn BTHORN2ethAthorn 2BTHORN

bull Moment M1

M1 frac14 LTPT

Lug Weld

bull Find loads on weldsbull Transverse shear due to PT f1

f1 frac14 PTAthorn 2B

bull Transverse shear due to M1 f2

f2 frac14 M1ethB NTTHORNJw

bull Longitudinal shear due to M1 f3

f3 frac14 M1BJw

bull Combined shear load fr

fr frac14ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiethf1 thorn f2THORN2thornf23

q

692 Pressure Vessel Design Manual

bull Size of weld required w1

w1 frac14 fr0707Fs

Note If w1 exceeds the shell plate thickness then a re-padmust be used

Re-pad Weld

bull Moment M2

M2 frac14 PTethEthorn 05L6THORN

bull Transverse shear due to PT f1

f1 frac14 PT2A1 thorn 2L6

bull Transverse shear due to M2 f2

f2 frac14 05M2L6

Jw

bull Longitudinal shear due to M2 f3

f3 frac14 M2L6

Jw

bull Combined shear load fr

fr frac14ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiethf1 thorn f2THORN2thornf23

q

bull Size of weld required w1

w2 frac14 fr0707Fs

Pad Eye Weld

bull Unit shear load on pad f4

f4 frac14 PTtppD2

2tp thorn tL

bull Size of weld required w3

w3 frac14 f40707Fs

Top Head Lug for Large Loads

Transportation and Erection of Pressure Vessels 693

Table 10-9Dimensions for top head or cone lugs

694 Pressure Vessel Design Manual

Procedure 10-7 Design of Flange Lugs

Transportation and Erection of Pressure Vessels 695

Table 10-10Flange lug dimensions

Load Capacity (tons) D1 tL tb A B G H E

50 338 2 2 8 11 12 30 9

100 5 3 3 14 12 24 36 9

200 6 4 4 18 14 30 40 10

400 8 5 5 20 16 36 46 11

600 9 6 6 24 22 40 58 16

800 10 9 7 28 24 42 60 17

Table 10-11Bolt properties

Bolt Size Ab As Tb

05e13 0196 0112 12

0625e11 0307 0199 19

075e10 0442 0309 28

0875e9 0601 0446 39

1e8 0785 0605 51

1125e8 0994 079 56

125e8 1227 1 71

1375e8 1485 1233 85

15e8 1767 1492 103

175e8 2405 2082 182

2e8 3142 2771 243

225e8 3976 3557 311

25e8 4909 4442 389

275e8 594 543 418

3e8 7069 6506 501

325e8 83 7686 592

35e8 962 896 690

375e8 1104 1034 796

4e8 1257 1181 910

Table 10-12Values of Su

Bolt Dia db Material Su (ksi)

lt 1 A-325 120

1125e15 A-325 105

1625e25 A-193-B7 125

2625e4 A-193-B7 110

696 Pressure Vessel Design Manual

Top Flange Lug

PL frac14 P sin q

PT frac14 P cos q

PE frac14 PLA

thorn 3PTe

A2

M1frac14 PTB

M2frac14 PT(B thorn J)

M3frac14 PTe

Mufrac14 Xn cos an Nb

Mafrac14 MuM1PMu

Xn frac14 Rb cos an

yn frac14 Rb sin an

Side Flange Lug

Fn frac14 Ma

XnNb

fs frac14 PTN

sT frac14 FnAs

Fs frac14 15 ksi

1 sTAb

Tb

As frac14 07854 ethd 01218THORN2

s frac14 fsAs

lt Fs

Tb frac14 075uAs

06Fy lt FT lt 40 ksi

Transportation and Erection of Pressure Vessels 697

Design Process

1 Determine loads2 Check of lug

a Shear at pin holeb Bending of lugc Bearing at pin hole

3 Check of base plate4 Check of nozzle flange5 Check of flange bolting6 Check of local load at nozzle to head or shell

junction

Step 1 Determine loads

bull Determine loads PT and PL for various lift angles qbull Determine uniform loads w1 and w2 for variousangles q

bull Using w1 and w2 solve for worst case of combinedload PE

bull Determine worst-case bending moment in lug M3

Step 2 Check of lug

a Shear at pin holebull Area required Ar

Ar frac14 PEFs

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN

b Bending of lug due to M3

bull Section modulus Z

Z frac14 tLA2

6

bull Bending stress lug sb

sb frac14 M3

Z

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFp

bull Bearing available Aa

Aa frac14 D2tL

Maximum Tension in Lug

Check of Nozzle Flange

bull Unit load w

w frac14 PEpBc

bull Bending moment M

M frac14 whDbull Bending stress sb

sb frac14 6M

t2f

698 Pressure Vessel Design Manual

Bolt Loads for Rectangular Lugs Design of Full Circular Base Plate for Lug

bull If a full circular plate is used in lieu of a rectangularplate the following evaluation may be used

bull Unit load on bolt circle w

w frac14 PEpBc

bull Edge distance from point of load hp

hp frac14 BC tL2

bull Bending moment M

M frac14 whp

bull Bending stress sb

sb frac14 6M

t2b

bull Check bolting same as rectangular flange

Transportation and Erection of Pressure Vessels 699

Design of Lug Base Plate

(From R J Roark Formulas for Stress and StrainMcGraw-Hill Book Co 4th Edition Table III Case 34)

bull Uniform load w

w frac14 PEA

bull End reaction R1

R1 frac14 wA2

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

bull Moment at midspan Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

bull Thickness required tb

tb frac14ffiffiffiffiffiffiffiffiffi6Mx

GFb

s

700 Pressure Vessel Design Manual

Check of Bolts

Case 1 Bolts on Centerline Case 2 Bolts Straddle Centerline

Bolt 1 2 3 4 5 Bolt 1 2 3 4 5

an an

xn xn

yn yn

Nb Nb

Mu Mu

Ma Ma

Fn Fn

sT sT

Fs Fs

Transportation and Erection of Pressure Vessels 701

Sample Problem Top Flange Lug

GivenL1 frac14 90 ftL2 frac14 50 ftL3 frac14 40 ftL4 frac14 95 ft

Fy bolting frac14 75 ksiFy lug frac14 36 ksi

Fy flange frac14 36 ksiFs frac14 04(36) frac14 144 ksiFT frac14 06(36) frac14 216 ksiFb frac14 066(36) frac14 2376 ksiWL frac14 1200 kipsBc frac14 54 inRc frac14 27 inB frac14 22 intb frac14 6 intL frac14 6 intf frac14 11 in

D1 frac14 9 in

D2 frac14 8 in

Bolt size frac14 3-14-8 UNC

Ab frac14 83 in2

As frac14 7686 in2

Tb frac14 592 kips

Su frac14 110 ksi

e frac14 16 in

G frac14 40 in

A frac14 24 in

hD frac14 95 in

b frac14 05ethBc ATHORN

Results

PT max frac14 537 kips q frac14 10

PL max frac141200 kips q frac14 90

PE max frac141277 kips q frac14 40

sT bolt max frac14 2011 ksi 40 ksi

s bolt max frac14 698 ksi 1077 ksi

702 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 703

10 Check Lug

a Shear at pin hole

bull Area required Ar

Ar frac14 PEFS

frac14 1277144

frac14 8868 in2

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN frac14 eth24$6THORN eth9$6THORN frac14 90 in2

b Bending of lug due to M3

bull Maximum moment M3

M3 frac14 PTe frac14 537eth16THORN frac14 8592 in kips

bull Section modulus Z

Z frac14 tLA2

6frac14

6$242

6

frac14 576 in3

bull Bending stress lug sb

sb frac14 M3

Zfrac14 8592

576frac14 1491 ksi

bull Thickness required tL

tL frac14 6M

FbA2 frac14 6$85922376eth242THORN frac14 376 in

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFP

frac14 1277324

frac14 3941 in2

bull Bearing available Aa

Aa frac14 D2tL frac14 8$6 frac14 48 in2

20 Check Lug Base Plate

bull Uniform load w

w frac14 PEA

frac14 127724

frac14 532kipsin

bull End reaction R1

R1 frac14 PE2

frac14 12772

frac14 6385 kips

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

Ma frac14 0985eth8748 2496thorn 768thorn 2304 17 496THORNfrac14 8049 in kips

bull Moment at mid Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

Mx frac14 8049thorn 17 240 3831

frac14 5360 in kips

bull Section modulus Z

Z frac14t2bG

6

frac1462$40

6

frac14 240 in3

bull Bending stress sb

sb frac14 Mx

Zfrac14 5360

240frac14 2233 ksi

bull Allowable bending stress Fb

Fb frac14 066Fy frac14 06636 frac14 2376 ksi

30 Check of Vessel Flange

bull Unit load w

w frac14 PEpBc

frac14 1277p54

frac14 752kipsin

bull Bending moment Mb

Mb frac14 whD frac14 752eth92THORN frac14 6925 in kips

bull Bending stress sb

sb frac14 6Mb

t2ffrac14 frac126eth6925THORN

11252frac14 328 ksi

704 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 705

Procedure 10-8 Design of Trunnions

Lug Dimensions

Dimensions for Trunnion

Type 1 Trunnion and Fixed Lug

Type 2 Trunnion and Rotating Lug

Type 3 Trunnion Only

706 Pressure Vessel Design Manual

Type 1 Trunnion and Fixed Lug

There are four checks to be performed

1 Check lug2 Check trunnion3 Check welds4 Check vessel shell

Check Lug

Transverse (vessel horizontal)

M frac14 PTE and Z frac14 4R2otL6

Therefore

tL frac14 15PTE

R2oFb

Longitudinal (vessel vertical)

bull Cross-sectional area at pin hole Ap

Ap frac14 213tL thorn 2tpethD3 D1

bull Cross-sectional area at top of lug An

An frac14 tL

RT D1

2

thorn 2tp

D3 D1

2

bull Shear stress s

s frac14 PLAP

or s frac14 PLAn

bull Pin bearing stress sp

sp frac14 PLD2

tL thorn 2tp

Check Trunnion

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Torsional moment MT (vessel horizontal)

MT frac14 PTE

bull Bending stress sb

sb frac14 ML

Z

bull Torsional shear stress sT

sT frac14 MT

2pRnto

Check Welds

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Polar moment of inertia Jw

Jw frac14 2pR3n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Torsional shear stress in weld sT

sT frac14 MTRn

Jw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 2 Trunnion and Rotating Lug

bull Net section at Section A-A Ap

Ap frac14 213tL thorn 2tpD3 D1

Transportation and Erection of Pressure Vessels 707

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at Section B-B An

An frac14 2tLethRo RiTHORNbull Shear stress at trunnion s

s frac14 PLAn

bull Minimum bearing contact angle for lug at trun-nion qB

qB frac14 eth159PLTHORNRntLFp

bull Pin hole bearing stress sp

sp frac14 PLD3

tL thorn 2tp

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Swbull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 3 Trunnion Only

Vessel Vertical

bull Longitudinal moment ML

ML frac14 PLe

bull Bending stress in trunnion sb

sb frac14 ML

Z

Vessel Horizontal

bull Circumferential moment Mc

Mc frac14 PTe

bull Bending stress in trunnion sb

sb frac14 Mc

Z

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

708 Pressure Vessel Design Manual

TYPE 1 TYPE 2

W

K

DIA

A

DIA

= F

DIA

= M

K

C

KT

2 X 125 DIAVENT HOLES

DIA

A

125

D

250

DIA

= F

W

K

B

NUTS WELDED

GRIND WELDSMOOTH

DIA

= M

K

E

KT

2 X 125 DIAVENT HOLES

Table 10-13Dimensions of trunnions

Allowable Load Tons Pipe Size A C D E F M N T W Weight Lbs

1 0-5 4 Std 4 - - 85 8 - 05 025 30

2 5-10 6 Std 5 - - 105 12 - 05 025 55

3 10-15 8 Std 6 0625 8 125 15 4 05 0375 90

4 15-25 10 Std 6 0625 8 15 18 4 075 0375 150

5 25-35 12 Sch 80 6 075 8 17 21 4 075 0375 240

6 35-45 12 Sch 80 6 075 8 17 21 4 075 05 240

7 45-60 14 Sch 80 6 075 8 18 24 8 1 05 375

8 60-75 14 Sch 80 7 0875 8 18 24 8 1 0625 400

9 75-100 16 Sch 80 7 0875 8 25 27 8 1 0625 625

10 100-125 16 Sch 80 7 0875 8 25 27 8 1125 0875 660

11 125-150 18 Sch 80 7 0875 8 27 30 12 1125 0875 850

12 150-200 18 Sch 80 8 0875 8 27 30 12 1125 1 875

13 200-250 20 Sch 80 8 0875 10 30 36 16 125 1 1000

14 300 24 Sch 80 8 1 10 34 36 16 125 1125 1440

15 400 24 Sch 80 8 1 10 34 40 20 1375 1125 1675

16 500 30 125 10 125 12 42 48 20 1375 1375 2400

17 600 36 125 10 125 12 48 60 24 15 1375 3600

Notes

1 Do not use re-pads for cyclic service

2 B frac14 D - 125

3 K frac14 Pipe Wall Thk

4 Dimensions are given for reference only All loadings and stress shall be checked prior to use

Transportation and Erection of Pressure Vessels 709

Procedure 10-9 Local Loads in Shell Due to Erection Forces

Trunnions

Fixed Lug Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Maximum torsional moment MT

MT frac14 PTE

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

Rotating Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

TrunniondNo Lug

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

710 Pressure Vessel Design Manual

Side Lugs Notes

1 Optional internal pipe Remove after erection2 Radial load Pr is the axial load in the internal pipe

stiffener if used in lieu of radial load in shell3 Circumferential ring stiffeners are optional at these

elevations

bull Circumferential moment Mc

Mc frac14 PTe

bull Longitudinal moment Mx

Mx frac14 PLe

bull Load on weld group f

f frac14 PTELT

bull Radial loads Pr and Pa

Pr frac14 PLe

Pa frac14 PL sin f

Top Flange Lug

bull Loads PT and PL

PT frac14 P cos q

PL frac14 P sin q

Transportation and Erection of Pressure Vessels 711

bull Moment on flange M

M frac14 PTB

bull Moment on head M

M frac14 PTethBthorn JTHORNbull Moment on vessel M

M frac14 PTG

bull Radial load on head and nozzle frac14 PL

Side Flange Lug

bull Loads PT and PL

PL frac14 P cos q

PT frac14 P sin q

bull Moment on flange M

M frac14 PLB

bull Longitudinal moment on shell Mx

M frac14 PTethBthorn JTHORNbull Radial load on shell and nozzle frac14 PT

712 Pressure Vessel Design Manual

Procedure 10-10 Miscellaneous

Figure 10-7 Fundamental handling operations Reprinted by permission of the Babcock and Wilcox Companya McDermott Company

Transportation and Erection of Pressure Vessels 713

Figure 10-8 Loads on wire rope for various sheave configurations

714 Pressure Vessel Design Manual

Table 10-14Forged Steel Shackles

Dimensions in Inches

Size D (in)Safe Load

(lb)D (min) A

Tolerance

A DimB B (min) C G

Tolerance C

and G DimE F

frac14 475 73232 153232 11616 51616 93232 1⅛ ⅞ 11616 frac34 111616

⅜ 1050 113232 213232 11616 71616 256464 171616 1frac14 ⅛ 1 313232

71616 1450 256464 233232 11616 frac12 296464 1111616 171616 ⅛ 1⅛ 111616

frac12 1900 296464 131616 11616 ⅝ 91616 1⅞ 1⅝ ⅛ 1⅜ 151616

⅝ 2950 91616 111616 11616 frac34 436464 2133232 2 ⅛ 1⅝ 191616

frac34 4250 436464 1frac14 11616 ⅞ 253232 2273232 2⅜ frac14 2 1⅞

⅞ 5750 253232 171616 11616 1 576464 351616 2131616 frac14 2frac14 2⅛

1 7550 576464 1111616 11616 1⅛ 113232 3frac34 331616 frac14 2frac12 2⅜

1⅛ 8900 113232 1271616 ⅛ 1frac14 176464 4frac14 391616 frac14 2frac34 2⅝

1frac14 11000 176464 213232 ⅛ 1⅜ 1156464 4111616 3151616 frac14 3⅛ 3

1⅜ 13300 1156464 2frac14 ⅛ 1frac12 1113232 5frac14 471616 frac14 3frac12 351616

1frac12 15600 1113232 2⅜ ⅛ 1⅝ 1296464 5frac34 4⅞ frac14 3frac34 3⅝

1frac34 21500 1356464 2⅞ ⅛ 2 1253232 7 5frac34 frac14 4frac14 4⅛

2 28100 1253232 3frac14 ⅛ 2frac14 216464 7frac34 6frac34 frac14 5frac14 5

2frac14 36000 216464 3frac34 ⅛ 2frac12 2156464 9frac14 7⅛ frac34 5frac12 5frac14

2frac12 45100 2156464 4⅛ ⅛ 2frac34 2153232 10frac12 8 frac34 6frac14 6

3 64700 2111616 5 ⅛ 3frac14 2293232 13 11frac12 frac34 6frac34 6frac12

Notes

For shackles with safe loads greater than the maximum shown use CrosbyndashLaughlin (The Crosby Group Div of American Hoist amp Derrick Co Tulsa

OK 74101) Skookum (Skookum Co Inc Portland OR 97203) or equal with an ultimate strength at least 5 times the safe working load

Allowable loads are lower than OSHA requirements tabulated in Section 1926251 Table H-19

Transportation and Erection of Pressure Vessels 715

Figure 10-9 Wire rope end configurations

716 Pressure Vessel Design Manual

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 18: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

Lug

bull Maximum bending moment in lug ML

ML frac14 PE

bull Section modulus lug Z

Z frac14 A2tL6

bull Bending stress lug sb

sb frac14 ML

Z

bull Thickness of lug required tL

tL frac14 6ML

A2Fb

bull Tension at edge of pad sT

sT frac14 PL2L4tL

bull Net section at pin hole Ap

Ap frac14 2L3tL thorn 2tpD3 D1

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at top of lug An

An frac14 tL

R3 D1

2

thorn 2tp

D3 D1

2

bull Shear stress at top of lug s

s frac14 PTAn

bull Pin bearing stress sp

sp frac14 PTD3

tL thorn 2tp

Check Welds

bull Polar moment of inertia Jw

Re-pad Jw frac14 ethA1 thorn L6THORN36

Lug Jw frac14 ethAthorn 2BTHORN312

B2ethAthorn BTHORN2ethAthorn 2BTHORN

bull Moment M1

M1 frac14 LTPT

Lug Weld

bull Find loads on weldsbull Transverse shear due to PT f1

f1 frac14 PTAthorn 2B

bull Transverse shear due to M1 f2

f2 frac14 M1ethB NTTHORNJw

bull Longitudinal shear due to M1 f3

f3 frac14 M1BJw

bull Combined shear load fr

fr frac14ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiethf1 thorn f2THORN2thornf23

q

692 Pressure Vessel Design Manual

bull Size of weld required w1

w1 frac14 fr0707Fs

Note If w1 exceeds the shell plate thickness then a re-padmust be used

Re-pad Weld

bull Moment M2

M2 frac14 PTethEthorn 05L6THORN

bull Transverse shear due to PT f1

f1 frac14 PT2A1 thorn 2L6

bull Transverse shear due to M2 f2

f2 frac14 05M2L6

Jw

bull Longitudinal shear due to M2 f3

f3 frac14 M2L6

Jw

bull Combined shear load fr

fr frac14ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiethf1 thorn f2THORN2thornf23

q

bull Size of weld required w1

w2 frac14 fr0707Fs

Pad Eye Weld

bull Unit shear load on pad f4

f4 frac14 PTtppD2

2tp thorn tL

bull Size of weld required w3

w3 frac14 f40707Fs

Top Head Lug for Large Loads

Transportation and Erection of Pressure Vessels 693

Table 10-9Dimensions for top head or cone lugs

694 Pressure Vessel Design Manual

Procedure 10-7 Design of Flange Lugs

Transportation and Erection of Pressure Vessels 695

Table 10-10Flange lug dimensions

Load Capacity (tons) D1 tL tb A B G H E

50 338 2 2 8 11 12 30 9

100 5 3 3 14 12 24 36 9

200 6 4 4 18 14 30 40 10

400 8 5 5 20 16 36 46 11

600 9 6 6 24 22 40 58 16

800 10 9 7 28 24 42 60 17

Table 10-11Bolt properties

Bolt Size Ab As Tb

05e13 0196 0112 12

0625e11 0307 0199 19

075e10 0442 0309 28

0875e9 0601 0446 39

1e8 0785 0605 51

1125e8 0994 079 56

125e8 1227 1 71

1375e8 1485 1233 85

15e8 1767 1492 103

175e8 2405 2082 182

2e8 3142 2771 243

225e8 3976 3557 311

25e8 4909 4442 389

275e8 594 543 418

3e8 7069 6506 501

325e8 83 7686 592

35e8 962 896 690

375e8 1104 1034 796

4e8 1257 1181 910

Table 10-12Values of Su

Bolt Dia db Material Su (ksi)

lt 1 A-325 120

1125e15 A-325 105

1625e25 A-193-B7 125

2625e4 A-193-B7 110

696 Pressure Vessel Design Manual

Top Flange Lug

PL frac14 P sin q

PT frac14 P cos q

PE frac14 PLA

thorn 3PTe

A2

M1frac14 PTB

M2frac14 PT(B thorn J)

M3frac14 PTe

Mufrac14 Xn cos an Nb

Mafrac14 MuM1PMu

Xn frac14 Rb cos an

yn frac14 Rb sin an

Side Flange Lug

Fn frac14 Ma

XnNb

fs frac14 PTN

sT frac14 FnAs

Fs frac14 15 ksi

1 sTAb

Tb

As frac14 07854 ethd 01218THORN2

s frac14 fsAs

lt Fs

Tb frac14 075uAs

06Fy lt FT lt 40 ksi

Transportation and Erection of Pressure Vessels 697

Design Process

1 Determine loads2 Check of lug

a Shear at pin holeb Bending of lugc Bearing at pin hole

3 Check of base plate4 Check of nozzle flange5 Check of flange bolting6 Check of local load at nozzle to head or shell

junction

Step 1 Determine loads

bull Determine loads PT and PL for various lift angles qbull Determine uniform loads w1 and w2 for variousangles q

bull Using w1 and w2 solve for worst case of combinedload PE

bull Determine worst-case bending moment in lug M3

Step 2 Check of lug

a Shear at pin holebull Area required Ar

Ar frac14 PEFs

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN

b Bending of lug due to M3

bull Section modulus Z

Z frac14 tLA2

6

bull Bending stress lug sb

sb frac14 M3

Z

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFp

bull Bearing available Aa

Aa frac14 D2tL

Maximum Tension in Lug

Check of Nozzle Flange

bull Unit load w

w frac14 PEpBc

bull Bending moment M

M frac14 whDbull Bending stress sb

sb frac14 6M

t2f

698 Pressure Vessel Design Manual

Bolt Loads for Rectangular Lugs Design of Full Circular Base Plate for Lug

bull If a full circular plate is used in lieu of a rectangularplate the following evaluation may be used

bull Unit load on bolt circle w

w frac14 PEpBc

bull Edge distance from point of load hp

hp frac14 BC tL2

bull Bending moment M

M frac14 whp

bull Bending stress sb

sb frac14 6M

t2b

bull Check bolting same as rectangular flange

Transportation and Erection of Pressure Vessels 699

Design of Lug Base Plate

(From R J Roark Formulas for Stress and StrainMcGraw-Hill Book Co 4th Edition Table III Case 34)

bull Uniform load w

w frac14 PEA

bull End reaction R1

R1 frac14 wA2

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

bull Moment at midspan Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

bull Thickness required tb

tb frac14ffiffiffiffiffiffiffiffiffi6Mx

GFb

s

700 Pressure Vessel Design Manual

Check of Bolts

Case 1 Bolts on Centerline Case 2 Bolts Straddle Centerline

Bolt 1 2 3 4 5 Bolt 1 2 3 4 5

an an

xn xn

yn yn

Nb Nb

Mu Mu

Ma Ma

Fn Fn

sT sT

Fs Fs

Transportation and Erection of Pressure Vessels 701

Sample Problem Top Flange Lug

GivenL1 frac14 90 ftL2 frac14 50 ftL3 frac14 40 ftL4 frac14 95 ft

Fy bolting frac14 75 ksiFy lug frac14 36 ksi

Fy flange frac14 36 ksiFs frac14 04(36) frac14 144 ksiFT frac14 06(36) frac14 216 ksiFb frac14 066(36) frac14 2376 ksiWL frac14 1200 kipsBc frac14 54 inRc frac14 27 inB frac14 22 intb frac14 6 intL frac14 6 intf frac14 11 in

D1 frac14 9 in

D2 frac14 8 in

Bolt size frac14 3-14-8 UNC

Ab frac14 83 in2

As frac14 7686 in2

Tb frac14 592 kips

Su frac14 110 ksi

e frac14 16 in

G frac14 40 in

A frac14 24 in

hD frac14 95 in

b frac14 05ethBc ATHORN

Results

PT max frac14 537 kips q frac14 10

PL max frac141200 kips q frac14 90

PE max frac141277 kips q frac14 40

sT bolt max frac14 2011 ksi 40 ksi

s bolt max frac14 698 ksi 1077 ksi

702 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 703

10 Check Lug

a Shear at pin hole

bull Area required Ar

Ar frac14 PEFS

frac14 1277144

frac14 8868 in2

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN frac14 eth24$6THORN eth9$6THORN frac14 90 in2

b Bending of lug due to M3

bull Maximum moment M3

M3 frac14 PTe frac14 537eth16THORN frac14 8592 in kips

bull Section modulus Z

Z frac14 tLA2

6frac14

6$242

6

frac14 576 in3

bull Bending stress lug sb

sb frac14 M3

Zfrac14 8592

576frac14 1491 ksi

bull Thickness required tL

tL frac14 6M

FbA2 frac14 6$85922376eth242THORN frac14 376 in

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFP

frac14 1277324

frac14 3941 in2

bull Bearing available Aa

Aa frac14 D2tL frac14 8$6 frac14 48 in2

20 Check Lug Base Plate

bull Uniform load w

w frac14 PEA

frac14 127724

frac14 532kipsin

bull End reaction R1

R1 frac14 PE2

frac14 12772

frac14 6385 kips

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

Ma frac14 0985eth8748 2496thorn 768thorn 2304 17 496THORNfrac14 8049 in kips

bull Moment at mid Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

Mx frac14 8049thorn 17 240 3831

frac14 5360 in kips

bull Section modulus Z

Z frac14t2bG

6

frac1462$40

6

frac14 240 in3

bull Bending stress sb

sb frac14 Mx

Zfrac14 5360

240frac14 2233 ksi

bull Allowable bending stress Fb

Fb frac14 066Fy frac14 06636 frac14 2376 ksi

30 Check of Vessel Flange

bull Unit load w

w frac14 PEpBc

frac14 1277p54

frac14 752kipsin

bull Bending moment Mb

Mb frac14 whD frac14 752eth92THORN frac14 6925 in kips

bull Bending stress sb

sb frac14 6Mb

t2ffrac14 frac126eth6925THORN

11252frac14 328 ksi

704 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 705

Procedure 10-8 Design of Trunnions

Lug Dimensions

Dimensions for Trunnion

Type 1 Trunnion and Fixed Lug

Type 2 Trunnion and Rotating Lug

Type 3 Trunnion Only

706 Pressure Vessel Design Manual

Type 1 Trunnion and Fixed Lug

There are four checks to be performed

1 Check lug2 Check trunnion3 Check welds4 Check vessel shell

Check Lug

Transverse (vessel horizontal)

M frac14 PTE and Z frac14 4R2otL6

Therefore

tL frac14 15PTE

R2oFb

Longitudinal (vessel vertical)

bull Cross-sectional area at pin hole Ap

Ap frac14 213tL thorn 2tpethD3 D1

bull Cross-sectional area at top of lug An

An frac14 tL

RT D1

2

thorn 2tp

D3 D1

2

bull Shear stress s

s frac14 PLAP

or s frac14 PLAn

bull Pin bearing stress sp

sp frac14 PLD2

tL thorn 2tp

Check Trunnion

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Torsional moment MT (vessel horizontal)

MT frac14 PTE

bull Bending stress sb

sb frac14 ML

Z

bull Torsional shear stress sT

sT frac14 MT

2pRnto

Check Welds

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Polar moment of inertia Jw

Jw frac14 2pR3n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Torsional shear stress in weld sT

sT frac14 MTRn

Jw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 2 Trunnion and Rotating Lug

bull Net section at Section A-A Ap

Ap frac14 213tL thorn 2tpD3 D1

Transportation and Erection of Pressure Vessels 707

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at Section B-B An

An frac14 2tLethRo RiTHORNbull Shear stress at trunnion s

s frac14 PLAn

bull Minimum bearing contact angle for lug at trun-nion qB

qB frac14 eth159PLTHORNRntLFp

bull Pin hole bearing stress sp

sp frac14 PLD3

tL thorn 2tp

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Swbull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 3 Trunnion Only

Vessel Vertical

bull Longitudinal moment ML

ML frac14 PLe

bull Bending stress in trunnion sb

sb frac14 ML

Z

Vessel Horizontal

bull Circumferential moment Mc

Mc frac14 PTe

bull Bending stress in trunnion sb

sb frac14 Mc

Z

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

708 Pressure Vessel Design Manual

TYPE 1 TYPE 2

W

K

DIA

A

DIA

= F

DIA

= M

K

C

KT

2 X 125 DIAVENT HOLES

DIA

A

125

D

250

DIA

= F

W

K

B

NUTS WELDED

GRIND WELDSMOOTH

DIA

= M

K

E

KT

2 X 125 DIAVENT HOLES

Table 10-13Dimensions of trunnions

Allowable Load Tons Pipe Size A C D E F M N T W Weight Lbs

1 0-5 4 Std 4 - - 85 8 - 05 025 30

2 5-10 6 Std 5 - - 105 12 - 05 025 55

3 10-15 8 Std 6 0625 8 125 15 4 05 0375 90

4 15-25 10 Std 6 0625 8 15 18 4 075 0375 150

5 25-35 12 Sch 80 6 075 8 17 21 4 075 0375 240

6 35-45 12 Sch 80 6 075 8 17 21 4 075 05 240

7 45-60 14 Sch 80 6 075 8 18 24 8 1 05 375

8 60-75 14 Sch 80 7 0875 8 18 24 8 1 0625 400

9 75-100 16 Sch 80 7 0875 8 25 27 8 1 0625 625

10 100-125 16 Sch 80 7 0875 8 25 27 8 1125 0875 660

11 125-150 18 Sch 80 7 0875 8 27 30 12 1125 0875 850

12 150-200 18 Sch 80 8 0875 8 27 30 12 1125 1 875

13 200-250 20 Sch 80 8 0875 10 30 36 16 125 1 1000

14 300 24 Sch 80 8 1 10 34 36 16 125 1125 1440

15 400 24 Sch 80 8 1 10 34 40 20 1375 1125 1675

16 500 30 125 10 125 12 42 48 20 1375 1375 2400

17 600 36 125 10 125 12 48 60 24 15 1375 3600

Notes

1 Do not use re-pads for cyclic service

2 B frac14 D - 125

3 K frac14 Pipe Wall Thk

4 Dimensions are given for reference only All loadings and stress shall be checked prior to use

Transportation and Erection of Pressure Vessels 709

Procedure 10-9 Local Loads in Shell Due to Erection Forces

Trunnions

Fixed Lug Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Maximum torsional moment MT

MT frac14 PTE

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

Rotating Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

TrunniondNo Lug

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

710 Pressure Vessel Design Manual

Side Lugs Notes

1 Optional internal pipe Remove after erection2 Radial load Pr is the axial load in the internal pipe

stiffener if used in lieu of radial load in shell3 Circumferential ring stiffeners are optional at these

elevations

bull Circumferential moment Mc

Mc frac14 PTe

bull Longitudinal moment Mx

Mx frac14 PLe

bull Load on weld group f

f frac14 PTELT

bull Radial loads Pr and Pa

Pr frac14 PLe

Pa frac14 PL sin f

Top Flange Lug

bull Loads PT and PL

PT frac14 P cos q

PL frac14 P sin q

Transportation and Erection of Pressure Vessels 711

bull Moment on flange M

M frac14 PTB

bull Moment on head M

M frac14 PTethBthorn JTHORNbull Moment on vessel M

M frac14 PTG

bull Radial load on head and nozzle frac14 PL

Side Flange Lug

bull Loads PT and PL

PL frac14 P cos q

PT frac14 P sin q

bull Moment on flange M

M frac14 PLB

bull Longitudinal moment on shell Mx

M frac14 PTethBthorn JTHORNbull Radial load on shell and nozzle frac14 PT

712 Pressure Vessel Design Manual

Procedure 10-10 Miscellaneous

Figure 10-7 Fundamental handling operations Reprinted by permission of the Babcock and Wilcox Companya McDermott Company

Transportation and Erection of Pressure Vessels 713

Figure 10-8 Loads on wire rope for various sheave configurations

714 Pressure Vessel Design Manual

Table 10-14Forged Steel Shackles

Dimensions in Inches

Size D (in)Safe Load

(lb)D (min) A

Tolerance

A DimB B (min) C G

Tolerance C

and G DimE F

frac14 475 73232 153232 11616 51616 93232 1⅛ ⅞ 11616 frac34 111616

⅜ 1050 113232 213232 11616 71616 256464 171616 1frac14 ⅛ 1 313232

71616 1450 256464 233232 11616 frac12 296464 1111616 171616 ⅛ 1⅛ 111616

frac12 1900 296464 131616 11616 ⅝ 91616 1⅞ 1⅝ ⅛ 1⅜ 151616

⅝ 2950 91616 111616 11616 frac34 436464 2133232 2 ⅛ 1⅝ 191616

frac34 4250 436464 1frac14 11616 ⅞ 253232 2273232 2⅜ frac14 2 1⅞

⅞ 5750 253232 171616 11616 1 576464 351616 2131616 frac14 2frac14 2⅛

1 7550 576464 1111616 11616 1⅛ 113232 3frac34 331616 frac14 2frac12 2⅜

1⅛ 8900 113232 1271616 ⅛ 1frac14 176464 4frac14 391616 frac14 2frac34 2⅝

1frac14 11000 176464 213232 ⅛ 1⅜ 1156464 4111616 3151616 frac14 3⅛ 3

1⅜ 13300 1156464 2frac14 ⅛ 1frac12 1113232 5frac14 471616 frac14 3frac12 351616

1frac12 15600 1113232 2⅜ ⅛ 1⅝ 1296464 5frac34 4⅞ frac14 3frac34 3⅝

1frac34 21500 1356464 2⅞ ⅛ 2 1253232 7 5frac34 frac14 4frac14 4⅛

2 28100 1253232 3frac14 ⅛ 2frac14 216464 7frac34 6frac34 frac14 5frac14 5

2frac14 36000 216464 3frac34 ⅛ 2frac12 2156464 9frac14 7⅛ frac34 5frac12 5frac14

2frac12 45100 2156464 4⅛ ⅛ 2frac34 2153232 10frac12 8 frac34 6frac14 6

3 64700 2111616 5 ⅛ 3frac14 2293232 13 11frac12 frac34 6frac34 6frac12

Notes

For shackles with safe loads greater than the maximum shown use CrosbyndashLaughlin (The Crosby Group Div of American Hoist amp Derrick Co Tulsa

OK 74101) Skookum (Skookum Co Inc Portland OR 97203) or equal with an ultimate strength at least 5 times the safe working load

Allowable loads are lower than OSHA requirements tabulated in Section 1926251 Table H-19

Transportation and Erection of Pressure Vessels 715

Figure 10-9 Wire rope end configurations

716 Pressure Vessel Design Manual

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 19: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

bull Size of weld required w1

w1 frac14 fr0707Fs

Note If w1 exceeds the shell plate thickness then a re-padmust be used

Re-pad Weld

bull Moment M2

M2 frac14 PTethEthorn 05L6THORN

bull Transverse shear due to PT f1

f1 frac14 PT2A1 thorn 2L6

bull Transverse shear due to M2 f2

f2 frac14 05M2L6

Jw

bull Longitudinal shear due to M2 f3

f3 frac14 M2L6

Jw

bull Combined shear load fr

fr frac14ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiethf1 thorn f2THORN2thornf23

q

bull Size of weld required w1

w2 frac14 fr0707Fs

Pad Eye Weld

bull Unit shear load on pad f4

f4 frac14 PTtppD2

2tp thorn tL

bull Size of weld required w3

w3 frac14 f40707Fs

Top Head Lug for Large Loads

Transportation and Erection of Pressure Vessels 693

Table 10-9Dimensions for top head or cone lugs

694 Pressure Vessel Design Manual

Procedure 10-7 Design of Flange Lugs

Transportation and Erection of Pressure Vessels 695

Table 10-10Flange lug dimensions

Load Capacity (tons) D1 tL tb A B G H E

50 338 2 2 8 11 12 30 9

100 5 3 3 14 12 24 36 9

200 6 4 4 18 14 30 40 10

400 8 5 5 20 16 36 46 11

600 9 6 6 24 22 40 58 16

800 10 9 7 28 24 42 60 17

Table 10-11Bolt properties

Bolt Size Ab As Tb

05e13 0196 0112 12

0625e11 0307 0199 19

075e10 0442 0309 28

0875e9 0601 0446 39

1e8 0785 0605 51

1125e8 0994 079 56

125e8 1227 1 71

1375e8 1485 1233 85

15e8 1767 1492 103

175e8 2405 2082 182

2e8 3142 2771 243

225e8 3976 3557 311

25e8 4909 4442 389

275e8 594 543 418

3e8 7069 6506 501

325e8 83 7686 592

35e8 962 896 690

375e8 1104 1034 796

4e8 1257 1181 910

Table 10-12Values of Su

Bolt Dia db Material Su (ksi)

lt 1 A-325 120

1125e15 A-325 105

1625e25 A-193-B7 125

2625e4 A-193-B7 110

696 Pressure Vessel Design Manual

Top Flange Lug

PL frac14 P sin q

PT frac14 P cos q

PE frac14 PLA

thorn 3PTe

A2

M1frac14 PTB

M2frac14 PT(B thorn J)

M3frac14 PTe

Mufrac14 Xn cos an Nb

Mafrac14 MuM1PMu

Xn frac14 Rb cos an

yn frac14 Rb sin an

Side Flange Lug

Fn frac14 Ma

XnNb

fs frac14 PTN

sT frac14 FnAs

Fs frac14 15 ksi

1 sTAb

Tb

As frac14 07854 ethd 01218THORN2

s frac14 fsAs

lt Fs

Tb frac14 075uAs

06Fy lt FT lt 40 ksi

Transportation and Erection of Pressure Vessels 697

Design Process

1 Determine loads2 Check of lug

a Shear at pin holeb Bending of lugc Bearing at pin hole

3 Check of base plate4 Check of nozzle flange5 Check of flange bolting6 Check of local load at nozzle to head or shell

junction

Step 1 Determine loads

bull Determine loads PT and PL for various lift angles qbull Determine uniform loads w1 and w2 for variousangles q

bull Using w1 and w2 solve for worst case of combinedload PE

bull Determine worst-case bending moment in lug M3

Step 2 Check of lug

a Shear at pin holebull Area required Ar

Ar frac14 PEFs

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN

b Bending of lug due to M3

bull Section modulus Z

Z frac14 tLA2

6

bull Bending stress lug sb

sb frac14 M3

Z

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFp

bull Bearing available Aa

Aa frac14 D2tL

Maximum Tension in Lug

Check of Nozzle Flange

bull Unit load w

w frac14 PEpBc

bull Bending moment M

M frac14 whDbull Bending stress sb

sb frac14 6M

t2f

698 Pressure Vessel Design Manual

Bolt Loads for Rectangular Lugs Design of Full Circular Base Plate for Lug

bull If a full circular plate is used in lieu of a rectangularplate the following evaluation may be used

bull Unit load on bolt circle w

w frac14 PEpBc

bull Edge distance from point of load hp

hp frac14 BC tL2

bull Bending moment M

M frac14 whp

bull Bending stress sb

sb frac14 6M

t2b

bull Check bolting same as rectangular flange

Transportation and Erection of Pressure Vessels 699

Design of Lug Base Plate

(From R J Roark Formulas for Stress and StrainMcGraw-Hill Book Co 4th Edition Table III Case 34)

bull Uniform load w

w frac14 PEA

bull End reaction R1

R1 frac14 wA2

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

bull Moment at midspan Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

bull Thickness required tb

tb frac14ffiffiffiffiffiffiffiffiffi6Mx

GFb

s

700 Pressure Vessel Design Manual

Check of Bolts

Case 1 Bolts on Centerline Case 2 Bolts Straddle Centerline

Bolt 1 2 3 4 5 Bolt 1 2 3 4 5

an an

xn xn

yn yn

Nb Nb

Mu Mu

Ma Ma

Fn Fn

sT sT

Fs Fs

Transportation and Erection of Pressure Vessels 701

Sample Problem Top Flange Lug

GivenL1 frac14 90 ftL2 frac14 50 ftL3 frac14 40 ftL4 frac14 95 ft

Fy bolting frac14 75 ksiFy lug frac14 36 ksi

Fy flange frac14 36 ksiFs frac14 04(36) frac14 144 ksiFT frac14 06(36) frac14 216 ksiFb frac14 066(36) frac14 2376 ksiWL frac14 1200 kipsBc frac14 54 inRc frac14 27 inB frac14 22 intb frac14 6 intL frac14 6 intf frac14 11 in

D1 frac14 9 in

D2 frac14 8 in

Bolt size frac14 3-14-8 UNC

Ab frac14 83 in2

As frac14 7686 in2

Tb frac14 592 kips

Su frac14 110 ksi

e frac14 16 in

G frac14 40 in

A frac14 24 in

hD frac14 95 in

b frac14 05ethBc ATHORN

Results

PT max frac14 537 kips q frac14 10

PL max frac141200 kips q frac14 90

PE max frac141277 kips q frac14 40

sT bolt max frac14 2011 ksi 40 ksi

s bolt max frac14 698 ksi 1077 ksi

702 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 703

10 Check Lug

a Shear at pin hole

bull Area required Ar

Ar frac14 PEFS

frac14 1277144

frac14 8868 in2

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN frac14 eth24$6THORN eth9$6THORN frac14 90 in2

b Bending of lug due to M3

bull Maximum moment M3

M3 frac14 PTe frac14 537eth16THORN frac14 8592 in kips

bull Section modulus Z

Z frac14 tLA2

6frac14

6$242

6

frac14 576 in3

bull Bending stress lug sb

sb frac14 M3

Zfrac14 8592

576frac14 1491 ksi

bull Thickness required tL

tL frac14 6M

FbA2 frac14 6$85922376eth242THORN frac14 376 in

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFP

frac14 1277324

frac14 3941 in2

bull Bearing available Aa

Aa frac14 D2tL frac14 8$6 frac14 48 in2

20 Check Lug Base Plate

bull Uniform load w

w frac14 PEA

frac14 127724

frac14 532kipsin

bull End reaction R1

R1 frac14 PE2

frac14 12772

frac14 6385 kips

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

Ma frac14 0985eth8748 2496thorn 768thorn 2304 17 496THORNfrac14 8049 in kips

bull Moment at mid Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

Mx frac14 8049thorn 17 240 3831

frac14 5360 in kips

bull Section modulus Z

Z frac14t2bG

6

frac1462$40

6

frac14 240 in3

bull Bending stress sb

sb frac14 Mx

Zfrac14 5360

240frac14 2233 ksi

bull Allowable bending stress Fb

Fb frac14 066Fy frac14 06636 frac14 2376 ksi

30 Check of Vessel Flange

bull Unit load w

w frac14 PEpBc

frac14 1277p54

frac14 752kipsin

bull Bending moment Mb

Mb frac14 whD frac14 752eth92THORN frac14 6925 in kips

bull Bending stress sb

sb frac14 6Mb

t2ffrac14 frac126eth6925THORN

11252frac14 328 ksi

704 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 705

Procedure 10-8 Design of Trunnions

Lug Dimensions

Dimensions for Trunnion

Type 1 Trunnion and Fixed Lug

Type 2 Trunnion and Rotating Lug

Type 3 Trunnion Only

706 Pressure Vessel Design Manual

Type 1 Trunnion and Fixed Lug

There are four checks to be performed

1 Check lug2 Check trunnion3 Check welds4 Check vessel shell

Check Lug

Transverse (vessel horizontal)

M frac14 PTE and Z frac14 4R2otL6

Therefore

tL frac14 15PTE

R2oFb

Longitudinal (vessel vertical)

bull Cross-sectional area at pin hole Ap

Ap frac14 213tL thorn 2tpethD3 D1

bull Cross-sectional area at top of lug An

An frac14 tL

RT D1

2

thorn 2tp

D3 D1

2

bull Shear stress s

s frac14 PLAP

or s frac14 PLAn

bull Pin bearing stress sp

sp frac14 PLD2

tL thorn 2tp

Check Trunnion

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Torsional moment MT (vessel horizontal)

MT frac14 PTE

bull Bending stress sb

sb frac14 ML

Z

bull Torsional shear stress sT

sT frac14 MT

2pRnto

Check Welds

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Polar moment of inertia Jw

Jw frac14 2pR3n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Torsional shear stress in weld sT

sT frac14 MTRn

Jw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 2 Trunnion and Rotating Lug

bull Net section at Section A-A Ap

Ap frac14 213tL thorn 2tpD3 D1

Transportation and Erection of Pressure Vessels 707

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at Section B-B An

An frac14 2tLethRo RiTHORNbull Shear stress at trunnion s

s frac14 PLAn

bull Minimum bearing contact angle for lug at trun-nion qB

qB frac14 eth159PLTHORNRntLFp

bull Pin hole bearing stress sp

sp frac14 PLD3

tL thorn 2tp

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Swbull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 3 Trunnion Only

Vessel Vertical

bull Longitudinal moment ML

ML frac14 PLe

bull Bending stress in trunnion sb

sb frac14 ML

Z

Vessel Horizontal

bull Circumferential moment Mc

Mc frac14 PTe

bull Bending stress in trunnion sb

sb frac14 Mc

Z

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

708 Pressure Vessel Design Manual

TYPE 1 TYPE 2

W

K

DIA

A

DIA

= F

DIA

= M

K

C

KT

2 X 125 DIAVENT HOLES

DIA

A

125

D

250

DIA

= F

W

K

B

NUTS WELDED

GRIND WELDSMOOTH

DIA

= M

K

E

KT

2 X 125 DIAVENT HOLES

Table 10-13Dimensions of trunnions

Allowable Load Tons Pipe Size A C D E F M N T W Weight Lbs

1 0-5 4 Std 4 - - 85 8 - 05 025 30

2 5-10 6 Std 5 - - 105 12 - 05 025 55

3 10-15 8 Std 6 0625 8 125 15 4 05 0375 90

4 15-25 10 Std 6 0625 8 15 18 4 075 0375 150

5 25-35 12 Sch 80 6 075 8 17 21 4 075 0375 240

6 35-45 12 Sch 80 6 075 8 17 21 4 075 05 240

7 45-60 14 Sch 80 6 075 8 18 24 8 1 05 375

8 60-75 14 Sch 80 7 0875 8 18 24 8 1 0625 400

9 75-100 16 Sch 80 7 0875 8 25 27 8 1 0625 625

10 100-125 16 Sch 80 7 0875 8 25 27 8 1125 0875 660

11 125-150 18 Sch 80 7 0875 8 27 30 12 1125 0875 850

12 150-200 18 Sch 80 8 0875 8 27 30 12 1125 1 875

13 200-250 20 Sch 80 8 0875 10 30 36 16 125 1 1000

14 300 24 Sch 80 8 1 10 34 36 16 125 1125 1440

15 400 24 Sch 80 8 1 10 34 40 20 1375 1125 1675

16 500 30 125 10 125 12 42 48 20 1375 1375 2400

17 600 36 125 10 125 12 48 60 24 15 1375 3600

Notes

1 Do not use re-pads for cyclic service

2 B frac14 D - 125

3 K frac14 Pipe Wall Thk

4 Dimensions are given for reference only All loadings and stress shall be checked prior to use

Transportation and Erection of Pressure Vessels 709

Procedure 10-9 Local Loads in Shell Due to Erection Forces

Trunnions

Fixed Lug Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Maximum torsional moment MT

MT frac14 PTE

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

Rotating Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

TrunniondNo Lug

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

710 Pressure Vessel Design Manual

Side Lugs Notes

1 Optional internal pipe Remove after erection2 Radial load Pr is the axial load in the internal pipe

stiffener if used in lieu of radial load in shell3 Circumferential ring stiffeners are optional at these

elevations

bull Circumferential moment Mc

Mc frac14 PTe

bull Longitudinal moment Mx

Mx frac14 PLe

bull Load on weld group f

f frac14 PTELT

bull Radial loads Pr and Pa

Pr frac14 PLe

Pa frac14 PL sin f

Top Flange Lug

bull Loads PT and PL

PT frac14 P cos q

PL frac14 P sin q

Transportation and Erection of Pressure Vessels 711

bull Moment on flange M

M frac14 PTB

bull Moment on head M

M frac14 PTethBthorn JTHORNbull Moment on vessel M

M frac14 PTG

bull Radial load on head and nozzle frac14 PL

Side Flange Lug

bull Loads PT and PL

PL frac14 P cos q

PT frac14 P sin q

bull Moment on flange M

M frac14 PLB

bull Longitudinal moment on shell Mx

M frac14 PTethBthorn JTHORNbull Radial load on shell and nozzle frac14 PT

712 Pressure Vessel Design Manual

Procedure 10-10 Miscellaneous

Figure 10-7 Fundamental handling operations Reprinted by permission of the Babcock and Wilcox Companya McDermott Company

Transportation and Erection of Pressure Vessels 713

Figure 10-8 Loads on wire rope for various sheave configurations

714 Pressure Vessel Design Manual

Table 10-14Forged Steel Shackles

Dimensions in Inches

Size D (in)Safe Load

(lb)D (min) A

Tolerance

A DimB B (min) C G

Tolerance C

and G DimE F

frac14 475 73232 153232 11616 51616 93232 1⅛ ⅞ 11616 frac34 111616

⅜ 1050 113232 213232 11616 71616 256464 171616 1frac14 ⅛ 1 313232

71616 1450 256464 233232 11616 frac12 296464 1111616 171616 ⅛ 1⅛ 111616

frac12 1900 296464 131616 11616 ⅝ 91616 1⅞ 1⅝ ⅛ 1⅜ 151616

⅝ 2950 91616 111616 11616 frac34 436464 2133232 2 ⅛ 1⅝ 191616

frac34 4250 436464 1frac14 11616 ⅞ 253232 2273232 2⅜ frac14 2 1⅞

⅞ 5750 253232 171616 11616 1 576464 351616 2131616 frac14 2frac14 2⅛

1 7550 576464 1111616 11616 1⅛ 113232 3frac34 331616 frac14 2frac12 2⅜

1⅛ 8900 113232 1271616 ⅛ 1frac14 176464 4frac14 391616 frac14 2frac34 2⅝

1frac14 11000 176464 213232 ⅛ 1⅜ 1156464 4111616 3151616 frac14 3⅛ 3

1⅜ 13300 1156464 2frac14 ⅛ 1frac12 1113232 5frac14 471616 frac14 3frac12 351616

1frac12 15600 1113232 2⅜ ⅛ 1⅝ 1296464 5frac34 4⅞ frac14 3frac34 3⅝

1frac34 21500 1356464 2⅞ ⅛ 2 1253232 7 5frac34 frac14 4frac14 4⅛

2 28100 1253232 3frac14 ⅛ 2frac14 216464 7frac34 6frac34 frac14 5frac14 5

2frac14 36000 216464 3frac34 ⅛ 2frac12 2156464 9frac14 7⅛ frac34 5frac12 5frac14

2frac12 45100 2156464 4⅛ ⅛ 2frac34 2153232 10frac12 8 frac34 6frac14 6

3 64700 2111616 5 ⅛ 3frac14 2293232 13 11frac12 frac34 6frac34 6frac12

Notes

For shackles with safe loads greater than the maximum shown use CrosbyndashLaughlin (The Crosby Group Div of American Hoist amp Derrick Co Tulsa

OK 74101) Skookum (Skookum Co Inc Portland OR 97203) or equal with an ultimate strength at least 5 times the safe working load

Allowable loads are lower than OSHA requirements tabulated in Section 1926251 Table H-19

Transportation and Erection of Pressure Vessels 715

Figure 10-9 Wire rope end configurations

716 Pressure Vessel Design Manual

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 20: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

Table 10-9Dimensions for top head or cone lugs

694 Pressure Vessel Design Manual

Procedure 10-7 Design of Flange Lugs

Transportation and Erection of Pressure Vessels 695

Table 10-10Flange lug dimensions

Load Capacity (tons) D1 tL tb A B G H E

50 338 2 2 8 11 12 30 9

100 5 3 3 14 12 24 36 9

200 6 4 4 18 14 30 40 10

400 8 5 5 20 16 36 46 11

600 9 6 6 24 22 40 58 16

800 10 9 7 28 24 42 60 17

Table 10-11Bolt properties

Bolt Size Ab As Tb

05e13 0196 0112 12

0625e11 0307 0199 19

075e10 0442 0309 28

0875e9 0601 0446 39

1e8 0785 0605 51

1125e8 0994 079 56

125e8 1227 1 71

1375e8 1485 1233 85

15e8 1767 1492 103

175e8 2405 2082 182

2e8 3142 2771 243

225e8 3976 3557 311

25e8 4909 4442 389

275e8 594 543 418

3e8 7069 6506 501

325e8 83 7686 592

35e8 962 896 690

375e8 1104 1034 796

4e8 1257 1181 910

Table 10-12Values of Su

Bolt Dia db Material Su (ksi)

lt 1 A-325 120

1125e15 A-325 105

1625e25 A-193-B7 125

2625e4 A-193-B7 110

696 Pressure Vessel Design Manual

Top Flange Lug

PL frac14 P sin q

PT frac14 P cos q

PE frac14 PLA

thorn 3PTe

A2

M1frac14 PTB

M2frac14 PT(B thorn J)

M3frac14 PTe

Mufrac14 Xn cos an Nb

Mafrac14 MuM1PMu

Xn frac14 Rb cos an

yn frac14 Rb sin an

Side Flange Lug

Fn frac14 Ma

XnNb

fs frac14 PTN

sT frac14 FnAs

Fs frac14 15 ksi

1 sTAb

Tb

As frac14 07854 ethd 01218THORN2

s frac14 fsAs

lt Fs

Tb frac14 075uAs

06Fy lt FT lt 40 ksi

Transportation and Erection of Pressure Vessels 697

Design Process

1 Determine loads2 Check of lug

a Shear at pin holeb Bending of lugc Bearing at pin hole

3 Check of base plate4 Check of nozzle flange5 Check of flange bolting6 Check of local load at nozzle to head or shell

junction

Step 1 Determine loads

bull Determine loads PT and PL for various lift angles qbull Determine uniform loads w1 and w2 for variousangles q

bull Using w1 and w2 solve for worst case of combinedload PE

bull Determine worst-case bending moment in lug M3

Step 2 Check of lug

a Shear at pin holebull Area required Ar

Ar frac14 PEFs

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN

b Bending of lug due to M3

bull Section modulus Z

Z frac14 tLA2

6

bull Bending stress lug sb

sb frac14 M3

Z

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFp

bull Bearing available Aa

Aa frac14 D2tL

Maximum Tension in Lug

Check of Nozzle Flange

bull Unit load w

w frac14 PEpBc

bull Bending moment M

M frac14 whDbull Bending stress sb

sb frac14 6M

t2f

698 Pressure Vessel Design Manual

Bolt Loads for Rectangular Lugs Design of Full Circular Base Plate for Lug

bull If a full circular plate is used in lieu of a rectangularplate the following evaluation may be used

bull Unit load on bolt circle w

w frac14 PEpBc

bull Edge distance from point of load hp

hp frac14 BC tL2

bull Bending moment M

M frac14 whp

bull Bending stress sb

sb frac14 6M

t2b

bull Check bolting same as rectangular flange

Transportation and Erection of Pressure Vessels 699

Design of Lug Base Plate

(From R J Roark Formulas for Stress and StrainMcGraw-Hill Book Co 4th Edition Table III Case 34)

bull Uniform load w

w frac14 PEA

bull End reaction R1

R1 frac14 wA2

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

bull Moment at midspan Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

bull Thickness required tb

tb frac14ffiffiffiffiffiffiffiffiffi6Mx

GFb

s

700 Pressure Vessel Design Manual

Check of Bolts

Case 1 Bolts on Centerline Case 2 Bolts Straddle Centerline

Bolt 1 2 3 4 5 Bolt 1 2 3 4 5

an an

xn xn

yn yn

Nb Nb

Mu Mu

Ma Ma

Fn Fn

sT sT

Fs Fs

Transportation and Erection of Pressure Vessels 701

Sample Problem Top Flange Lug

GivenL1 frac14 90 ftL2 frac14 50 ftL3 frac14 40 ftL4 frac14 95 ft

Fy bolting frac14 75 ksiFy lug frac14 36 ksi

Fy flange frac14 36 ksiFs frac14 04(36) frac14 144 ksiFT frac14 06(36) frac14 216 ksiFb frac14 066(36) frac14 2376 ksiWL frac14 1200 kipsBc frac14 54 inRc frac14 27 inB frac14 22 intb frac14 6 intL frac14 6 intf frac14 11 in

D1 frac14 9 in

D2 frac14 8 in

Bolt size frac14 3-14-8 UNC

Ab frac14 83 in2

As frac14 7686 in2

Tb frac14 592 kips

Su frac14 110 ksi

e frac14 16 in

G frac14 40 in

A frac14 24 in

hD frac14 95 in

b frac14 05ethBc ATHORN

Results

PT max frac14 537 kips q frac14 10

PL max frac141200 kips q frac14 90

PE max frac141277 kips q frac14 40

sT bolt max frac14 2011 ksi 40 ksi

s bolt max frac14 698 ksi 1077 ksi

702 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 703

10 Check Lug

a Shear at pin hole

bull Area required Ar

Ar frac14 PEFS

frac14 1277144

frac14 8868 in2

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN frac14 eth24$6THORN eth9$6THORN frac14 90 in2

b Bending of lug due to M3

bull Maximum moment M3

M3 frac14 PTe frac14 537eth16THORN frac14 8592 in kips

bull Section modulus Z

Z frac14 tLA2

6frac14

6$242

6

frac14 576 in3

bull Bending stress lug sb

sb frac14 M3

Zfrac14 8592

576frac14 1491 ksi

bull Thickness required tL

tL frac14 6M

FbA2 frac14 6$85922376eth242THORN frac14 376 in

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFP

frac14 1277324

frac14 3941 in2

bull Bearing available Aa

Aa frac14 D2tL frac14 8$6 frac14 48 in2

20 Check Lug Base Plate

bull Uniform load w

w frac14 PEA

frac14 127724

frac14 532kipsin

bull End reaction R1

R1 frac14 PE2

frac14 12772

frac14 6385 kips

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

Ma frac14 0985eth8748 2496thorn 768thorn 2304 17 496THORNfrac14 8049 in kips

bull Moment at mid Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

Mx frac14 8049thorn 17 240 3831

frac14 5360 in kips

bull Section modulus Z

Z frac14t2bG

6

frac1462$40

6

frac14 240 in3

bull Bending stress sb

sb frac14 Mx

Zfrac14 5360

240frac14 2233 ksi

bull Allowable bending stress Fb

Fb frac14 066Fy frac14 06636 frac14 2376 ksi

30 Check of Vessel Flange

bull Unit load w

w frac14 PEpBc

frac14 1277p54

frac14 752kipsin

bull Bending moment Mb

Mb frac14 whD frac14 752eth92THORN frac14 6925 in kips

bull Bending stress sb

sb frac14 6Mb

t2ffrac14 frac126eth6925THORN

11252frac14 328 ksi

704 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 705

Procedure 10-8 Design of Trunnions

Lug Dimensions

Dimensions for Trunnion

Type 1 Trunnion and Fixed Lug

Type 2 Trunnion and Rotating Lug

Type 3 Trunnion Only

706 Pressure Vessel Design Manual

Type 1 Trunnion and Fixed Lug

There are four checks to be performed

1 Check lug2 Check trunnion3 Check welds4 Check vessel shell

Check Lug

Transverse (vessel horizontal)

M frac14 PTE and Z frac14 4R2otL6

Therefore

tL frac14 15PTE

R2oFb

Longitudinal (vessel vertical)

bull Cross-sectional area at pin hole Ap

Ap frac14 213tL thorn 2tpethD3 D1

bull Cross-sectional area at top of lug An

An frac14 tL

RT D1

2

thorn 2tp

D3 D1

2

bull Shear stress s

s frac14 PLAP

or s frac14 PLAn

bull Pin bearing stress sp

sp frac14 PLD2

tL thorn 2tp

Check Trunnion

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Torsional moment MT (vessel horizontal)

MT frac14 PTE

bull Bending stress sb

sb frac14 ML

Z

bull Torsional shear stress sT

sT frac14 MT

2pRnto

Check Welds

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Polar moment of inertia Jw

Jw frac14 2pR3n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Torsional shear stress in weld sT

sT frac14 MTRn

Jw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 2 Trunnion and Rotating Lug

bull Net section at Section A-A Ap

Ap frac14 213tL thorn 2tpD3 D1

Transportation and Erection of Pressure Vessels 707

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at Section B-B An

An frac14 2tLethRo RiTHORNbull Shear stress at trunnion s

s frac14 PLAn

bull Minimum bearing contact angle for lug at trun-nion qB

qB frac14 eth159PLTHORNRntLFp

bull Pin hole bearing stress sp

sp frac14 PLD3

tL thorn 2tp

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Swbull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 3 Trunnion Only

Vessel Vertical

bull Longitudinal moment ML

ML frac14 PLe

bull Bending stress in trunnion sb

sb frac14 ML

Z

Vessel Horizontal

bull Circumferential moment Mc

Mc frac14 PTe

bull Bending stress in trunnion sb

sb frac14 Mc

Z

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

708 Pressure Vessel Design Manual

TYPE 1 TYPE 2

W

K

DIA

A

DIA

= F

DIA

= M

K

C

KT

2 X 125 DIAVENT HOLES

DIA

A

125

D

250

DIA

= F

W

K

B

NUTS WELDED

GRIND WELDSMOOTH

DIA

= M

K

E

KT

2 X 125 DIAVENT HOLES

Table 10-13Dimensions of trunnions

Allowable Load Tons Pipe Size A C D E F M N T W Weight Lbs

1 0-5 4 Std 4 - - 85 8 - 05 025 30

2 5-10 6 Std 5 - - 105 12 - 05 025 55

3 10-15 8 Std 6 0625 8 125 15 4 05 0375 90

4 15-25 10 Std 6 0625 8 15 18 4 075 0375 150

5 25-35 12 Sch 80 6 075 8 17 21 4 075 0375 240

6 35-45 12 Sch 80 6 075 8 17 21 4 075 05 240

7 45-60 14 Sch 80 6 075 8 18 24 8 1 05 375

8 60-75 14 Sch 80 7 0875 8 18 24 8 1 0625 400

9 75-100 16 Sch 80 7 0875 8 25 27 8 1 0625 625

10 100-125 16 Sch 80 7 0875 8 25 27 8 1125 0875 660

11 125-150 18 Sch 80 7 0875 8 27 30 12 1125 0875 850

12 150-200 18 Sch 80 8 0875 8 27 30 12 1125 1 875

13 200-250 20 Sch 80 8 0875 10 30 36 16 125 1 1000

14 300 24 Sch 80 8 1 10 34 36 16 125 1125 1440

15 400 24 Sch 80 8 1 10 34 40 20 1375 1125 1675

16 500 30 125 10 125 12 42 48 20 1375 1375 2400

17 600 36 125 10 125 12 48 60 24 15 1375 3600

Notes

1 Do not use re-pads for cyclic service

2 B frac14 D - 125

3 K frac14 Pipe Wall Thk

4 Dimensions are given for reference only All loadings and stress shall be checked prior to use

Transportation and Erection of Pressure Vessels 709

Procedure 10-9 Local Loads in Shell Due to Erection Forces

Trunnions

Fixed Lug Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Maximum torsional moment MT

MT frac14 PTE

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

Rotating Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

TrunniondNo Lug

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

710 Pressure Vessel Design Manual

Side Lugs Notes

1 Optional internal pipe Remove after erection2 Radial load Pr is the axial load in the internal pipe

stiffener if used in lieu of radial load in shell3 Circumferential ring stiffeners are optional at these

elevations

bull Circumferential moment Mc

Mc frac14 PTe

bull Longitudinal moment Mx

Mx frac14 PLe

bull Load on weld group f

f frac14 PTELT

bull Radial loads Pr and Pa

Pr frac14 PLe

Pa frac14 PL sin f

Top Flange Lug

bull Loads PT and PL

PT frac14 P cos q

PL frac14 P sin q

Transportation and Erection of Pressure Vessels 711

bull Moment on flange M

M frac14 PTB

bull Moment on head M

M frac14 PTethBthorn JTHORNbull Moment on vessel M

M frac14 PTG

bull Radial load on head and nozzle frac14 PL

Side Flange Lug

bull Loads PT and PL

PL frac14 P cos q

PT frac14 P sin q

bull Moment on flange M

M frac14 PLB

bull Longitudinal moment on shell Mx

M frac14 PTethBthorn JTHORNbull Radial load on shell and nozzle frac14 PT

712 Pressure Vessel Design Manual

Procedure 10-10 Miscellaneous

Figure 10-7 Fundamental handling operations Reprinted by permission of the Babcock and Wilcox Companya McDermott Company

Transportation and Erection of Pressure Vessels 713

Figure 10-8 Loads on wire rope for various sheave configurations

714 Pressure Vessel Design Manual

Table 10-14Forged Steel Shackles

Dimensions in Inches

Size D (in)Safe Load

(lb)D (min) A

Tolerance

A DimB B (min) C G

Tolerance C

and G DimE F

frac14 475 73232 153232 11616 51616 93232 1⅛ ⅞ 11616 frac34 111616

⅜ 1050 113232 213232 11616 71616 256464 171616 1frac14 ⅛ 1 313232

71616 1450 256464 233232 11616 frac12 296464 1111616 171616 ⅛ 1⅛ 111616

frac12 1900 296464 131616 11616 ⅝ 91616 1⅞ 1⅝ ⅛ 1⅜ 151616

⅝ 2950 91616 111616 11616 frac34 436464 2133232 2 ⅛ 1⅝ 191616

frac34 4250 436464 1frac14 11616 ⅞ 253232 2273232 2⅜ frac14 2 1⅞

⅞ 5750 253232 171616 11616 1 576464 351616 2131616 frac14 2frac14 2⅛

1 7550 576464 1111616 11616 1⅛ 113232 3frac34 331616 frac14 2frac12 2⅜

1⅛ 8900 113232 1271616 ⅛ 1frac14 176464 4frac14 391616 frac14 2frac34 2⅝

1frac14 11000 176464 213232 ⅛ 1⅜ 1156464 4111616 3151616 frac14 3⅛ 3

1⅜ 13300 1156464 2frac14 ⅛ 1frac12 1113232 5frac14 471616 frac14 3frac12 351616

1frac12 15600 1113232 2⅜ ⅛ 1⅝ 1296464 5frac34 4⅞ frac14 3frac34 3⅝

1frac34 21500 1356464 2⅞ ⅛ 2 1253232 7 5frac34 frac14 4frac14 4⅛

2 28100 1253232 3frac14 ⅛ 2frac14 216464 7frac34 6frac34 frac14 5frac14 5

2frac14 36000 216464 3frac34 ⅛ 2frac12 2156464 9frac14 7⅛ frac34 5frac12 5frac14

2frac12 45100 2156464 4⅛ ⅛ 2frac34 2153232 10frac12 8 frac34 6frac14 6

3 64700 2111616 5 ⅛ 3frac14 2293232 13 11frac12 frac34 6frac34 6frac12

Notes

For shackles with safe loads greater than the maximum shown use CrosbyndashLaughlin (The Crosby Group Div of American Hoist amp Derrick Co Tulsa

OK 74101) Skookum (Skookum Co Inc Portland OR 97203) or equal with an ultimate strength at least 5 times the safe working load

Allowable loads are lower than OSHA requirements tabulated in Section 1926251 Table H-19

Transportation and Erection of Pressure Vessels 715

Figure 10-9 Wire rope end configurations

716 Pressure Vessel Design Manual

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 21: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

Procedure 10-7 Design of Flange Lugs

Transportation and Erection of Pressure Vessels 695

Table 10-10Flange lug dimensions

Load Capacity (tons) D1 tL tb A B G H E

50 338 2 2 8 11 12 30 9

100 5 3 3 14 12 24 36 9

200 6 4 4 18 14 30 40 10

400 8 5 5 20 16 36 46 11

600 9 6 6 24 22 40 58 16

800 10 9 7 28 24 42 60 17

Table 10-11Bolt properties

Bolt Size Ab As Tb

05e13 0196 0112 12

0625e11 0307 0199 19

075e10 0442 0309 28

0875e9 0601 0446 39

1e8 0785 0605 51

1125e8 0994 079 56

125e8 1227 1 71

1375e8 1485 1233 85

15e8 1767 1492 103

175e8 2405 2082 182

2e8 3142 2771 243

225e8 3976 3557 311

25e8 4909 4442 389

275e8 594 543 418

3e8 7069 6506 501

325e8 83 7686 592

35e8 962 896 690

375e8 1104 1034 796

4e8 1257 1181 910

Table 10-12Values of Su

Bolt Dia db Material Su (ksi)

lt 1 A-325 120

1125e15 A-325 105

1625e25 A-193-B7 125

2625e4 A-193-B7 110

696 Pressure Vessel Design Manual

Top Flange Lug

PL frac14 P sin q

PT frac14 P cos q

PE frac14 PLA

thorn 3PTe

A2

M1frac14 PTB

M2frac14 PT(B thorn J)

M3frac14 PTe

Mufrac14 Xn cos an Nb

Mafrac14 MuM1PMu

Xn frac14 Rb cos an

yn frac14 Rb sin an

Side Flange Lug

Fn frac14 Ma

XnNb

fs frac14 PTN

sT frac14 FnAs

Fs frac14 15 ksi

1 sTAb

Tb

As frac14 07854 ethd 01218THORN2

s frac14 fsAs

lt Fs

Tb frac14 075uAs

06Fy lt FT lt 40 ksi

Transportation and Erection of Pressure Vessels 697

Design Process

1 Determine loads2 Check of lug

a Shear at pin holeb Bending of lugc Bearing at pin hole

3 Check of base plate4 Check of nozzle flange5 Check of flange bolting6 Check of local load at nozzle to head or shell

junction

Step 1 Determine loads

bull Determine loads PT and PL for various lift angles qbull Determine uniform loads w1 and w2 for variousangles q

bull Using w1 and w2 solve for worst case of combinedload PE

bull Determine worst-case bending moment in lug M3

Step 2 Check of lug

a Shear at pin holebull Area required Ar

Ar frac14 PEFs

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN

b Bending of lug due to M3

bull Section modulus Z

Z frac14 tLA2

6

bull Bending stress lug sb

sb frac14 M3

Z

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFp

bull Bearing available Aa

Aa frac14 D2tL

Maximum Tension in Lug

Check of Nozzle Flange

bull Unit load w

w frac14 PEpBc

bull Bending moment M

M frac14 whDbull Bending stress sb

sb frac14 6M

t2f

698 Pressure Vessel Design Manual

Bolt Loads for Rectangular Lugs Design of Full Circular Base Plate for Lug

bull If a full circular plate is used in lieu of a rectangularplate the following evaluation may be used

bull Unit load on bolt circle w

w frac14 PEpBc

bull Edge distance from point of load hp

hp frac14 BC tL2

bull Bending moment M

M frac14 whp

bull Bending stress sb

sb frac14 6M

t2b

bull Check bolting same as rectangular flange

Transportation and Erection of Pressure Vessels 699

Design of Lug Base Plate

(From R J Roark Formulas for Stress and StrainMcGraw-Hill Book Co 4th Edition Table III Case 34)

bull Uniform load w

w frac14 PEA

bull End reaction R1

R1 frac14 wA2

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

bull Moment at midspan Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

bull Thickness required tb

tb frac14ffiffiffiffiffiffiffiffiffi6Mx

GFb

s

700 Pressure Vessel Design Manual

Check of Bolts

Case 1 Bolts on Centerline Case 2 Bolts Straddle Centerline

Bolt 1 2 3 4 5 Bolt 1 2 3 4 5

an an

xn xn

yn yn

Nb Nb

Mu Mu

Ma Ma

Fn Fn

sT sT

Fs Fs

Transportation and Erection of Pressure Vessels 701

Sample Problem Top Flange Lug

GivenL1 frac14 90 ftL2 frac14 50 ftL3 frac14 40 ftL4 frac14 95 ft

Fy bolting frac14 75 ksiFy lug frac14 36 ksi

Fy flange frac14 36 ksiFs frac14 04(36) frac14 144 ksiFT frac14 06(36) frac14 216 ksiFb frac14 066(36) frac14 2376 ksiWL frac14 1200 kipsBc frac14 54 inRc frac14 27 inB frac14 22 intb frac14 6 intL frac14 6 intf frac14 11 in

D1 frac14 9 in

D2 frac14 8 in

Bolt size frac14 3-14-8 UNC

Ab frac14 83 in2

As frac14 7686 in2

Tb frac14 592 kips

Su frac14 110 ksi

e frac14 16 in

G frac14 40 in

A frac14 24 in

hD frac14 95 in

b frac14 05ethBc ATHORN

Results

PT max frac14 537 kips q frac14 10

PL max frac141200 kips q frac14 90

PE max frac141277 kips q frac14 40

sT bolt max frac14 2011 ksi 40 ksi

s bolt max frac14 698 ksi 1077 ksi

702 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 703

10 Check Lug

a Shear at pin hole

bull Area required Ar

Ar frac14 PEFS

frac14 1277144

frac14 8868 in2

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN frac14 eth24$6THORN eth9$6THORN frac14 90 in2

b Bending of lug due to M3

bull Maximum moment M3

M3 frac14 PTe frac14 537eth16THORN frac14 8592 in kips

bull Section modulus Z

Z frac14 tLA2

6frac14

6$242

6

frac14 576 in3

bull Bending stress lug sb

sb frac14 M3

Zfrac14 8592

576frac14 1491 ksi

bull Thickness required tL

tL frac14 6M

FbA2 frac14 6$85922376eth242THORN frac14 376 in

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFP

frac14 1277324

frac14 3941 in2

bull Bearing available Aa

Aa frac14 D2tL frac14 8$6 frac14 48 in2

20 Check Lug Base Plate

bull Uniform load w

w frac14 PEA

frac14 127724

frac14 532kipsin

bull End reaction R1

R1 frac14 PE2

frac14 12772

frac14 6385 kips

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

Ma frac14 0985eth8748 2496thorn 768thorn 2304 17 496THORNfrac14 8049 in kips

bull Moment at mid Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

Mx frac14 8049thorn 17 240 3831

frac14 5360 in kips

bull Section modulus Z

Z frac14t2bG

6

frac1462$40

6

frac14 240 in3

bull Bending stress sb

sb frac14 Mx

Zfrac14 5360

240frac14 2233 ksi

bull Allowable bending stress Fb

Fb frac14 066Fy frac14 06636 frac14 2376 ksi

30 Check of Vessel Flange

bull Unit load w

w frac14 PEpBc

frac14 1277p54

frac14 752kipsin

bull Bending moment Mb

Mb frac14 whD frac14 752eth92THORN frac14 6925 in kips

bull Bending stress sb

sb frac14 6Mb

t2ffrac14 frac126eth6925THORN

11252frac14 328 ksi

704 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 705

Procedure 10-8 Design of Trunnions

Lug Dimensions

Dimensions for Trunnion

Type 1 Trunnion and Fixed Lug

Type 2 Trunnion and Rotating Lug

Type 3 Trunnion Only

706 Pressure Vessel Design Manual

Type 1 Trunnion and Fixed Lug

There are four checks to be performed

1 Check lug2 Check trunnion3 Check welds4 Check vessel shell

Check Lug

Transverse (vessel horizontal)

M frac14 PTE and Z frac14 4R2otL6

Therefore

tL frac14 15PTE

R2oFb

Longitudinal (vessel vertical)

bull Cross-sectional area at pin hole Ap

Ap frac14 213tL thorn 2tpethD3 D1

bull Cross-sectional area at top of lug An

An frac14 tL

RT D1

2

thorn 2tp

D3 D1

2

bull Shear stress s

s frac14 PLAP

or s frac14 PLAn

bull Pin bearing stress sp

sp frac14 PLD2

tL thorn 2tp

Check Trunnion

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Torsional moment MT (vessel horizontal)

MT frac14 PTE

bull Bending stress sb

sb frac14 ML

Z

bull Torsional shear stress sT

sT frac14 MT

2pRnto

Check Welds

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Polar moment of inertia Jw

Jw frac14 2pR3n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Torsional shear stress in weld sT

sT frac14 MTRn

Jw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 2 Trunnion and Rotating Lug

bull Net section at Section A-A Ap

Ap frac14 213tL thorn 2tpD3 D1

Transportation and Erection of Pressure Vessels 707

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at Section B-B An

An frac14 2tLethRo RiTHORNbull Shear stress at trunnion s

s frac14 PLAn

bull Minimum bearing contact angle for lug at trun-nion qB

qB frac14 eth159PLTHORNRntLFp

bull Pin hole bearing stress sp

sp frac14 PLD3

tL thorn 2tp

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Swbull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 3 Trunnion Only

Vessel Vertical

bull Longitudinal moment ML

ML frac14 PLe

bull Bending stress in trunnion sb

sb frac14 ML

Z

Vessel Horizontal

bull Circumferential moment Mc

Mc frac14 PTe

bull Bending stress in trunnion sb

sb frac14 Mc

Z

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

708 Pressure Vessel Design Manual

TYPE 1 TYPE 2

W

K

DIA

A

DIA

= F

DIA

= M

K

C

KT

2 X 125 DIAVENT HOLES

DIA

A

125

D

250

DIA

= F

W

K

B

NUTS WELDED

GRIND WELDSMOOTH

DIA

= M

K

E

KT

2 X 125 DIAVENT HOLES

Table 10-13Dimensions of trunnions

Allowable Load Tons Pipe Size A C D E F M N T W Weight Lbs

1 0-5 4 Std 4 - - 85 8 - 05 025 30

2 5-10 6 Std 5 - - 105 12 - 05 025 55

3 10-15 8 Std 6 0625 8 125 15 4 05 0375 90

4 15-25 10 Std 6 0625 8 15 18 4 075 0375 150

5 25-35 12 Sch 80 6 075 8 17 21 4 075 0375 240

6 35-45 12 Sch 80 6 075 8 17 21 4 075 05 240

7 45-60 14 Sch 80 6 075 8 18 24 8 1 05 375

8 60-75 14 Sch 80 7 0875 8 18 24 8 1 0625 400

9 75-100 16 Sch 80 7 0875 8 25 27 8 1 0625 625

10 100-125 16 Sch 80 7 0875 8 25 27 8 1125 0875 660

11 125-150 18 Sch 80 7 0875 8 27 30 12 1125 0875 850

12 150-200 18 Sch 80 8 0875 8 27 30 12 1125 1 875

13 200-250 20 Sch 80 8 0875 10 30 36 16 125 1 1000

14 300 24 Sch 80 8 1 10 34 36 16 125 1125 1440

15 400 24 Sch 80 8 1 10 34 40 20 1375 1125 1675

16 500 30 125 10 125 12 42 48 20 1375 1375 2400

17 600 36 125 10 125 12 48 60 24 15 1375 3600

Notes

1 Do not use re-pads for cyclic service

2 B frac14 D - 125

3 K frac14 Pipe Wall Thk

4 Dimensions are given for reference only All loadings and stress shall be checked prior to use

Transportation and Erection of Pressure Vessels 709

Procedure 10-9 Local Loads in Shell Due to Erection Forces

Trunnions

Fixed Lug Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Maximum torsional moment MT

MT frac14 PTE

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

Rotating Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

TrunniondNo Lug

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

710 Pressure Vessel Design Manual

Side Lugs Notes

1 Optional internal pipe Remove after erection2 Radial load Pr is the axial load in the internal pipe

stiffener if used in lieu of radial load in shell3 Circumferential ring stiffeners are optional at these

elevations

bull Circumferential moment Mc

Mc frac14 PTe

bull Longitudinal moment Mx

Mx frac14 PLe

bull Load on weld group f

f frac14 PTELT

bull Radial loads Pr and Pa

Pr frac14 PLe

Pa frac14 PL sin f

Top Flange Lug

bull Loads PT and PL

PT frac14 P cos q

PL frac14 P sin q

Transportation and Erection of Pressure Vessels 711

bull Moment on flange M

M frac14 PTB

bull Moment on head M

M frac14 PTethBthorn JTHORNbull Moment on vessel M

M frac14 PTG

bull Radial load on head and nozzle frac14 PL

Side Flange Lug

bull Loads PT and PL

PL frac14 P cos q

PT frac14 P sin q

bull Moment on flange M

M frac14 PLB

bull Longitudinal moment on shell Mx

M frac14 PTethBthorn JTHORNbull Radial load on shell and nozzle frac14 PT

712 Pressure Vessel Design Manual

Procedure 10-10 Miscellaneous

Figure 10-7 Fundamental handling operations Reprinted by permission of the Babcock and Wilcox Companya McDermott Company

Transportation and Erection of Pressure Vessels 713

Figure 10-8 Loads on wire rope for various sheave configurations

714 Pressure Vessel Design Manual

Table 10-14Forged Steel Shackles

Dimensions in Inches

Size D (in)Safe Load

(lb)D (min) A

Tolerance

A DimB B (min) C G

Tolerance C

and G DimE F

frac14 475 73232 153232 11616 51616 93232 1⅛ ⅞ 11616 frac34 111616

⅜ 1050 113232 213232 11616 71616 256464 171616 1frac14 ⅛ 1 313232

71616 1450 256464 233232 11616 frac12 296464 1111616 171616 ⅛ 1⅛ 111616

frac12 1900 296464 131616 11616 ⅝ 91616 1⅞ 1⅝ ⅛ 1⅜ 151616

⅝ 2950 91616 111616 11616 frac34 436464 2133232 2 ⅛ 1⅝ 191616

frac34 4250 436464 1frac14 11616 ⅞ 253232 2273232 2⅜ frac14 2 1⅞

⅞ 5750 253232 171616 11616 1 576464 351616 2131616 frac14 2frac14 2⅛

1 7550 576464 1111616 11616 1⅛ 113232 3frac34 331616 frac14 2frac12 2⅜

1⅛ 8900 113232 1271616 ⅛ 1frac14 176464 4frac14 391616 frac14 2frac34 2⅝

1frac14 11000 176464 213232 ⅛ 1⅜ 1156464 4111616 3151616 frac14 3⅛ 3

1⅜ 13300 1156464 2frac14 ⅛ 1frac12 1113232 5frac14 471616 frac14 3frac12 351616

1frac12 15600 1113232 2⅜ ⅛ 1⅝ 1296464 5frac34 4⅞ frac14 3frac34 3⅝

1frac34 21500 1356464 2⅞ ⅛ 2 1253232 7 5frac34 frac14 4frac14 4⅛

2 28100 1253232 3frac14 ⅛ 2frac14 216464 7frac34 6frac34 frac14 5frac14 5

2frac14 36000 216464 3frac34 ⅛ 2frac12 2156464 9frac14 7⅛ frac34 5frac12 5frac14

2frac12 45100 2156464 4⅛ ⅛ 2frac34 2153232 10frac12 8 frac34 6frac14 6

3 64700 2111616 5 ⅛ 3frac14 2293232 13 11frac12 frac34 6frac34 6frac12

Notes

For shackles with safe loads greater than the maximum shown use CrosbyndashLaughlin (The Crosby Group Div of American Hoist amp Derrick Co Tulsa

OK 74101) Skookum (Skookum Co Inc Portland OR 97203) or equal with an ultimate strength at least 5 times the safe working load

Allowable loads are lower than OSHA requirements tabulated in Section 1926251 Table H-19

Transportation and Erection of Pressure Vessels 715

Figure 10-9 Wire rope end configurations

716 Pressure Vessel Design Manual

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 22: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

Table 10-10Flange lug dimensions

Load Capacity (tons) D1 tL tb A B G H E

50 338 2 2 8 11 12 30 9

100 5 3 3 14 12 24 36 9

200 6 4 4 18 14 30 40 10

400 8 5 5 20 16 36 46 11

600 9 6 6 24 22 40 58 16

800 10 9 7 28 24 42 60 17

Table 10-11Bolt properties

Bolt Size Ab As Tb

05e13 0196 0112 12

0625e11 0307 0199 19

075e10 0442 0309 28

0875e9 0601 0446 39

1e8 0785 0605 51

1125e8 0994 079 56

125e8 1227 1 71

1375e8 1485 1233 85

15e8 1767 1492 103

175e8 2405 2082 182

2e8 3142 2771 243

225e8 3976 3557 311

25e8 4909 4442 389

275e8 594 543 418

3e8 7069 6506 501

325e8 83 7686 592

35e8 962 896 690

375e8 1104 1034 796

4e8 1257 1181 910

Table 10-12Values of Su

Bolt Dia db Material Su (ksi)

lt 1 A-325 120

1125e15 A-325 105

1625e25 A-193-B7 125

2625e4 A-193-B7 110

696 Pressure Vessel Design Manual

Top Flange Lug

PL frac14 P sin q

PT frac14 P cos q

PE frac14 PLA

thorn 3PTe

A2

M1frac14 PTB

M2frac14 PT(B thorn J)

M3frac14 PTe

Mufrac14 Xn cos an Nb

Mafrac14 MuM1PMu

Xn frac14 Rb cos an

yn frac14 Rb sin an

Side Flange Lug

Fn frac14 Ma

XnNb

fs frac14 PTN

sT frac14 FnAs

Fs frac14 15 ksi

1 sTAb

Tb

As frac14 07854 ethd 01218THORN2

s frac14 fsAs

lt Fs

Tb frac14 075uAs

06Fy lt FT lt 40 ksi

Transportation and Erection of Pressure Vessels 697

Design Process

1 Determine loads2 Check of lug

a Shear at pin holeb Bending of lugc Bearing at pin hole

3 Check of base plate4 Check of nozzle flange5 Check of flange bolting6 Check of local load at nozzle to head or shell

junction

Step 1 Determine loads

bull Determine loads PT and PL for various lift angles qbull Determine uniform loads w1 and w2 for variousangles q

bull Using w1 and w2 solve for worst case of combinedload PE

bull Determine worst-case bending moment in lug M3

Step 2 Check of lug

a Shear at pin holebull Area required Ar

Ar frac14 PEFs

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN

b Bending of lug due to M3

bull Section modulus Z

Z frac14 tLA2

6

bull Bending stress lug sb

sb frac14 M3

Z

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFp

bull Bearing available Aa

Aa frac14 D2tL

Maximum Tension in Lug

Check of Nozzle Flange

bull Unit load w

w frac14 PEpBc

bull Bending moment M

M frac14 whDbull Bending stress sb

sb frac14 6M

t2f

698 Pressure Vessel Design Manual

Bolt Loads for Rectangular Lugs Design of Full Circular Base Plate for Lug

bull If a full circular plate is used in lieu of a rectangularplate the following evaluation may be used

bull Unit load on bolt circle w

w frac14 PEpBc

bull Edge distance from point of load hp

hp frac14 BC tL2

bull Bending moment M

M frac14 whp

bull Bending stress sb

sb frac14 6M

t2b

bull Check bolting same as rectangular flange

Transportation and Erection of Pressure Vessels 699

Design of Lug Base Plate

(From R J Roark Formulas for Stress and StrainMcGraw-Hill Book Co 4th Edition Table III Case 34)

bull Uniform load w

w frac14 PEA

bull End reaction R1

R1 frac14 wA2

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

bull Moment at midspan Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

bull Thickness required tb

tb frac14ffiffiffiffiffiffiffiffiffi6Mx

GFb

s

700 Pressure Vessel Design Manual

Check of Bolts

Case 1 Bolts on Centerline Case 2 Bolts Straddle Centerline

Bolt 1 2 3 4 5 Bolt 1 2 3 4 5

an an

xn xn

yn yn

Nb Nb

Mu Mu

Ma Ma

Fn Fn

sT sT

Fs Fs

Transportation and Erection of Pressure Vessels 701

Sample Problem Top Flange Lug

GivenL1 frac14 90 ftL2 frac14 50 ftL3 frac14 40 ftL4 frac14 95 ft

Fy bolting frac14 75 ksiFy lug frac14 36 ksi

Fy flange frac14 36 ksiFs frac14 04(36) frac14 144 ksiFT frac14 06(36) frac14 216 ksiFb frac14 066(36) frac14 2376 ksiWL frac14 1200 kipsBc frac14 54 inRc frac14 27 inB frac14 22 intb frac14 6 intL frac14 6 intf frac14 11 in

D1 frac14 9 in

D2 frac14 8 in

Bolt size frac14 3-14-8 UNC

Ab frac14 83 in2

As frac14 7686 in2

Tb frac14 592 kips

Su frac14 110 ksi

e frac14 16 in

G frac14 40 in

A frac14 24 in

hD frac14 95 in

b frac14 05ethBc ATHORN

Results

PT max frac14 537 kips q frac14 10

PL max frac141200 kips q frac14 90

PE max frac141277 kips q frac14 40

sT bolt max frac14 2011 ksi 40 ksi

s bolt max frac14 698 ksi 1077 ksi

702 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 703

10 Check Lug

a Shear at pin hole

bull Area required Ar

Ar frac14 PEFS

frac14 1277144

frac14 8868 in2

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN frac14 eth24$6THORN eth9$6THORN frac14 90 in2

b Bending of lug due to M3

bull Maximum moment M3

M3 frac14 PTe frac14 537eth16THORN frac14 8592 in kips

bull Section modulus Z

Z frac14 tLA2

6frac14

6$242

6

frac14 576 in3

bull Bending stress lug sb

sb frac14 M3

Zfrac14 8592

576frac14 1491 ksi

bull Thickness required tL

tL frac14 6M

FbA2 frac14 6$85922376eth242THORN frac14 376 in

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFP

frac14 1277324

frac14 3941 in2

bull Bearing available Aa

Aa frac14 D2tL frac14 8$6 frac14 48 in2

20 Check Lug Base Plate

bull Uniform load w

w frac14 PEA

frac14 127724

frac14 532kipsin

bull End reaction R1

R1 frac14 PE2

frac14 12772

frac14 6385 kips

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

Ma frac14 0985eth8748 2496thorn 768thorn 2304 17 496THORNfrac14 8049 in kips

bull Moment at mid Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

Mx frac14 8049thorn 17 240 3831

frac14 5360 in kips

bull Section modulus Z

Z frac14t2bG

6

frac1462$40

6

frac14 240 in3

bull Bending stress sb

sb frac14 Mx

Zfrac14 5360

240frac14 2233 ksi

bull Allowable bending stress Fb

Fb frac14 066Fy frac14 06636 frac14 2376 ksi

30 Check of Vessel Flange

bull Unit load w

w frac14 PEpBc

frac14 1277p54

frac14 752kipsin

bull Bending moment Mb

Mb frac14 whD frac14 752eth92THORN frac14 6925 in kips

bull Bending stress sb

sb frac14 6Mb

t2ffrac14 frac126eth6925THORN

11252frac14 328 ksi

704 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 705

Procedure 10-8 Design of Trunnions

Lug Dimensions

Dimensions for Trunnion

Type 1 Trunnion and Fixed Lug

Type 2 Trunnion and Rotating Lug

Type 3 Trunnion Only

706 Pressure Vessel Design Manual

Type 1 Trunnion and Fixed Lug

There are four checks to be performed

1 Check lug2 Check trunnion3 Check welds4 Check vessel shell

Check Lug

Transverse (vessel horizontal)

M frac14 PTE and Z frac14 4R2otL6

Therefore

tL frac14 15PTE

R2oFb

Longitudinal (vessel vertical)

bull Cross-sectional area at pin hole Ap

Ap frac14 213tL thorn 2tpethD3 D1

bull Cross-sectional area at top of lug An

An frac14 tL

RT D1

2

thorn 2tp

D3 D1

2

bull Shear stress s

s frac14 PLAP

or s frac14 PLAn

bull Pin bearing stress sp

sp frac14 PLD2

tL thorn 2tp

Check Trunnion

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Torsional moment MT (vessel horizontal)

MT frac14 PTE

bull Bending stress sb

sb frac14 ML

Z

bull Torsional shear stress sT

sT frac14 MT

2pRnto

Check Welds

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Polar moment of inertia Jw

Jw frac14 2pR3n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Torsional shear stress in weld sT

sT frac14 MTRn

Jw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 2 Trunnion and Rotating Lug

bull Net section at Section A-A Ap

Ap frac14 213tL thorn 2tpD3 D1

Transportation and Erection of Pressure Vessels 707

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at Section B-B An

An frac14 2tLethRo RiTHORNbull Shear stress at trunnion s

s frac14 PLAn

bull Minimum bearing contact angle for lug at trun-nion qB

qB frac14 eth159PLTHORNRntLFp

bull Pin hole bearing stress sp

sp frac14 PLD3

tL thorn 2tp

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Swbull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 3 Trunnion Only

Vessel Vertical

bull Longitudinal moment ML

ML frac14 PLe

bull Bending stress in trunnion sb

sb frac14 ML

Z

Vessel Horizontal

bull Circumferential moment Mc

Mc frac14 PTe

bull Bending stress in trunnion sb

sb frac14 Mc

Z

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

708 Pressure Vessel Design Manual

TYPE 1 TYPE 2

W

K

DIA

A

DIA

= F

DIA

= M

K

C

KT

2 X 125 DIAVENT HOLES

DIA

A

125

D

250

DIA

= F

W

K

B

NUTS WELDED

GRIND WELDSMOOTH

DIA

= M

K

E

KT

2 X 125 DIAVENT HOLES

Table 10-13Dimensions of trunnions

Allowable Load Tons Pipe Size A C D E F M N T W Weight Lbs

1 0-5 4 Std 4 - - 85 8 - 05 025 30

2 5-10 6 Std 5 - - 105 12 - 05 025 55

3 10-15 8 Std 6 0625 8 125 15 4 05 0375 90

4 15-25 10 Std 6 0625 8 15 18 4 075 0375 150

5 25-35 12 Sch 80 6 075 8 17 21 4 075 0375 240

6 35-45 12 Sch 80 6 075 8 17 21 4 075 05 240

7 45-60 14 Sch 80 6 075 8 18 24 8 1 05 375

8 60-75 14 Sch 80 7 0875 8 18 24 8 1 0625 400

9 75-100 16 Sch 80 7 0875 8 25 27 8 1 0625 625

10 100-125 16 Sch 80 7 0875 8 25 27 8 1125 0875 660

11 125-150 18 Sch 80 7 0875 8 27 30 12 1125 0875 850

12 150-200 18 Sch 80 8 0875 8 27 30 12 1125 1 875

13 200-250 20 Sch 80 8 0875 10 30 36 16 125 1 1000

14 300 24 Sch 80 8 1 10 34 36 16 125 1125 1440

15 400 24 Sch 80 8 1 10 34 40 20 1375 1125 1675

16 500 30 125 10 125 12 42 48 20 1375 1375 2400

17 600 36 125 10 125 12 48 60 24 15 1375 3600

Notes

1 Do not use re-pads for cyclic service

2 B frac14 D - 125

3 K frac14 Pipe Wall Thk

4 Dimensions are given for reference only All loadings and stress shall be checked prior to use

Transportation and Erection of Pressure Vessels 709

Procedure 10-9 Local Loads in Shell Due to Erection Forces

Trunnions

Fixed Lug Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Maximum torsional moment MT

MT frac14 PTE

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

Rotating Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

TrunniondNo Lug

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

710 Pressure Vessel Design Manual

Side Lugs Notes

1 Optional internal pipe Remove after erection2 Radial load Pr is the axial load in the internal pipe

stiffener if used in lieu of radial load in shell3 Circumferential ring stiffeners are optional at these

elevations

bull Circumferential moment Mc

Mc frac14 PTe

bull Longitudinal moment Mx

Mx frac14 PLe

bull Load on weld group f

f frac14 PTELT

bull Radial loads Pr and Pa

Pr frac14 PLe

Pa frac14 PL sin f

Top Flange Lug

bull Loads PT and PL

PT frac14 P cos q

PL frac14 P sin q

Transportation and Erection of Pressure Vessels 711

bull Moment on flange M

M frac14 PTB

bull Moment on head M

M frac14 PTethBthorn JTHORNbull Moment on vessel M

M frac14 PTG

bull Radial load on head and nozzle frac14 PL

Side Flange Lug

bull Loads PT and PL

PL frac14 P cos q

PT frac14 P sin q

bull Moment on flange M

M frac14 PLB

bull Longitudinal moment on shell Mx

M frac14 PTethBthorn JTHORNbull Radial load on shell and nozzle frac14 PT

712 Pressure Vessel Design Manual

Procedure 10-10 Miscellaneous

Figure 10-7 Fundamental handling operations Reprinted by permission of the Babcock and Wilcox Companya McDermott Company

Transportation and Erection of Pressure Vessels 713

Figure 10-8 Loads on wire rope for various sheave configurations

714 Pressure Vessel Design Manual

Table 10-14Forged Steel Shackles

Dimensions in Inches

Size D (in)Safe Load

(lb)D (min) A

Tolerance

A DimB B (min) C G

Tolerance C

and G DimE F

frac14 475 73232 153232 11616 51616 93232 1⅛ ⅞ 11616 frac34 111616

⅜ 1050 113232 213232 11616 71616 256464 171616 1frac14 ⅛ 1 313232

71616 1450 256464 233232 11616 frac12 296464 1111616 171616 ⅛ 1⅛ 111616

frac12 1900 296464 131616 11616 ⅝ 91616 1⅞ 1⅝ ⅛ 1⅜ 151616

⅝ 2950 91616 111616 11616 frac34 436464 2133232 2 ⅛ 1⅝ 191616

frac34 4250 436464 1frac14 11616 ⅞ 253232 2273232 2⅜ frac14 2 1⅞

⅞ 5750 253232 171616 11616 1 576464 351616 2131616 frac14 2frac14 2⅛

1 7550 576464 1111616 11616 1⅛ 113232 3frac34 331616 frac14 2frac12 2⅜

1⅛ 8900 113232 1271616 ⅛ 1frac14 176464 4frac14 391616 frac14 2frac34 2⅝

1frac14 11000 176464 213232 ⅛ 1⅜ 1156464 4111616 3151616 frac14 3⅛ 3

1⅜ 13300 1156464 2frac14 ⅛ 1frac12 1113232 5frac14 471616 frac14 3frac12 351616

1frac12 15600 1113232 2⅜ ⅛ 1⅝ 1296464 5frac34 4⅞ frac14 3frac34 3⅝

1frac34 21500 1356464 2⅞ ⅛ 2 1253232 7 5frac34 frac14 4frac14 4⅛

2 28100 1253232 3frac14 ⅛ 2frac14 216464 7frac34 6frac34 frac14 5frac14 5

2frac14 36000 216464 3frac34 ⅛ 2frac12 2156464 9frac14 7⅛ frac34 5frac12 5frac14

2frac12 45100 2156464 4⅛ ⅛ 2frac34 2153232 10frac12 8 frac34 6frac14 6

3 64700 2111616 5 ⅛ 3frac14 2293232 13 11frac12 frac34 6frac34 6frac12

Notes

For shackles with safe loads greater than the maximum shown use CrosbyndashLaughlin (The Crosby Group Div of American Hoist amp Derrick Co Tulsa

OK 74101) Skookum (Skookum Co Inc Portland OR 97203) or equal with an ultimate strength at least 5 times the safe working load

Allowable loads are lower than OSHA requirements tabulated in Section 1926251 Table H-19

Transportation and Erection of Pressure Vessels 715

Figure 10-9 Wire rope end configurations

716 Pressure Vessel Design Manual

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 23: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

Top Flange Lug

PL frac14 P sin q

PT frac14 P cos q

PE frac14 PLA

thorn 3PTe

A2

M1frac14 PTB

M2frac14 PT(B thorn J)

M3frac14 PTe

Mufrac14 Xn cos an Nb

Mafrac14 MuM1PMu

Xn frac14 Rb cos an

yn frac14 Rb sin an

Side Flange Lug

Fn frac14 Ma

XnNb

fs frac14 PTN

sT frac14 FnAs

Fs frac14 15 ksi

1 sTAb

Tb

As frac14 07854 ethd 01218THORN2

s frac14 fsAs

lt Fs

Tb frac14 075uAs

06Fy lt FT lt 40 ksi

Transportation and Erection of Pressure Vessels 697

Design Process

1 Determine loads2 Check of lug

a Shear at pin holeb Bending of lugc Bearing at pin hole

3 Check of base plate4 Check of nozzle flange5 Check of flange bolting6 Check of local load at nozzle to head or shell

junction

Step 1 Determine loads

bull Determine loads PT and PL for various lift angles qbull Determine uniform loads w1 and w2 for variousangles q

bull Using w1 and w2 solve for worst case of combinedload PE

bull Determine worst-case bending moment in lug M3

Step 2 Check of lug

a Shear at pin holebull Area required Ar

Ar frac14 PEFs

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN

b Bending of lug due to M3

bull Section modulus Z

Z frac14 tLA2

6

bull Bending stress lug sb

sb frac14 M3

Z

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFp

bull Bearing available Aa

Aa frac14 D2tL

Maximum Tension in Lug

Check of Nozzle Flange

bull Unit load w

w frac14 PEpBc

bull Bending moment M

M frac14 whDbull Bending stress sb

sb frac14 6M

t2f

698 Pressure Vessel Design Manual

Bolt Loads for Rectangular Lugs Design of Full Circular Base Plate for Lug

bull If a full circular plate is used in lieu of a rectangularplate the following evaluation may be used

bull Unit load on bolt circle w

w frac14 PEpBc

bull Edge distance from point of load hp

hp frac14 BC tL2

bull Bending moment M

M frac14 whp

bull Bending stress sb

sb frac14 6M

t2b

bull Check bolting same as rectangular flange

Transportation and Erection of Pressure Vessels 699

Design of Lug Base Plate

(From R J Roark Formulas for Stress and StrainMcGraw-Hill Book Co 4th Edition Table III Case 34)

bull Uniform load w

w frac14 PEA

bull End reaction R1

R1 frac14 wA2

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

bull Moment at midspan Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

bull Thickness required tb

tb frac14ffiffiffiffiffiffiffiffiffi6Mx

GFb

s

700 Pressure Vessel Design Manual

Check of Bolts

Case 1 Bolts on Centerline Case 2 Bolts Straddle Centerline

Bolt 1 2 3 4 5 Bolt 1 2 3 4 5

an an

xn xn

yn yn

Nb Nb

Mu Mu

Ma Ma

Fn Fn

sT sT

Fs Fs

Transportation and Erection of Pressure Vessels 701

Sample Problem Top Flange Lug

GivenL1 frac14 90 ftL2 frac14 50 ftL3 frac14 40 ftL4 frac14 95 ft

Fy bolting frac14 75 ksiFy lug frac14 36 ksi

Fy flange frac14 36 ksiFs frac14 04(36) frac14 144 ksiFT frac14 06(36) frac14 216 ksiFb frac14 066(36) frac14 2376 ksiWL frac14 1200 kipsBc frac14 54 inRc frac14 27 inB frac14 22 intb frac14 6 intL frac14 6 intf frac14 11 in

D1 frac14 9 in

D2 frac14 8 in

Bolt size frac14 3-14-8 UNC

Ab frac14 83 in2

As frac14 7686 in2

Tb frac14 592 kips

Su frac14 110 ksi

e frac14 16 in

G frac14 40 in

A frac14 24 in

hD frac14 95 in

b frac14 05ethBc ATHORN

Results

PT max frac14 537 kips q frac14 10

PL max frac141200 kips q frac14 90

PE max frac141277 kips q frac14 40

sT bolt max frac14 2011 ksi 40 ksi

s bolt max frac14 698 ksi 1077 ksi

702 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 703

10 Check Lug

a Shear at pin hole

bull Area required Ar

Ar frac14 PEFS

frac14 1277144

frac14 8868 in2

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN frac14 eth24$6THORN eth9$6THORN frac14 90 in2

b Bending of lug due to M3

bull Maximum moment M3

M3 frac14 PTe frac14 537eth16THORN frac14 8592 in kips

bull Section modulus Z

Z frac14 tLA2

6frac14

6$242

6

frac14 576 in3

bull Bending stress lug sb

sb frac14 M3

Zfrac14 8592

576frac14 1491 ksi

bull Thickness required tL

tL frac14 6M

FbA2 frac14 6$85922376eth242THORN frac14 376 in

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFP

frac14 1277324

frac14 3941 in2

bull Bearing available Aa

Aa frac14 D2tL frac14 8$6 frac14 48 in2

20 Check Lug Base Plate

bull Uniform load w

w frac14 PEA

frac14 127724

frac14 532kipsin

bull End reaction R1

R1 frac14 PE2

frac14 12772

frac14 6385 kips

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

Ma frac14 0985eth8748 2496thorn 768thorn 2304 17 496THORNfrac14 8049 in kips

bull Moment at mid Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

Mx frac14 8049thorn 17 240 3831

frac14 5360 in kips

bull Section modulus Z

Z frac14t2bG

6

frac1462$40

6

frac14 240 in3

bull Bending stress sb

sb frac14 Mx

Zfrac14 5360

240frac14 2233 ksi

bull Allowable bending stress Fb

Fb frac14 066Fy frac14 06636 frac14 2376 ksi

30 Check of Vessel Flange

bull Unit load w

w frac14 PEpBc

frac14 1277p54

frac14 752kipsin

bull Bending moment Mb

Mb frac14 whD frac14 752eth92THORN frac14 6925 in kips

bull Bending stress sb

sb frac14 6Mb

t2ffrac14 frac126eth6925THORN

11252frac14 328 ksi

704 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 705

Procedure 10-8 Design of Trunnions

Lug Dimensions

Dimensions for Trunnion

Type 1 Trunnion and Fixed Lug

Type 2 Trunnion and Rotating Lug

Type 3 Trunnion Only

706 Pressure Vessel Design Manual

Type 1 Trunnion and Fixed Lug

There are four checks to be performed

1 Check lug2 Check trunnion3 Check welds4 Check vessel shell

Check Lug

Transverse (vessel horizontal)

M frac14 PTE and Z frac14 4R2otL6

Therefore

tL frac14 15PTE

R2oFb

Longitudinal (vessel vertical)

bull Cross-sectional area at pin hole Ap

Ap frac14 213tL thorn 2tpethD3 D1

bull Cross-sectional area at top of lug An

An frac14 tL

RT D1

2

thorn 2tp

D3 D1

2

bull Shear stress s

s frac14 PLAP

or s frac14 PLAn

bull Pin bearing stress sp

sp frac14 PLD2

tL thorn 2tp

Check Trunnion

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Torsional moment MT (vessel horizontal)

MT frac14 PTE

bull Bending stress sb

sb frac14 ML

Z

bull Torsional shear stress sT

sT frac14 MT

2pRnto

Check Welds

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Polar moment of inertia Jw

Jw frac14 2pR3n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Torsional shear stress in weld sT

sT frac14 MTRn

Jw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 2 Trunnion and Rotating Lug

bull Net section at Section A-A Ap

Ap frac14 213tL thorn 2tpD3 D1

Transportation and Erection of Pressure Vessels 707

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at Section B-B An

An frac14 2tLethRo RiTHORNbull Shear stress at trunnion s

s frac14 PLAn

bull Minimum bearing contact angle for lug at trun-nion qB

qB frac14 eth159PLTHORNRntLFp

bull Pin hole bearing stress sp

sp frac14 PLD3

tL thorn 2tp

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Swbull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 3 Trunnion Only

Vessel Vertical

bull Longitudinal moment ML

ML frac14 PLe

bull Bending stress in trunnion sb

sb frac14 ML

Z

Vessel Horizontal

bull Circumferential moment Mc

Mc frac14 PTe

bull Bending stress in trunnion sb

sb frac14 Mc

Z

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

708 Pressure Vessel Design Manual

TYPE 1 TYPE 2

W

K

DIA

A

DIA

= F

DIA

= M

K

C

KT

2 X 125 DIAVENT HOLES

DIA

A

125

D

250

DIA

= F

W

K

B

NUTS WELDED

GRIND WELDSMOOTH

DIA

= M

K

E

KT

2 X 125 DIAVENT HOLES

Table 10-13Dimensions of trunnions

Allowable Load Tons Pipe Size A C D E F M N T W Weight Lbs

1 0-5 4 Std 4 - - 85 8 - 05 025 30

2 5-10 6 Std 5 - - 105 12 - 05 025 55

3 10-15 8 Std 6 0625 8 125 15 4 05 0375 90

4 15-25 10 Std 6 0625 8 15 18 4 075 0375 150

5 25-35 12 Sch 80 6 075 8 17 21 4 075 0375 240

6 35-45 12 Sch 80 6 075 8 17 21 4 075 05 240

7 45-60 14 Sch 80 6 075 8 18 24 8 1 05 375

8 60-75 14 Sch 80 7 0875 8 18 24 8 1 0625 400

9 75-100 16 Sch 80 7 0875 8 25 27 8 1 0625 625

10 100-125 16 Sch 80 7 0875 8 25 27 8 1125 0875 660

11 125-150 18 Sch 80 7 0875 8 27 30 12 1125 0875 850

12 150-200 18 Sch 80 8 0875 8 27 30 12 1125 1 875

13 200-250 20 Sch 80 8 0875 10 30 36 16 125 1 1000

14 300 24 Sch 80 8 1 10 34 36 16 125 1125 1440

15 400 24 Sch 80 8 1 10 34 40 20 1375 1125 1675

16 500 30 125 10 125 12 42 48 20 1375 1375 2400

17 600 36 125 10 125 12 48 60 24 15 1375 3600

Notes

1 Do not use re-pads for cyclic service

2 B frac14 D - 125

3 K frac14 Pipe Wall Thk

4 Dimensions are given for reference only All loadings and stress shall be checked prior to use

Transportation and Erection of Pressure Vessels 709

Procedure 10-9 Local Loads in Shell Due to Erection Forces

Trunnions

Fixed Lug Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Maximum torsional moment MT

MT frac14 PTE

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

Rotating Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

TrunniondNo Lug

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

710 Pressure Vessel Design Manual

Side Lugs Notes

1 Optional internal pipe Remove after erection2 Radial load Pr is the axial load in the internal pipe

stiffener if used in lieu of radial load in shell3 Circumferential ring stiffeners are optional at these

elevations

bull Circumferential moment Mc

Mc frac14 PTe

bull Longitudinal moment Mx

Mx frac14 PLe

bull Load on weld group f

f frac14 PTELT

bull Radial loads Pr and Pa

Pr frac14 PLe

Pa frac14 PL sin f

Top Flange Lug

bull Loads PT and PL

PT frac14 P cos q

PL frac14 P sin q

Transportation and Erection of Pressure Vessels 711

bull Moment on flange M

M frac14 PTB

bull Moment on head M

M frac14 PTethBthorn JTHORNbull Moment on vessel M

M frac14 PTG

bull Radial load on head and nozzle frac14 PL

Side Flange Lug

bull Loads PT and PL

PL frac14 P cos q

PT frac14 P sin q

bull Moment on flange M

M frac14 PLB

bull Longitudinal moment on shell Mx

M frac14 PTethBthorn JTHORNbull Radial load on shell and nozzle frac14 PT

712 Pressure Vessel Design Manual

Procedure 10-10 Miscellaneous

Figure 10-7 Fundamental handling operations Reprinted by permission of the Babcock and Wilcox Companya McDermott Company

Transportation and Erection of Pressure Vessels 713

Figure 10-8 Loads on wire rope for various sheave configurations

714 Pressure Vessel Design Manual

Table 10-14Forged Steel Shackles

Dimensions in Inches

Size D (in)Safe Load

(lb)D (min) A

Tolerance

A DimB B (min) C G

Tolerance C

and G DimE F

frac14 475 73232 153232 11616 51616 93232 1⅛ ⅞ 11616 frac34 111616

⅜ 1050 113232 213232 11616 71616 256464 171616 1frac14 ⅛ 1 313232

71616 1450 256464 233232 11616 frac12 296464 1111616 171616 ⅛ 1⅛ 111616

frac12 1900 296464 131616 11616 ⅝ 91616 1⅞ 1⅝ ⅛ 1⅜ 151616

⅝ 2950 91616 111616 11616 frac34 436464 2133232 2 ⅛ 1⅝ 191616

frac34 4250 436464 1frac14 11616 ⅞ 253232 2273232 2⅜ frac14 2 1⅞

⅞ 5750 253232 171616 11616 1 576464 351616 2131616 frac14 2frac14 2⅛

1 7550 576464 1111616 11616 1⅛ 113232 3frac34 331616 frac14 2frac12 2⅜

1⅛ 8900 113232 1271616 ⅛ 1frac14 176464 4frac14 391616 frac14 2frac34 2⅝

1frac14 11000 176464 213232 ⅛ 1⅜ 1156464 4111616 3151616 frac14 3⅛ 3

1⅜ 13300 1156464 2frac14 ⅛ 1frac12 1113232 5frac14 471616 frac14 3frac12 351616

1frac12 15600 1113232 2⅜ ⅛ 1⅝ 1296464 5frac34 4⅞ frac14 3frac34 3⅝

1frac34 21500 1356464 2⅞ ⅛ 2 1253232 7 5frac34 frac14 4frac14 4⅛

2 28100 1253232 3frac14 ⅛ 2frac14 216464 7frac34 6frac34 frac14 5frac14 5

2frac14 36000 216464 3frac34 ⅛ 2frac12 2156464 9frac14 7⅛ frac34 5frac12 5frac14

2frac12 45100 2156464 4⅛ ⅛ 2frac34 2153232 10frac12 8 frac34 6frac14 6

3 64700 2111616 5 ⅛ 3frac14 2293232 13 11frac12 frac34 6frac34 6frac12

Notes

For shackles with safe loads greater than the maximum shown use CrosbyndashLaughlin (The Crosby Group Div of American Hoist amp Derrick Co Tulsa

OK 74101) Skookum (Skookum Co Inc Portland OR 97203) or equal with an ultimate strength at least 5 times the safe working load

Allowable loads are lower than OSHA requirements tabulated in Section 1926251 Table H-19

Transportation and Erection of Pressure Vessels 715

Figure 10-9 Wire rope end configurations

716 Pressure Vessel Design Manual

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 24: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

Design Process

1 Determine loads2 Check of lug

a Shear at pin holeb Bending of lugc Bearing at pin hole

3 Check of base plate4 Check of nozzle flange5 Check of flange bolting6 Check of local load at nozzle to head or shell

junction

Step 1 Determine loads

bull Determine loads PT and PL for various lift angles qbull Determine uniform loads w1 and w2 for variousangles q

bull Using w1 and w2 solve for worst case of combinedload PE

bull Determine worst-case bending moment in lug M3

Step 2 Check of lug

a Shear at pin holebull Area required Ar

Ar frac14 PEFs

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN

b Bending of lug due to M3

bull Section modulus Z

Z frac14 tLA2

6

bull Bending stress lug sb

sb frac14 M3

Z

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFp

bull Bearing available Aa

Aa frac14 D2tL

Maximum Tension in Lug

Check of Nozzle Flange

bull Unit load w

w frac14 PEpBc

bull Bending moment M

M frac14 whDbull Bending stress sb

sb frac14 6M

t2f

698 Pressure Vessel Design Manual

Bolt Loads for Rectangular Lugs Design of Full Circular Base Plate for Lug

bull If a full circular plate is used in lieu of a rectangularplate the following evaluation may be used

bull Unit load on bolt circle w

w frac14 PEpBc

bull Edge distance from point of load hp

hp frac14 BC tL2

bull Bending moment M

M frac14 whp

bull Bending stress sb

sb frac14 6M

t2b

bull Check bolting same as rectangular flange

Transportation and Erection of Pressure Vessels 699

Design of Lug Base Plate

(From R J Roark Formulas for Stress and StrainMcGraw-Hill Book Co 4th Edition Table III Case 34)

bull Uniform load w

w frac14 PEA

bull End reaction R1

R1 frac14 wA2

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

bull Moment at midspan Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

bull Thickness required tb

tb frac14ffiffiffiffiffiffiffiffiffi6Mx

GFb

s

700 Pressure Vessel Design Manual

Check of Bolts

Case 1 Bolts on Centerline Case 2 Bolts Straddle Centerline

Bolt 1 2 3 4 5 Bolt 1 2 3 4 5

an an

xn xn

yn yn

Nb Nb

Mu Mu

Ma Ma

Fn Fn

sT sT

Fs Fs

Transportation and Erection of Pressure Vessels 701

Sample Problem Top Flange Lug

GivenL1 frac14 90 ftL2 frac14 50 ftL3 frac14 40 ftL4 frac14 95 ft

Fy bolting frac14 75 ksiFy lug frac14 36 ksi

Fy flange frac14 36 ksiFs frac14 04(36) frac14 144 ksiFT frac14 06(36) frac14 216 ksiFb frac14 066(36) frac14 2376 ksiWL frac14 1200 kipsBc frac14 54 inRc frac14 27 inB frac14 22 intb frac14 6 intL frac14 6 intf frac14 11 in

D1 frac14 9 in

D2 frac14 8 in

Bolt size frac14 3-14-8 UNC

Ab frac14 83 in2

As frac14 7686 in2

Tb frac14 592 kips

Su frac14 110 ksi

e frac14 16 in

G frac14 40 in

A frac14 24 in

hD frac14 95 in

b frac14 05ethBc ATHORN

Results

PT max frac14 537 kips q frac14 10

PL max frac141200 kips q frac14 90

PE max frac141277 kips q frac14 40

sT bolt max frac14 2011 ksi 40 ksi

s bolt max frac14 698 ksi 1077 ksi

702 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 703

10 Check Lug

a Shear at pin hole

bull Area required Ar

Ar frac14 PEFS

frac14 1277144

frac14 8868 in2

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN frac14 eth24$6THORN eth9$6THORN frac14 90 in2

b Bending of lug due to M3

bull Maximum moment M3

M3 frac14 PTe frac14 537eth16THORN frac14 8592 in kips

bull Section modulus Z

Z frac14 tLA2

6frac14

6$242

6

frac14 576 in3

bull Bending stress lug sb

sb frac14 M3

Zfrac14 8592

576frac14 1491 ksi

bull Thickness required tL

tL frac14 6M

FbA2 frac14 6$85922376eth242THORN frac14 376 in

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFP

frac14 1277324

frac14 3941 in2

bull Bearing available Aa

Aa frac14 D2tL frac14 8$6 frac14 48 in2

20 Check Lug Base Plate

bull Uniform load w

w frac14 PEA

frac14 127724

frac14 532kipsin

bull End reaction R1

R1 frac14 PE2

frac14 12772

frac14 6385 kips

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

Ma frac14 0985eth8748 2496thorn 768thorn 2304 17 496THORNfrac14 8049 in kips

bull Moment at mid Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

Mx frac14 8049thorn 17 240 3831

frac14 5360 in kips

bull Section modulus Z

Z frac14t2bG

6

frac1462$40

6

frac14 240 in3

bull Bending stress sb

sb frac14 Mx

Zfrac14 5360

240frac14 2233 ksi

bull Allowable bending stress Fb

Fb frac14 066Fy frac14 06636 frac14 2376 ksi

30 Check of Vessel Flange

bull Unit load w

w frac14 PEpBc

frac14 1277p54

frac14 752kipsin

bull Bending moment Mb

Mb frac14 whD frac14 752eth92THORN frac14 6925 in kips

bull Bending stress sb

sb frac14 6Mb

t2ffrac14 frac126eth6925THORN

11252frac14 328 ksi

704 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 705

Procedure 10-8 Design of Trunnions

Lug Dimensions

Dimensions for Trunnion

Type 1 Trunnion and Fixed Lug

Type 2 Trunnion and Rotating Lug

Type 3 Trunnion Only

706 Pressure Vessel Design Manual

Type 1 Trunnion and Fixed Lug

There are four checks to be performed

1 Check lug2 Check trunnion3 Check welds4 Check vessel shell

Check Lug

Transverse (vessel horizontal)

M frac14 PTE and Z frac14 4R2otL6

Therefore

tL frac14 15PTE

R2oFb

Longitudinal (vessel vertical)

bull Cross-sectional area at pin hole Ap

Ap frac14 213tL thorn 2tpethD3 D1

bull Cross-sectional area at top of lug An

An frac14 tL

RT D1

2

thorn 2tp

D3 D1

2

bull Shear stress s

s frac14 PLAP

or s frac14 PLAn

bull Pin bearing stress sp

sp frac14 PLD2

tL thorn 2tp

Check Trunnion

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Torsional moment MT (vessel horizontal)

MT frac14 PTE

bull Bending stress sb

sb frac14 ML

Z

bull Torsional shear stress sT

sT frac14 MT

2pRnto

Check Welds

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Polar moment of inertia Jw

Jw frac14 2pR3n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Torsional shear stress in weld sT

sT frac14 MTRn

Jw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 2 Trunnion and Rotating Lug

bull Net section at Section A-A Ap

Ap frac14 213tL thorn 2tpD3 D1

Transportation and Erection of Pressure Vessels 707

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at Section B-B An

An frac14 2tLethRo RiTHORNbull Shear stress at trunnion s

s frac14 PLAn

bull Minimum bearing contact angle for lug at trun-nion qB

qB frac14 eth159PLTHORNRntLFp

bull Pin hole bearing stress sp

sp frac14 PLD3

tL thorn 2tp

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Swbull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 3 Trunnion Only

Vessel Vertical

bull Longitudinal moment ML

ML frac14 PLe

bull Bending stress in trunnion sb

sb frac14 ML

Z

Vessel Horizontal

bull Circumferential moment Mc

Mc frac14 PTe

bull Bending stress in trunnion sb

sb frac14 Mc

Z

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

708 Pressure Vessel Design Manual

TYPE 1 TYPE 2

W

K

DIA

A

DIA

= F

DIA

= M

K

C

KT

2 X 125 DIAVENT HOLES

DIA

A

125

D

250

DIA

= F

W

K

B

NUTS WELDED

GRIND WELDSMOOTH

DIA

= M

K

E

KT

2 X 125 DIAVENT HOLES

Table 10-13Dimensions of trunnions

Allowable Load Tons Pipe Size A C D E F M N T W Weight Lbs

1 0-5 4 Std 4 - - 85 8 - 05 025 30

2 5-10 6 Std 5 - - 105 12 - 05 025 55

3 10-15 8 Std 6 0625 8 125 15 4 05 0375 90

4 15-25 10 Std 6 0625 8 15 18 4 075 0375 150

5 25-35 12 Sch 80 6 075 8 17 21 4 075 0375 240

6 35-45 12 Sch 80 6 075 8 17 21 4 075 05 240

7 45-60 14 Sch 80 6 075 8 18 24 8 1 05 375

8 60-75 14 Sch 80 7 0875 8 18 24 8 1 0625 400

9 75-100 16 Sch 80 7 0875 8 25 27 8 1 0625 625

10 100-125 16 Sch 80 7 0875 8 25 27 8 1125 0875 660

11 125-150 18 Sch 80 7 0875 8 27 30 12 1125 0875 850

12 150-200 18 Sch 80 8 0875 8 27 30 12 1125 1 875

13 200-250 20 Sch 80 8 0875 10 30 36 16 125 1 1000

14 300 24 Sch 80 8 1 10 34 36 16 125 1125 1440

15 400 24 Sch 80 8 1 10 34 40 20 1375 1125 1675

16 500 30 125 10 125 12 42 48 20 1375 1375 2400

17 600 36 125 10 125 12 48 60 24 15 1375 3600

Notes

1 Do not use re-pads for cyclic service

2 B frac14 D - 125

3 K frac14 Pipe Wall Thk

4 Dimensions are given for reference only All loadings and stress shall be checked prior to use

Transportation and Erection of Pressure Vessels 709

Procedure 10-9 Local Loads in Shell Due to Erection Forces

Trunnions

Fixed Lug Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Maximum torsional moment MT

MT frac14 PTE

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

Rotating Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

TrunniondNo Lug

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

710 Pressure Vessel Design Manual

Side Lugs Notes

1 Optional internal pipe Remove after erection2 Radial load Pr is the axial load in the internal pipe

stiffener if used in lieu of radial load in shell3 Circumferential ring stiffeners are optional at these

elevations

bull Circumferential moment Mc

Mc frac14 PTe

bull Longitudinal moment Mx

Mx frac14 PLe

bull Load on weld group f

f frac14 PTELT

bull Radial loads Pr and Pa

Pr frac14 PLe

Pa frac14 PL sin f

Top Flange Lug

bull Loads PT and PL

PT frac14 P cos q

PL frac14 P sin q

Transportation and Erection of Pressure Vessels 711

bull Moment on flange M

M frac14 PTB

bull Moment on head M

M frac14 PTethBthorn JTHORNbull Moment on vessel M

M frac14 PTG

bull Radial load on head and nozzle frac14 PL

Side Flange Lug

bull Loads PT and PL

PL frac14 P cos q

PT frac14 P sin q

bull Moment on flange M

M frac14 PLB

bull Longitudinal moment on shell Mx

M frac14 PTethBthorn JTHORNbull Radial load on shell and nozzle frac14 PT

712 Pressure Vessel Design Manual

Procedure 10-10 Miscellaneous

Figure 10-7 Fundamental handling operations Reprinted by permission of the Babcock and Wilcox Companya McDermott Company

Transportation and Erection of Pressure Vessels 713

Figure 10-8 Loads on wire rope for various sheave configurations

714 Pressure Vessel Design Manual

Table 10-14Forged Steel Shackles

Dimensions in Inches

Size D (in)Safe Load

(lb)D (min) A

Tolerance

A DimB B (min) C G

Tolerance C

and G DimE F

frac14 475 73232 153232 11616 51616 93232 1⅛ ⅞ 11616 frac34 111616

⅜ 1050 113232 213232 11616 71616 256464 171616 1frac14 ⅛ 1 313232

71616 1450 256464 233232 11616 frac12 296464 1111616 171616 ⅛ 1⅛ 111616

frac12 1900 296464 131616 11616 ⅝ 91616 1⅞ 1⅝ ⅛ 1⅜ 151616

⅝ 2950 91616 111616 11616 frac34 436464 2133232 2 ⅛ 1⅝ 191616

frac34 4250 436464 1frac14 11616 ⅞ 253232 2273232 2⅜ frac14 2 1⅞

⅞ 5750 253232 171616 11616 1 576464 351616 2131616 frac14 2frac14 2⅛

1 7550 576464 1111616 11616 1⅛ 113232 3frac34 331616 frac14 2frac12 2⅜

1⅛ 8900 113232 1271616 ⅛ 1frac14 176464 4frac14 391616 frac14 2frac34 2⅝

1frac14 11000 176464 213232 ⅛ 1⅜ 1156464 4111616 3151616 frac14 3⅛ 3

1⅜ 13300 1156464 2frac14 ⅛ 1frac12 1113232 5frac14 471616 frac14 3frac12 351616

1frac12 15600 1113232 2⅜ ⅛ 1⅝ 1296464 5frac34 4⅞ frac14 3frac34 3⅝

1frac34 21500 1356464 2⅞ ⅛ 2 1253232 7 5frac34 frac14 4frac14 4⅛

2 28100 1253232 3frac14 ⅛ 2frac14 216464 7frac34 6frac34 frac14 5frac14 5

2frac14 36000 216464 3frac34 ⅛ 2frac12 2156464 9frac14 7⅛ frac34 5frac12 5frac14

2frac12 45100 2156464 4⅛ ⅛ 2frac34 2153232 10frac12 8 frac34 6frac14 6

3 64700 2111616 5 ⅛ 3frac14 2293232 13 11frac12 frac34 6frac34 6frac12

Notes

For shackles with safe loads greater than the maximum shown use CrosbyndashLaughlin (The Crosby Group Div of American Hoist amp Derrick Co Tulsa

OK 74101) Skookum (Skookum Co Inc Portland OR 97203) or equal with an ultimate strength at least 5 times the safe working load

Allowable loads are lower than OSHA requirements tabulated in Section 1926251 Table H-19

Transportation and Erection of Pressure Vessels 715

Figure 10-9 Wire rope end configurations

716 Pressure Vessel Design Manual

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 25: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

Bolt Loads for Rectangular Lugs Design of Full Circular Base Plate for Lug

bull If a full circular plate is used in lieu of a rectangularplate the following evaluation may be used

bull Unit load on bolt circle w

w frac14 PEpBc

bull Edge distance from point of load hp

hp frac14 BC tL2

bull Bending moment M

M frac14 whp

bull Bending stress sb

sb frac14 6M

t2b

bull Check bolting same as rectangular flange

Transportation and Erection of Pressure Vessels 699

Design of Lug Base Plate

(From R J Roark Formulas for Stress and StrainMcGraw-Hill Book Co 4th Edition Table III Case 34)

bull Uniform load w

w frac14 PEA

bull End reaction R1

R1 frac14 wA2

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

bull Moment at midspan Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

bull Thickness required tb

tb frac14ffiffiffiffiffiffiffiffiffi6Mx

GFb

s

700 Pressure Vessel Design Manual

Check of Bolts

Case 1 Bolts on Centerline Case 2 Bolts Straddle Centerline

Bolt 1 2 3 4 5 Bolt 1 2 3 4 5

an an

xn xn

yn yn

Nb Nb

Mu Mu

Ma Ma

Fn Fn

sT sT

Fs Fs

Transportation and Erection of Pressure Vessels 701

Sample Problem Top Flange Lug

GivenL1 frac14 90 ftL2 frac14 50 ftL3 frac14 40 ftL4 frac14 95 ft

Fy bolting frac14 75 ksiFy lug frac14 36 ksi

Fy flange frac14 36 ksiFs frac14 04(36) frac14 144 ksiFT frac14 06(36) frac14 216 ksiFb frac14 066(36) frac14 2376 ksiWL frac14 1200 kipsBc frac14 54 inRc frac14 27 inB frac14 22 intb frac14 6 intL frac14 6 intf frac14 11 in

D1 frac14 9 in

D2 frac14 8 in

Bolt size frac14 3-14-8 UNC

Ab frac14 83 in2

As frac14 7686 in2

Tb frac14 592 kips

Su frac14 110 ksi

e frac14 16 in

G frac14 40 in

A frac14 24 in

hD frac14 95 in

b frac14 05ethBc ATHORN

Results

PT max frac14 537 kips q frac14 10

PL max frac141200 kips q frac14 90

PE max frac141277 kips q frac14 40

sT bolt max frac14 2011 ksi 40 ksi

s bolt max frac14 698 ksi 1077 ksi

702 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 703

10 Check Lug

a Shear at pin hole

bull Area required Ar

Ar frac14 PEFS

frac14 1277144

frac14 8868 in2

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN frac14 eth24$6THORN eth9$6THORN frac14 90 in2

b Bending of lug due to M3

bull Maximum moment M3

M3 frac14 PTe frac14 537eth16THORN frac14 8592 in kips

bull Section modulus Z

Z frac14 tLA2

6frac14

6$242

6

frac14 576 in3

bull Bending stress lug sb

sb frac14 M3

Zfrac14 8592

576frac14 1491 ksi

bull Thickness required tL

tL frac14 6M

FbA2 frac14 6$85922376eth242THORN frac14 376 in

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFP

frac14 1277324

frac14 3941 in2

bull Bearing available Aa

Aa frac14 D2tL frac14 8$6 frac14 48 in2

20 Check Lug Base Plate

bull Uniform load w

w frac14 PEA

frac14 127724

frac14 532kipsin

bull End reaction R1

R1 frac14 PE2

frac14 12772

frac14 6385 kips

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

Ma frac14 0985eth8748 2496thorn 768thorn 2304 17 496THORNfrac14 8049 in kips

bull Moment at mid Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

Mx frac14 8049thorn 17 240 3831

frac14 5360 in kips

bull Section modulus Z

Z frac14t2bG

6

frac1462$40

6

frac14 240 in3

bull Bending stress sb

sb frac14 Mx

Zfrac14 5360

240frac14 2233 ksi

bull Allowable bending stress Fb

Fb frac14 066Fy frac14 06636 frac14 2376 ksi

30 Check of Vessel Flange

bull Unit load w

w frac14 PEpBc

frac14 1277p54

frac14 752kipsin

bull Bending moment Mb

Mb frac14 whD frac14 752eth92THORN frac14 6925 in kips

bull Bending stress sb

sb frac14 6Mb

t2ffrac14 frac126eth6925THORN

11252frac14 328 ksi

704 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 705

Procedure 10-8 Design of Trunnions

Lug Dimensions

Dimensions for Trunnion

Type 1 Trunnion and Fixed Lug

Type 2 Trunnion and Rotating Lug

Type 3 Trunnion Only

706 Pressure Vessel Design Manual

Type 1 Trunnion and Fixed Lug

There are four checks to be performed

1 Check lug2 Check trunnion3 Check welds4 Check vessel shell

Check Lug

Transverse (vessel horizontal)

M frac14 PTE and Z frac14 4R2otL6

Therefore

tL frac14 15PTE

R2oFb

Longitudinal (vessel vertical)

bull Cross-sectional area at pin hole Ap

Ap frac14 213tL thorn 2tpethD3 D1

bull Cross-sectional area at top of lug An

An frac14 tL

RT D1

2

thorn 2tp

D3 D1

2

bull Shear stress s

s frac14 PLAP

or s frac14 PLAn

bull Pin bearing stress sp

sp frac14 PLD2

tL thorn 2tp

Check Trunnion

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Torsional moment MT (vessel horizontal)

MT frac14 PTE

bull Bending stress sb

sb frac14 ML

Z

bull Torsional shear stress sT

sT frac14 MT

2pRnto

Check Welds

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Polar moment of inertia Jw

Jw frac14 2pR3n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Torsional shear stress in weld sT

sT frac14 MTRn

Jw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 2 Trunnion and Rotating Lug

bull Net section at Section A-A Ap

Ap frac14 213tL thorn 2tpD3 D1

Transportation and Erection of Pressure Vessels 707

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at Section B-B An

An frac14 2tLethRo RiTHORNbull Shear stress at trunnion s

s frac14 PLAn

bull Minimum bearing contact angle for lug at trun-nion qB

qB frac14 eth159PLTHORNRntLFp

bull Pin hole bearing stress sp

sp frac14 PLD3

tL thorn 2tp

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Swbull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 3 Trunnion Only

Vessel Vertical

bull Longitudinal moment ML

ML frac14 PLe

bull Bending stress in trunnion sb

sb frac14 ML

Z

Vessel Horizontal

bull Circumferential moment Mc

Mc frac14 PTe

bull Bending stress in trunnion sb

sb frac14 Mc

Z

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

708 Pressure Vessel Design Manual

TYPE 1 TYPE 2

W

K

DIA

A

DIA

= F

DIA

= M

K

C

KT

2 X 125 DIAVENT HOLES

DIA

A

125

D

250

DIA

= F

W

K

B

NUTS WELDED

GRIND WELDSMOOTH

DIA

= M

K

E

KT

2 X 125 DIAVENT HOLES

Table 10-13Dimensions of trunnions

Allowable Load Tons Pipe Size A C D E F M N T W Weight Lbs

1 0-5 4 Std 4 - - 85 8 - 05 025 30

2 5-10 6 Std 5 - - 105 12 - 05 025 55

3 10-15 8 Std 6 0625 8 125 15 4 05 0375 90

4 15-25 10 Std 6 0625 8 15 18 4 075 0375 150

5 25-35 12 Sch 80 6 075 8 17 21 4 075 0375 240

6 35-45 12 Sch 80 6 075 8 17 21 4 075 05 240

7 45-60 14 Sch 80 6 075 8 18 24 8 1 05 375

8 60-75 14 Sch 80 7 0875 8 18 24 8 1 0625 400

9 75-100 16 Sch 80 7 0875 8 25 27 8 1 0625 625

10 100-125 16 Sch 80 7 0875 8 25 27 8 1125 0875 660

11 125-150 18 Sch 80 7 0875 8 27 30 12 1125 0875 850

12 150-200 18 Sch 80 8 0875 8 27 30 12 1125 1 875

13 200-250 20 Sch 80 8 0875 10 30 36 16 125 1 1000

14 300 24 Sch 80 8 1 10 34 36 16 125 1125 1440

15 400 24 Sch 80 8 1 10 34 40 20 1375 1125 1675

16 500 30 125 10 125 12 42 48 20 1375 1375 2400

17 600 36 125 10 125 12 48 60 24 15 1375 3600

Notes

1 Do not use re-pads for cyclic service

2 B frac14 D - 125

3 K frac14 Pipe Wall Thk

4 Dimensions are given for reference only All loadings and stress shall be checked prior to use

Transportation and Erection of Pressure Vessels 709

Procedure 10-9 Local Loads in Shell Due to Erection Forces

Trunnions

Fixed Lug Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Maximum torsional moment MT

MT frac14 PTE

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

Rotating Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

TrunniondNo Lug

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

710 Pressure Vessel Design Manual

Side Lugs Notes

1 Optional internal pipe Remove after erection2 Radial load Pr is the axial load in the internal pipe

stiffener if used in lieu of radial load in shell3 Circumferential ring stiffeners are optional at these

elevations

bull Circumferential moment Mc

Mc frac14 PTe

bull Longitudinal moment Mx

Mx frac14 PLe

bull Load on weld group f

f frac14 PTELT

bull Radial loads Pr and Pa

Pr frac14 PLe

Pa frac14 PL sin f

Top Flange Lug

bull Loads PT and PL

PT frac14 P cos q

PL frac14 P sin q

Transportation and Erection of Pressure Vessels 711

bull Moment on flange M

M frac14 PTB

bull Moment on head M

M frac14 PTethBthorn JTHORNbull Moment on vessel M

M frac14 PTG

bull Radial load on head and nozzle frac14 PL

Side Flange Lug

bull Loads PT and PL

PL frac14 P cos q

PT frac14 P sin q

bull Moment on flange M

M frac14 PLB

bull Longitudinal moment on shell Mx

M frac14 PTethBthorn JTHORNbull Radial load on shell and nozzle frac14 PT

712 Pressure Vessel Design Manual

Procedure 10-10 Miscellaneous

Figure 10-7 Fundamental handling operations Reprinted by permission of the Babcock and Wilcox Companya McDermott Company

Transportation and Erection of Pressure Vessels 713

Figure 10-8 Loads on wire rope for various sheave configurations

714 Pressure Vessel Design Manual

Table 10-14Forged Steel Shackles

Dimensions in Inches

Size D (in)Safe Load

(lb)D (min) A

Tolerance

A DimB B (min) C G

Tolerance C

and G DimE F

frac14 475 73232 153232 11616 51616 93232 1⅛ ⅞ 11616 frac34 111616

⅜ 1050 113232 213232 11616 71616 256464 171616 1frac14 ⅛ 1 313232

71616 1450 256464 233232 11616 frac12 296464 1111616 171616 ⅛ 1⅛ 111616

frac12 1900 296464 131616 11616 ⅝ 91616 1⅞ 1⅝ ⅛ 1⅜ 151616

⅝ 2950 91616 111616 11616 frac34 436464 2133232 2 ⅛ 1⅝ 191616

frac34 4250 436464 1frac14 11616 ⅞ 253232 2273232 2⅜ frac14 2 1⅞

⅞ 5750 253232 171616 11616 1 576464 351616 2131616 frac14 2frac14 2⅛

1 7550 576464 1111616 11616 1⅛ 113232 3frac34 331616 frac14 2frac12 2⅜

1⅛ 8900 113232 1271616 ⅛ 1frac14 176464 4frac14 391616 frac14 2frac34 2⅝

1frac14 11000 176464 213232 ⅛ 1⅜ 1156464 4111616 3151616 frac14 3⅛ 3

1⅜ 13300 1156464 2frac14 ⅛ 1frac12 1113232 5frac14 471616 frac14 3frac12 351616

1frac12 15600 1113232 2⅜ ⅛ 1⅝ 1296464 5frac34 4⅞ frac14 3frac34 3⅝

1frac34 21500 1356464 2⅞ ⅛ 2 1253232 7 5frac34 frac14 4frac14 4⅛

2 28100 1253232 3frac14 ⅛ 2frac14 216464 7frac34 6frac34 frac14 5frac14 5

2frac14 36000 216464 3frac34 ⅛ 2frac12 2156464 9frac14 7⅛ frac34 5frac12 5frac14

2frac12 45100 2156464 4⅛ ⅛ 2frac34 2153232 10frac12 8 frac34 6frac14 6

3 64700 2111616 5 ⅛ 3frac14 2293232 13 11frac12 frac34 6frac34 6frac12

Notes

For shackles with safe loads greater than the maximum shown use CrosbyndashLaughlin (The Crosby Group Div of American Hoist amp Derrick Co Tulsa

OK 74101) Skookum (Skookum Co Inc Portland OR 97203) or equal with an ultimate strength at least 5 times the safe working load

Allowable loads are lower than OSHA requirements tabulated in Section 1926251 Table H-19

Transportation and Erection of Pressure Vessels 715

Figure 10-9 Wire rope end configurations

716 Pressure Vessel Design Manual

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 26: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

Design of Lug Base Plate

(From R J Roark Formulas for Stress and StrainMcGraw-Hill Book Co 4th Edition Table III Case 34)

bull Uniform load w

w frac14 PEA

bull End reaction R1

R1 frac14 wA2

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

bull Moment at midspan Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

bull Thickness required tb

tb frac14ffiffiffiffiffiffiffiffiffi6Mx

GFb

s

700 Pressure Vessel Design Manual

Check of Bolts

Case 1 Bolts on Centerline Case 2 Bolts Straddle Centerline

Bolt 1 2 3 4 5 Bolt 1 2 3 4 5

an an

xn xn

yn yn

Nb Nb

Mu Mu

Ma Ma

Fn Fn

sT sT

Fs Fs

Transportation and Erection of Pressure Vessels 701

Sample Problem Top Flange Lug

GivenL1 frac14 90 ftL2 frac14 50 ftL3 frac14 40 ftL4 frac14 95 ft

Fy bolting frac14 75 ksiFy lug frac14 36 ksi

Fy flange frac14 36 ksiFs frac14 04(36) frac14 144 ksiFT frac14 06(36) frac14 216 ksiFb frac14 066(36) frac14 2376 ksiWL frac14 1200 kipsBc frac14 54 inRc frac14 27 inB frac14 22 intb frac14 6 intL frac14 6 intf frac14 11 in

D1 frac14 9 in

D2 frac14 8 in

Bolt size frac14 3-14-8 UNC

Ab frac14 83 in2

As frac14 7686 in2

Tb frac14 592 kips

Su frac14 110 ksi

e frac14 16 in

G frac14 40 in

A frac14 24 in

hD frac14 95 in

b frac14 05ethBc ATHORN

Results

PT max frac14 537 kips q frac14 10

PL max frac141200 kips q frac14 90

PE max frac141277 kips q frac14 40

sT bolt max frac14 2011 ksi 40 ksi

s bolt max frac14 698 ksi 1077 ksi

702 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 703

10 Check Lug

a Shear at pin hole

bull Area required Ar

Ar frac14 PEFS

frac14 1277144

frac14 8868 in2

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN frac14 eth24$6THORN eth9$6THORN frac14 90 in2

b Bending of lug due to M3

bull Maximum moment M3

M3 frac14 PTe frac14 537eth16THORN frac14 8592 in kips

bull Section modulus Z

Z frac14 tLA2

6frac14

6$242

6

frac14 576 in3

bull Bending stress lug sb

sb frac14 M3

Zfrac14 8592

576frac14 1491 ksi

bull Thickness required tL

tL frac14 6M

FbA2 frac14 6$85922376eth242THORN frac14 376 in

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFP

frac14 1277324

frac14 3941 in2

bull Bearing available Aa

Aa frac14 D2tL frac14 8$6 frac14 48 in2

20 Check Lug Base Plate

bull Uniform load w

w frac14 PEA

frac14 127724

frac14 532kipsin

bull End reaction R1

R1 frac14 PE2

frac14 12772

frac14 6385 kips

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

Ma frac14 0985eth8748 2496thorn 768thorn 2304 17 496THORNfrac14 8049 in kips

bull Moment at mid Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

Mx frac14 8049thorn 17 240 3831

frac14 5360 in kips

bull Section modulus Z

Z frac14t2bG

6

frac1462$40

6

frac14 240 in3

bull Bending stress sb

sb frac14 Mx

Zfrac14 5360

240frac14 2233 ksi

bull Allowable bending stress Fb

Fb frac14 066Fy frac14 06636 frac14 2376 ksi

30 Check of Vessel Flange

bull Unit load w

w frac14 PEpBc

frac14 1277p54

frac14 752kipsin

bull Bending moment Mb

Mb frac14 whD frac14 752eth92THORN frac14 6925 in kips

bull Bending stress sb

sb frac14 6Mb

t2ffrac14 frac126eth6925THORN

11252frac14 328 ksi

704 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 705

Procedure 10-8 Design of Trunnions

Lug Dimensions

Dimensions for Trunnion

Type 1 Trunnion and Fixed Lug

Type 2 Trunnion and Rotating Lug

Type 3 Trunnion Only

706 Pressure Vessel Design Manual

Type 1 Trunnion and Fixed Lug

There are four checks to be performed

1 Check lug2 Check trunnion3 Check welds4 Check vessel shell

Check Lug

Transverse (vessel horizontal)

M frac14 PTE and Z frac14 4R2otL6

Therefore

tL frac14 15PTE

R2oFb

Longitudinal (vessel vertical)

bull Cross-sectional area at pin hole Ap

Ap frac14 213tL thorn 2tpethD3 D1

bull Cross-sectional area at top of lug An

An frac14 tL

RT D1

2

thorn 2tp

D3 D1

2

bull Shear stress s

s frac14 PLAP

or s frac14 PLAn

bull Pin bearing stress sp

sp frac14 PLD2

tL thorn 2tp

Check Trunnion

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Torsional moment MT (vessel horizontal)

MT frac14 PTE

bull Bending stress sb

sb frac14 ML

Z

bull Torsional shear stress sT

sT frac14 MT

2pRnto

Check Welds

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Polar moment of inertia Jw

Jw frac14 2pR3n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Torsional shear stress in weld sT

sT frac14 MTRn

Jw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 2 Trunnion and Rotating Lug

bull Net section at Section A-A Ap

Ap frac14 213tL thorn 2tpD3 D1

Transportation and Erection of Pressure Vessels 707

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at Section B-B An

An frac14 2tLethRo RiTHORNbull Shear stress at trunnion s

s frac14 PLAn

bull Minimum bearing contact angle for lug at trun-nion qB

qB frac14 eth159PLTHORNRntLFp

bull Pin hole bearing stress sp

sp frac14 PLD3

tL thorn 2tp

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Swbull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 3 Trunnion Only

Vessel Vertical

bull Longitudinal moment ML

ML frac14 PLe

bull Bending stress in trunnion sb

sb frac14 ML

Z

Vessel Horizontal

bull Circumferential moment Mc

Mc frac14 PTe

bull Bending stress in trunnion sb

sb frac14 Mc

Z

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

708 Pressure Vessel Design Manual

TYPE 1 TYPE 2

W

K

DIA

A

DIA

= F

DIA

= M

K

C

KT

2 X 125 DIAVENT HOLES

DIA

A

125

D

250

DIA

= F

W

K

B

NUTS WELDED

GRIND WELDSMOOTH

DIA

= M

K

E

KT

2 X 125 DIAVENT HOLES

Table 10-13Dimensions of trunnions

Allowable Load Tons Pipe Size A C D E F M N T W Weight Lbs

1 0-5 4 Std 4 - - 85 8 - 05 025 30

2 5-10 6 Std 5 - - 105 12 - 05 025 55

3 10-15 8 Std 6 0625 8 125 15 4 05 0375 90

4 15-25 10 Std 6 0625 8 15 18 4 075 0375 150

5 25-35 12 Sch 80 6 075 8 17 21 4 075 0375 240

6 35-45 12 Sch 80 6 075 8 17 21 4 075 05 240

7 45-60 14 Sch 80 6 075 8 18 24 8 1 05 375

8 60-75 14 Sch 80 7 0875 8 18 24 8 1 0625 400

9 75-100 16 Sch 80 7 0875 8 25 27 8 1 0625 625

10 100-125 16 Sch 80 7 0875 8 25 27 8 1125 0875 660

11 125-150 18 Sch 80 7 0875 8 27 30 12 1125 0875 850

12 150-200 18 Sch 80 8 0875 8 27 30 12 1125 1 875

13 200-250 20 Sch 80 8 0875 10 30 36 16 125 1 1000

14 300 24 Sch 80 8 1 10 34 36 16 125 1125 1440

15 400 24 Sch 80 8 1 10 34 40 20 1375 1125 1675

16 500 30 125 10 125 12 42 48 20 1375 1375 2400

17 600 36 125 10 125 12 48 60 24 15 1375 3600

Notes

1 Do not use re-pads for cyclic service

2 B frac14 D - 125

3 K frac14 Pipe Wall Thk

4 Dimensions are given for reference only All loadings and stress shall be checked prior to use

Transportation and Erection of Pressure Vessels 709

Procedure 10-9 Local Loads in Shell Due to Erection Forces

Trunnions

Fixed Lug Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Maximum torsional moment MT

MT frac14 PTE

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

Rotating Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

TrunniondNo Lug

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

710 Pressure Vessel Design Manual

Side Lugs Notes

1 Optional internal pipe Remove after erection2 Radial load Pr is the axial load in the internal pipe

stiffener if used in lieu of radial load in shell3 Circumferential ring stiffeners are optional at these

elevations

bull Circumferential moment Mc

Mc frac14 PTe

bull Longitudinal moment Mx

Mx frac14 PLe

bull Load on weld group f

f frac14 PTELT

bull Radial loads Pr and Pa

Pr frac14 PLe

Pa frac14 PL sin f

Top Flange Lug

bull Loads PT and PL

PT frac14 P cos q

PL frac14 P sin q

Transportation and Erection of Pressure Vessels 711

bull Moment on flange M

M frac14 PTB

bull Moment on head M

M frac14 PTethBthorn JTHORNbull Moment on vessel M

M frac14 PTG

bull Radial load on head and nozzle frac14 PL

Side Flange Lug

bull Loads PT and PL

PL frac14 P cos q

PT frac14 P sin q

bull Moment on flange M

M frac14 PLB

bull Longitudinal moment on shell Mx

M frac14 PTethBthorn JTHORNbull Radial load on shell and nozzle frac14 PT

712 Pressure Vessel Design Manual

Procedure 10-10 Miscellaneous

Figure 10-7 Fundamental handling operations Reprinted by permission of the Babcock and Wilcox Companya McDermott Company

Transportation and Erection of Pressure Vessels 713

Figure 10-8 Loads on wire rope for various sheave configurations

714 Pressure Vessel Design Manual

Table 10-14Forged Steel Shackles

Dimensions in Inches

Size D (in)Safe Load

(lb)D (min) A

Tolerance

A DimB B (min) C G

Tolerance C

and G DimE F

frac14 475 73232 153232 11616 51616 93232 1⅛ ⅞ 11616 frac34 111616

⅜ 1050 113232 213232 11616 71616 256464 171616 1frac14 ⅛ 1 313232

71616 1450 256464 233232 11616 frac12 296464 1111616 171616 ⅛ 1⅛ 111616

frac12 1900 296464 131616 11616 ⅝ 91616 1⅞ 1⅝ ⅛ 1⅜ 151616

⅝ 2950 91616 111616 11616 frac34 436464 2133232 2 ⅛ 1⅝ 191616

frac34 4250 436464 1frac14 11616 ⅞ 253232 2273232 2⅜ frac14 2 1⅞

⅞ 5750 253232 171616 11616 1 576464 351616 2131616 frac14 2frac14 2⅛

1 7550 576464 1111616 11616 1⅛ 113232 3frac34 331616 frac14 2frac12 2⅜

1⅛ 8900 113232 1271616 ⅛ 1frac14 176464 4frac14 391616 frac14 2frac34 2⅝

1frac14 11000 176464 213232 ⅛ 1⅜ 1156464 4111616 3151616 frac14 3⅛ 3

1⅜ 13300 1156464 2frac14 ⅛ 1frac12 1113232 5frac14 471616 frac14 3frac12 351616

1frac12 15600 1113232 2⅜ ⅛ 1⅝ 1296464 5frac34 4⅞ frac14 3frac34 3⅝

1frac34 21500 1356464 2⅞ ⅛ 2 1253232 7 5frac34 frac14 4frac14 4⅛

2 28100 1253232 3frac14 ⅛ 2frac14 216464 7frac34 6frac34 frac14 5frac14 5

2frac14 36000 216464 3frac34 ⅛ 2frac12 2156464 9frac14 7⅛ frac34 5frac12 5frac14

2frac12 45100 2156464 4⅛ ⅛ 2frac34 2153232 10frac12 8 frac34 6frac14 6

3 64700 2111616 5 ⅛ 3frac14 2293232 13 11frac12 frac34 6frac34 6frac12

Notes

For shackles with safe loads greater than the maximum shown use CrosbyndashLaughlin (The Crosby Group Div of American Hoist amp Derrick Co Tulsa

OK 74101) Skookum (Skookum Co Inc Portland OR 97203) or equal with an ultimate strength at least 5 times the safe working load

Allowable loads are lower than OSHA requirements tabulated in Section 1926251 Table H-19

Transportation and Erection of Pressure Vessels 715

Figure 10-9 Wire rope end configurations

716 Pressure Vessel Design Manual

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 27: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

Check of Bolts

Case 1 Bolts on Centerline Case 2 Bolts Straddle Centerline

Bolt 1 2 3 4 5 Bolt 1 2 3 4 5

an an

xn xn

yn yn

Nb Nb

Mu Mu

Ma Ma

Fn Fn

sT sT

Fs Fs

Transportation and Erection of Pressure Vessels 701

Sample Problem Top Flange Lug

GivenL1 frac14 90 ftL2 frac14 50 ftL3 frac14 40 ftL4 frac14 95 ft

Fy bolting frac14 75 ksiFy lug frac14 36 ksi

Fy flange frac14 36 ksiFs frac14 04(36) frac14 144 ksiFT frac14 06(36) frac14 216 ksiFb frac14 066(36) frac14 2376 ksiWL frac14 1200 kipsBc frac14 54 inRc frac14 27 inB frac14 22 intb frac14 6 intL frac14 6 intf frac14 11 in

D1 frac14 9 in

D2 frac14 8 in

Bolt size frac14 3-14-8 UNC

Ab frac14 83 in2

As frac14 7686 in2

Tb frac14 592 kips

Su frac14 110 ksi

e frac14 16 in

G frac14 40 in

A frac14 24 in

hD frac14 95 in

b frac14 05ethBc ATHORN

Results

PT max frac14 537 kips q frac14 10

PL max frac141200 kips q frac14 90

PE max frac141277 kips q frac14 40

sT bolt max frac14 2011 ksi 40 ksi

s bolt max frac14 698 ksi 1077 ksi

702 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 703

10 Check Lug

a Shear at pin hole

bull Area required Ar

Ar frac14 PEFS

frac14 1277144

frac14 8868 in2

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN frac14 eth24$6THORN eth9$6THORN frac14 90 in2

b Bending of lug due to M3

bull Maximum moment M3

M3 frac14 PTe frac14 537eth16THORN frac14 8592 in kips

bull Section modulus Z

Z frac14 tLA2

6frac14

6$242

6

frac14 576 in3

bull Bending stress lug sb

sb frac14 M3

Zfrac14 8592

576frac14 1491 ksi

bull Thickness required tL

tL frac14 6M

FbA2 frac14 6$85922376eth242THORN frac14 376 in

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFP

frac14 1277324

frac14 3941 in2

bull Bearing available Aa

Aa frac14 D2tL frac14 8$6 frac14 48 in2

20 Check Lug Base Plate

bull Uniform load w

w frac14 PEA

frac14 127724

frac14 532kipsin

bull End reaction R1

R1 frac14 PE2

frac14 12772

frac14 6385 kips

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

Ma frac14 0985eth8748 2496thorn 768thorn 2304 17 496THORNfrac14 8049 in kips

bull Moment at mid Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

Mx frac14 8049thorn 17 240 3831

frac14 5360 in kips

bull Section modulus Z

Z frac14t2bG

6

frac1462$40

6

frac14 240 in3

bull Bending stress sb

sb frac14 Mx

Zfrac14 5360

240frac14 2233 ksi

bull Allowable bending stress Fb

Fb frac14 066Fy frac14 06636 frac14 2376 ksi

30 Check of Vessel Flange

bull Unit load w

w frac14 PEpBc

frac14 1277p54

frac14 752kipsin

bull Bending moment Mb

Mb frac14 whD frac14 752eth92THORN frac14 6925 in kips

bull Bending stress sb

sb frac14 6Mb

t2ffrac14 frac126eth6925THORN

11252frac14 328 ksi

704 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 705

Procedure 10-8 Design of Trunnions

Lug Dimensions

Dimensions for Trunnion

Type 1 Trunnion and Fixed Lug

Type 2 Trunnion and Rotating Lug

Type 3 Trunnion Only

706 Pressure Vessel Design Manual

Type 1 Trunnion and Fixed Lug

There are four checks to be performed

1 Check lug2 Check trunnion3 Check welds4 Check vessel shell

Check Lug

Transverse (vessel horizontal)

M frac14 PTE and Z frac14 4R2otL6

Therefore

tL frac14 15PTE

R2oFb

Longitudinal (vessel vertical)

bull Cross-sectional area at pin hole Ap

Ap frac14 213tL thorn 2tpethD3 D1

bull Cross-sectional area at top of lug An

An frac14 tL

RT D1

2

thorn 2tp

D3 D1

2

bull Shear stress s

s frac14 PLAP

or s frac14 PLAn

bull Pin bearing stress sp

sp frac14 PLD2

tL thorn 2tp

Check Trunnion

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Torsional moment MT (vessel horizontal)

MT frac14 PTE

bull Bending stress sb

sb frac14 ML

Z

bull Torsional shear stress sT

sT frac14 MT

2pRnto

Check Welds

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Polar moment of inertia Jw

Jw frac14 2pR3n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Torsional shear stress in weld sT

sT frac14 MTRn

Jw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 2 Trunnion and Rotating Lug

bull Net section at Section A-A Ap

Ap frac14 213tL thorn 2tpD3 D1

Transportation and Erection of Pressure Vessels 707

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at Section B-B An

An frac14 2tLethRo RiTHORNbull Shear stress at trunnion s

s frac14 PLAn

bull Minimum bearing contact angle for lug at trun-nion qB

qB frac14 eth159PLTHORNRntLFp

bull Pin hole bearing stress sp

sp frac14 PLD3

tL thorn 2tp

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Swbull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 3 Trunnion Only

Vessel Vertical

bull Longitudinal moment ML

ML frac14 PLe

bull Bending stress in trunnion sb

sb frac14 ML

Z

Vessel Horizontal

bull Circumferential moment Mc

Mc frac14 PTe

bull Bending stress in trunnion sb

sb frac14 Mc

Z

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

708 Pressure Vessel Design Manual

TYPE 1 TYPE 2

W

K

DIA

A

DIA

= F

DIA

= M

K

C

KT

2 X 125 DIAVENT HOLES

DIA

A

125

D

250

DIA

= F

W

K

B

NUTS WELDED

GRIND WELDSMOOTH

DIA

= M

K

E

KT

2 X 125 DIAVENT HOLES

Table 10-13Dimensions of trunnions

Allowable Load Tons Pipe Size A C D E F M N T W Weight Lbs

1 0-5 4 Std 4 - - 85 8 - 05 025 30

2 5-10 6 Std 5 - - 105 12 - 05 025 55

3 10-15 8 Std 6 0625 8 125 15 4 05 0375 90

4 15-25 10 Std 6 0625 8 15 18 4 075 0375 150

5 25-35 12 Sch 80 6 075 8 17 21 4 075 0375 240

6 35-45 12 Sch 80 6 075 8 17 21 4 075 05 240

7 45-60 14 Sch 80 6 075 8 18 24 8 1 05 375

8 60-75 14 Sch 80 7 0875 8 18 24 8 1 0625 400

9 75-100 16 Sch 80 7 0875 8 25 27 8 1 0625 625

10 100-125 16 Sch 80 7 0875 8 25 27 8 1125 0875 660

11 125-150 18 Sch 80 7 0875 8 27 30 12 1125 0875 850

12 150-200 18 Sch 80 8 0875 8 27 30 12 1125 1 875

13 200-250 20 Sch 80 8 0875 10 30 36 16 125 1 1000

14 300 24 Sch 80 8 1 10 34 36 16 125 1125 1440

15 400 24 Sch 80 8 1 10 34 40 20 1375 1125 1675

16 500 30 125 10 125 12 42 48 20 1375 1375 2400

17 600 36 125 10 125 12 48 60 24 15 1375 3600

Notes

1 Do not use re-pads for cyclic service

2 B frac14 D - 125

3 K frac14 Pipe Wall Thk

4 Dimensions are given for reference only All loadings and stress shall be checked prior to use

Transportation and Erection of Pressure Vessels 709

Procedure 10-9 Local Loads in Shell Due to Erection Forces

Trunnions

Fixed Lug Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Maximum torsional moment MT

MT frac14 PTE

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

Rotating Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

TrunniondNo Lug

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

710 Pressure Vessel Design Manual

Side Lugs Notes

1 Optional internal pipe Remove after erection2 Radial load Pr is the axial load in the internal pipe

stiffener if used in lieu of radial load in shell3 Circumferential ring stiffeners are optional at these

elevations

bull Circumferential moment Mc

Mc frac14 PTe

bull Longitudinal moment Mx

Mx frac14 PLe

bull Load on weld group f

f frac14 PTELT

bull Radial loads Pr and Pa

Pr frac14 PLe

Pa frac14 PL sin f

Top Flange Lug

bull Loads PT and PL

PT frac14 P cos q

PL frac14 P sin q

Transportation and Erection of Pressure Vessels 711

bull Moment on flange M

M frac14 PTB

bull Moment on head M

M frac14 PTethBthorn JTHORNbull Moment on vessel M

M frac14 PTG

bull Radial load on head and nozzle frac14 PL

Side Flange Lug

bull Loads PT and PL

PL frac14 P cos q

PT frac14 P sin q

bull Moment on flange M

M frac14 PLB

bull Longitudinal moment on shell Mx

M frac14 PTethBthorn JTHORNbull Radial load on shell and nozzle frac14 PT

712 Pressure Vessel Design Manual

Procedure 10-10 Miscellaneous

Figure 10-7 Fundamental handling operations Reprinted by permission of the Babcock and Wilcox Companya McDermott Company

Transportation and Erection of Pressure Vessels 713

Figure 10-8 Loads on wire rope for various sheave configurations

714 Pressure Vessel Design Manual

Table 10-14Forged Steel Shackles

Dimensions in Inches

Size D (in)Safe Load

(lb)D (min) A

Tolerance

A DimB B (min) C G

Tolerance C

and G DimE F

frac14 475 73232 153232 11616 51616 93232 1⅛ ⅞ 11616 frac34 111616

⅜ 1050 113232 213232 11616 71616 256464 171616 1frac14 ⅛ 1 313232

71616 1450 256464 233232 11616 frac12 296464 1111616 171616 ⅛ 1⅛ 111616

frac12 1900 296464 131616 11616 ⅝ 91616 1⅞ 1⅝ ⅛ 1⅜ 151616

⅝ 2950 91616 111616 11616 frac34 436464 2133232 2 ⅛ 1⅝ 191616

frac34 4250 436464 1frac14 11616 ⅞ 253232 2273232 2⅜ frac14 2 1⅞

⅞ 5750 253232 171616 11616 1 576464 351616 2131616 frac14 2frac14 2⅛

1 7550 576464 1111616 11616 1⅛ 113232 3frac34 331616 frac14 2frac12 2⅜

1⅛ 8900 113232 1271616 ⅛ 1frac14 176464 4frac14 391616 frac14 2frac34 2⅝

1frac14 11000 176464 213232 ⅛ 1⅜ 1156464 4111616 3151616 frac14 3⅛ 3

1⅜ 13300 1156464 2frac14 ⅛ 1frac12 1113232 5frac14 471616 frac14 3frac12 351616

1frac12 15600 1113232 2⅜ ⅛ 1⅝ 1296464 5frac34 4⅞ frac14 3frac34 3⅝

1frac34 21500 1356464 2⅞ ⅛ 2 1253232 7 5frac34 frac14 4frac14 4⅛

2 28100 1253232 3frac14 ⅛ 2frac14 216464 7frac34 6frac34 frac14 5frac14 5

2frac14 36000 216464 3frac34 ⅛ 2frac12 2156464 9frac14 7⅛ frac34 5frac12 5frac14

2frac12 45100 2156464 4⅛ ⅛ 2frac34 2153232 10frac12 8 frac34 6frac14 6

3 64700 2111616 5 ⅛ 3frac14 2293232 13 11frac12 frac34 6frac34 6frac12

Notes

For shackles with safe loads greater than the maximum shown use CrosbyndashLaughlin (The Crosby Group Div of American Hoist amp Derrick Co Tulsa

OK 74101) Skookum (Skookum Co Inc Portland OR 97203) or equal with an ultimate strength at least 5 times the safe working load

Allowable loads are lower than OSHA requirements tabulated in Section 1926251 Table H-19

Transportation and Erection of Pressure Vessels 715

Figure 10-9 Wire rope end configurations

716 Pressure Vessel Design Manual

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 28: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

Sample Problem Top Flange Lug

GivenL1 frac14 90 ftL2 frac14 50 ftL3 frac14 40 ftL4 frac14 95 ft

Fy bolting frac14 75 ksiFy lug frac14 36 ksi

Fy flange frac14 36 ksiFs frac14 04(36) frac14 144 ksiFT frac14 06(36) frac14 216 ksiFb frac14 066(36) frac14 2376 ksiWL frac14 1200 kipsBc frac14 54 inRc frac14 27 inB frac14 22 intb frac14 6 intL frac14 6 intf frac14 11 in

D1 frac14 9 in

D2 frac14 8 in

Bolt size frac14 3-14-8 UNC

Ab frac14 83 in2

As frac14 7686 in2

Tb frac14 592 kips

Su frac14 110 ksi

e frac14 16 in

G frac14 40 in

A frac14 24 in

hD frac14 95 in

b frac14 05ethBc ATHORN

Results

PT max frac14 537 kips q frac14 10

PL max frac141200 kips q frac14 90

PE max frac141277 kips q frac14 40

sT bolt max frac14 2011 ksi 40 ksi

s bolt max frac14 698 ksi 1077 ksi

702 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 703

10 Check Lug

a Shear at pin hole

bull Area required Ar

Ar frac14 PEFS

frac14 1277144

frac14 8868 in2

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN frac14 eth24$6THORN eth9$6THORN frac14 90 in2

b Bending of lug due to M3

bull Maximum moment M3

M3 frac14 PTe frac14 537eth16THORN frac14 8592 in kips

bull Section modulus Z

Z frac14 tLA2

6frac14

6$242

6

frac14 576 in3

bull Bending stress lug sb

sb frac14 M3

Zfrac14 8592

576frac14 1491 ksi

bull Thickness required tL

tL frac14 6M

FbA2 frac14 6$85922376eth242THORN frac14 376 in

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFP

frac14 1277324

frac14 3941 in2

bull Bearing available Aa

Aa frac14 D2tL frac14 8$6 frac14 48 in2

20 Check Lug Base Plate

bull Uniform load w

w frac14 PEA

frac14 127724

frac14 532kipsin

bull End reaction R1

R1 frac14 PE2

frac14 12772

frac14 6385 kips

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

Ma frac14 0985eth8748 2496thorn 768thorn 2304 17 496THORNfrac14 8049 in kips

bull Moment at mid Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

Mx frac14 8049thorn 17 240 3831

frac14 5360 in kips

bull Section modulus Z

Z frac14t2bG

6

frac1462$40

6

frac14 240 in3

bull Bending stress sb

sb frac14 Mx

Zfrac14 5360

240frac14 2233 ksi

bull Allowable bending stress Fb

Fb frac14 066Fy frac14 06636 frac14 2376 ksi

30 Check of Vessel Flange

bull Unit load w

w frac14 PEpBc

frac14 1277p54

frac14 752kipsin

bull Bending moment Mb

Mb frac14 whD frac14 752eth92THORN frac14 6925 in kips

bull Bending stress sb

sb frac14 6Mb

t2ffrac14 frac126eth6925THORN

11252frac14 328 ksi

704 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 705

Procedure 10-8 Design of Trunnions

Lug Dimensions

Dimensions for Trunnion

Type 1 Trunnion and Fixed Lug

Type 2 Trunnion and Rotating Lug

Type 3 Trunnion Only

706 Pressure Vessel Design Manual

Type 1 Trunnion and Fixed Lug

There are four checks to be performed

1 Check lug2 Check trunnion3 Check welds4 Check vessel shell

Check Lug

Transverse (vessel horizontal)

M frac14 PTE and Z frac14 4R2otL6

Therefore

tL frac14 15PTE

R2oFb

Longitudinal (vessel vertical)

bull Cross-sectional area at pin hole Ap

Ap frac14 213tL thorn 2tpethD3 D1

bull Cross-sectional area at top of lug An

An frac14 tL

RT D1

2

thorn 2tp

D3 D1

2

bull Shear stress s

s frac14 PLAP

or s frac14 PLAn

bull Pin bearing stress sp

sp frac14 PLD2

tL thorn 2tp

Check Trunnion

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Torsional moment MT (vessel horizontal)

MT frac14 PTE

bull Bending stress sb

sb frac14 ML

Z

bull Torsional shear stress sT

sT frac14 MT

2pRnto

Check Welds

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Polar moment of inertia Jw

Jw frac14 2pR3n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Torsional shear stress in weld sT

sT frac14 MTRn

Jw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 2 Trunnion and Rotating Lug

bull Net section at Section A-A Ap

Ap frac14 213tL thorn 2tpD3 D1

Transportation and Erection of Pressure Vessels 707

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at Section B-B An

An frac14 2tLethRo RiTHORNbull Shear stress at trunnion s

s frac14 PLAn

bull Minimum bearing contact angle for lug at trun-nion qB

qB frac14 eth159PLTHORNRntLFp

bull Pin hole bearing stress sp

sp frac14 PLD3

tL thorn 2tp

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Swbull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 3 Trunnion Only

Vessel Vertical

bull Longitudinal moment ML

ML frac14 PLe

bull Bending stress in trunnion sb

sb frac14 ML

Z

Vessel Horizontal

bull Circumferential moment Mc

Mc frac14 PTe

bull Bending stress in trunnion sb

sb frac14 Mc

Z

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

708 Pressure Vessel Design Manual

TYPE 1 TYPE 2

W

K

DIA

A

DIA

= F

DIA

= M

K

C

KT

2 X 125 DIAVENT HOLES

DIA

A

125

D

250

DIA

= F

W

K

B

NUTS WELDED

GRIND WELDSMOOTH

DIA

= M

K

E

KT

2 X 125 DIAVENT HOLES

Table 10-13Dimensions of trunnions

Allowable Load Tons Pipe Size A C D E F M N T W Weight Lbs

1 0-5 4 Std 4 - - 85 8 - 05 025 30

2 5-10 6 Std 5 - - 105 12 - 05 025 55

3 10-15 8 Std 6 0625 8 125 15 4 05 0375 90

4 15-25 10 Std 6 0625 8 15 18 4 075 0375 150

5 25-35 12 Sch 80 6 075 8 17 21 4 075 0375 240

6 35-45 12 Sch 80 6 075 8 17 21 4 075 05 240

7 45-60 14 Sch 80 6 075 8 18 24 8 1 05 375

8 60-75 14 Sch 80 7 0875 8 18 24 8 1 0625 400

9 75-100 16 Sch 80 7 0875 8 25 27 8 1 0625 625

10 100-125 16 Sch 80 7 0875 8 25 27 8 1125 0875 660

11 125-150 18 Sch 80 7 0875 8 27 30 12 1125 0875 850

12 150-200 18 Sch 80 8 0875 8 27 30 12 1125 1 875

13 200-250 20 Sch 80 8 0875 10 30 36 16 125 1 1000

14 300 24 Sch 80 8 1 10 34 36 16 125 1125 1440

15 400 24 Sch 80 8 1 10 34 40 20 1375 1125 1675

16 500 30 125 10 125 12 42 48 20 1375 1375 2400

17 600 36 125 10 125 12 48 60 24 15 1375 3600

Notes

1 Do not use re-pads for cyclic service

2 B frac14 D - 125

3 K frac14 Pipe Wall Thk

4 Dimensions are given for reference only All loadings and stress shall be checked prior to use

Transportation and Erection of Pressure Vessels 709

Procedure 10-9 Local Loads in Shell Due to Erection Forces

Trunnions

Fixed Lug Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Maximum torsional moment MT

MT frac14 PTE

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

Rotating Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

TrunniondNo Lug

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

710 Pressure Vessel Design Manual

Side Lugs Notes

1 Optional internal pipe Remove after erection2 Radial load Pr is the axial load in the internal pipe

stiffener if used in lieu of radial load in shell3 Circumferential ring stiffeners are optional at these

elevations

bull Circumferential moment Mc

Mc frac14 PTe

bull Longitudinal moment Mx

Mx frac14 PLe

bull Load on weld group f

f frac14 PTELT

bull Radial loads Pr and Pa

Pr frac14 PLe

Pa frac14 PL sin f

Top Flange Lug

bull Loads PT and PL

PT frac14 P cos q

PL frac14 P sin q

Transportation and Erection of Pressure Vessels 711

bull Moment on flange M

M frac14 PTB

bull Moment on head M

M frac14 PTethBthorn JTHORNbull Moment on vessel M

M frac14 PTG

bull Radial load on head and nozzle frac14 PL

Side Flange Lug

bull Loads PT and PL

PL frac14 P cos q

PT frac14 P sin q

bull Moment on flange M

M frac14 PLB

bull Longitudinal moment on shell Mx

M frac14 PTethBthorn JTHORNbull Radial load on shell and nozzle frac14 PT

712 Pressure Vessel Design Manual

Procedure 10-10 Miscellaneous

Figure 10-7 Fundamental handling operations Reprinted by permission of the Babcock and Wilcox Companya McDermott Company

Transportation and Erection of Pressure Vessels 713

Figure 10-8 Loads on wire rope for various sheave configurations

714 Pressure Vessel Design Manual

Table 10-14Forged Steel Shackles

Dimensions in Inches

Size D (in)Safe Load

(lb)D (min) A

Tolerance

A DimB B (min) C G

Tolerance C

and G DimE F

frac14 475 73232 153232 11616 51616 93232 1⅛ ⅞ 11616 frac34 111616

⅜ 1050 113232 213232 11616 71616 256464 171616 1frac14 ⅛ 1 313232

71616 1450 256464 233232 11616 frac12 296464 1111616 171616 ⅛ 1⅛ 111616

frac12 1900 296464 131616 11616 ⅝ 91616 1⅞ 1⅝ ⅛ 1⅜ 151616

⅝ 2950 91616 111616 11616 frac34 436464 2133232 2 ⅛ 1⅝ 191616

frac34 4250 436464 1frac14 11616 ⅞ 253232 2273232 2⅜ frac14 2 1⅞

⅞ 5750 253232 171616 11616 1 576464 351616 2131616 frac14 2frac14 2⅛

1 7550 576464 1111616 11616 1⅛ 113232 3frac34 331616 frac14 2frac12 2⅜

1⅛ 8900 113232 1271616 ⅛ 1frac14 176464 4frac14 391616 frac14 2frac34 2⅝

1frac14 11000 176464 213232 ⅛ 1⅜ 1156464 4111616 3151616 frac14 3⅛ 3

1⅜ 13300 1156464 2frac14 ⅛ 1frac12 1113232 5frac14 471616 frac14 3frac12 351616

1frac12 15600 1113232 2⅜ ⅛ 1⅝ 1296464 5frac34 4⅞ frac14 3frac34 3⅝

1frac34 21500 1356464 2⅞ ⅛ 2 1253232 7 5frac34 frac14 4frac14 4⅛

2 28100 1253232 3frac14 ⅛ 2frac14 216464 7frac34 6frac34 frac14 5frac14 5

2frac14 36000 216464 3frac34 ⅛ 2frac12 2156464 9frac14 7⅛ frac34 5frac12 5frac14

2frac12 45100 2156464 4⅛ ⅛ 2frac34 2153232 10frac12 8 frac34 6frac14 6

3 64700 2111616 5 ⅛ 3frac14 2293232 13 11frac12 frac34 6frac34 6frac12

Notes

For shackles with safe loads greater than the maximum shown use CrosbyndashLaughlin (The Crosby Group Div of American Hoist amp Derrick Co Tulsa

OK 74101) Skookum (Skookum Co Inc Portland OR 97203) or equal with an ultimate strength at least 5 times the safe working load

Allowable loads are lower than OSHA requirements tabulated in Section 1926251 Table H-19

Transportation and Erection of Pressure Vessels 715

Figure 10-9 Wire rope end configurations

716 Pressure Vessel Design Manual

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 29: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

Transportation and Erection of Pressure Vessels 703

10 Check Lug

a Shear at pin hole

bull Area required Ar

Ar frac14 PEFS

frac14 1277144

frac14 8868 in2

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN frac14 eth24$6THORN eth9$6THORN frac14 90 in2

b Bending of lug due to M3

bull Maximum moment M3

M3 frac14 PTe frac14 537eth16THORN frac14 8592 in kips

bull Section modulus Z

Z frac14 tLA2

6frac14

6$242

6

frac14 576 in3

bull Bending stress lug sb

sb frac14 M3

Zfrac14 8592

576frac14 1491 ksi

bull Thickness required tL

tL frac14 6M

FbA2 frac14 6$85922376eth242THORN frac14 376 in

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFP

frac14 1277324

frac14 3941 in2

bull Bearing available Aa

Aa frac14 D2tL frac14 8$6 frac14 48 in2

20 Check Lug Base Plate

bull Uniform load w

w frac14 PEA

frac14 127724

frac14 532kipsin

bull End reaction R1

R1 frac14 PE2

frac14 12772

frac14 6385 kips

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

Ma frac14 0985eth8748 2496thorn 768thorn 2304 17 496THORNfrac14 8049 in kips

bull Moment at mid Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

Mx frac14 8049thorn 17 240 3831

frac14 5360 in kips

bull Section modulus Z

Z frac14t2bG

6

frac1462$40

6

frac14 240 in3

bull Bending stress sb

sb frac14 Mx

Zfrac14 5360

240frac14 2233 ksi

bull Allowable bending stress Fb

Fb frac14 066Fy frac14 06636 frac14 2376 ksi

30 Check of Vessel Flange

bull Unit load w

w frac14 PEpBc

frac14 1277p54

frac14 752kipsin

bull Bending moment Mb

Mb frac14 whD frac14 752eth92THORN frac14 6925 in kips

bull Bending stress sb

sb frac14 6Mb

t2ffrac14 frac126eth6925THORN

11252frac14 328 ksi

704 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 705

Procedure 10-8 Design of Trunnions

Lug Dimensions

Dimensions for Trunnion

Type 1 Trunnion and Fixed Lug

Type 2 Trunnion and Rotating Lug

Type 3 Trunnion Only

706 Pressure Vessel Design Manual

Type 1 Trunnion and Fixed Lug

There are four checks to be performed

1 Check lug2 Check trunnion3 Check welds4 Check vessel shell

Check Lug

Transverse (vessel horizontal)

M frac14 PTE and Z frac14 4R2otL6

Therefore

tL frac14 15PTE

R2oFb

Longitudinal (vessel vertical)

bull Cross-sectional area at pin hole Ap

Ap frac14 213tL thorn 2tpethD3 D1

bull Cross-sectional area at top of lug An

An frac14 tL

RT D1

2

thorn 2tp

D3 D1

2

bull Shear stress s

s frac14 PLAP

or s frac14 PLAn

bull Pin bearing stress sp

sp frac14 PLD2

tL thorn 2tp

Check Trunnion

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Torsional moment MT (vessel horizontal)

MT frac14 PTE

bull Bending stress sb

sb frac14 ML

Z

bull Torsional shear stress sT

sT frac14 MT

2pRnto

Check Welds

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Polar moment of inertia Jw

Jw frac14 2pR3n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Torsional shear stress in weld sT

sT frac14 MTRn

Jw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 2 Trunnion and Rotating Lug

bull Net section at Section A-A Ap

Ap frac14 213tL thorn 2tpD3 D1

Transportation and Erection of Pressure Vessels 707

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at Section B-B An

An frac14 2tLethRo RiTHORNbull Shear stress at trunnion s

s frac14 PLAn

bull Minimum bearing contact angle for lug at trun-nion qB

qB frac14 eth159PLTHORNRntLFp

bull Pin hole bearing stress sp

sp frac14 PLD3

tL thorn 2tp

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Swbull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 3 Trunnion Only

Vessel Vertical

bull Longitudinal moment ML

ML frac14 PLe

bull Bending stress in trunnion sb

sb frac14 ML

Z

Vessel Horizontal

bull Circumferential moment Mc

Mc frac14 PTe

bull Bending stress in trunnion sb

sb frac14 Mc

Z

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

708 Pressure Vessel Design Manual

TYPE 1 TYPE 2

W

K

DIA

A

DIA

= F

DIA

= M

K

C

KT

2 X 125 DIAVENT HOLES

DIA

A

125

D

250

DIA

= F

W

K

B

NUTS WELDED

GRIND WELDSMOOTH

DIA

= M

K

E

KT

2 X 125 DIAVENT HOLES

Table 10-13Dimensions of trunnions

Allowable Load Tons Pipe Size A C D E F M N T W Weight Lbs

1 0-5 4 Std 4 - - 85 8 - 05 025 30

2 5-10 6 Std 5 - - 105 12 - 05 025 55

3 10-15 8 Std 6 0625 8 125 15 4 05 0375 90

4 15-25 10 Std 6 0625 8 15 18 4 075 0375 150

5 25-35 12 Sch 80 6 075 8 17 21 4 075 0375 240

6 35-45 12 Sch 80 6 075 8 17 21 4 075 05 240

7 45-60 14 Sch 80 6 075 8 18 24 8 1 05 375

8 60-75 14 Sch 80 7 0875 8 18 24 8 1 0625 400

9 75-100 16 Sch 80 7 0875 8 25 27 8 1 0625 625

10 100-125 16 Sch 80 7 0875 8 25 27 8 1125 0875 660

11 125-150 18 Sch 80 7 0875 8 27 30 12 1125 0875 850

12 150-200 18 Sch 80 8 0875 8 27 30 12 1125 1 875

13 200-250 20 Sch 80 8 0875 10 30 36 16 125 1 1000

14 300 24 Sch 80 8 1 10 34 36 16 125 1125 1440

15 400 24 Sch 80 8 1 10 34 40 20 1375 1125 1675

16 500 30 125 10 125 12 42 48 20 1375 1375 2400

17 600 36 125 10 125 12 48 60 24 15 1375 3600

Notes

1 Do not use re-pads for cyclic service

2 B frac14 D - 125

3 K frac14 Pipe Wall Thk

4 Dimensions are given for reference only All loadings and stress shall be checked prior to use

Transportation and Erection of Pressure Vessels 709

Procedure 10-9 Local Loads in Shell Due to Erection Forces

Trunnions

Fixed Lug Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Maximum torsional moment MT

MT frac14 PTE

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

Rotating Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

TrunniondNo Lug

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

710 Pressure Vessel Design Manual

Side Lugs Notes

1 Optional internal pipe Remove after erection2 Radial load Pr is the axial load in the internal pipe

stiffener if used in lieu of radial load in shell3 Circumferential ring stiffeners are optional at these

elevations

bull Circumferential moment Mc

Mc frac14 PTe

bull Longitudinal moment Mx

Mx frac14 PLe

bull Load on weld group f

f frac14 PTELT

bull Radial loads Pr and Pa

Pr frac14 PLe

Pa frac14 PL sin f

Top Flange Lug

bull Loads PT and PL

PT frac14 P cos q

PL frac14 P sin q

Transportation and Erection of Pressure Vessels 711

bull Moment on flange M

M frac14 PTB

bull Moment on head M

M frac14 PTethBthorn JTHORNbull Moment on vessel M

M frac14 PTG

bull Radial load on head and nozzle frac14 PL

Side Flange Lug

bull Loads PT and PL

PL frac14 P cos q

PT frac14 P sin q

bull Moment on flange M

M frac14 PLB

bull Longitudinal moment on shell Mx

M frac14 PTethBthorn JTHORNbull Radial load on shell and nozzle frac14 PT

712 Pressure Vessel Design Manual

Procedure 10-10 Miscellaneous

Figure 10-7 Fundamental handling operations Reprinted by permission of the Babcock and Wilcox Companya McDermott Company

Transportation and Erection of Pressure Vessels 713

Figure 10-8 Loads on wire rope for various sheave configurations

714 Pressure Vessel Design Manual

Table 10-14Forged Steel Shackles

Dimensions in Inches

Size D (in)Safe Load

(lb)D (min) A

Tolerance

A DimB B (min) C G

Tolerance C

and G DimE F

frac14 475 73232 153232 11616 51616 93232 1⅛ ⅞ 11616 frac34 111616

⅜ 1050 113232 213232 11616 71616 256464 171616 1frac14 ⅛ 1 313232

71616 1450 256464 233232 11616 frac12 296464 1111616 171616 ⅛ 1⅛ 111616

frac12 1900 296464 131616 11616 ⅝ 91616 1⅞ 1⅝ ⅛ 1⅜ 151616

⅝ 2950 91616 111616 11616 frac34 436464 2133232 2 ⅛ 1⅝ 191616

frac34 4250 436464 1frac14 11616 ⅞ 253232 2273232 2⅜ frac14 2 1⅞

⅞ 5750 253232 171616 11616 1 576464 351616 2131616 frac14 2frac14 2⅛

1 7550 576464 1111616 11616 1⅛ 113232 3frac34 331616 frac14 2frac12 2⅜

1⅛ 8900 113232 1271616 ⅛ 1frac14 176464 4frac14 391616 frac14 2frac34 2⅝

1frac14 11000 176464 213232 ⅛ 1⅜ 1156464 4111616 3151616 frac14 3⅛ 3

1⅜ 13300 1156464 2frac14 ⅛ 1frac12 1113232 5frac14 471616 frac14 3frac12 351616

1frac12 15600 1113232 2⅜ ⅛ 1⅝ 1296464 5frac34 4⅞ frac14 3frac34 3⅝

1frac34 21500 1356464 2⅞ ⅛ 2 1253232 7 5frac34 frac14 4frac14 4⅛

2 28100 1253232 3frac14 ⅛ 2frac14 216464 7frac34 6frac34 frac14 5frac14 5

2frac14 36000 216464 3frac34 ⅛ 2frac12 2156464 9frac14 7⅛ frac34 5frac12 5frac14

2frac12 45100 2156464 4⅛ ⅛ 2frac34 2153232 10frac12 8 frac34 6frac14 6

3 64700 2111616 5 ⅛ 3frac14 2293232 13 11frac12 frac34 6frac34 6frac12

Notes

For shackles with safe loads greater than the maximum shown use CrosbyndashLaughlin (The Crosby Group Div of American Hoist amp Derrick Co Tulsa

OK 74101) Skookum (Skookum Co Inc Portland OR 97203) or equal with an ultimate strength at least 5 times the safe working load

Allowable loads are lower than OSHA requirements tabulated in Section 1926251 Table H-19

Transportation and Erection of Pressure Vessels 715

Figure 10-9 Wire rope end configurations

716 Pressure Vessel Design Manual

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 30: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

10 Check Lug

a Shear at pin hole

bull Area required Ar

Ar frac14 PEFS

frac14 1277144

frac14 8868 in2

bull Area available at pin hole Aa

Aa frac14 ethAtLTHORN ethD1tLTHORN frac14 eth24$6THORN eth9$6THORN frac14 90 in2

b Bending of lug due to M3

bull Maximum moment M3

M3 frac14 PTe frac14 537eth16THORN frac14 8592 in kips

bull Section modulus Z

Z frac14 tLA2

6frac14

6$242

6

frac14 576 in3

bull Bending stress lug sb

sb frac14 M3

Zfrac14 8592

576frac14 1491 ksi

bull Thickness required tL

tL frac14 6M

FbA2 frac14 6$85922376eth242THORN frac14 376 in

c Bearing at pin hole

bull Bearing required at pin hole Ar

Ar frac14 PEFP

frac14 1277324

frac14 3941 in2

bull Bearing available Aa

Aa frac14 D2tL frac14 8$6 frac14 48 in2

20 Check Lug Base Plate

bull Uniform load w

w frac14 PEA

frac14 127724

frac14 532kipsin

bull End reaction R1

R1 frac14 PE2

frac14 12772

frac14 6385 kips

bull Edge moment Ma

Ma frac14 wA24Bc

24R3

c

Bc 6ethbthorn ATHORNA2

Bcthorn 3A3

Bcthorn 4A2

24R2c

13

Ma frac14 0985eth8748 2496thorn 768thorn 2304 17 496THORNfrac14 8049 in kips

bull Moment at mid Mx

Mx frac14 Ma thorn R1Rc wA2

ethRc bTHORN2

A

Mx frac14 8049thorn 17 240 3831

frac14 5360 in kips

bull Section modulus Z

Z frac14t2bG

6

frac1462$40

6

frac14 240 in3

bull Bending stress sb

sb frac14 Mx

Zfrac14 5360

240frac14 2233 ksi

bull Allowable bending stress Fb

Fb frac14 066Fy frac14 06636 frac14 2376 ksi

30 Check of Vessel Flange

bull Unit load w

w frac14 PEpBc

frac14 1277p54

frac14 752kipsin

bull Bending moment Mb

Mb frac14 whD frac14 752eth92THORN frac14 6925 in kips

bull Bending stress sb

sb frac14 6Mb

t2ffrac14 frac126eth6925THORN

11252frac14 328 ksi

704 Pressure Vessel Design Manual

Transportation and Erection of Pressure Vessels 705

Procedure 10-8 Design of Trunnions

Lug Dimensions

Dimensions for Trunnion

Type 1 Trunnion and Fixed Lug

Type 2 Trunnion and Rotating Lug

Type 3 Trunnion Only

706 Pressure Vessel Design Manual

Type 1 Trunnion and Fixed Lug

There are four checks to be performed

1 Check lug2 Check trunnion3 Check welds4 Check vessel shell

Check Lug

Transverse (vessel horizontal)

M frac14 PTE and Z frac14 4R2otL6

Therefore

tL frac14 15PTE

R2oFb

Longitudinal (vessel vertical)

bull Cross-sectional area at pin hole Ap

Ap frac14 213tL thorn 2tpethD3 D1

bull Cross-sectional area at top of lug An

An frac14 tL

RT D1

2

thorn 2tp

D3 D1

2

bull Shear stress s

s frac14 PLAP

or s frac14 PLAn

bull Pin bearing stress sp

sp frac14 PLD2

tL thorn 2tp

Check Trunnion

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Torsional moment MT (vessel horizontal)

MT frac14 PTE

bull Bending stress sb

sb frac14 ML

Z

bull Torsional shear stress sT

sT frac14 MT

2pRnto

Check Welds

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Polar moment of inertia Jw

Jw frac14 2pR3n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Torsional shear stress in weld sT

sT frac14 MTRn

Jw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 2 Trunnion and Rotating Lug

bull Net section at Section A-A Ap

Ap frac14 213tL thorn 2tpD3 D1

Transportation and Erection of Pressure Vessels 707

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at Section B-B An

An frac14 2tLethRo RiTHORNbull Shear stress at trunnion s

s frac14 PLAn

bull Minimum bearing contact angle for lug at trun-nion qB

qB frac14 eth159PLTHORNRntLFp

bull Pin hole bearing stress sp

sp frac14 PLD3

tL thorn 2tp

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Swbull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 3 Trunnion Only

Vessel Vertical

bull Longitudinal moment ML

ML frac14 PLe

bull Bending stress in trunnion sb

sb frac14 ML

Z

Vessel Horizontal

bull Circumferential moment Mc

Mc frac14 PTe

bull Bending stress in trunnion sb

sb frac14 Mc

Z

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

708 Pressure Vessel Design Manual

TYPE 1 TYPE 2

W

K

DIA

A

DIA

= F

DIA

= M

K

C

KT

2 X 125 DIAVENT HOLES

DIA

A

125

D

250

DIA

= F

W

K

B

NUTS WELDED

GRIND WELDSMOOTH

DIA

= M

K

E

KT

2 X 125 DIAVENT HOLES

Table 10-13Dimensions of trunnions

Allowable Load Tons Pipe Size A C D E F M N T W Weight Lbs

1 0-5 4 Std 4 - - 85 8 - 05 025 30

2 5-10 6 Std 5 - - 105 12 - 05 025 55

3 10-15 8 Std 6 0625 8 125 15 4 05 0375 90

4 15-25 10 Std 6 0625 8 15 18 4 075 0375 150

5 25-35 12 Sch 80 6 075 8 17 21 4 075 0375 240

6 35-45 12 Sch 80 6 075 8 17 21 4 075 05 240

7 45-60 14 Sch 80 6 075 8 18 24 8 1 05 375

8 60-75 14 Sch 80 7 0875 8 18 24 8 1 0625 400

9 75-100 16 Sch 80 7 0875 8 25 27 8 1 0625 625

10 100-125 16 Sch 80 7 0875 8 25 27 8 1125 0875 660

11 125-150 18 Sch 80 7 0875 8 27 30 12 1125 0875 850

12 150-200 18 Sch 80 8 0875 8 27 30 12 1125 1 875

13 200-250 20 Sch 80 8 0875 10 30 36 16 125 1 1000

14 300 24 Sch 80 8 1 10 34 36 16 125 1125 1440

15 400 24 Sch 80 8 1 10 34 40 20 1375 1125 1675

16 500 30 125 10 125 12 42 48 20 1375 1375 2400

17 600 36 125 10 125 12 48 60 24 15 1375 3600

Notes

1 Do not use re-pads for cyclic service

2 B frac14 D - 125

3 K frac14 Pipe Wall Thk

4 Dimensions are given for reference only All loadings and stress shall be checked prior to use

Transportation and Erection of Pressure Vessels 709

Procedure 10-9 Local Loads in Shell Due to Erection Forces

Trunnions

Fixed Lug Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Maximum torsional moment MT

MT frac14 PTE

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

Rotating Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

TrunniondNo Lug

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

710 Pressure Vessel Design Manual

Side Lugs Notes

1 Optional internal pipe Remove after erection2 Radial load Pr is the axial load in the internal pipe

stiffener if used in lieu of radial load in shell3 Circumferential ring stiffeners are optional at these

elevations

bull Circumferential moment Mc

Mc frac14 PTe

bull Longitudinal moment Mx

Mx frac14 PLe

bull Load on weld group f

f frac14 PTELT

bull Radial loads Pr and Pa

Pr frac14 PLe

Pa frac14 PL sin f

Top Flange Lug

bull Loads PT and PL

PT frac14 P cos q

PL frac14 P sin q

Transportation and Erection of Pressure Vessels 711

bull Moment on flange M

M frac14 PTB

bull Moment on head M

M frac14 PTethBthorn JTHORNbull Moment on vessel M

M frac14 PTG

bull Radial load on head and nozzle frac14 PL

Side Flange Lug

bull Loads PT and PL

PL frac14 P cos q

PT frac14 P sin q

bull Moment on flange M

M frac14 PLB

bull Longitudinal moment on shell Mx

M frac14 PTethBthorn JTHORNbull Radial load on shell and nozzle frac14 PT

712 Pressure Vessel Design Manual

Procedure 10-10 Miscellaneous

Figure 10-7 Fundamental handling operations Reprinted by permission of the Babcock and Wilcox Companya McDermott Company

Transportation and Erection of Pressure Vessels 713

Figure 10-8 Loads on wire rope for various sheave configurations

714 Pressure Vessel Design Manual

Table 10-14Forged Steel Shackles

Dimensions in Inches

Size D (in)Safe Load

(lb)D (min) A

Tolerance

A DimB B (min) C G

Tolerance C

and G DimE F

frac14 475 73232 153232 11616 51616 93232 1⅛ ⅞ 11616 frac34 111616

⅜ 1050 113232 213232 11616 71616 256464 171616 1frac14 ⅛ 1 313232

71616 1450 256464 233232 11616 frac12 296464 1111616 171616 ⅛ 1⅛ 111616

frac12 1900 296464 131616 11616 ⅝ 91616 1⅞ 1⅝ ⅛ 1⅜ 151616

⅝ 2950 91616 111616 11616 frac34 436464 2133232 2 ⅛ 1⅝ 191616

frac34 4250 436464 1frac14 11616 ⅞ 253232 2273232 2⅜ frac14 2 1⅞

⅞ 5750 253232 171616 11616 1 576464 351616 2131616 frac14 2frac14 2⅛

1 7550 576464 1111616 11616 1⅛ 113232 3frac34 331616 frac14 2frac12 2⅜

1⅛ 8900 113232 1271616 ⅛ 1frac14 176464 4frac14 391616 frac14 2frac34 2⅝

1frac14 11000 176464 213232 ⅛ 1⅜ 1156464 4111616 3151616 frac14 3⅛ 3

1⅜ 13300 1156464 2frac14 ⅛ 1frac12 1113232 5frac14 471616 frac14 3frac12 351616

1frac12 15600 1113232 2⅜ ⅛ 1⅝ 1296464 5frac34 4⅞ frac14 3frac34 3⅝

1frac34 21500 1356464 2⅞ ⅛ 2 1253232 7 5frac34 frac14 4frac14 4⅛

2 28100 1253232 3frac14 ⅛ 2frac14 216464 7frac34 6frac34 frac14 5frac14 5

2frac14 36000 216464 3frac34 ⅛ 2frac12 2156464 9frac14 7⅛ frac34 5frac12 5frac14

2frac12 45100 2156464 4⅛ ⅛ 2frac34 2153232 10frac12 8 frac34 6frac14 6

3 64700 2111616 5 ⅛ 3frac14 2293232 13 11frac12 frac34 6frac34 6frac12

Notes

For shackles with safe loads greater than the maximum shown use CrosbyndashLaughlin (The Crosby Group Div of American Hoist amp Derrick Co Tulsa

OK 74101) Skookum (Skookum Co Inc Portland OR 97203) or equal with an ultimate strength at least 5 times the safe working load

Allowable loads are lower than OSHA requirements tabulated in Section 1926251 Table H-19

Transportation and Erection of Pressure Vessels 715

Figure 10-9 Wire rope end configurations

716 Pressure Vessel Design Manual

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 31: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

Transportation and Erection of Pressure Vessels 705

Procedure 10-8 Design of Trunnions

Lug Dimensions

Dimensions for Trunnion

Type 1 Trunnion and Fixed Lug

Type 2 Trunnion and Rotating Lug

Type 3 Trunnion Only

706 Pressure Vessel Design Manual

Type 1 Trunnion and Fixed Lug

There are four checks to be performed

1 Check lug2 Check trunnion3 Check welds4 Check vessel shell

Check Lug

Transverse (vessel horizontal)

M frac14 PTE and Z frac14 4R2otL6

Therefore

tL frac14 15PTE

R2oFb

Longitudinal (vessel vertical)

bull Cross-sectional area at pin hole Ap

Ap frac14 213tL thorn 2tpethD3 D1

bull Cross-sectional area at top of lug An

An frac14 tL

RT D1

2

thorn 2tp

D3 D1

2

bull Shear stress s

s frac14 PLAP

or s frac14 PLAn

bull Pin bearing stress sp

sp frac14 PLD2

tL thorn 2tp

Check Trunnion

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Torsional moment MT (vessel horizontal)

MT frac14 PTE

bull Bending stress sb

sb frac14 ML

Z

bull Torsional shear stress sT

sT frac14 MT

2pRnto

Check Welds

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Polar moment of inertia Jw

Jw frac14 2pR3n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Torsional shear stress in weld sT

sT frac14 MTRn

Jw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 2 Trunnion and Rotating Lug

bull Net section at Section A-A Ap

Ap frac14 213tL thorn 2tpD3 D1

Transportation and Erection of Pressure Vessels 707

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at Section B-B An

An frac14 2tLethRo RiTHORNbull Shear stress at trunnion s

s frac14 PLAn

bull Minimum bearing contact angle for lug at trun-nion qB

qB frac14 eth159PLTHORNRntLFp

bull Pin hole bearing stress sp

sp frac14 PLD3

tL thorn 2tp

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Swbull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 3 Trunnion Only

Vessel Vertical

bull Longitudinal moment ML

ML frac14 PLe

bull Bending stress in trunnion sb

sb frac14 ML

Z

Vessel Horizontal

bull Circumferential moment Mc

Mc frac14 PTe

bull Bending stress in trunnion sb

sb frac14 Mc

Z

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

708 Pressure Vessel Design Manual

TYPE 1 TYPE 2

W

K

DIA

A

DIA

= F

DIA

= M

K

C

KT

2 X 125 DIAVENT HOLES

DIA

A

125

D

250

DIA

= F

W

K

B

NUTS WELDED

GRIND WELDSMOOTH

DIA

= M

K

E

KT

2 X 125 DIAVENT HOLES

Table 10-13Dimensions of trunnions

Allowable Load Tons Pipe Size A C D E F M N T W Weight Lbs

1 0-5 4 Std 4 - - 85 8 - 05 025 30

2 5-10 6 Std 5 - - 105 12 - 05 025 55

3 10-15 8 Std 6 0625 8 125 15 4 05 0375 90

4 15-25 10 Std 6 0625 8 15 18 4 075 0375 150

5 25-35 12 Sch 80 6 075 8 17 21 4 075 0375 240

6 35-45 12 Sch 80 6 075 8 17 21 4 075 05 240

7 45-60 14 Sch 80 6 075 8 18 24 8 1 05 375

8 60-75 14 Sch 80 7 0875 8 18 24 8 1 0625 400

9 75-100 16 Sch 80 7 0875 8 25 27 8 1 0625 625

10 100-125 16 Sch 80 7 0875 8 25 27 8 1125 0875 660

11 125-150 18 Sch 80 7 0875 8 27 30 12 1125 0875 850

12 150-200 18 Sch 80 8 0875 8 27 30 12 1125 1 875

13 200-250 20 Sch 80 8 0875 10 30 36 16 125 1 1000

14 300 24 Sch 80 8 1 10 34 36 16 125 1125 1440

15 400 24 Sch 80 8 1 10 34 40 20 1375 1125 1675

16 500 30 125 10 125 12 42 48 20 1375 1375 2400

17 600 36 125 10 125 12 48 60 24 15 1375 3600

Notes

1 Do not use re-pads for cyclic service

2 B frac14 D - 125

3 K frac14 Pipe Wall Thk

4 Dimensions are given for reference only All loadings and stress shall be checked prior to use

Transportation and Erection of Pressure Vessels 709

Procedure 10-9 Local Loads in Shell Due to Erection Forces

Trunnions

Fixed Lug Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Maximum torsional moment MT

MT frac14 PTE

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

Rotating Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

TrunniondNo Lug

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

710 Pressure Vessel Design Manual

Side Lugs Notes

1 Optional internal pipe Remove after erection2 Radial load Pr is the axial load in the internal pipe

stiffener if used in lieu of radial load in shell3 Circumferential ring stiffeners are optional at these

elevations

bull Circumferential moment Mc

Mc frac14 PTe

bull Longitudinal moment Mx

Mx frac14 PLe

bull Load on weld group f

f frac14 PTELT

bull Radial loads Pr and Pa

Pr frac14 PLe

Pa frac14 PL sin f

Top Flange Lug

bull Loads PT and PL

PT frac14 P cos q

PL frac14 P sin q

Transportation and Erection of Pressure Vessels 711

bull Moment on flange M

M frac14 PTB

bull Moment on head M

M frac14 PTethBthorn JTHORNbull Moment on vessel M

M frac14 PTG

bull Radial load on head and nozzle frac14 PL

Side Flange Lug

bull Loads PT and PL

PL frac14 P cos q

PT frac14 P sin q

bull Moment on flange M

M frac14 PLB

bull Longitudinal moment on shell Mx

M frac14 PTethBthorn JTHORNbull Radial load on shell and nozzle frac14 PT

712 Pressure Vessel Design Manual

Procedure 10-10 Miscellaneous

Figure 10-7 Fundamental handling operations Reprinted by permission of the Babcock and Wilcox Companya McDermott Company

Transportation and Erection of Pressure Vessels 713

Figure 10-8 Loads on wire rope for various sheave configurations

714 Pressure Vessel Design Manual

Table 10-14Forged Steel Shackles

Dimensions in Inches

Size D (in)Safe Load

(lb)D (min) A

Tolerance

A DimB B (min) C G

Tolerance C

and G DimE F

frac14 475 73232 153232 11616 51616 93232 1⅛ ⅞ 11616 frac34 111616

⅜ 1050 113232 213232 11616 71616 256464 171616 1frac14 ⅛ 1 313232

71616 1450 256464 233232 11616 frac12 296464 1111616 171616 ⅛ 1⅛ 111616

frac12 1900 296464 131616 11616 ⅝ 91616 1⅞ 1⅝ ⅛ 1⅜ 151616

⅝ 2950 91616 111616 11616 frac34 436464 2133232 2 ⅛ 1⅝ 191616

frac34 4250 436464 1frac14 11616 ⅞ 253232 2273232 2⅜ frac14 2 1⅞

⅞ 5750 253232 171616 11616 1 576464 351616 2131616 frac14 2frac14 2⅛

1 7550 576464 1111616 11616 1⅛ 113232 3frac34 331616 frac14 2frac12 2⅜

1⅛ 8900 113232 1271616 ⅛ 1frac14 176464 4frac14 391616 frac14 2frac34 2⅝

1frac14 11000 176464 213232 ⅛ 1⅜ 1156464 4111616 3151616 frac14 3⅛ 3

1⅜ 13300 1156464 2frac14 ⅛ 1frac12 1113232 5frac14 471616 frac14 3frac12 351616

1frac12 15600 1113232 2⅜ ⅛ 1⅝ 1296464 5frac34 4⅞ frac14 3frac34 3⅝

1frac34 21500 1356464 2⅞ ⅛ 2 1253232 7 5frac34 frac14 4frac14 4⅛

2 28100 1253232 3frac14 ⅛ 2frac14 216464 7frac34 6frac34 frac14 5frac14 5

2frac14 36000 216464 3frac34 ⅛ 2frac12 2156464 9frac14 7⅛ frac34 5frac12 5frac14

2frac12 45100 2156464 4⅛ ⅛ 2frac34 2153232 10frac12 8 frac34 6frac14 6

3 64700 2111616 5 ⅛ 3frac14 2293232 13 11frac12 frac34 6frac34 6frac12

Notes

For shackles with safe loads greater than the maximum shown use CrosbyndashLaughlin (The Crosby Group Div of American Hoist amp Derrick Co Tulsa

OK 74101) Skookum (Skookum Co Inc Portland OR 97203) or equal with an ultimate strength at least 5 times the safe working load

Allowable loads are lower than OSHA requirements tabulated in Section 1926251 Table H-19

Transportation and Erection of Pressure Vessels 715

Figure 10-9 Wire rope end configurations

716 Pressure Vessel Design Manual

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 32: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

Procedure 10-8 Design of Trunnions

Lug Dimensions

Dimensions for Trunnion

Type 1 Trunnion and Fixed Lug

Type 2 Trunnion and Rotating Lug

Type 3 Trunnion Only

706 Pressure Vessel Design Manual

Type 1 Trunnion and Fixed Lug

There are four checks to be performed

1 Check lug2 Check trunnion3 Check welds4 Check vessel shell

Check Lug

Transverse (vessel horizontal)

M frac14 PTE and Z frac14 4R2otL6

Therefore

tL frac14 15PTE

R2oFb

Longitudinal (vessel vertical)

bull Cross-sectional area at pin hole Ap

Ap frac14 213tL thorn 2tpethD3 D1

bull Cross-sectional area at top of lug An

An frac14 tL

RT D1

2

thorn 2tp

D3 D1

2

bull Shear stress s

s frac14 PLAP

or s frac14 PLAn

bull Pin bearing stress sp

sp frac14 PLD2

tL thorn 2tp

Check Trunnion

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Torsional moment MT (vessel horizontal)

MT frac14 PTE

bull Bending stress sb

sb frac14 ML

Z

bull Torsional shear stress sT

sT frac14 MT

2pRnto

Check Welds

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Polar moment of inertia Jw

Jw frac14 2pR3n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Torsional shear stress in weld sT

sT frac14 MTRn

Jw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 2 Trunnion and Rotating Lug

bull Net section at Section A-A Ap

Ap frac14 213tL thorn 2tpD3 D1

Transportation and Erection of Pressure Vessels 707

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at Section B-B An

An frac14 2tLethRo RiTHORNbull Shear stress at trunnion s

s frac14 PLAn

bull Minimum bearing contact angle for lug at trun-nion qB

qB frac14 eth159PLTHORNRntLFp

bull Pin hole bearing stress sp

sp frac14 PLD3

tL thorn 2tp

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Swbull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 3 Trunnion Only

Vessel Vertical

bull Longitudinal moment ML

ML frac14 PLe

bull Bending stress in trunnion sb

sb frac14 ML

Z

Vessel Horizontal

bull Circumferential moment Mc

Mc frac14 PTe

bull Bending stress in trunnion sb

sb frac14 Mc

Z

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

708 Pressure Vessel Design Manual

TYPE 1 TYPE 2

W

K

DIA

A

DIA

= F

DIA

= M

K

C

KT

2 X 125 DIAVENT HOLES

DIA

A

125

D

250

DIA

= F

W

K

B

NUTS WELDED

GRIND WELDSMOOTH

DIA

= M

K

E

KT

2 X 125 DIAVENT HOLES

Table 10-13Dimensions of trunnions

Allowable Load Tons Pipe Size A C D E F M N T W Weight Lbs

1 0-5 4 Std 4 - - 85 8 - 05 025 30

2 5-10 6 Std 5 - - 105 12 - 05 025 55

3 10-15 8 Std 6 0625 8 125 15 4 05 0375 90

4 15-25 10 Std 6 0625 8 15 18 4 075 0375 150

5 25-35 12 Sch 80 6 075 8 17 21 4 075 0375 240

6 35-45 12 Sch 80 6 075 8 17 21 4 075 05 240

7 45-60 14 Sch 80 6 075 8 18 24 8 1 05 375

8 60-75 14 Sch 80 7 0875 8 18 24 8 1 0625 400

9 75-100 16 Sch 80 7 0875 8 25 27 8 1 0625 625

10 100-125 16 Sch 80 7 0875 8 25 27 8 1125 0875 660

11 125-150 18 Sch 80 7 0875 8 27 30 12 1125 0875 850

12 150-200 18 Sch 80 8 0875 8 27 30 12 1125 1 875

13 200-250 20 Sch 80 8 0875 10 30 36 16 125 1 1000

14 300 24 Sch 80 8 1 10 34 36 16 125 1125 1440

15 400 24 Sch 80 8 1 10 34 40 20 1375 1125 1675

16 500 30 125 10 125 12 42 48 20 1375 1375 2400

17 600 36 125 10 125 12 48 60 24 15 1375 3600

Notes

1 Do not use re-pads for cyclic service

2 B frac14 D - 125

3 K frac14 Pipe Wall Thk

4 Dimensions are given for reference only All loadings and stress shall be checked prior to use

Transportation and Erection of Pressure Vessels 709

Procedure 10-9 Local Loads in Shell Due to Erection Forces

Trunnions

Fixed Lug Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Maximum torsional moment MT

MT frac14 PTE

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

Rotating Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

TrunniondNo Lug

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

710 Pressure Vessel Design Manual

Side Lugs Notes

1 Optional internal pipe Remove after erection2 Radial load Pr is the axial load in the internal pipe

stiffener if used in lieu of radial load in shell3 Circumferential ring stiffeners are optional at these

elevations

bull Circumferential moment Mc

Mc frac14 PTe

bull Longitudinal moment Mx

Mx frac14 PLe

bull Load on weld group f

f frac14 PTELT

bull Radial loads Pr and Pa

Pr frac14 PLe

Pa frac14 PL sin f

Top Flange Lug

bull Loads PT and PL

PT frac14 P cos q

PL frac14 P sin q

Transportation and Erection of Pressure Vessels 711

bull Moment on flange M

M frac14 PTB

bull Moment on head M

M frac14 PTethBthorn JTHORNbull Moment on vessel M

M frac14 PTG

bull Radial load on head and nozzle frac14 PL

Side Flange Lug

bull Loads PT and PL

PL frac14 P cos q

PT frac14 P sin q

bull Moment on flange M

M frac14 PLB

bull Longitudinal moment on shell Mx

M frac14 PTethBthorn JTHORNbull Radial load on shell and nozzle frac14 PT

712 Pressure Vessel Design Manual

Procedure 10-10 Miscellaneous

Figure 10-7 Fundamental handling operations Reprinted by permission of the Babcock and Wilcox Companya McDermott Company

Transportation and Erection of Pressure Vessels 713

Figure 10-8 Loads on wire rope for various sheave configurations

714 Pressure Vessel Design Manual

Table 10-14Forged Steel Shackles

Dimensions in Inches

Size D (in)Safe Load

(lb)D (min) A

Tolerance

A DimB B (min) C G

Tolerance C

and G DimE F

frac14 475 73232 153232 11616 51616 93232 1⅛ ⅞ 11616 frac34 111616

⅜ 1050 113232 213232 11616 71616 256464 171616 1frac14 ⅛ 1 313232

71616 1450 256464 233232 11616 frac12 296464 1111616 171616 ⅛ 1⅛ 111616

frac12 1900 296464 131616 11616 ⅝ 91616 1⅞ 1⅝ ⅛ 1⅜ 151616

⅝ 2950 91616 111616 11616 frac34 436464 2133232 2 ⅛ 1⅝ 191616

frac34 4250 436464 1frac14 11616 ⅞ 253232 2273232 2⅜ frac14 2 1⅞

⅞ 5750 253232 171616 11616 1 576464 351616 2131616 frac14 2frac14 2⅛

1 7550 576464 1111616 11616 1⅛ 113232 3frac34 331616 frac14 2frac12 2⅜

1⅛ 8900 113232 1271616 ⅛ 1frac14 176464 4frac14 391616 frac14 2frac34 2⅝

1frac14 11000 176464 213232 ⅛ 1⅜ 1156464 4111616 3151616 frac14 3⅛ 3

1⅜ 13300 1156464 2frac14 ⅛ 1frac12 1113232 5frac14 471616 frac14 3frac12 351616

1frac12 15600 1113232 2⅜ ⅛ 1⅝ 1296464 5frac34 4⅞ frac14 3frac34 3⅝

1frac34 21500 1356464 2⅞ ⅛ 2 1253232 7 5frac34 frac14 4frac14 4⅛

2 28100 1253232 3frac14 ⅛ 2frac14 216464 7frac34 6frac34 frac14 5frac14 5

2frac14 36000 216464 3frac34 ⅛ 2frac12 2156464 9frac14 7⅛ frac34 5frac12 5frac14

2frac12 45100 2156464 4⅛ ⅛ 2frac34 2153232 10frac12 8 frac34 6frac14 6

3 64700 2111616 5 ⅛ 3frac14 2293232 13 11frac12 frac34 6frac34 6frac12

Notes

For shackles with safe loads greater than the maximum shown use CrosbyndashLaughlin (The Crosby Group Div of American Hoist amp Derrick Co Tulsa

OK 74101) Skookum (Skookum Co Inc Portland OR 97203) or equal with an ultimate strength at least 5 times the safe working load

Allowable loads are lower than OSHA requirements tabulated in Section 1926251 Table H-19

Transportation and Erection of Pressure Vessels 715

Figure 10-9 Wire rope end configurations

716 Pressure Vessel Design Manual

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 33: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

Type 1 Trunnion and Fixed Lug

There are four checks to be performed

1 Check lug2 Check trunnion3 Check welds4 Check vessel shell

Check Lug

Transverse (vessel horizontal)

M frac14 PTE and Z frac14 4R2otL6

Therefore

tL frac14 15PTE

R2oFb

Longitudinal (vessel vertical)

bull Cross-sectional area at pin hole Ap

Ap frac14 213tL thorn 2tpethD3 D1

bull Cross-sectional area at top of lug An

An frac14 tL

RT D1

2

thorn 2tp

D3 D1

2

bull Shear stress s

s frac14 PLAP

or s frac14 PLAn

bull Pin bearing stress sp

sp frac14 PLD2

tL thorn 2tp

Check Trunnion

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Torsional moment MT (vessel horizontal)

MT frac14 PTE

bull Bending stress sb

sb frac14 ML

Z

bull Torsional shear stress sT

sT frac14 MT

2pRnto

Check Welds

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Polar moment of inertia Jw

Jw frac14 2pR3n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Torsional shear stress in weld sT

sT frac14 MTRn

Jw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 2 Trunnion and Rotating Lug

bull Net section at Section A-A Ap

Ap frac14 213tL thorn 2tpD3 D1

Transportation and Erection of Pressure Vessels 707

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at Section B-B An

An frac14 2tLethRo RiTHORNbull Shear stress at trunnion s

s frac14 PLAn

bull Minimum bearing contact angle for lug at trun-nion qB

qB frac14 eth159PLTHORNRntLFp

bull Pin hole bearing stress sp

sp frac14 PLD3

tL thorn 2tp

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Swbull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 3 Trunnion Only

Vessel Vertical

bull Longitudinal moment ML

ML frac14 PLe

bull Bending stress in trunnion sb

sb frac14 ML

Z

Vessel Horizontal

bull Circumferential moment Mc

Mc frac14 PTe

bull Bending stress in trunnion sb

sb frac14 Mc

Z

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

708 Pressure Vessel Design Manual

TYPE 1 TYPE 2

W

K

DIA

A

DIA

= F

DIA

= M

K

C

KT

2 X 125 DIAVENT HOLES

DIA

A

125

D

250

DIA

= F

W

K

B

NUTS WELDED

GRIND WELDSMOOTH

DIA

= M

K

E

KT

2 X 125 DIAVENT HOLES

Table 10-13Dimensions of trunnions

Allowable Load Tons Pipe Size A C D E F M N T W Weight Lbs

1 0-5 4 Std 4 - - 85 8 - 05 025 30

2 5-10 6 Std 5 - - 105 12 - 05 025 55

3 10-15 8 Std 6 0625 8 125 15 4 05 0375 90

4 15-25 10 Std 6 0625 8 15 18 4 075 0375 150

5 25-35 12 Sch 80 6 075 8 17 21 4 075 0375 240

6 35-45 12 Sch 80 6 075 8 17 21 4 075 05 240

7 45-60 14 Sch 80 6 075 8 18 24 8 1 05 375

8 60-75 14 Sch 80 7 0875 8 18 24 8 1 0625 400

9 75-100 16 Sch 80 7 0875 8 25 27 8 1 0625 625

10 100-125 16 Sch 80 7 0875 8 25 27 8 1125 0875 660

11 125-150 18 Sch 80 7 0875 8 27 30 12 1125 0875 850

12 150-200 18 Sch 80 8 0875 8 27 30 12 1125 1 875

13 200-250 20 Sch 80 8 0875 10 30 36 16 125 1 1000

14 300 24 Sch 80 8 1 10 34 36 16 125 1125 1440

15 400 24 Sch 80 8 1 10 34 40 20 1375 1125 1675

16 500 30 125 10 125 12 42 48 20 1375 1375 2400

17 600 36 125 10 125 12 48 60 24 15 1375 3600

Notes

1 Do not use re-pads for cyclic service

2 B frac14 D - 125

3 K frac14 Pipe Wall Thk

4 Dimensions are given for reference only All loadings and stress shall be checked prior to use

Transportation and Erection of Pressure Vessels 709

Procedure 10-9 Local Loads in Shell Due to Erection Forces

Trunnions

Fixed Lug Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Maximum torsional moment MT

MT frac14 PTE

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

Rotating Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

TrunniondNo Lug

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

710 Pressure Vessel Design Manual

Side Lugs Notes

1 Optional internal pipe Remove after erection2 Radial load Pr is the axial load in the internal pipe

stiffener if used in lieu of radial load in shell3 Circumferential ring stiffeners are optional at these

elevations

bull Circumferential moment Mc

Mc frac14 PTe

bull Longitudinal moment Mx

Mx frac14 PLe

bull Load on weld group f

f frac14 PTELT

bull Radial loads Pr and Pa

Pr frac14 PLe

Pa frac14 PL sin f

Top Flange Lug

bull Loads PT and PL

PT frac14 P cos q

PL frac14 P sin q

Transportation and Erection of Pressure Vessels 711

bull Moment on flange M

M frac14 PTB

bull Moment on head M

M frac14 PTethBthorn JTHORNbull Moment on vessel M

M frac14 PTG

bull Radial load on head and nozzle frac14 PL

Side Flange Lug

bull Loads PT and PL

PL frac14 P cos q

PT frac14 P sin q

bull Moment on flange M

M frac14 PLB

bull Longitudinal moment on shell Mx

M frac14 PTethBthorn JTHORNbull Radial load on shell and nozzle frac14 PT

712 Pressure Vessel Design Manual

Procedure 10-10 Miscellaneous

Figure 10-7 Fundamental handling operations Reprinted by permission of the Babcock and Wilcox Companya McDermott Company

Transportation and Erection of Pressure Vessels 713

Figure 10-8 Loads on wire rope for various sheave configurations

714 Pressure Vessel Design Manual

Table 10-14Forged Steel Shackles

Dimensions in Inches

Size D (in)Safe Load

(lb)D (min) A

Tolerance

A DimB B (min) C G

Tolerance C

and G DimE F

frac14 475 73232 153232 11616 51616 93232 1⅛ ⅞ 11616 frac34 111616

⅜ 1050 113232 213232 11616 71616 256464 171616 1frac14 ⅛ 1 313232

71616 1450 256464 233232 11616 frac12 296464 1111616 171616 ⅛ 1⅛ 111616

frac12 1900 296464 131616 11616 ⅝ 91616 1⅞ 1⅝ ⅛ 1⅜ 151616

⅝ 2950 91616 111616 11616 frac34 436464 2133232 2 ⅛ 1⅝ 191616

frac34 4250 436464 1frac14 11616 ⅞ 253232 2273232 2⅜ frac14 2 1⅞

⅞ 5750 253232 171616 11616 1 576464 351616 2131616 frac14 2frac14 2⅛

1 7550 576464 1111616 11616 1⅛ 113232 3frac34 331616 frac14 2frac12 2⅜

1⅛ 8900 113232 1271616 ⅛ 1frac14 176464 4frac14 391616 frac14 2frac34 2⅝

1frac14 11000 176464 213232 ⅛ 1⅜ 1156464 4111616 3151616 frac14 3⅛ 3

1⅜ 13300 1156464 2frac14 ⅛ 1frac12 1113232 5frac14 471616 frac14 3frac12 351616

1frac12 15600 1113232 2⅜ ⅛ 1⅝ 1296464 5frac34 4⅞ frac14 3frac34 3⅝

1frac34 21500 1356464 2⅞ ⅛ 2 1253232 7 5frac34 frac14 4frac14 4⅛

2 28100 1253232 3frac14 ⅛ 2frac14 216464 7frac34 6frac34 frac14 5frac14 5

2frac14 36000 216464 3frac34 ⅛ 2frac12 2156464 9frac14 7⅛ frac34 5frac12 5frac14

2frac12 45100 2156464 4⅛ ⅛ 2frac34 2153232 10frac12 8 frac34 6frac14 6

3 64700 2111616 5 ⅛ 3frac14 2293232 13 11frac12 frac34 6frac34 6frac12

Notes

For shackles with safe loads greater than the maximum shown use CrosbyndashLaughlin (The Crosby Group Div of American Hoist amp Derrick Co Tulsa

OK 74101) Skookum (Skookum Co Inc Portland OR 97203) or equal with an ultimate strength at least 5 times the safe working load

Allowable loads are lower than OSHA requirements tabulated in Section 1926251 Table H-19

Transportation and Erection of Pressure Vessels 715

Figure 10-9 Wire rope end configurations

716 Pressure Vessel Design Manual

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 34: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

bull Shear stress at pin hole s

s frac14 PLAp

bull Net section at Section B-B An

An frac14 2tLethRo RiTHORNbull Shear stress at trunnion s

s frac14 PLAn

bull Minimum bearing contact angle for lug at trun-nion qB

qB frac14 eth159PLTHORNRntLFp

bull Pin hole bearing stress sp

sp frac14 PLD3

tL thorn 2tp

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Swbull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

Type 3 Trunnion Only

Vessel Vertical

bull Longitudinal moment ML

ML frac14 PLe

bull Bending stress in trunnion sb

sb frac14 ML

Z

Vessel Horizontal

bull Circumferential moment Mc

Mc frac14 PTe

bull Bending stress in trunnion sb

sb frac14 Mc

Z

Check Welds

bull Longitudinal moment ML (vessel vertical)

ML frac14 PLe

bull Section modulus of weld Sw

Sw frac14 pR2n

bull Shear stress in weld due to bending moment fs

fs frac14 ML

Sw

bull Size of welds required w1 and w2

w1 gt thickness of end plate

w2 frac14 width of combined groove and fillet welds

w2 frac14 fsFs

gt38in

708 Pressure Vessel Design Manual

TYPE 1 TYPE 2

W

K

DIA

A

DIA

= F

DIA

= M

K

C

KT

2 X 125 DIAVENT HOLES

DIA

A

125

D

250

DIA

= F

W

K

B

NUTS WELDED

GRIND WELDSMOOTH

DIA

= M

K

E

KT

2 X 125 DIAVENT HOLES

Table 10-13Dimensions of trunnions

Allowable Load Tons Pipe Size A C D E F M N T W Weight Lbs

1 0-5 4 Std 4 - - 85 8 - 05 025 30

2 5-10 6 Std 5 - - 105 12 - 05 025 55

3 10-15 8 Std 6 0625 8 125 15 4 05 0375 90

4 15-25 10 Std 6 0625 8 15 18 4 075 0375 150

5 25-35 12 Sch 80 6 075 8 17 21 4 075 0375 240

6 35-45 12 Sch 80 6 075 8 17 21 4 075 05 240

7 45-60 14 Sch 80 6 075 8 18 24 8 1 05 375

8 60-75 14 Sch 80 7 0875 8 18 24 8 1 0625 400

9 75-100 16 Sch 80 7 0875 8 25 27 8 1 0625 625

10 100-125 16 Sch 80 7 0875 8 25 27 8 1125 0875 660

11 125-150 18 Sch 80 7 0875 8 27 30 12 1125 0875 850

12 150-200 18 Sch 80 8 0875 8 27 30 12 1125 1 875

13 200-250 20 Sch 80 8 0875 10 30 36 16 125 1 1000

14 300 24 Sch 80 8 1 10 34 36 16 125 1125 1440

15 400 24 Sch 80 8 1 10 34 40 20 1375 1125 1675

16 500 30 125 10 125 12 42 48 20 1375 1375 2400

17 600 36 125 10 125 12 48 60 24 15 1375 3600

Notes

1 Do not use re-pads for cyclic service

2 B frac14 D - 125

3 K frac14 Pipe Wall Thk

4 Dimensions are given for reference only All loadings and stress shall be checked prior to use

Transportation and Erection of Pressure Vessels 709

Procedure 10-9 Local Loads in Shell Due to Erection Forces

Trunnions

Fixed Lug Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Maximum torsional moment MT

MT frac14 PTE

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

Rotating Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

TrunniondNo Lug

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

710 Pressure Vessel Design Manual

Side Lugs Notes

1 Optional internal pipe Remove after erection2 Radial load Pr is the axial load in the internal pipe

stiffener if used in lieu of radial load in shell3 Circumferential ring stiffeners are optional at these

elevations

bull Circumferential moment Mc

Mc frac14 PTe

bull Longitudinal moment Mx

Mx frac14 PLe

bull Load on weld group f

f frac14 PTELT

bull Radial loads Pr and Pa

Pr frac14 PLe

Pa frac14 PL sin f

Top Flange Lug

bull Loads PT and PL

PT frac14 P cos q

PL frac14 P sin q

Transportation and Erection of Pressure Vessels 711

bull Moment on flange M

M frac14 PTB

bull Moment on head M

M frac14 PTethBthorn JTHORNbull Moment on vessel M

M frac14 PTG

bull Radial load on head and nozzle frac14 PL

Side Flange Lug

bull Loads PT and PL

PL frac14 P cos q

PT frac14 P sin q

bull Moment on flange M

M frac14 PLB

bull Longitudinal moment on shell Mx

M frac14 PTethBthorn JTHORNbull Radial load on shell and nozzle frac14 PT

712 Pressure Vessel Design Manual

Procedure 10-10 Miscellaneous

Figure 10-7 Fundamental handling operations Reprinted by permission of the Babcock and Wilcox Companya McDermott Company

Transportation and Erection of Pressure Vessels 713

Figure 10-8 Loads on wire rope for various sheave configurations

714 Pressure Vessel Design Manual

Table 10-14Forged Steel Shackles

Dimensions in Inches

Size D (in)Safe Load

(lb)D (min) A

Tolerance

A DimB B (min) C G

Tolerance C

and G DimE F

frac14 475 73232 153232 11616 51616 93232 1⅛ ⅞ 11616 frac34 111616

⅜ 1050 113232 213232 11616 71616 256464 171616 1frac14 ⅛ 1 313232

71616 1450 256464 233232 11616 frac12 296464 1111616 171616 ⅛ 1⅛ 111616

frac12 1900 296464 131616 11616 ⅝ 91616 1⅞ 1⅝ ⅛ 1⅜ 151616

⅝ 2950 91616 111616 11616 frac34 436464 2133232 2 ⅛ 1⅝ 191616

frac34 4250 436464 1frac14 11616 ⅞ 253232 2273232 2⅜ frac14 2 1⅞

⅞ 5750 253232 171616 11616 1 576464 351616 2131616 frac14 2frac14 2⅛

1 7550 576464 1111616 11616 1⅛ 113232 3frac34 331616 frac14 2frac12 2⅜

1⅛ 8900 113232 1271616 ⅛ 1frac14 176464 4frac14 391616 frac14 2frac34 2⅝

1frac14 11000 176464 213232 ⅛ 1⅜ 1156464 4111616 3151616 frac14 3⅛ 3

1⅜ 13300 1156464 2frac14 ⅛ 1frac12 1113232 5frac14 471616 frac14 3frac12 351616

1frac12 15600 1113232 2⅜ ⅛ 1⅝ 1296464 5frac34 4⅞ frac14 3frac34 3⅝

1frac34 21500 1356464 2⅞ ⅛ 2 1253232 7 5frac34 frac14 4frac14 4⅛

2 28100 1253232 3frac14 ⅛ 2frac14 216464 7frac34 6frac34 frac14 5frac14 5

2frac14 36000 216464 3frac34 ⅛ 2frac12 2156464 9frac14 7⅛ frac34 5frac12 5frac14

2frac12 45100 2156464 4⅛ ⅛ 2frac34 2153232 10frac12 8 frac34 6frac14 6

3 64700 2111616 5 ⅛ 3frac14 2293232 13 11frac12 frac34 6frac34 6frac12

Notes

For shackles with safe loads greater than the maximum shown use CrosbyndashLaughlin (The Crosby Group Div of American Hoist amp Derrick Co Tulsa

OK 74101) Skookum (Skookum Co Inc Portland OR 97203) or equal with an ultimate strength at least 5 times the safe working load

Allowable loads are lower than OSHA requirements tabulated in Section 1926251 Table H-19

Transportation and Erection of Pressure Vessels 715

Figure 10-9 Wire rope end configurations

716 Pressure Vessel Design Manual

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 35: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

TYPE 1 TYPE 2

W

K

DIA

A

DIA

= F

DIA

= M

K

C

KT

2 X 125 DIAVENT HOLES

DIA

A

125

D

250

DIA

= F

W

K

B

NUTS WELDED

GRIND WELDSMOOTH

DIA

= M

K

E

KT

2 X 125 DIAVENT HOLES

Table 10-13Dimensions of trunnions

Allowable Load Tons Pipe Size A C D E F M N T W Weight Lbs

1 0-5 4 Std 4 - - 85 8 - 05 025 30

2 5-10 6 Std 5 - - 105 12 - 05 025 55

3 10-15 8 Std 6 0625 8 125 15 4 05 0375 90

4 15-25 10 Std 6 0625 8 15 18 4 075 0375 150

5 25-35 12 Sch 80 6 075 8 17 21 4 075 0375 240

6 35-45 12 Sch 80 6 075 8 17 21 4 075 05 240

7 45-60 14 Sch 80 6 075 8 18 24 8 1 05 375

8 60-75 14 Sch 80 7 0875 8 18 24 8 1 0625 400

9 75-100 16 Sch 80 7 0875 8 25 27 8 1 0625 625

10 100-125 16 Sch 80 7 0875 8 25 27 8 1125 0875 660

11 125-150 18 Sch 80 7 0875 8 27 30 12 1125 0875 850

12 150-200 18 Sch 80 8 0875 8 27 30 12 1125 1 875

13 200-250 20 Sch 80 8 0875 10 30 36 16 125 1 1000

14 300 24 Sch 80 8 1 10 34 36 16 125 1125 1440

15 400 24 Sch 80 8 1 10 34 40 20 1375 1125 1675

16 500 30 125 10 125 12 42 48 20 1375 1375 2400

17 600 36 125 10 125 12 48 60 24 15 1375 3600

Notes

1 Do not use re-pads for cyclic service

2 B frac14 D - 125

3 K frac14 Pipe Wall Thk

4 Dimensions are given for reference only All loadings and stress shall be checked prior to use

Transportation and Erection of Pressure Vessels 709

Procedure 10-9 Local Loads in Shell Due to Erection Forces

Trunnions

Fixed Lug Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Maximum torsional moment MT

MT frac14 PTE

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

Rotating Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

TrunniondNo Lug

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

710 Pressure Vessel Design Manual

Side Lugs Notes

1 Optional internal pipe Remove after erection2 Radial load Pr is the axial load in the internal pipe

stiffener if used in lieu of radial load in shell3 Circumferential ring stiffeners are optional at these

elevations

bull Circumferential moment Mc

Mc frac14 PTe

bull Longitudinal moment Mx

Mx frac14 PLe

bull Load on weld group f

f frac14 PTELT

bull Radial loads Pr and Pa

Pr frac14 PLe

Pa frac14 PL sin f

Top Flange Lug

bull Loads PT and PL

PT frac14 P cos q

PL frac14 P sin q

Transportation and Erection of Pressure Vessels 711

bull Moment on flange M

M frac14 PTB

bull Moment on head M

M frac14 PTethBthorn JTHORNbull Moment on vessel M

M frac14 PTG

bull Radial load on head and nozzle frac14 PL

Side Flange Lug

bull Loads PT and PL

PL frac14 P cos q

PT frac14 P sin q

bull Moment on flange M

M frac14 PLB

bull Longitudinal moment on shell Mx

M frac14 PTethBthorn JTHORNbull Radial load on shell and nozzle frac14 PT

712 Pressure Vessel Design Manual

Procedure 10-10 Miscellaneous

Figure 10-7 Fundamental handling operations Reprinted by permission of the Babcock and Wilcox Companya McDermott Company

Transportation and Erection of Pressure Vessels 713

Figure 10-8 Loads on wire rope for various sheave configurations

714 Pressure Vessel Design Manual

Table 10-14Forged Steel Shackles

Dimensions in Inches

Size D (in)Safe Load

(lb)D (min) A

Tolerance

A DimB B (min) C G

Tolerance C

and G DimE F

frac14 475 73232 153232 11616 51616 93232 1⅛ ⅞ 11616 frac34 111616

⅜ 1050 113232 213232 11616 71616 256464 171616 1frac14 ⅛ 1 313232

71616 1450 256464 233232 11616 frac12 296464 1111616 171616 ⅛ 1⅛ 111616

frac12 1900 296464 131616 11616 ⅝ 91616 1⅞ 1⅝ ⅛ 1⅜ 151616

⅝ 2950 91616 111616 11616 frac34 436464 2133232 2 ⅛ 1⅝ 191616

frac34 4250 436464 1frac14 11616 ⅞ 253232 2273232 2⅜ frac14 2 1⅞

⅞ 5750 253232 171616 11616 1 576464 351616 2131616 frac14 2frac14 2⅛

1 7550 576464 1111616 11616 1⅛ 113232 3frac34 331616 frac14 2frac12 2⅜

1⅛ 8900 113232 1271616 ⅛ 1frac14 176464 4frac14 391616 frac14 2frac34 2⅝

1frac14 11000 176464 213232 ⅛ 1⅜ 1156464 4111616 3151616 frac14 3⅛ 3

1⅜ 13300 1156464 2frac14 ⅛ 1frac12 1113232 5frac14 471616 frac14 3frac12 351616

1frac12 15600 1113232 2⅜ ⅛ 1⅝ 1296464 5frac34 4⅞ frac14 3frac34 3⅝

1frac34 21500 1356464 2⅞ ⅛ 2 1253232 7 5frac34 frac14 4frac14 4⅛

2 28100 1253232 3frac14 ⅛ 2frac14 216464 7frac34 6frac34 frac14 5frac14 5

2frac14 36000 216464 3frac34 ⅛ 2frac12 2156464 9frac14 7⅛ frac34 5frac12 5frac14

2frac12 45100 2156464 4⅛ ⅛ 2frac34 2153232 10frac12 8 frac34 6frac14 6

3 64700 2111616 5 ⅛ 3frac14 2293232 13 11frac12 frac34 6frac34 6frac12

Notes

For shackles with safe loads greater than the maximum shown use CrosbyndashLaughlin (The Crosby Group Div of American Hoist amp Derrick Co Tulsa

OK 74101) Skookum (Skookum Co Inc Portland OR 97203) or equal with an ultimate strength at least 5 times the safe working load

Allowable loads are lower than OSHA requirements tabulated in Section 1926251 Table H-19

Transportation and Erection of Pressure Vessels 715

Figure 10-9 Wire rope end configurations

716 Pressure Vessel Design Manual

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 36: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

Procedure 10-9 Local Loads in Shell Due to Erection Forces

Trunnions

Fixed Lug Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Maximum torsional moment MT

MT frac14 PTE

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

Rotating Trunnion

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

TrunniondNo Lug

bull Maximum longitudinal moment Mx

Mx frac14 PLe

bull Maximum circumferential moment Mc

Mc frac14 PTe

bull Loads for any given lift angle q

PL frac14 05P sin q

PT frac14 05P cos q

710 Pressure Vessel Design Manual

Side Lugs Notes

1 Optional internal pipe Remove after erection2 Radial load Pr is the axial load in the internal pipe

stiffener if used in lieu of radial load in shell3 Circumferential ring stiffeners are optional at these

elevations

bull Circumferential moment Mc

Mc frac14 PTe

bull Longitudinal moment Mx

Mx frac14 PLe

bull Load on weld group f

f frac14 PTELT

bull Radial loads Pr and Pa

Pr frac14 PLe

Pa frac14 PL sin f

Top Flange Lug

bull Loads PT and PL

PT frac14 P cos q

PL frac14 P sin q

Transportation and Erection of Pressure Vessels 711

bull Moment on flange M

M frac14 PTB

bull Moment on head M

M frac14 PTethBthorn JTHORNbull Moment on vessel M

M frac14 PTG

bull Radial load on head and nozzle frac14 PL

Side Flange Lug

bull Loads PT and PL

PL frac14 P cos q

PT frac14 P sin q

bull Moment on flange M

M frac14 PLB

bull Longitudinal moment on shell Mx

M frac14 PTethBthorn JTHORNbull Radial load on shell and nozzle frac14 PT

712 Pressure Vessel Design Manual

Procedure 10-10 Miscellaneous

Figure 10-7 Fundamental handling operations Reprinted by permission of the Babcock and Wilcox Companya McDermott Company

Transportation and Erection of Pressure Vessels 713

Figure 10-8 Loads on wire rope for various sheave configurations

714 Pressure Vessel Design Manual

Table 10-14Forged Steel Shackles

Dimensions in Inches

Size D (in)Safe Load

(lb)D (min) A

Tolerance

A DimB B (min) C G

Tolerance C

and G DimE F

frac14 475 73232 153232 11616 51616 93232 1⅛ ⅞ 11616 frac34 111616

⅜ 1050 113232 213232 11616 71616 256464 171616 1frac14 ⅛ 1 313232

71616 1450 256464 233232 11616 frac12 296464 1111616 171616 ⅛ 1⅛ 111616

frac12 1900 296464 131616 11616 ⅝ 91616 1⅞ 1⅝ ⅛ 1⅜ 151616

⅝ 2950 91616 111616 11616 frac34 436464 2133232 2 ⅛ 1⅝ 191616

frac34 4250 436464 1frac14 11616 ⅞ 253232 2273232 2⅜ frac14 2 1⅞

⅞ 5750 253232 171616 11616 1 576464 351616 2131616 frac14 2frac14 2⅛

1 7550 576464 1111616 11616 1⅛ 113232 3frac34 331616 frac14 2frac12 2⅜

1⅛ 8900 113232 1271616 ⅛ 1frac14 176464 4frac14 391616 frac14 2frac34 2⅝

1frac14 11000 176464 213232 ⅛ 1⅜ 1156464 4111616 3151616 frac14 3⅛ 3

1⅜ 13300 1156464 2frac14 ⅛ 1frac12 1113232 5frac14 471616 frac14 3frac12 351616

1frac12 15600 1113232 2⅜ ⅛ 1⅝ 1296464 5frac34 4⅞ frac14 3frac34 3⅝

1frac34 21500 1356464 2⅞ ⅛ 2 1253232 7 5frac34 frac14 4frac14 4⅛

2 28100 1253232 3frac14 ⅛ 2frac14 216464 7frac34 6frac34 frac14 5frac14 5

2frac14 36000 216464 3frac34 ⅛ 2frac12 2156464 9frac14 7⅛ frac34 5frac12 5frac14

2frac12 45100 2156464 4⅛ ⅛ 2frac34 2153232 10frac12 8 frac34 6frac14 6

3 64700 2111616 5 ⅛ 3frac14 2293232 13 11frac12 frac34 6frac34 6frac12

Notes

For shackles with safe loads greater than the maximum shown use CrosbyndashLaughlin (The Crosby Group Div of American Hoist amp Derrick Co Tulsa

OK 74101) Skookum (Skookum Co Inc Portland OR 97203) or equal with an ultimate strength at least 5 times the safe working load

Allowable loads are lower than OSHA requirements tabulated in Section 1926251 Table H-19

Transportation and Erection of Pressure Vessels 715

Figure 10-9 Wire rope end configurations

716 Pressure Vessel Design Manual

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 37: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

Side Lugs Notes

1 Optional internal pipe Remove after erection2 Radial load Pr is the axial load in the internal pipe

stiffener if used in lieu of radial load in shell3 Circumferential ring stiffeners are optional at these

elevations

bull Circumferential moment Mc

Mc frac14 PTe

bull Longitudinal moment Mx

Mx frac14 PLe

bull Load on weld group f

f frac14 PTELT

bull Radial loads Pr and Pa

Pr frac14 PLe

Pa frac14 PL sin f

Top Flange Lug

bull Loads PT and PL

PT frac14 P cos q

PL frac14 P sin q

Transportation and Erection of Pressure Vessels 711

bull Moment on flange M

M frac14 PTB

bull Moment on head M

M frac14 PTethBthorn JTHORNbull Moment on vessel M

M frac14 PTG

bull Radial load on head and nozzle frac14 PL

Side Flange Lug

bull Loads PT and PL

PL frac14 P cos q

PT frac14 P sin q

bull Moment on flange M

M frac14 PLB

bull Longitudinal moment on shell Mx

M frac14 PTethBthorn JTHORNbull Radial load on shell and nozzle frac14 PT

712 Pressure Vessel Design Manual

Procedure 10-10 Miscellaneous

Figure 10-7 Fundamental handling operations Reprinted by permission of the Babcock and Wilcox Companya McDermott Company

Transportation and Erection of Pressure Vessels 713

Figure 10-8 Loads on wire rope for various sheave configurations

714 Pressure Vessel Design Manual

Table 10-14Forged Steel Shackles

Dimensions in Inches

Size D (in)Safe Load

(lb)D (min) A

Tolerance

A DimB B (min) C G

Tolerance C

and G DimE F

frac14 475 73232 153232 11616 51616 93232 1⅛ ⅞ 11616 frac34 111616

⅜ 1050 113232 213232 11616 71616 256464 171616 1frac14 ⅛ 1 313232

71616 1450 256464 233232 11616 frac12 296464 1111616 171616 ⅛ 1⅛ 111616

frac12 1900 296464 131616 11616 ⅝ 91616 1⅞ 1⅝ ⅛ 1⅜ 151616

⅝ 2950 91616 111616 11616 frac34 436464 2133232 2 ⅛ 1⅝ 191616

frac34 4250 436464 1frac14 11616 ⅞ 253232 2273232 2⅜ frac14 2 1⅞

⅞ 5750 253232 171616 11616 1 576464 351616 2131616 frac14 2frac14 2⅛

1 7550 576464 1111616 11616 1⅛ 113232 3frac34 331616 frac14 2frac12 2⅜

1⅛ 8900 113232 1271616 ⅛ 1frac14 176464 4frac14 391616 frac14 2frac34 2⅝

1frac14 11000 176464 213232 ⅛ 1⅜ 1156464 4111616 3151616 frac14 3⅛ 3

1⅜ 13300 1156464 2frac14 ⅛ 1frac12 1113232 5frac14 471616 frac14 3frac12 351616

1frac12 15600 1113232 2⅜ ⅛ 1⅝ 1296464 5frac34 4⅞ frac14 3frac34 3⅝

1frac34 21500 1356464 2⅞ ⅛ 2 1253232 7 5frac34 frac14 4frac14 4⅛

2 28100 1253232 3frac14 ⅛ 2frac14 216464 7frac34 6frac34 frac14 5frac14 5

2frac14 36000 216464 3frac34 ⅛ 2frac12 2156464 9frac14 7⅛ frac34 5frac12 5frac14

2frac12 45100 2156464 4⅛ ⅛ 2frac34 2153232 10frac12 8 frac34 6frac14 6

3 64700 2111616 5 ⅛ 3frac14 2293232 13 11frac12 frac34 6frac34 6frac12

Notes

For shackles with safe loads greater than the maximum shown use CrosbyndashLaughlin (The Crosby Group Div of American Hoist amp Derrick Co Tulsa

OK 74101) Skookum (Skookum Co Inc Portland OR 97203) or equal with an ultimate strength at least 5 times the safe working load

Allowable loads are lower than OSHA requirements tabulated in Section 1926251 Table H-19

Transportation and Erection of Pressure Vessels 715

Figure 10-9 Wire rope end configurations

716 Pressure Vessel Design Manual

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 38: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

bull Moment on flange M

M frac14 PTB

bull Moment on head M

M frac14 PTethBthorn JTHORNbull Moment on vessel M

M frac14 PTG

bull Radial load on head and nozzle frac14 PL

Side Flange Lug

bull Loads PT and PL

PL frac14 P cos q

PT frac14 P sin q

bull Moment on flange M

M frac14 PLB

bull Longitudinal moment on shell Mx

M frac14 PTethBthorn JTHORNbull Radial load on shell and nozzle frac14 PT

712 Pressure Vessel Design Manual

Procedure 10-10 Miscellaneous

Figure 10-7 Fundamental handling operations Reprinted by permission of the Babcock and Wilcox Companya McDermott Company

Transportation and Erection of Pressure Vessels 713

Figure 10-8 Loads on wire rope for various sheave configurations

714 Pressure Vessel Design Manual

Table 10-14Forged Steel Shackles

Dimensions in Inches

Size D (in)Safe Load

(lb)D (min) A

Tolerance

A DimB B (min) C G

Tolerance C

and G DimE F

frac14 475 73232 153232 11616 51616 93232 1⅛ ⅞ 11616 frac34 111616

⅜ 1050 113232 213232 11616 71616 256464 171616 1frac14 ⅛ 1 313232

71616 1450 256464 233232 11616 frac12 296464 1111616 171616 ⅛ 1⅛ 111616

frac12 1900 296464 131616 11616 ⅝ 91616 1⅞ 1⅝ ⅛ 1⅜ 151616

⅝ 2950 91616 111616 11616 frac34 436464 2133232 2 ⅛ 1⅝ 191616

frac34 4250 436464 1frac14 11616 ⅞ 253232 2273232 2⅜ frac14 2 1⅞

⅞ 5750 253232 171616 11616 1 576464 351616 2131616 frac14 2frac14 2⅛

1 7550 576464 1111616 11616 1⅛ 113232 3frac34 331616 frac14 2frac12 2⅜

1⅛ 8900 113232 1271616 ⅛ 1frac14 176464 4frac14 391616 frac14 2frac34 2⅝

1frac14 11000 176464 213232 ⅛ 1⅜ 1156464 4111616 3151616 frac14 3⅛ 3

1⅜ 13300 1156464 2frac14 ⅛ 1frac12 1113232 5frac14 471616 frac14 3frac12 351616

1frac12 15600 1113232 2⅜ ⅛ 1⅝ 1296464 5frac34 4⅞ frac14 3frac34 3⅝

1frac34 21500 1356464 2⅞ ⅛ 2 1253232 7 5frac34 frac14 4frac14 4⅛

2 28100 1253232 3frac14 ⅛ 2frac14 216464 7frac34 6frac34 frac14 5frac14 5

2frac14 36000 216464 3frac34 ⅛ 2frac12 2156464 9frac14 7⅛ frac34 5frac12 5frac14

2frac12 45100 2156464 4⅛ ⅛ 2frac34 2153232 10frac12 8 frac34 6frac14 6

3 64700 2111616 5 ⅛ 3frac14 2293232 13 11frac12 frac34 6frac34 6frac12

Notes

For shackles with safe loads greater than the maximum shown use CrosbyndashLaughlin (The Crosby Group Div of American Hoist amp Derrick Co Tulsa

OK 74101) Skookum (Skookum Co Inc Portland OR 97203) or equal with an ultimate strength at least 5 times the safe working load

Allowable loads are lower than OSHA requirements tabulated in Section 1926251 Table H-19

Transportation and Erection of Pressure Vessels 715

Figure 10-9 Wire rope end configurations

716 Pressure Vessel Design Manual

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 39: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

Procedure 10-10 Miscellaneous

Figure 10-7 Fundamental handling operations Reprinted by permission of the Babcock and Wilcox Companya McDermott Company

Transportation and Erection of Pressure Vessels 713

Figure 10-8 Loads on wire rope for various sheave configurations

714 Pressure Vessel Design Manual

Table 10-14Forged Steel Shackles

Dimensions in Inches

Size D (in)Safe Load

(lb)D (min) A

Tolerance

A DimB B (min) C G

Tolerance C

and G DimE F

frac14 475 73232 153232 11616 51616 93232 1⅛ ⅞ 11616 frac34 111616

⅜ 1050 113232 213232 11616 71616 256464 171616 1frac14 ⅛ 1 313232

71616 1450 256464 233232 11616 frac12 296464 1111616 171616 ⅛ 1⅛ 111616

frac12 1900 296464 131616 11616 ⅝ 91616 1⅞ 1⅝ ⅛ 1⅜ 151616

⅝ 2950 91616 111616 11616 frac34 436464 2133232 2 ⅛ 1⅝ 191616

frac34 4250 436464 1frac14 11616 ⅞ 253232 2273232 2⅜ frac14 2 1⅞

⅞ 5750 253232 171616 11616 1 576464 351616 2131616 frac14 2frac14 2⅛

1 7550 576464 1111616 11616 1⅛ 113232 3frac34 331616 frac14 2frac12 2⅜

1⅛ 8900 113232 1271616 ⅛ 1frac14 176464 4frac14 391616 frac14 2frac34 2⅝

1frac14 11000 176464 213232 ⅛ 1⅜ 1156464 4111616 3151616 frac14 3⅛ 3

1⅜ 13300 1156464 2frac14 ⅛ 1frac12 1113232 5frac14 471616 frac14 3frac12 351616

1frac12 15600 1113232 2⅜ ⅛ 1⅝ 1296464 5frac34 4⅞ frac14 3frac34 3⅝

1frac34 21500 1356464 2⅞ ⅛ 2 1253232 7 5frac34 frac14 4frac14 4⅛

2 28100 1253232 3frac14 ⅛ 2frac14 216464 7frac34 6frac34 frac14 5frac14 5

2frac14 36000 216464 3frac34 ⅛ 2frac12 2156464 9frac14 7⅛ frac34 5frac12 5frac14

2frac12 45100 2156464 4⅛ ⅛ 2frac34 2153232 10frac12 8 frac34 6frac14 6

3 64700 2111616 5 ⅛ 3frac14 2293232 13 11frac12 frac34 6frac34 6frac12

Notes

For shackles with safe loads greater than the maximum shown use CrosbyndashLaughlin (The Crosby Group Div of American Hoist amp Derrick Co Tulsa

OK 74101) Skookum (Skookum Co Inc Portland OR 97203) or equal with an ultimate strength at least 5 times the safe working load

Allowable loads are lower than OSHA requirements tabulated in Section 1926251 Table H-19

Transportation and Erection of Pressure Vessels 715

Figure 10-9 Wire rope end configurations

716 Pressure Vessel Design Manual

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 40: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

Figure 10-8 Loads on wire rope for various sheave configurations

714 Pressure Vessel Design Manual

Table 10-14Forged Steel Shackles

Dimensions in Inches

Size D (in)Safe Load

(lb)D (min) A

Tolerance

A DimB B (min) C G

Tolerance C

and G DimE F

frac14 475 73232 153232 11616 51616 93232 1⅛ ⅞ 11616 frac34 111616

⅜ 1050 113232 213232 11616 71616 256464 171616 1frac14 ⅛ 1 313232

71616 1450 256464 233232 11616 frac12 296464 1111616 171616 ⅛ 1⅛ 111616

frac12 1900 296464 131616 11616 ⅝ 91616 1⅞ 1⅝ ⅛ 1⅜ 151616

⅝ 2950 91616 111616 11616 frac34 436464 2133232 2 ⅛ 1⅝ 191616

frac34 4250 436464 1frac14 11616 ⅞ 253232 2273232 2⅜ frac14 2 1⅞

⅞ 5750 253232 171616 11616 1 576464 351616 2131616 frac14 2frac14 2⅛

1 7550 576464 1111616 11616 1⅛ 113232 3frac34 331616 frac14 2frac12 2⅜

1⅛ 8900 113232 1271616 ⅛ 1frac14 176464 4frac14 391616 frac14 2frac34 2⅝

1frac14 11000 176464 213232 ⅛ 1⅜ 1156464 4111616 3151616 frac14 3⅛ 3

1⅜ 13300 1156464 2frac14 ⅛ 1frac12 1113232 5frac14 471616 frac14 3frac12 351616

1frac12 15600 1113232 2⅜ ⅛ 1⅝ 1296464 5frac34 4⅞ frac14 3frac34 3⅝

1frac34 21500 1356464 2⅞ ⅛ 2 1253232 7 5frac34 frac14 4frac14 4⅛

2 28100 1253232 3frac14 ⅛ 2frac14 216464 7frac34 6frac34 frac14 5frac14 5

2frac14 36000 216464 3frac34 ⅛ 2frac12 2156464 9frac14 7⅛ frac34 5frac12 5frac14

2frac12 45100 2156464 4⅛ ⅛ 2frac34 2153232 10frac12 8 frac34 6frac14 6

3 64700 2111616 5 ⅛ 3frac14 2293232 13 11frac12 frac34 6frac34 6frac12

Notes

For shackles with safe loads greater than the maximum shown use CrosbyndashLaughlin (The Crosby Group Div of American Hoist amp Derrick Co Tulsa

OK 74101) Skookum (Skookum Co Inc Portland OR 97203) or equal with an ultimate strength at least 5 times the safe working load

Allowable loads are lower than OSHA requirements tabulated in Section 1926251 Table H-19

Transportation and Erection of Pressure Vessels 715

Figure 10-9 Wire rope end configurations

716 Pressure Vessel Design Manual

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 41: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

Table 10-14Forged Steel Shackles

Dimensions in Inches

Size D (in)Safe Load

(lb)D (min) A

Tolerance

A DimB B (min) C G

Tolerance C

and G DimE F

frac14 475 73232 153232 11616 51616 93232 1⅛ ⅞ 11616 frac34 111616

⅜ 1050 113232 213232 11616 71616 256464 171616 1frac14 ⅛ 1 313232

71616 1450 256464 233232 11616 frac12 296464 1111616 171616 ⅛ 1⅛ 111616

frac12 1900 296464 131616 11616 ⅝ 91616 1⅞ 1⅝ ⅛ 1⅜ 151616

⅝ 2950 91616 111616 11616 frac34 436464 2133232 2 ⅛ 1⅝ 191616

frac34 4250 436464 1frac14 11616 ⅞ 253232 2273232 2⅜ frac14 2 1⅞

⅞ 5750 253232 171616 11616 1 576464 351616 2131616 frac14 2frac14 2⅛

1 7550 576464 1111616 11616 1⅛ 113232 3frac34 331616 frac14 2frac12 2⅜

1⅛ 8900 113232 1271616 ⅛ 1frac14 176464 4frac14 391616 frac14 2frac34 2⅝

1frac14 11000 176464 213232 ⅛ 1⅜ 1156464 4111616 3151616 frac14 3⅛ 3

1⅜ 13300 1156464 2frac14 ⅛ 1frac12 1113232 5frac14 471616 frac14 3frac12 351616

1frac12 15600 1113232 2⅜ ⅛ 1⅝ 1296464 5frac34 4⅞ frac14 3frac34 3⅝

1frac34 21500 1356464 2⅞ ⅛ 2 1253232 7 5frac34 frac14 4frac14 4⅛

2 28100 1253232 3frac14 ⅛ 2frac14 216464 7frac34 6frac34 frac14 5frac14 5

2frac14 36000 216464 3frac34 ⅛ 2frac12 2156464 9frac14 7⅛ frac34 5frac12 5frac14

2frac12 45100 2156464 4⅛ ⅛ 2frac34 2153232 10frac12 8 frac34 6frac14 6

3 64700 2111616 5 ⅛ 3frac14 2293232 13 11frac12 frac34 6frac34 6frac12

Notes

For shackles with safe loads greater than the maximum shown use CrosbyndashLaughlin (The Crosby Group Div of American Hoist amp Derrick Co Tulsa

OK 74101) Skookum (Skookum Co Inc Portland OR 97203) or equal with an ultimate strength at least 5 times the safe working load

Allowable loads are lower than OSHA requirements tabulated in Section 1926251 Table H-19

Transportation and Erection of Pressure Vessels 715

Figure 10-9 Wire rope end configurations

716 Pressure Vessel Design Manual

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 42: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

Figure 10-9 Wire rope end configurations

716 Pressure Vessel Design Manual

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 43: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

Table 10-15Material transportation and lifting

Material-Handling

System Description Capacity t (tm)

Site Transport

Flatbed trailers

Bed dimension 8 40 ft (24 122m)ddeck height 60 in (1524 mm) used to transport

materials from storage to staging area

20 (18)

Extendable

trailers

Bed dimension up to 8 60 ft (24 183m)ddeck height 60 in (1524 mm) used to

transport materials from storage to staging area

15 (14)

Lowboy and

dropdeck

Bed dimension up to 8 40 ft (24 122m)ddeck height of 24 in (610 mm) used to

transport materials from storage to staging area

60 (54)

Crawler

transporter

Specially designed mechanism for handling heavy loads Lampson crawler transporter

for an example of the Lampson design

700 (635)

Straddle carrier Mobile design to transport structural steel piping and other assorted items straddle

carrier for an example of this design

30 (27)

Rail Track utilized to transport materials to installed location Continuous track allows material

in-stallation directly from delivery car

as designed

Roller and track Steel machinery rollers located relative to component center of gravity handle the load

Rollers traverse the web of a channel welded to top flange of structural member below

2000 (1814)

Plate and slide Sliding steel plates Coefficient of frictiond04 steel on steel 009 greased steel on steel

004 Teflon on steel Sliding plate transport for movement of 1200 t (1089 tm) vessel

as designed

Air bearings or

air pallets

Utilizes film of air between flexible diaphragm and flat horizontal surface Air flow 3 to 200

ft3min (0001 to 009 m3s) 1 lb (45N) lateral force per 1000 lb (454 kg) vertical load

75 (68)

High line Taut cable guideway anchored between two points and fitted with inverted sheave and

hook

5 (45)

Lifting

Chain hoist

Chain operated geared hoist for manual load handling capability Standard lift heights 8 to

12 ft (24 to 37m)

25 (23)

Hydraulic rough

terrain cranes

Telescopic boom mounted on rubber tired self-propelled carrier 90 (82)

Hydraulic truck

cranes

Telescopic boom mounted on rubber tired independent carrier 450 (408)

Lattice boom

truck cranes

Lattice boom mounted on rubber tired independent carrier 800 (726)

Lattice boom

crawler cranes

Lattice boom mounted on self-propelled crawlers 2200 (1996)

Fixed position

crawler cranes

Lattice boommounted on self-propelled crawlers and equipped with specifically designed

attachments and counterweights

750 (680)

Tower gantry

cranes

Tower mounted lattice boom gantry for operation above work site 230 (209)

Guy derrick Boom mounted to a mast supported by wire rope guys Attached to existing building steel

with load lines operated from independent hoist Swing angle 360 deg (628 rad)

600 (544)

Chicago boom Boom mounted to existing structure which acts as mast and to which is attached boom

topping lift and pivoting boom support bracket Load lines operated from independent

hoist Swing angle from 180 to 270 deg (314 to 471 rad)

function of

support

structure

Stiff leg derrick Boom attached to mast supported by two rigid diagonal legs and horizontal sills

Horizontal angle between each leg and sill combination ranges from 60 to 90 deg (105

to 157 rad) swing angle from 270 to 300 deg (471 to 524 rad)

700 (635)

Monorail High capacity load blocks suspended from trolleys which traverse monorail beams

suspended from boiler support steel Provides capability to lift and move loads within

boiler cavity

400 (363)

Jacking systems Custom designed hydraulic or mechanical system for high capacity special lifts as specified

Reprinted by permission of the Babcock and Wilcox Company a McDermott Company

Transportation and Erection of Pressure Vessels 717

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual

Page 44: Procedure 10-4: Lifting Loads and Forcespvmanage.com/wp-content/uploads/2019/01/...VESSEL-DESIGN-MANUAL10-2.pdf · Loads † Overall load factor, KL. KL ¼ Ki þKs † Design lift

Notes

1 This procedure is for the design of the vessel andthe lifting attachments only It is not intended todefine rigging or crane requirements

2 Lifting attachments may remain on the vessel aftererection unless there is some process- or interfer-ence-related issue that would necessitate theirremoval

3 Load and impact factors must be used for movingloads It is recommended that a 25 impact factorand a minimum load factor of 15 be used Thecombined load and impact factor should be 15ndash20

4 Allowable stress compression should be 06Fy forstructural attachments and ASME Factor ldquoBrdquo times133 for the vessel shell

5 Vessel shipping orientation should be establishedsuch that a line through the lifting lugs is parallel tograde if possible This prevents the vessel fromhaving to be ldquorolledrdquo to the correct orientation forloading and offloading operations

6 If a spreader beam is not used the minimum slingangle shall be 30 from the horizontal position At30 the tension in each sling is equal to the totaldesign load Thus a load factor of 2 is mandatoryfor these cases This requires that each lug bedesigned for the full load

7 Vessels should never be lifted by a nozzle or othersmall attachments unless specifically designed todo so

8 All local loads in vessel shell or head resultingfrom loadings imposed during erection of thevessel shall be analyzed using a suitable local loadprocedure

9 Tailing attachment shall be designed such that theymay be unbolted without having to get under theload while it is suspended As an alternative thevessel must be set down at grade before a person

can get under the base ring to unbolt the tailingbeam Be advised that the base and skirt may not bedesigned for point support if cribbing is used tobuild up the base for access

10 A tailing lug as opposed to a tailing beam allowsthe load to be disconnected from the vessel withouta personrsquos getting under a suspended load tounhook

11 This procedure assumes that the pin diameter is noless than 11616 in less than the hole diameter If thepin diameter is greater than 11616 in smaller than thehole diameter then the bearing stresses in the lug atthe contact point are increased dramatically due tothe stress concentration effect

12 Internal struts in the skirt or base plate are requiredonly if the baseskirt configuration is overstressed

13 If bearing or shear stresses are exceeded in the lugadd pad eyes

14 Trunnions may be used as tailing devices as long asthe resulting local loads in the skirt are analyzed

15 Do not use less than Schedule 40 pipe fortrunnions

16 Specific notes for trunnionsa Type 1 fixed lug Normal use but generally for

small to medium vessels (less than 100 tons)b Type 2 rotating lug Best use is when multiple

vessels are to be lifted with the same lug Thelug may be removed by removing the end plateand sliding the lug off Then the lug is rein-stalled on the next vessel For heavier loads aninternal sleeve should be attached to the lug toincrease the bearing area on the trunnion

c Type 3 trunnion only No size limitation orweight limitation The cable and trunnionsshould be lubricated prior to lifting to preventthe cables from binding The bend radius of thecables may govern the diameter of the trunnionCheck with erection contractor

718 Pressure Vessel Design Manual