Problemas Impares.pdf

46
CHAPTER 2 Differentiation Section 2.1 The Derivative and the Tangent Line Problem . . . 53 Section 2.2 Basic Differentiation Rules and Rates of Change . 60 Section 2.3 The Product and Quotient Rules and Higher-Order Derivatives . . . . . . . . . . . . . . 67 Section 2.4 The Chain Rule . . . . . . . . . . . . . . . . . . . 73 Section 2.5 Implicit Differentiation . . . . . . . . . . . . . . . 79 Section 2.6 Related Rates . . . . . . . . . . . . . . . . . . . . 85 Review Exercises . . . . . . . . . . . . . . . . . . . . . . . . . 92 Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Transcript of Problemas Impares.pdf

  • C H A P T E R 2Differentiation

    Section 2.1 The Derivative and the Tangent Line Problem . . . 53

    Section 2.2 Basic Differentiation Rules and Rates of Change . 60

    Section 2.3 The Product and Quotient Rules andHigher-Order Derivatives . . . . . . . . . . . . . . 67

    Section 2.4 The Chain Rule . . . . . . . . . . . . . . . . . . . 73

    Section 2.5 Implicit Differentiation . . . . . . . . . . . . . . . 79

    Section 2.6 Related Rates . . . . . . . . . . . . . . . . . . . . 85

    Review Exercises . . . . . . . . . . . . . . . . . . . . . . . . . 92

    Problem Solving . . . . . . . . . . . . . . . . . . . . . . . . . . 98

  • 53

    C H A P T E R 2Differentiation

    Section 2.1 The Derivative and the Tangent Line ProblemSolutions to Odd-Numbered Exercises

    1. (a)

    (b) m 3

    m 0 3. (a), (b) (c)

    x 1

    1x 1 2

    33

    x 1 2

    6

    5

    4

    3

    2

    654321

    1

    y

    x

    1)1f ) x

    )1 3f ))f )4

    11)f )

    1)x

    ))f 44

    y

    4) , )5

    2)

    21) ,

    f )

    )

    1

    f ) )4 5

    )

    y f 4 f 1

    4 1x 1 f 1)

    5. is a line. Slope 2f x 3 2x 7. Slope at

    limx0

    2 2x 2

    limx0

    1 2x x2 1

    x

    limx0

    1 x2 4 3

    x

    1, 3 limx0

    g1 x g1

    x

    9. Slope at

    limt0

    3 t 3

    limt0

    3t t2 0

    t

    0, 0 limt0

    f 0 t f 0

    t11.

    limx0

    0 0

    limx0

    3 3

    x

    f x limx0

    f x x f x

    x

    f x 3

    13.

    limx0

    5 5

    limx0

    5x x 5x

    x

    fx limx0

    f x x f x

    x

    f x 5x 15.

    lims0

    23

    s

    s

    23

    lims0

    3

    23

    s s 3 23ss

    hs lims0

    hs s hs

    s

    hs 3 23

    s

  • 54 Chapter 2 Differentiation

    17.

    limx0

    4xx 2x2 x

    x lim

    x0 4x 2x 1 4x 1

    limx0

    2x2 4xx 2x2 x x 1 2x2 x 1

    x

    limx0

    2x x2 x x 1 2x2 x 1

    x

    fx limx0

    f x x f x

    x

    f x 2x2 x 1

    19.

    limx0

    3x2 3xx x2 12 3x2 12

    limx0

    3x2x 3xx2 x3 12x

    x

    limx0

    x3 3x2x 3xx2 x3 12x 12x x3 12x

    x

    limx0

    x x3 12x x x3 12x

    x

    fx limx0

    f x x f x

    x

    f x x3 12x

    21.

    1

    x 12

    limx0

    1

    x x 1x 1

    limx0

    x

    xx x 1x 1

    limx0

    x 1 x x 1xx x 1x 1

    limx0

    1x x 1

    1

    x 1x

    fx limx0

    f x x f x

    x

    f x 1x 1

    23.

    1

    x 1 x 1

    1

    2x 1

    limx0

    1

    x x 1 x 1

    limx0

    x x 1 x 1

    xx x 1 x 1

    limx0

    x x 1 x 1

    x x x 1 x 1x x 1 x 1

    fx limx0

    f x x f x

    x

    f x x 1

  • 25. (a)

    At the slope of the tangent line isThe equation of the tangent line is

    y 4x 3.

    y 5 4x 8

    y 5 4x 2

    m 22 4.2, 5,

    limx0

    2x x 2x

    limx0

    2xx x2

    x

    limx0

    x x2 1 x2 1

    x

    fx limx0

    f x x f x

    x

    f x x2 1 17. (b)

    (2, 5)

    5 5

    2

    8

    27. (a)

    At the slope of the tangent is The equation of the tangent line is

    y 12x 16.

    y 8 12x 2

    m 322 12.2, 8,

    limx0

    3x2 3xx x2 3x2

    limx0

    3x2x 3xx2 x3

    x

    limx0

    x x3 x3

    x

    fx limx0

    f x x f x

    x

    f x x3 18. (b)

    5 5

    4

    (2, 8)

    10

    29. (a)

    At the slope of the tangent line is

    The equation of the tangent line is

    y 12

    x 12

    .

    y 1 12

    x 1

    m 1

    21

    12

    .

    1, 1,

    limx0

    1

    x x x

    1

    2x

    limx0

    x x x

    xx x x

    limx0

    x x x

    xx x xx x x

    fx limx0

    f x x f x

    x

    f x x 18. (b)

    5

    1

    1

    3

    (1, 1)

    Section 2.1 The Derivative and the Tangent Line Problem 55

  • 56 Chapter 2 Differentiation

    31. (a)

    At the slope of the tangent line is

    The equation of the tangent line is

    y 34

    x 2

    y 5 34

    x 4

    m 1 4

    16

    34

    4, 5,

    x2 4

    x2 1

    4x2

    limx0

    x2 xx4

    xx x

    limx0

    x2x xx2 4x

    xxx x

    limx0

    x3 2x2x xx2 x3 x2x 4x

    xxx x

    limx0

    xx xx x 4x x2x x 4x x

    xxx x

    limx0

    x x 4

    x x x 4x

    x

    fx limx0

    f x x f x

    x

    f x 4x

    (b)

    12

    6

    12

    10

    (4, 5)

    33. From Exercise 27 we know that Since theslope of the given line is 3, we have

    Therefore, at the points and the tangentlines are parallel to These lines haveequations

    and

    y 3x 2. y 3x 2

    y 1 3x 1y 1 3x 1

    3x y 1 0.1, 11, 1

    x 1.

    3x2 3

    fx 3x2. 35. Using the limit definition of derivative,

    Since the slope of the given line is , we have

    Therefore, at the point the tangent line is parallel toThe equation of this line is

    y 12

    x 32

    .

    y 1 12

    x 12

    y 1 12

    x 1

    x 2y 6 0.1, 1

    x 1.

    1

    2xx

    12

    12

    fx 12xx

    .

    37. because the tangent line passes through

    g5 2 05 9

    2

    4

    12

    5, 2g5 2 39. f x x fx 1 b

  • Section 2.1 The Derivative and the Tangent Line Problem 57

    41. matches (a)

    decreasing slope as x

    f x x fx 43.

    Answers will vary.

    Sample answer: y x

    x1

    1

    2

    3

    4

    2

    1

    3

    4

    2 134 2 3 4

    y

    45. (a) If and is odd, then

    (b) If and is even, then fc f c 3ffc 3

    fc fc 3ffc 3

    47. Let be a point of tangency on the graph of f. By the limit definition for the derivative, The slope of theline through and equals the derivative of f at

    Therefore, the points of tangency are and and the corresponding slopes are 2 and . The equations of the tangentlines are

    y 2x 1 y 2x 9

    y 5 2x 2 y 5 2x 2

    23, 3,1, 3

    0 x0 1x0 3 x0 1, 3

    0 x02 4x0 3

    5 4x0 x02 8 8x0 2x02 5 y0 2 x04 2x0

    5 y02 x0

    4 2x0

    x1 2 3 62

    2

    4

    3

    5

    7

    6

    1

    (1, 3)(3, 3)

    (2, 5)

    yx0:x0, y02, 5fx 4 2x.x0, y0

    49. (a)

    (b)

    (c) Because g is decreasing (falling) at

    (d) Because g is increasing (rising) at

    (e) Because and are both positive, is greater than , and

    (f) No, it is not possible. All you can say is that g is decreasing (falling) at x 2.

    g6 g4 > 0.g4g6g6g4

    x 4.g4 73 ,

    x 1.g1 83 ,

    g3 0

    g0 3

    51.

    By the limit definition of the derivative we have fx 34 x2.

    2

    2

    2

    2

    f x 14 x3

    x 0 0.5 1 1.5 2

    0 2

    3 0 3271634

    316

    316

    34

    2716fx

    2732

    14

    132

    132

    14

    27322f x

    0.511.52

  • 58 Chapter 2 Differentiation

    53.

    The graph of is approximately the graph of fx.gx

    3

    1

    2 4

    g

    f

    2x 0.01 x 0.012 2x x2 100

    gx f x 0.01 f x0.01

    55.

    Exact: f2 0f2 3.99 42.1 2

    0.1

    f 2.1 2.14 2.1 3.99f 2 24 2 4,

    57. and

    As is nearly horizontal and thus f 0.x , f

    5

    5

    2 5

    f

    f

    fx 12x32

    .f x 1x

    59.

    (a)

    (b) As the line approaches the tangent line to at 2, 3.fx 0,

    x 0.1: Sx 1910x 2 3 1910

    x 45

    x 0.5: Sx 32x 2 3 32

    x

    5

    1

    2 7

    f

    S0.1

    S1

    S0.5

    x 1: Sx x 2 3 x 1

    4 2 x 32 3

    xx 2 3 1 x 1

    2

    xx 2 3 x 2x 2 3

    Sx x f 2 x f 2

    xx 2 f 2

    f x 4 x 32

    61.

    f2 limx2

    f x f 2

    x 2 lim

    x2 x2 1 3

    x 2 lim

    x 2 x 2x 2

    x 2 lim

    x2 x 2 4

    f x x2 1, c 2

    63.

    f2 limx2

    f x f 2

    x 2 lim

    x 2 x2x 2

    x 2 lim

    x2 x3 2x2 1 1

    x 2 lim

    x2 x2 4

    f x x3 2x2 1, c 2

    65.

    Does not exist.

    As

    As x 0, x

    x

    1x

    x 0, x

    x

    1x

    g0 limx0

    gx g0

    x 0 lim

    x0 x

    x.

    gx x, c 0 67.

    Does not exist.

    limx6

    1

    x 613

    limx6

    x 623 0

    x 6

    f6 limx6

    f x f 6

    x 6

    f x x 623, c 6

  • Section 2.1 The Derivative and the Tangent Line Problem 59

    69.

    Does not exist.

    limx5

    x 5x 5

    limx5

    x 5 0x 5

    h5 limx5

    hx h5

    x 5

    h x x 5, c 5

    73. is differentiable everywhere except at (Discontinuity)

    x 1.f x 75. is differentiable everywhere except at (Sharp turn in the graph)

    x 3.f x

    77. is differentiable on the interval (At the tangent line is vertical)x 1

    1, .f x 79. is differentiable everywhere except at (Discontinuity)

    x 0.f x

    81.

    The derivative from the left is

    The derivative from the right is

    The one-sided limits are not equal. Therefore, f is not differentiable at x 1.

    limx1

    f x f 1

    x 1 lim

    x1 x 1 0

    x 1 1.

    limx1

    f x f 1

    x 1 lim

    x1 x 1 0

    x 1 1.

    f x x 1 83.

    The derivative from the left is

    The derivative from the right is

    These one-sided limits are equal. Therefore, f is differentiable at x 1. f1 0

    limx1

    x 1 0.

    limx1

    f x f 1

    x 1 lim

    x1 x 12 0

    x 1

    limx1

    x 12 0.

    limx1

    f x f 1

    x 1 lim

    x1 x 13 0

    x 1

    f x x 13,x 12, x 1x > 1

    85. Note that f is continuous at

    The derivative from the left is

    The derivative from the right is

    The one-sided limits are equal. Therefore, f is differentiable at x 2. f2 4

    limx2

    f x f 2

    x 2 lim

    x2 4x 3 5

    x 2 lim

    x2 4 4.

    limx2

    f x f 2

    x 2 lim

    x2 x2 1 5

    x 2 lim

    x2 x 2 4.

    f x x2 1,4x 3, x 2x > 2x 2.

    71. is differentiable everywhere except at (Sharp turn in the graph.)

    x 3.f x

    87. (a) The distance from to the line is

    .

    (b)

    The function d is not differentiable at This corresponds to the linewhich passes through the point 3, 1.y x 4,

    m 1.

    5

    1

    4 4

    m3 11 4m2 1

    3m 3m2 1

    d Ax1 By1 CA2 B2

    x

    2

    3

    1 2 3 4

    1

    ymx y 4 03, 1

  • 60 Chapter 2 Differentiation

    Section 2.2 Basic Differentiation Rules and Rates of Change

    89. False. the slope is limx0

    f 2 x f 2

    x.

    93.

    Using the Squeeze Theorem, we have Thus, and f is continuous atUsing the alternative form of the derivative we have

    Since this limit does not exist (it oscillates between and 1), the function is not differentiable at

    Using the Squeeze Theorem again we have Thus, and f is continu-ous at Using the alternative form of the derivative again we have

    Therefore, g is differentiable at x 0, g0 0.

    limx0

    f x f 0

    x 0 lim

    x0 x2 sin1x 0

    x 0 lim

    x0 x sin

    1x

    0.

    x 0.limx0

    x2 sin1x 0 f 0x2 x2 sin1x x2, x 0.

    gx x2 sin1x,0, x 0x 0x 0.1

    limx0

    f x f 0

    x 0 lim

    x0 x sin1x 0

    x 0 lim

    x0 sin1x.

    x 0.limx0

    x sin1x 0 f 0x x sin1x x, x 0.

    f x x sin1x,0, x 0x 0

    91. False. If the derivative from the left of a point does not equal the derivative from the right of a point, then the derivative doesnot exist at that point. For example, if then the derivative from the left at is and the derivative from theright at is At the derivative does not exist.x 0,1.x 0

    1x 0f x x,

    1. (a) (b)

    y1 32

    y 32 x12

    y x32

    y1 12

    y 12 x12

    y x12 (c) (d)

    y1 3

    y 3x2

    y x3

    y1 2

    y 2x

    y x2

    3.

    y 0

    y 8 5.

    y 6x5

    y x6 7.

    y 7x8 7x8

    y 1x7

    x7 9.

    y 15

    x45 1

    5x45

    y 5x x15

    11.

    fx 1

    f x x 1 13.

    fx 4t 3

    f t 2t2 3t 6 15.

    gx 2x 12x2gx x2 4x3 17.

    st 3t2 2

    st t3 2t 4

    19.

    y

    2 cos sin

    y

    2 sin cos 21.

    y 2x 12

    sin x

    y x2 12

    cos x 23.

    y 1x2

    3 cos x

    y 1x

    3 sin x

  • 31.

    f1 6

    fx 6x3 6x3

    f x 3x2

    3x2, 1, 3 33.

    f0 0

    fx 215

    x2

    f x 12

    75

    x3, 0, 12 35.

    y0 4

    y 8x 4

    4x2 4x 1

    y 2x 12, 0, 1

    37.

    f0 41 1 3

    f 4 cos 1

    f 4 sin , 0, 0 39.

    fx 2x 6x3 2x 6x3

    f x x2 5 3x2 41.

    gt 2t 12t4 2t 12t4

    gt t2 4t3

    t2 4t3

    43.

    fx 1 8x3

    x3 8

    x3

    f x x3 3x2 4

    x2 x 3 4x2 45.

    y 3x2 1

    y xx2 1 x3 x

    47.

    fx 12

    x12 2x23 1

    2x

    2

    x23

    f x x 6 3x x12 6x13 49.

    h(s 45

    s45 23

    s13 4

    5s15

    23s13

    hs s45 s23

    51.

    fx 3x12 5 sin x 3x

    5 sin x

    f x 6x 5 cos x 6x12 5 cos x

    53. (a)

    At .

    Tangent line:

    (b) 3

    1

    2 2(1, 0)

    2x y 2 0

    y 0 2x 1

    y 413 61 21, 0:

    y 4x3 6x

    y x4 3x2 2

    Function Rewrite Derivative Simplify

    25. y 5x 3

    y 5x3y 52

    x2y 5

    2x2

    27. y 98x4

    y 98

    x4y 38

    x3y 3

    2x3

    29. y 1

    2x32y

    12

    x32y x12

    y xx

    55. (a)

    At

    Tangent line:

    (b)

    7

    1

    2

    5

    (1, 2)

    3x 2y 7 0

    y 32

    x 72

    y 2 32

    x 1

    f1 32

    1, 2,

    fx 32

    x74 3

    2x74

    f x 24x3 2x34

    Section 2.2 Basic Differentiation Rules and Rates of Change 61

  • 62 Chapter 2 Differentiation

    57.

    Horizontal tangents: , 2, 142, 140, 2,

    y 0 x 0, 2

    4xx 2x 2

    4xx2 4

    y 4x3 16x

    y x4 8x2 2 59.

    cannot equal zero.

    Therefore, there are no horizontal tangents.

    y 2x3 2x3

    y 1x2

    x2

    61.

    At .

    Horizontal tangent: ,

    y x ,

    cos x 1 x

    y 1 cos x 0

    0 x < 2 y x sin x, 63.

    Hence, and

    For and for x 3, k 10.x 3, k 2

    x2 2x 4x 4x 9 x2 9 x 3.k 2x 4

    2x k 4 Equate derivatives

    x2 kx 4x 9 Equate functions

    65.

    Hence, and

    34

    x2

    x

    34

    x 3 34

    x 34

    x 3 32

    x 3 x 2 k 3.k 34

    x2

    kx2

    34

    Equate derivatives

    kx

    34

    x 3 Equate functions

    67. (a) The slope appears to be steepest between A and B. (c)

    (b) The average rate of change between A and B is greater than the instantaneous rate of change at B.

    x

    f

    CA

    B

    ED

    y

    69. gx f x 6 gx fx 71.

    If f is linear then its derivative is a constant function.

    fx a

    f x ax b

    3

    3

    1

    21123

    2

    x

    f

    f

    y

  • Section 2.2 Basic Differentiation Rules and Rates of Change 63

    73. Let and be the points of tangency on and respectively. The derivatives of these functions are

    and

    Since and

    and

    Thus, the tangent line through and is

    and

    Thus, the tangent line through and is

    y 1 3 12 1x 1 y 2x 1.1, 12, 3

    y1 1x1 1x2 2 y2 3,

    y 0 4 02 1x 1 y 4x 4.2, 41, 0

    y1 4x1 2x2 1 y2 0,

    x2 1 or 2

    2x2 2x2 1 05

    4

    3

    1

    1

    2

    2

    2 3x

    ), 4)2

    , )) 01

    y 2x22 6x2 4 0

    2x22 12x2 14 4x2

    2 18x2 18

    x22 6x2 5 x22 6x2 9 2x2 62x2 3

    x22 6x2 5 x2 32

    x2 x2 3 2x2 6

    m y2 y1x2 x1

    x22 6x2 5 x12

    x2 x1 2x2 6.

    5

    4

    3

    1

    1

    2

    2 3x

    32) ,

    1)1,)

    )

    yy2 x22 6x2 5,y1 x1

    2

    x1 x2 3

    m 2x1 2x2 6

    y 2x 6 m 2x2 6.y 2x m 2x1

    y x2 6x 5,y x2x2, y2x1, y1

    75.

    The point is on the graph of f.

    Tangent line:

    0 x 4y 4

    4y 8 x 4

    y 2 0 2

    4 4x 4

    4, 2

    x 4, y 2

    4 x 2x

    4 x 2xx

    4 x 2xy

    1

    2x

    0 y4 x

    fx 12

    x12 1

    2x

    f x x, 4, 0 77.

    1.243.33

    0.77

    3.64

    f1 1

  • 79. (a) One possible secant is between and :

    (b)

    is an approximation of the tangent line

    (c) As you move further away from the accuracy of the approximation T gets worse.

    (d)

    2

    2 12T

    f

    20

    4, 8,

    Tx.Sx

    Tx 3x 4 8 3x 4

    fx 32

    x12 f4 32

    2 3

    y Sx 2.981x3.924

    y 8 2.981x 4

    y 8 8 7.7019

    4 3.9x 4

    2

    2 12

    (4, 8)

    204, 83.9, 7.7019

    0.5 0.1 0 0.1 0.5 1 2 3

    1 2.828 5.196 6.548 7.702 8 8.302 9.546 11.180 14.697 18.520

    2 5 6.5 7.7 8 8.3 9.5 11 14 171T4 x

    f 4 x

    123x

    81. False. Let and Thenbut f x gx.fx gx 2x,

    x2 4.gx f x x2 83. False. If then 2 is a constant.dydx 0.y 2,

    85. True. If gx 3f x, then gx 3fx.

    87.

    Instantaneous rate of change is the constant 2. Average rate of change:

    (These are the same because f is a line of slope 2.)

    f 2 f 12 1

    22 7 21 7

    1 2

    ft 2

    f t 2t 7, 1, 2 89.

    Instantaneous rate of change:

    Average rate of change:

    f 2 f 12 1

    12 1

    2 1

    12

    2, 12 f2 14

    1, 1 f1 1

    fx 1x2

    f x 1x, 1, 2

    64 Chapter 2 Differentiation

  • Section 2.2 Basic Differentiation Rules and Rates of Change 65

    91. (a)

    (b)

    (c)

    When .

    When .

    (d)

    (e)

    81362 295.242 ftsec

    v13624 321362

    4

    t2 136216

    t 1362

    4 9.226 sec

    16t2 1362 0

    v2 64 ftsect 2:

    v1 32 ftsect 1:

    vt st 32t

    s2 s12 1

    1298 1346 48 ftsec

    vt 32t

    st 16t2 1362 93.

    v10 9.810 120 22 msec

    v5 9.85 120 71 msec

    vt 9.8t 120

    4.9t2 120t

    st 4.9t2 v0t s0

    97.

    1 mimin2 min 2 mi

    v 60 mph 1mimin

    0 mimin2 min 0 mi

    v 0 mph 0 mimin

    23 mimin6 min 4 mi

    Time (in minutes)

    Dis

    tanc

    e (i

    n m

    iles)

    t2 4 6 8 10

    2

    4

    6

    8

    10

    (10, 6)

    (8, 4)

    (6, 4)

    (0, 0)

    sv 40 mph 23 mimin95.

    (The velocity has been converted to miles per hour)

    t

    Time (in minutes)2 4 6 8 10

    10

    20

    30

    40

    50

    60

    Vel

    ocity

    (in

    mph

    )

    v

    99. (a) Using a graphing utility, you obtain

    (c)

    (e)

    For .

    For .

    For .T100 1.315v 100,

    T80 1.081v 80,

    T40 0.612v 40,

    dTdv

    0.01172v 0.1431

    T R B 0.00586v2 0.1431v 0.44

    R 0.167v 0.02.

    (b) Using a graphing utility, you obtain

    (d)

    (f) For increasing speeds, the total stopping distance increases.

    1000

    0

    T

    B

    R

    60

    B 0.00586v2 0.0239v 0.46.

    101.

    When

    square meters per meter change in s.dAds

    8

    s 4 m,

    dAds

    2sA s2, 103.

    When dCdQ

    $1.93.Q 350,

    C351 C350 5083.095 5085 $1.91

    dCdQ

    1,008,000

    Q2 6.3

    C 1,008,000

    Q 6.3Q

    105. (a) is the rate of change of the amount of gasoline sold when the price is $1.47 per gallon.

    (b) is usually negative. As prices go up, sales go down.f1.47

    f1.47

  • 107.

    Since the parabola passes through and we have

    .

    Thus, From the tangent line we know that the derivative is 1 at the point

    Therefore, y 2x2 3x 1.

    b a 1 3

    a 2

    1 a 1

    1 2a1 a 1

    y 2ax a 1

    1, 0.y x 1,y ax2 a 1x 1.

    0 a12 b1 1 b a 11, 0:

    1 a02 b0 c c 10, 1:

    1, 0,0, 1

    y ax2 bx c

    109.

    Tangent lines through

    The points of tangency are and At the slope is At the slope is

    Tangent lines:

    9x y 0 9x 4y 27 0

    y 9x y 94 x 274

    y 0 9x 0 and y 818 94 x 32

    y32 94 .32 , 818 y0 9.0, 032 , 818 .0, 0 x 0 or x 32

    0 2x3 3x2 x22x 3

    x3 9x 9 3x3 3x2 9x 9

    y 9 3x2 9x 1

    1, 9:

    y 3x2 9

    y x3 9x

    111.

    f must be continuous at to be differentiable at

    For f to be differentiable at the left derivative must equal the right derivative.

    b 8a 4 43

    a 13

    12a 4

    3a22 22

    x 2,

    fx 3ax2,2x, x < 2x > 2

    limx2

    f x limx2

    x2 b 4 b

    limx2

    f x limx2

    ax3 8a

    x 2.x 2

    f x ax3,x2 b, x 2x > 2

    8a 4 b 8a 4 b

    66 Chapter 2 Differentiation

  • Section 2.3 The Product and Quotient Rules and Higher-Order Derivatives

    Section 2.3 The Product and Quotient Rules and Higher-Order Derivatives 67

    113. Let

    0 sin x1 sin x

    limx0

    cos xcos x 1

    x lim

    x0 sin xsin xx

    limx0

    cos x cos x sin x sin x cos x

    x

    fx limx0

    f x x f x

    x

    f x cos x.

    1.

    4x3 6x2 2x 2

    2x3 2x2 2x 2 2x3 4x2

    gx x2 12x 2 x2 2x2x

    gx x2 1x2 2x 3.

    7t2 4

    3t23

    2t 43 t2 43t23

    ht t132t t 2 413

    t 23

    ht 3tt2 4 t13t2 4

    5.

    3x2 cos x x 3 sin x

    fx x 3sin x cos x3x2

    f x x 3 cos x 7.

    fx x2 11 x2x

    x2 12 1 x2

    x2 12

    f x xx2 1

    9.

    1 8x 3

    3x23x 3 12

    x3 1 x9x2

    3x23x 3 12

    hx x 3 11

    3x23 x133x2

    x 3 12

    hx 3x

    x3 1

    x13

    x3 111.

    gx x2cos x sin x2x

    x22 x cos x 2 sin x

    x 3

    gx sin xx2

    13.

    f0 15

    10x4 12x3 3x2 18x 15

    fx x3 3x4x 3 2x2 3x 53x2 3

    f x x3 3x2x2 3x 5 15.

    f1 1 6 41 32 14

    x2 6x 4

    x 32

    fx x 32x x2 41

    x 32 2x2 6x x2 4

    x 32

    f x x2 4

    x 3

    17.

    28

    4 f4 22

    4 22 cos x x sin x fx xsin x cos x1

    f x x cos x

  • 68 Chapter 2 Differentiation

    Function Rewrite Derivative Simplify

    19. y x2 2x

    3y

    13

    x2 23

    x y 23

    x 23

    y 2x 2

    3

    21. y 7

    3x3y

    73

    x3 y 7x4 y 7x4

    23. y 4x32

    xy 4x, x > 0 y 2x12 y

    2x

    25.

    2

    x 12 , x 1

    2x2 4x 2

    x2 12 2x 12x2 12

    fx x2 12 2x 3 2x x22x

    x2 12

    f x 3 2x x2

    x2 1

    27.

    x2 6x 3

    x 32

    fx 1 x 34 4x1x 32 x2 6x 9 12

    x 32

    f x x1 4x 3 x 4x

    x 329.

    2x 5

    2xx

    2x 52x32

    fx x12 52

    x32 x32x 52

    f x 2x 5x

    2x12 5x12

    31.

    hs 6s5 12s2 6s2s3 2

    hs s3 22 s6 4s3 4

    33.

    2x2 2x 3

    x2 3x2 2x2 2x 3

    x2x 32

    fx x2 3x2 2x 12x 3

    x2 3x2 2x2 6x 4x2 8x 3

    x2 3x2

    f x 2

    1x

    x 3

    2x 1xx 3

    2x 1x2 3x

    35.

    15x 4 48x 3 33x 2 32x 20

    9x 4 36x3 41x 2 16x 20 6x 4 12x 3 8x 2 16x

    9x2 4x2 4x 5 3x 4 3x 3 4x 2 4x 3x 4 15x3 4x2 20x

    fx 9x2 4x 5x 1 3x3 4x1x 1 3x3 4xx 51

    f x 3x3 4xx 5x 1

    37.

    4xc2

    x2 c22

    fx x2 c22x x2 c22x

    x2 c22

    f x x2 c2

    x2 c239.

    tt cos t 2 sin t

    ft t2 cos t 2t sin t

    f x t2 sin t

  • Section 2.3 The Product and Quotient Rules and Higher-Order Derivatives 69

    41.

    ft t sin t cos tt2

    t sin t cos t

    t2

    f t cos tt

    43.

    fx 1 sec2 x tan2 x

    f x x tan x

    45.

    gt 14

    t34 8 sec t tan t 1

    4t34 8 sec t tan t

    gt 4t 8 sec t t14 8 sec t 47.

    32

    sec x tan x tan2 x 1

    y 32

    sec x tan x sec2 x 32

    sec xtan x sec x

    y 31 sin x

    2 cos x

    32

    sec x tan x

    51.

    xx sec2 x 2 tan x

    fx x2 sec2 x 2x tan x

    f x x2 tan x49.

    cos x cot2 x

    cos xcsc2 x 1

    cos xsin2 x

    cos x

    y csc x cot x cos x

    y csc x sin x

    53.

    4x cos x 2 sin x x2 sin x

    y 2x cos x 2 sin x x2sin x 2x cos x

    y 2x sin x x2 cos x

    57.

    (form of answer may vary)g 1 sin cos sin 12

    g

    1 sin

    55.

    (form of answer may vary)gx 2x2 8x 1x 22

    gx x 1x 22x 5

    59.

    y6 223

    1 22 43

    y 1 csc xcsc x cot x 1 csc xcsc x cot x

    1 csc x2 2 csc x cot x1 csc x2

    y 1 csc x1 csc x

    61.

    h sec tan 1 2

    1

    2

    sec tt tan t 1

    t2

    ht tsec t tan t sec t1t2

    ht sec tt

  • 70 Chapter 2 Differentiation

    53. (b)

    10

    10 10

    10

    (1, 3)

    63. (a)

    Tangent line: y 3 1x 1 y x 2

    f1 1 slope at 1, 3.

    4x3 6x2 6x 5

    fx x3 3x 11 x 23x2 3

    f x x3 3x 1x 2, 1, 3

    65. (a)

    .

    Tangent line: y 2 1x 2 y x 4

    f2 12 12 1 slope at 2, 2

    fx x 11 x1x 12 1

    x 12

    f x xx 1

    , 2, 2 51. (b)

    3

    3 6

    6

    (2, 2)

    55. (b)

    4

    4

    4( (, 1

    67. (a)

    .

    Tangent line:

    4x 2y 2 0

    y 1 2x

    2

    y 1 2x 4

    f4 2 slope at

    4, 1

    fx sec2 x

    f x tan x, 4, 1

    69.

    .

    Horizontal tangents are at and 2, 4.0, 0

    fx 0 when x 0 or x 2

    x2 2xx 12

    xx 2x 12

    fx x 12x x21

    x 12

    f x x2

    x 171.

    and differ by a constant.gf

    gx 5x 4x 2 3x

    x 2 2x 4x 2 f x 2

    gx x 25 5x 41x 22 6

    x 22

    fx x 23 3x1x 22 6

    x 22

    73.

    When

    When

    When

    When

    For general n, .fx x n1 x cos x n sin x

    n 4: fx x3x cos x 4 sin x.

    n 3: fx x2x cos x 3 sin x.

    n 2: fx xx cos x 2 sin x.

    n 1: fx x cos x sin x.

    x n1 x cos x n sin x

    fx x n cos x nx n1 sin x

    f x x n sin x 75.

    6t 1

    2t cm2sec

    3t12 12

    t12

    At 232t12 12

    t12

    Area At 2t 1t 2t32 t12

  • Section 2.3 The Product and Quotient Rules and Higher-Order Derivatives 71

    77.

    (a) When

    (b) When

    (c) When

    As the order size increases, the cost per itemdecreases.

    x 20: dCdx

    $3.80.

    x 15: dCdx

    $10.37.

    x 10: dCdx

    $38.13.

    dCdx

    100400x3 30

    x 302

    C 100200x2 x

    x 30, 1 x 79.

    P2 31.55 bacteria per hour

    2000 50 t2

    50 t2 2

    500200 4t2

    50 t 2 2

    Pt 50050 t24 4t2t

    50 t22

    Pt 5001 4t50 t2

    81. (a)

    (b)

    (c)

    ddx

    cot x ddx

    cos xsin x

    sin xsin x cos xcos xsin x2

    sin2 x cos2 xsin2 x

    1

    sin2x csc2 x

    cot x cos xsin x

    ddx

    csc x ddx

    1sin x

    sin x0 1cos xsin x2

    cos xsin x sin x

    1

    sin x

    cos xsin x

    csc x cot x

    csc x 1

    sin x

    ddx

    sec x ddx

    1cos x

    cos x0 1sin xcos x2

    sin xcos x cos x

    1

    cos x

    sin xcos x

    sec x tan x

    sec x 1

    cos x

    83.

    f x 3x12 3x

    fx 6x12 f x 4x32 85.

    f x 2x 13

    fx x 11 x1x 12 1

    x 12

    f x xx 1

    87.

    f x 3 sin x

    fx 3 cos x

    f x 3 sin x 89.

    f x 2x

    fx x2 91.

    f 4x 12

    2x12 1x

    f x 2x

    93.

    One such function is f x x 22.

    f 2 0

    x

    1

    1

    2

    2

    3

    3 4

    4

    y 95.

    0

    22 4

    f2 2g2 h2

    fx 2gx hx

    f x 2gx hx 97.

    10

    12 34

    12

    f2 h2g2 g2h2h22

    fx hxgx gxhxhx2

    f x gxhx

  • 72 Chapter 2 Differentiation

    99.

    It appears that is cubic; so would be quadratic and would be linear.f

    ff

    2

    2

    1

    112x

    f

    y

    f

    f

    101.

    The speed of the object is decreasing.

    a3 6 msec

    v3 27 msec

    at 2t

    vt 36 t2, 0 t 6

    103.

    1500

    2t 152

    at 2t 15100 100t22t 152

    vt 100t2t 15

    105.

    (a)

    (b)

    Note: (read n factorial.)n! nn 1 . . . 3 2 1

    n!

    n 1!1! gn1xhx gnxhx

    gxhnx n!1!n 1! gxh

    n1x n!2!n 2! gxh

    n2x . . .

    nn 1n 2 . . . 21

    n 1n 2 . . . 211 gn1xhx gnxhx

    nn 1n 2 . . . 21

    321n 3n 4 . . . 21 g xhn3x . . .

    nn 1n 2 . . . 21

    21n 2n 3 . . . 21 gxhn2xf nx gxhnx nn 1n 2

    . . . 211n 1n 2 . . . 21 gxh

    n1x

    gxh4x 4gxh x 6gxhx 4g xhx g4xhx

    g xhx g4xhx

    f 4x gxh4x gxh x 3gxh x 3gxhx 3gxhx 3g xhx

    gxh x 3gxhx 3gxhx g xhx

    f x gxh x gxh x 2gxhx 2gxhx hxg x hxg x

    gxhx 2gxhx hxgx

    f x gxhx gxhx hxgx hxgx

    fx gxhx hxgx

    f x gxhx

    (a)

    (b)

    (c) a20 1500220 152 0.5 ftsec2

    a10 1500210 152 1.2 ftsec2

    a5 150025 152 2.4 ftsec2

  • Section 2.4 The Chain Rule

    Section 2.4 The Chain Rule 73

    107.

    (a)

    14x

    32

    32 x

    3 12

    P2x 12

    f ax a2 f ax a f a

    P1x fax a f a 32 x

    3 12

    f x cos x f 3 cos

    3

    12

    fx sin x f3 sin

    3

    32

    f x cos x f 3 cos

    3

    12

    (b) 2

    2

    P2 P1

    2

    f

    (c) is a better approximation.P2 (d) The accuracy worsens as you move farther awayfrom x a 3.

    109. False. If then

    dydx

    f xgx gxfx.

    y f xgx, 111. True

    0

    f c0 gc0

    hc f cgc gcfc

    113. True

    115.

    does not exist since the left and right derivativesare not equal.f 0

    f x 2, 2, if x > 0if x < 0

    fx 2x, 2x, if x 0if x < 0 2x

    f x xx x2, x2, if x 0if x < 0

    y f uu gxy f gx

    1. y u4u 6x 5y 6x 54

    3. y uu x2 1y x2 1

    5. y u3u csc xy csc3 x

    7.

    y 32x 722 62x 72 y 2x 73 9.

    gx 124 9x39 1084 9x3 gx 34 9x4

    11.

    fx 23

    9 x2132x 4x39 x213

    f x 9 x223 13.

    ft 12

    1 t121 121 t

    f t 1 t12

  • 74 Chapter 2 Differentiation

    15.

    y 13

    9x2 42318x 6x9x2 423

    y 9x2 413 17.

    x

    44 x23

    y 2144 x2342xy 24 x214

    19.

    y 12 x21 1x 22

    y x 21 21.

    ft 2t 33 2t 33

    f t t 32

    23.

    dydx

    12

    x 232 12x 232

    y x 212 25.

    2xx 233x 2

    2xx 232x x 2

    fx x24x 231 x 242x

    f x x2x 24

    27.

    1 2x2

    1 x2

    1 x212x2 1 x2

    x21 x212 1 x212

    y x121 x2122x 1 x2121 y x1 x2 x1 x212 29.

    1

    x2 132

    x2 132x2 x2 1

    x2x2 132 x2 112

    y x12x2 1322x x2 1121

    y x

    x2 1 xx2 112

    31.

    2x 52 10x x2

    x2 23

    gx 2 x 5x2 2x2 2 x 52x

    x2 22

    gx x 5x2 22

    33.

    91 2v2

    1 v4

    fv 31 2v1 v 2

    1 v2 1 2v1 v2

    f v 1 2v1 v 3

    35.

    The zero of corresponds to the point on the graph ofy where the tangent line is horizontal.

    2

    1 5

    y

    y

    2

    y

    y 1 3x2 4x32

    2xx2 12

    y x 1x2 1

    37.

    The zeros of correspond to the points on the graph ofg where the tangent lines are horizontal.

    2

    5 3

    gg

    24

    g

    gt 3tt2 3t 2

    t2 2t 132

    gt 3t2

    t2 2t 1

  • Section 2.4 The Chain Rule 75

    39.

    has no zeros.

    2

    5 4

    y

    y

    4

    y

    y x 1x2xx 1

    y x 1x 41.

    The zero of corresponds to the point on the graph ofwhere the tangent line is horizontal.

    3

    3 6

    s

    s

    3

    stst

    st t1 t

    st 22 t1 t

    3

    43.

    The zeros of correspond to the points on the graph of y where the tangent lines are horizontal.y

    x sin x cos x 1

    x 2

    dydx

    x sin x cos x 1

    x 2

    3

    5 5

    y

    y

    3 y cos x 1

    x

    45. (a)

    1 cycle in 0, 2

    y0 1

    y cos x

    y sin x (b)

    2 cycles in

    The slope of at the origin is a.sin ax

    0, 2

    y0 2

    y 2 cos 2x

    y sin 2x

    47.

    dydx

    3 sin 3x

    y cos 3x 49.

    gx 12 sec2 4x

    gx 3 tan 4x

    51.

    y cos x22 2x 2 2x cos 2x2

    y sin x2 sin 2 x 2

    53.

    Alternate solution:

    hx 12

    cos 4x4 2 cos 4x

    hx 12

    sin 4x

    2 cos 4x.

    2 cos2 2x 2 sin2 2x

    hx sin 2x2 sin 2x cos 2x2 cos 2x

    hx sin 2x cos 2x 55.

    sin2 x 2 cos2 x

    sin3 x

    1 cos2 xsin3 x

    fx sin2 xsin x cos x2 sin x cos x

    sin4 x

    f x cot xsin x

    cos xsin2 x

  • 76 Chapter 2 Differentiation

    57.

    y 8 sec x sec x tan x 8 sec2 x tan x

    y 4 sec2 x 59.

    sin 2 cos 2 12 sin 4

    f 214sin 2cos 22 f 14 sin2 2

    14 sin 22

    61.

    6 sec2 t 1 tan t 1 6 sin t 1cos3 t 1

    ft 6 sec t 1 sec t 1 tan t 1

    f x 3 sec2 t 1 63.

    1

    2x 2x cos2x2

    dydx

    12

    x12 14

    cos4x28x

    x 14

    sin4x2

    y x 14

    sin2x 2

    65.

    sin x coscos x

    dydx

    coscos x sin x

    y sincos x 67.

    s2 34

    t 1

    t 2 2t 8

    st 12

    t 2 2t 8122t 2

    st t 2 2t 812, 2, 4

    69.

    f1 925

    fx 3x3 423x2 9x2

    x3 42

    f x 3x3 4

    3x3 41, 1, 35 71.

    f0 5

    ft t 13 3t 21t 12 5

    t 12

    f t 3t 2t 1

    , 0, 2

    73.

    y0 0 6 sec32x tan2x

    y 3 sec22x2 sec(2x tan2x

    y 37 sec32x, 0, 36

    75. (a)

    Tangent line:

    (b)

    3

    5 5

    7

    (3, 5)

    y 5 95

    x 3 9x 5y 2 0

    f3 95

    3x

    3x2 2

    fx 12

    3x2 2126x

    f x 3x2 2, 3, 5 77. (a)

    Tangent line:

    63. (b)

    2

    0 2

    2

    ( , 0)

    y 2x 2x y 2 0

    f 2

    fx 2 cos 2x

    f x sin 2x, , 0

  • Section 2.4 The Chain Rule 77

    79.

    125x2 1x2 1f x 60x 4 72x2 12

    12x5 24x3 12x

    12xx 4 2x2 1

    fx 6x2 122x

    f x 2x2 13 81.

    2cos x2 2x2 sin x2

    f x 2x2xsin x2 2 cos x2 fx 2x cos x 2

    f x sin x 2

    83.

    The zeros of correspond to the points where the graphof f has horizontal tangents.

    f

    3

    3

    2

    1

    22

    2

    3

    x

    f

    y

    f

    85.

    The zeros of correspond to the points where the graphof f has horizontal tangents.

    f

    3

    2

    213x

    f

    y

    f

    87.

    gx f3x3 gx 3 f3x

    gx f 3x

    89. (a)

    f5 32 63 24

    fx gxhx gxhx

    f x gxhx 73. (b)

    Need to find f5.g3

    f5 g32 2g3

    fx ghxhx

    f x ghx

    73. (c)

    f5 36 3232 129

    43

    fx hxgx gxhxhx2

    f x gxhx 73. (d)

    f5 3326 162

    f x 3gx 2gx

    f x gx3

    91. (a)

    When , f 1.461.v 30

    132,400

    331 v 2

    f 1132,400331 v21

    f 132,400331 v1

    93.

    The maximum angular displacement is (since

    When radians persecond.

    ddt 1.6 sin 24 1.4489t 3,

    d

    dt

    0.28 sin 8t 1.6 sin 8t

    1 cos 8t 1.

    0.2

    0.2 cos 8t 95.

    Since r is constant, we have and

    4.224 102 0.04224.

    dSdt

    1.76 10521.2 102105

    drdt 0

    dSdt

    C2R dRdt 2r drdt

    S CR2 r 2

    (b)

    When .f 1.016v 30,

    132,400331 v 2

    f 1132,400331 v21

    f 132,400331 v1

  • 78 Chapter 2 Differentiation

    97. (a)

    (b)

    The function is quadratic, not linear. The cost function levels off at the end of the day, perhaps due to fatigue.dCdt

    294.696t2 2317.44t 30.492

    dCdt

    604.9116t2 38.624t 0.5082

    601.6372t3 19.3120t2 0.5082t 0.6161 1350

    C 60x 1350

    x 1.6372t3 19.3120t2 0.5082t 0.6161

    99.

    (a)

    (b)

    (c)

    f 2k1x 1k1 2k1 cos x

    f 2kx 1k 2k sin x

    f x 2 f x 2 sin x 2sin x 0

    f 4 4 sin x

    f x 3 cos x

    f x 2 sin x

    fx cos x

    f x sin x 101. (a)

    Note that and

    Also, Thus,

    (b)

    Note that and

    Thus, s4 12

    54

    58

    .

    f4 54

    .

    f 4 52

    , g52 6 46 2

    12

    s4 gf 4f 4

    sx gf xf x

    r1 0g1 0.

    f4 5 06 2

    54

    g1 4

    r1 fg1g1

    rx fgxgx

    103.

    ag

    x x n2xx n

    2x n2xx n

    2x n

    2x2 nx

    dgdx

    12

    x2 nx122x n

    x2 nx

    g xx n 105.

    gx 2 2x 32x 3, x 32

    gx 2x 3

    107.

    hx x sin x xx cos x, x 0 hx xcos x

  • Section 2.5 Implicit Differentiation 79

    111. False. If then y 12 1 x121.y 1 x12, 113. True

    109. (a)

    (b)

    (c) is a better approximation than

    (d) The accuracy worsens as you move away from x c 1.

    P1P2

    P1

    30

    0

    2

    f

    P2

    P2x 12

    4x 12 f1x 1 f 1

    8x 12

    2x 1 1

    P1x f1x 1 f 1

    2x 1 1.

    f 1 8

    21 4

    f x 2

    sec2 x4

    tan x4

    4

    f1 4

    2 2

    f x 4

    sec2 x4

    f 1 1f x tan x4

    Section 2.5 Implicit Differentiation

    1.

    y xy

    2x 2yy 0

    x2 y2 36 3.

    y x12

    y12 yx

    12

    x12 12

    y12y 0

    x12 y12 9

    5.

    y y 3x2

    2y x

    2y xy y 3x23x2 xy y 2yy 0

    x3 xy y2 4 7.

    y 1 3x2y3

    3x3y2 1

    3x3y2 1y 1 3x2y33x3y2y 3x2y3 y 1 0

    x3y3 y x 0

    9.

    y1 6xy 3x2 2y2

    4xy 3x2

    4xy 3x2y 6xy 3x2 2y23x2 3x2y 6xy 4xyy 2y2 0

    x3 3x2 2xy2 12 11.

    y cos x

    4 sin 2y

    cos x 4sin 2yy 0

    sin x 2cos 2y 1

  • 80 Chapter 2 Differentiation

    13.

    y cos x tan y 1

    x sec2 y

    cos x xsec2 yy 1 tan y1

    sin x x1 tan y 15.

    y y cosxy

    1 x cosxy

    y x cosxyy y cosxy

    y xy y cosxy

    y sinxy

    17. (a)

    y 16 x2

    y2 16 x2x2 y2 16 (b)

    x

    y x= 16 2

    y x= 16 2

    2 626

    2

    6

    6

    y

    (c) Explicitly:

    x

    16 x2

    x

    16 x2

    xy

    dydx

    12

    16 x2122x

    (d) Implicitly:

    y xy

    2x 2yy 0

    19. (a)

    y 3416 x2

    y2 1

    16144 9x2 9

    1616 x2

    16y2 144 9x2 (b)

    x6 2 2 6

    6

    4

    2

    4

    6y x= 16 2

    y x= 16 2

    3

    3

    4

    4

    y

    (c) Explicitly:

    3x

    416 x2

    3x443y

    9x16y

    dydx

    38

    16 x2122x

    (d) Implicitly:

    y 9x16y

    18x 32yy 0

    21.

    At 4, 1: y 14

    y yx

    xy y

    xy y1 0

    xy 4 23.

    At is undefined.y2, 0,

    y 8x

    yx2 42

    2yy 16x

    x2 42

    2yy x2 42x x2 42x

    x2 42

    y2 x2 4x2 4

  • Section 2.5 Implicit Differentiation 81

    25.

    At .8, 1: y 12

    y x13

    y13 3yx

    23

    x13 23

    y13y 0

    x23 y23 5 27.

    At .0, 0: y 0

    x2

    x2 1

    tan2x y

    tan2x y 1 sin2x y

    y 1 sec2x y

    sec2x y

    1 y sec2x y 1

    tanx y x

    29.

    At

    Or, you could just solve for y: y 8

    x2 4

    2, 1: y 3264

    12

    16x

    x2 42

    2x8x2 4

    x2 4

    y 2xyx2 4

    x2 4y y2x 0

    x2 4y 8 31.

    At .1, 1: y 0

    y 2xy x3 xy2

    x2y y3 x2

    4yx2y y3 x2 42xy x3 xy2

    4x2yy 4y3y 4x2y 8xy 4x3 4xy2

    4x3 4x2yy 4xy2 4y3y 4x2y 8xy

    2x2 y22x 2yy 4x2y y8x

    x2 y22 4x2y

    33.

    y 1

    1 x2

    sec2 y 1 tan2 y 1 x2

    y 1

    sec2 y cos2 y,

    2 < y <

    2

    ysec2 y 1

    tan y x 35.

    y y1 xy

    y2

    y xxyy2

    y2 x2

    y3

    36y3

    y xy

    2x 2yy 0

    x2 y2 36

    37.

    y y2 x2

    y3

    16y3

    y2 y3y x2

    1 yy xy2

    0

    1 yy y2 0

    x yy 0

    y xy

    2x 2yy 0

    x2 y2 16 39.

    3y4x2

    3x4y

    2x3 3y2x 6y

    4x2

    y 2x3y 3y2

    4x2

    y 3x2

    2y

    3x2

    2y

    xyxy

    3y2x

    x3

    y2

    3y2x

    2yy 3x2

    y2 x3

  • 82 Chapter 2 Differentiation82 Chapter 2 Differentiation

    41.

    At

    x 3y 12 0

    y 13

    x 4

    Tangent line: y 1 13

    x 9

    9, 1, y 13

    y yx

    12

    x12 12

    y12y 0

    14

    1

    1

    9

    (9, 1)

    x y 4

    43.

    At

    Tangent line:

    Normal line: .

    At

    Tangent line:

    Normal line: .y 4 43

    x 3 4x 3y 0

    y 4 34

    x 3 3x 4y 25 0

    6

    9 9

    ( 3, 4)

    63, 4:

    y 3 34

    x 4 3x 4y 0

    y 3 43

    x 4 4x 3y 25 0

    6

    9 9

    (4, 3)

    64, 3:

    y xy

    x2 y2 25

    45.

    Let be a point on the circle. If then the tangent line is horizontal, the normal line is vertical and, hence, passesthrough the origin. If then the equation of the normal line is

    which passes through the origin.

    y y0x0

    x

    y y0 y0x0

    x x0

    x0 0,x0 0,x0, y0

    yx

    slope of normal line

    y xy

    slope of tangent line

    2x 2yy 0

    x2 y2 r 2

  • Section 2.5 Implicit Differentiation 83

    47.

    Horizontal tangents occur when

    Horizontal tangents: .

    Vertical tangents occur when

    Vertical tangents: .0, 5, 8, 5

    25xx 8 0 x 0, 8

    25x2 400 200x 800 400 0

    y 5:

    4, 0, 4, 10 yy 10 0 y 0, 10

    2516 16y2 2004 160y 400 0

    x 4:

    y 200 50x160 32y

    50x 32yy 200 160y 0

    x2 4 8 610

    2

    10

    6

    4(0, 5)

    ( 4, 10)

    ( 4, 0)

    ( 8, 5)

    y25x2 16y2 200x 160y 400 0

    49. Find the points of intersection by letting in the equation

    and

    The curves intersect at

    Ellipse: Parabola:

    At the slopes are:

    .

    At the slopes are:

    .

    Tangents are perpendicular.

    y 1y 1

    1, 2,

    y 1y 1

    1, 2,

    y 2y

    y 2xy

    2yy 44x 2yy 06 6

    4

    y x= 42

    2 + = 6x y22

    4

    (1, 2)

    (1, 2)

    1, 2.

    x 3x 1 02x2 4x 6

    2x2 y2 6.y2 4x

    51. and

    Point of intersection:

    At the slopes are:

    .

    Tangents are perpendicular.

    y 1y 1

    0, 0,

    y sec y

    1 y cos yy 1

    x sin y:y x:

    0, 06 6

    4 x y+ = 0

    x y= sin

    (0, 0)

    4x sin yy x

    53.

    At any point of intersection the product of theslopes is The curves are orthogonal.yxxy 1.

    x, y

    y yx y x

    y

    xy y 0 2x 2yy 0

    2

    3 3

    C = 4

    K = 2

    2

    2

    3 3C = 1

    K = 1

    2 xy C x2 y2 K

  • 84 Chapter 2 Differentiation84 Chapter 2 Differentiation

    55.

    (a)

    y 12x3

    4y

    3x3

    y

    4yy 12x3

    4yy 12x3 0

    2y2 3x4 0

    (b)

    ydydt

    3x3dxdt

    4ydydt

    12x3dxdt

    0

    57.

    (a)

    y 3 cos x

    sin y

    sin yy 3 cos x 0

    cos y 3 sin x 1

    (b)

    sinydydt

    3 cosxdxdt

    sinydydt

    3 cos xdxdt

    0

    59. A function is in explicit form if is written as a functionof For example, An implicit equationis not in the form For example, x2 y2 5.y f x.

    y x3.x: y f x.y

    61. (a)

    y 4x2 14x4 y2 4x2

    14

    x4

    4y2 16x2 x41010

    10

    10 x4 44x2 y2

    (b)

    Note that

    Hence, there are four values of x:

    To find the slope, .

    For and the line is

    For and the line is

    For and the line is

    For and the line is

    CONTINUED

    y4 137 7x 1 7 3 137 7x 87 23.

    x 1 7, y 13 7 7,1010

    10

    y4y2y3

    y1

    10y3 137 7x 1 7 3 137 7x 23 87 .

    x 1 7, y 13 7 7,y2

    137 7x 1 7 3 137 7x 23 87.

    x 1 7, y 13 7 7,y1

    137 7x 1 7 3 137 7x 87 23.

    x 1 7, y 13 7 7,

    2yy 8x x3 y x8 x2

    23

    17, 17, 17, 1 7

    x2 8 28 8 27 1 72.

    x2 16 256 144

    2 8 28

    x4 16x2 36 0

    36 16x2 x4

    y 3 9 4x 2 14

    x4

  • Section 2.6 Related Rates

    Section 2.6 Related Rates 85

    1.

    (a) When and

    (b) When and

    dxdt

    225 2 20.

    dydt 2,x 25

    dydt

    1

    243 3

    4.

    dxdt 3,x 4

    dxdt

    2xdydt

    dydt

    12xdxdt

    y x 3.

    (a) When and

    (b) When and

    dxdt

    14

    6 32

    .

    dydt 6,x 1, y 4,

    dydt

    12

    810 5

    8.

    dxdt 10,x 8, y 12,

    dxdt

    xydydt

    dydt

    yxdxdt

    xdydt

    ydxdt

    0

    xy 4

    61. CONTINUED

    (c) Equating and

    If then and the lines intersect at 877 , 5.y 5x 877 , x

    877

    167 14x

    7x 7 7 7x 7 77 7x 7 7 7x 7 77

    7 7x 1 7 7 7x 1 7

    13

    7 7x 1 7 3 13

    7 7x 1 7 3

    y4,y3

    63. Let where p and q are nonzero integers and First consider the case where The derivative ofis given by

    where Observe that

    As the denominator approaches That is,

    Now consider From the Chain Rule,

    1q

    xp1q1pxp1 pq

    xpqpp1 pq

    xpq1nxn1 n pq.fx 1q

    xp1q1 ddx

    xp

    f x xpq xp1q.

    ddx

    x1q 1qx11q

    1q

    x1q1.

    qx11q.t x,

    1

    t11q t12qx1q . . . t1qx12q x11q .

    t1q x1q

    t1q x1qt11q t12qx1q . . . t1qx12q x11q

    f t f xt x

    t1q x1q

    t x

    t1q x1q

    t1qq x1qq

    t x x.

    ddx

    x1q limx0

    f x x f x

    x lim

    tx

    f t f xt x

    f x x1qp 1.q > 0.f x xn xpq,

  • 86 Chapter 2 Differentiation

    5.

    (a) When

    (b) When

    (c) When

    dydt

    212 4 cmsec.

    x 1,

    dydt

    202 0 cmsec.

    x 0,

    dydt

    212 4 cmsec.

    x 1,

    dydt

    2x dxdt

    dxdt

    2

    y x2 1 7.

    (a) When

    (b) When

    (c) When

    dydt

    122 2 cmsec.

    x 0,

    dydt

    222 4 cmsec.

    x 4,

    dydt

    222 8 cmsec.

    x 3,

    dydt

    sec2 x dxdt

    dxdt

    2

    y tan x

    9. (a)

    (b)dy

    dt positive

    dx

    dt negative

    dx

    dt negative

    dy

    dt positive 11. Yes, changes at a constant rate:

    No, the rate is a multiple of dxdt

    .dydt

    dydt

    a dxdt

    .y

    13.

    dDdt

    12

    x4 3x2 1124x3 6xdxdt

    2x3 3x

    x4 3x2 1

    dxdt

    4x3 6x

    x4 3x2 1

    dxdt

    2

    D x2 y2 x2 x2 12 x4 3x2 1

    15.

    (a) When

    (b) When

    dAdt

    2 243 144 cm2min.

    r 24,

    dAdt

    2 63 36 cm2min.

    r 6,

    dAdt

    2r drdt

    drdt

    3

    A r 2 17. (a)

    (b) where

    When

    When

    (c) If is constant, is proportional to cos.dAdtddt

    3,

    dAdt

    s2

    2 12

    12

    s2

    8

    6,

    dAdt

    s2

    2 32 12 3s2

    8

    ddt

    12

    radmin.dAdt

    s2

    2 cos

    ddt

    b

    s s

    h

    s2

    2 2 sin

    2 cos

    2 s2

    2 sin

    A 12

    bh 12 2s sin

    2s cos

    2

    cos

    2

    hs h s cos

    2

    sin

    2

    12bs

    b 2s sin 2

  • Section 2.6 Related Rates 87

    19.

    (a) When

    (b) When r 60, drdt

    1

    4 60 2 800 1

    18 cmmin.

    r 30, drdt

    1

    4 302 800 2

    9 cmmin.

    drdt

    1

    4r2 dVdt

    14r 2

    800

    dVdt

    4r 2 drdt

    V 43

    r 3, dVdt

    800 21.

    (a) When

    (b) When

    dsdt

    12103 360 cm2sec.

    x 10,

    dsdt

    1213 36 cm2sec.

    x 1,

    dsdt

    12x dxdt

    dxdt

    3

    s 6x2

    23.

    When h 15, dhdt

    410

    9 152 8

    405 ftmin.

    dVdt

    94

    h2 dhdt

    dhdt

    4dVdt

    9h2

    dVdt

    10

    34

    h3h

    r

    V 13

    r 2h 13

    94h2 h since 2r 3h

    25.

    (a) Total volume of pool

    Volume of 1m. of water

    (see similar triangle diagram)

    % pool filled

    (b) Since for you have

    dVdt

    36h dhdt

    14

    dhdt

    1

    144h

    11441

    1144

    mmin.

    V 12

    bh6 3bh 36hh 18h2

    0 h 2, b 6h,

    18144 100% 12.5%

    2

    h = 1

    12

    b = 6

    12

    166 18 m3

    12

    2126 1612 144 m3

    1

    1

    3

    6

    12

  • 88 Chapter 2 Differentiation

    27.

    (a) When (b)

    When

    When From part (a) we have

    and

    Thus,

    (c)

    Using and , we have ddt

    24252 124 2

    7242

    712

    112

    radsec.cos 2425

    x 7, y 24, dxdt

    2, dydt

    7

    12

    ddt

    cos2 1y dxdt

    xy2

    dydt

    sec2 ddt

    1y

    dxdt

    xy2

    dydt 25y

    x

    tan xy

    52724

    21.96 ft2sec.

    dAdt

    127

    712 242

    dydt

    712

    .

    x 7, y 24, dxdt

    2,x 24, y 7, dydt

    224

    7

    487

    ftsec.

    dAdt

    12x

    dydt

    y dxdtx 15, y 400 20,

    dydt

    215

    20

    32

    ftsec.

    A 12

    xyx 7, y 576 24, dydt

    27

    24

    712

    ftsec.

    dydt

    xy

    dxdt

    2x

    y since

    dxdt

    2.

    2x dxdt

    2y dydt

    025

    y

    x

    x2 y2 252

    29. When and

    Also,

    .

    Thus,

    (horizontal)

    (vertical).dydt

    xy

    dxdt

    63

    6

    315

    15

    msec

    dxdtx x

    12xy s

    dsdt

    dxdt

    sy

    12x

    dsdt

    126

    12630.2 1

    53

    315

    msec

    x dxdt

    y 12xy dxdt s

    dsdt

    2x dxdt

    2y dydt

    0 dydt

    xy

    dxdt

    x2 y2 122

    x dxdt

    y 12dydt

    s dsdt

    2x dxdt

    212 y1dydt

    2s dsdt

    x2 12 y2 s2

    108 36 12.

    s x2 12 y2

    12

    ( , )x y

    s

    x

    12 y

    y

    y 6, x 122 62 63,

  • Section 2.6 Related Rates 89

    31. (a)

    When and and

    (b) t 250750

    13

    hr 20 min

    dsdt

    150450 200600

    250 750 mph.

    y 200, s 250x 150

    dsdt

    xdxdt ydydt

    s

    2s dsdt

    2x dxdt

    2y dydt

    dydt

    600 s

    100 200

    200

    100

    x

    y

    Distance (in miles)

    Dista

    nce (in

    mile

    s) dxdt

    450

    s2 x2 y2

    33.

    When

    dsdt

    30

    301028 28

    10 8.85 ftsec.

    s 902 302 3010

    x 30,

    2s dsdt

    2x dxdt

    dsdt

    xs

    dxdt

    dxdt

    28

    x 30

    s

    x

    90 ft

    30 ft

    Home

    1st

    2nd

    3rd

    s2 902 x2

    35. (a)

    (b)d y x

    dt

    dydt

    dxdt

    253

    5 103

    ftsec

    dydt

    53

    dxdt

    53

    5 253

    ftsec

    dxdt

    5

    y 53

    x15

    6

    yx

    156

    y

    y x 15y 15x 6y

  • 90 Chapter 2 Differentiation

    37.

    (a) Period:

    (b) When

    Lowest point:

    (c) When and

    .

    Thus,

    .

    Speed 5120 5120 msec

    15 112

    32

    24

    15

    5

    120

    dydt

    14

    154

    12 cos6

    2x dxdt

    2y dydt

    0 dydt

    xy

    dxdt

    x2 y2 1

    dxdt

    12

    6 cos t6

    12 cos

    t6

    t 1x 14

    , y 1 142

    15

    4

    0, 32 x

    12

    , y 12 122

    32

    m.

    26

    12 seconds

    xt 12

    sin t6

    , x 2 y 2 139. Since the evaporation rate is proportional to the surface

    area, However, since we have

    Therefore,

    k4r 2 4r 2 drdt

    k drdt

    .

    dVdt

    4r 2 drdt

    .

    V 43r 3,dVdt k4r2.

    41.

    1.3p dVdt

    V dpdt

    V 0.31.3p dVdt V dpdt 0

    1.3 pV 0.3 dVdt

    V1.3 dpdt

    0

    pV1.3 k

    43.

    When and Thus,

    ddt

    1

    30 123

    120

    radsec.

    cos 22.y 30, 4

    ddt

    1

    30 cos2

    dydt

    sec2 ddt

    1

    30 dydt

    dydt

    3 msec.

    30

    y

    x

    y tan y

    30

  • Section 2.6 Related Rates 91

    45.

    (a) When

    (b) When

    (c) When 75, ddt

    120 sin2 75 111.96 radhr 1.87 radmin.

    60, ddt

    12034 90 radhr 32

    radmin.

    30, ddt

    1204

    30 radhr 12

    radmin.

    52

    L215

    dxdt

    sin2 15600 120 sin2

    ddt

    cos2 5x2dxdt

    x2

    L25x2

    dxdt

    sec2 ddt

    5x2

    dxdt

    dxdt

    600 mihrx

    y = 5L

    tan yx, y 5

    47.

    (a)

    (b)

    (c) is greatest when

    is least when

    (d) For

    For 60, dxdt

    600 sin60 600 32

    3003 cmsec

    30, dxdt

    600 sin30 600 12

    300 cmsec.

    or n 180. ndxdtor 90 n 180 2 nsin 1 dxdt 600 sin

    2000

    0

    2000

    4

    dxdt

    30 sin ddt

    30 sin 20 600 sin

    sin ddt

    1

    30 dxdt

    cos x

    30x

    30

    x

    P

    ddt

    10 revsec2 radrev 20 radsec

    49.

    ddt

    1

    25 cos2 ,

    4

    4

    2 50 sec2 ddt

    dxdt

    50 sec2 ddt

    tan x

    50 x 50 tan

  • Review Exercises for Chapter 2

    51. acceleration of the top of the ladder

    When and (see Exercise 27). Since is constant,

    d 2ydt 2

    1

    2470 22 7

    122 1244

    49144

    124

    625144 0.1808 ftsec2

    d 2xdt 2

    0.dxdt

    dxdt

    2x 7, y 24, dydt

    7

    12,

    d 2ydt 2

    1yxd 2xdt 2

    dxdt2

    dydt2

    Second derivative: x d 2xdt 2

    dxdt

    dxdt

    yd 2ydt 2

    dydt

    dydt

    0

    x dxdt

    y dydt

    0

    First derivative: 2x dxdt

    2y dydt

    0

    d 2ydt 2

    x2 y2 25;

    53. (a) Using a graphing utility, you obtain

    (b)

    (c) then and

    Thus,dmdt

    1.76215.5 29.101.2 2.15 million.

    dsdt

    1.2.s 15.5If t s 1995,

    dmdt

    dmds

    dsdt

    1.762s 29.10dsdt

    ms 0.881s2 29.10s 206.2

    1.

    limx0

    2xx x2 2x

    x lim

    x0 2x x 2 2x 2

    limx0

    x2 2xx x2 2x 2x 3 x2 2x 3

    x

    limx0

    x x2 2x x 3 x2 2x 3

    x

    fx limx0

    f x x f x

    x

    f x x2 2x 3

    3.

    limx0

    1

    x x x

    1

    2x

    limx0

    x x x

    xx x x

    limx0

    x x x

    xx x xx x x

    limx0

    x x 1 x 1

    x

    fx limx0

    f x x f x

    x

    f x x 1 5. f is differentiable for all x 1.

    92 Chapter 2 Differentiation

  • Review Exercises for Chapter 2 93

    7.

    (a) Continuous at

    (b) Not differentiable at because of the sharp turnin the graph.

    x1

    23

    2

    3

    45

    6

    7

    1 2 3 4 5 6

    y

    x 2

    x 2.

    f x 4 x 2 9. Using the limit definition, you obtain

    At x 1, g1 43

    16

    32

    gx 43

    x 16

    .

    11. (a) Using the limit defintion,

    At The tangent line is

    (b) 2

    4

    40

    (1, 2)

    y 3x 1

    y 2 3x 1

    x 1, f1 3.

    fx 3x2. 13.

    limx2

    x2 x 2 8

    limx2

    x 2x2 x 2

    x 2

    limx2

    x3 x2 4

    x 2

    limx2

    x2x 1 4

    x 2

    g2 limx2

    gx g2

    x 2

    15.

    x

    1

    1

    2

    1

    ff

    y 17.

    y 0

    y 25 19.

    fx 8x7f x x8

    21.

    ht 12t 3ht 3t 4

    25.

    hx 3x12 x23 3x

    13x2

    hx 6x 3 3x 6x12 3x13

    23.

    fx 3x2 6x 3xx 2

    f x x3 3x2

    27.

    gx 43

    t3 43t3

    gt 23

    t2

    29.

    f 2 3 cos

    f 2 3 sin 31.

    f 3 sin cos 4

    f 3 cos sin 4

  • 94 Chapter 2 Differentiation

    33.

    (a) When vibrations/sec/lb.

    (b) When vibrations/sec/lb.F9 3313T 9,

    F4 50T 4,

    Ft 100T

    F 200T 35.

    The building is approximately 1354 feet high (or 415 m).

    s0 1354.24

    s9.2 169.22 s0 0

    st 16t2 s0

    37. (a)

    Total horizontal distance: 50

    (b)

    implies x 50.0 x1 x50

    0 x 0.02x2

    15

    10

    5

    x604020

    y (c) Ball reaches maximum height when

    (d)

    (e) y25 0

    y50 1

    y30 0.2

    y25 0

    y10 0.6

    y0 1

    y 1 0.04x

    y x 0.02x2

    x 25.

    39.

    (a)

    (c) for

    x 32 232 1 1212 14t 32 .vt 0

    at vt 2

    vt xt 2t 3

    xt t2 3t 2 t 2t 1(b) for

    (d) for

    The speed is 1 when the position is 0.

    v2 22 3 1

    v1 21 3 1

    t 1, 2.xt 0

    t < 32 .vt < 0

    41.

    26x3 9x2 16x 7

    fx 3x2 72x 2 x2 2x 36x

    f x 3x2 7x2 2x 3 43.

    hx 12x

    sin x x cos x

    hx x sin x x12 sin x

    45.

    2x3 1

    x3

    fx 2 2x3 21 1x3f x 2x x2 47.

    x2 1x2 12

    fx x2 12x 1 x2 x 12x

    x2 12

    f x x2 x 1x2 1

    49.

    fx 4 3x226x 6x4 3x22

    f x 4 3x21

    53.

    y 3x2 sec x tan x 6x sec x

    y 3x2 sec x

    51.

    y cos x 2x x2sin x

    cos2 x

    2x cos x x2 sin xcos2 x

    y x2

    cos x

    55.

    y x sec2 x tan x

    y x tan x

  • Review Exercises for Chapter 2 95

    57.

    y x sin x cos x cos x x sin x

    y x cos x sin x

    61.

    f 6 sec sec tan 6 sec2 tan

    f 3 sec2

    f 3 tan

    59.

    g t 6t

    gt 3t2 3

    gt t3 3t 2

    63.

    0

    y y 2 sin x 3 cos x 2 sin x 3 cos x

    y 2 sin x 3 cos x

    y 2 cos x 3 sin x

    y 2 sin x 3 cos x

    65.

    3x2

    21 x3

    fx 12

    1 x3123x2

    f x 1 x312 67.

    2x 3x2 6x 1

    x2 13

    hx 2 x 3x2 1x2 11 x 32x

    x2 12

    hx x 3x2 12

    69.

    ss2 1328s3 3s 25

    ss2 1323ss2 1 5s3 5

    fs s2 1523s2 s3 552s2 1322sf s s2 152s3 5 71.

    y 9 sin3x 1

    y 3 cos3x 1

    73.

    csc 2x cot 2x

    y 12

    csc 2x cot 2x2

    y 12

    csc 2x 75.

    12

    1 cos 2x sin2 x

    y 12

    14

    cos 2x2

    y x2

    sin 2x

    4

    77.

    cos3 xsin x

    cos xsin x1 sin2 x

    y sin12 x cos x sin52 x cos x

    y 23

    sin32 x 27

    sin72x 79.

    y x 2 cos x sin x

    x 22

    y sin xx 2

    81.

    The zeros of correspond to the points on the graph of fwhere the tangent line is horizontal.

    0.1

    0.1 1.3

    f

    f

    0.1

    f

    ft tt 147t 2

    f t t2t 15 83.

    does not equal zero for any value of x in the domain.The graph of g has no horizontal tangent lines.

    2

    2 7

    g

    g

    4

    g

    gx x 2x 132

    gx 2xx 112

  • 96 Chapter 2 Differentiation

    85.

    does not equal zero for any x in the domain. Thegraph of f has no horizontal tangent lines.

    1

    2 7

    f

    5

    f

    f

    ft 56t 116

    f t t 112t 113 t 156 87.

    does not equal zero for any x in the domain. The graphhas no horizontal tangent lines.

    4

    20 2

    y

    y

    5

    y

    y sec21 x

    21 x

    y tan1 x

    89.

    y 4 4 sin 2x

    y 4x 2 cos 2x

    y 2x2 sin 2x 91.

    2 csc2 x cot x

    f 2 csc xcsc x cot x

    fx csc2 x

    f x cot x 93.

    f t 2t 21 t4

    ft t 11 t3

    f t t1 t2

    95.

    g 18 sec2 3 tan 3 sin 1

    g 3 sec2 3 cos 1

    g tan 3 sin 1

    97.

    (a) When

    .

    (c) When

    .T 14005 2

    25 30 102 3.240 deghr

    t 5,

    T 14001 21 4 102 18.667 deghr

    t 1,

    T 1400t 2

    t2 4t 102

    T 700t2 4t 101

    99.

    y 2x 3y

    3x y2

    3x y2y 2x 3y

    2x 3xy 3y 3y2y 0

    x2 3xy y3 10

    (b) When

    (d) When

    T 140010 2

    100 40 102 0.747 deghr.

    t 10,

    T 14003 29 12 102 7.284 deghr.

    t 3,

    101.

    y 2xy y

    2x

    2y

    2xy x

    2yx yy

    2xy xx

    2xy x

    2yy

    2xy y

    2x

    x x2yy y y

    2x

    y12x12 x12y x12

    y12y y12 0 yx xy 16

  • Review Exercises for Chapter 2 97

    105.

    At

    Tangent line:

    Normal line:

    2x y 0

    y 4 2x 2

    x 2y 10 0

    y 4 12

    x 2

    y 12

    2, 4:

    y xy

    2x 2yy 0

    6

    9 9

    6

    (2, 4)

    x2 y2 20103.

    y y sin x sin ycos x x cos y

    yx cos y cos x y sin x sin y

    x cos yy sin y y sin x y cos x

    x sin y y cos x

    107.

    (a) When units/sec.

    (b) When units/sec.

    (c) When units/sec.dxdt

    8x 4,

    dxdt

    4x 1,

    dxdt

    22x 12

    ,

    dydt

    1

    2x dxdt

    dxdt

    2xdydt

    4x

    dydt

    2 unitssec

    y x

    109.

    Width of water at depth h:

    When dhdt

    2

    25 mmin.h 1,

    dhdt

    2dVdt54 h

    2

    h

    s2

    212

    12

    dVdt

    52

    4 hdhdt

    V 522

    4 h2 h

    54

    8 hh

    w 2 2s 2 214h 4 h

    2

    dVdt

    1

    s 14

    h

    sh

    122

    111.

    38.34 msec

    dxdt

    3 dsdt

    39.8 54.9

    xt 3st

    tan 30 1

    3

    stxt

    t 5

    4.9

    4.9t2 25

    s 35 60 4.9t2

    st 9.8t

    x t( )

    s t( )

    30

    st 60 4.9t2