Problemas de Funciones de Varias Variables y Sus Derivadas

download Problemas de Funciones de Varias Variables y Sus Derivadas

of 5

Transcript of Problemas de Funciones de Varias Variables y Sus Derivadas

  • 7/30/2019 Problemas de Funciones de Varias Variables y Sus Derivadas

    1/5

    Chapter 11. Multivariable Functions and their

    Derivatives

    11.2 Limits and Continuity in Higher Dimensions

    56. f(x, y) = cos(x3y3

    x2+y2)

    Sol. lim(x,y)(0,0) cos(x3y3x2+y2

    ) = limr0 cos(r3 cos3 r3 sin3 r2 cos2 +r2 sin2

    ) = limr0 cos[r(cos3 sin3 )

    1] =

    cos0 = 1

    66. Define f(0, 0) in a way that extends f(x, y) = xy x2y2

    x2+y2to be continuouos

    at the origin.

    Sol. |xy(x2 y2)| = |xy||x2 y2| |x||y||x2 + y2| =

    x2y2|x2 + y2|

    x2 + y2

    x2 + y2|x2 + y2| = (x2 + y2)2 |xy

    (x2

    y2

    )x2+y2 | (x2

    +Y2

    )

    2

    x2+y2 =

    x2+y2 (x2+y2) xy(x2y2)x2+y2

    (x2+y2) lim(x,y)(0,0) xy x2y2

    x2+y2= 0

    by Sandwich Theorem, since lim(x,y)(0,0) (x2 + y2) = 0; thus, definef(0, 0) = 0

    69. Does knowing that | sin(1/x)| 1 tell you any thing about

    lim(x,y)(0,0)

    y sin1

    x?

    Give reasons for your answer.

    Sol. The limit is 0 since

    |sin( 1

    x)

    | 1

    1

    sin 1

    x

    1

    y

    y sin 1

    x

    y

    for y 0, and y y sin 1x y for y 0. Thus as (x, y)rightarrow(0, 0),both y and y approach 0 y sin 1

    x 0, by Sandwich Theorem

    11.3 Partial Derivarives

    45. Find all second-order partial derivatives of the function in Exercise 45,46.r(x, y) = ln(x + y)

    Sol. rx

    = 1x+y ,

    ry

    = 1x+y ,

    2rx2

    = 1(x+y)2 ,2ry2

    = 1(x+y)2 ,2rxy

    = 1(x+y)2 ,2ryx

    = 1(x+y)2

    46. s(x, y) = tan1(y/x)

    Sol. sx = [ 11+(yx)2 ] x ( yx) = ( yx2 )[ 11+(y

    x)2 ] = yx2+y2 , sy = [ 11+(y

    x)2 ] y ( yx ) =

    ( 1x

    )[ 11+(y

    x)2

    ] = xx2+y2 ,

    2sx2

    = y(2x)(x2+y2)2

    = 2xy(x2+y2)2

    , 2s

    y2= x(2y)

    (x2+y2)2= 2xy

    (x2+y2)2,

    2sxy

    = 2s

    yx= (x

    2+y2)(1)+y(2y)(x2+y2)2

    = y2x2

    (x2+y2)2

    1

  • 7/30/2019 Problemas de Funciones de Varias Variables y Sus Derivadas

    2/5

    57. Find the value of z/x at the point (1, 1, 1) if the equation

    xy + z3x 2yz = 0

    define z as a function of the two independent variables x and y and thepartial derivative exists.

    Sol. y + (3z2 zx

    )x + z2 2y zx

    = 0 (3xz2 2y) zx

    = y z3 at (1, 1, 1)we have (3 2) z

    x= 1 1 or z

    x= 2

    62. Find x/u and y/u if the equations u = x2 y2 and v = x2 y definex and y as functions of the independent variables u and v, and the partialderivatives exist. Then let s = x2 + y2 and find s/u.

    Sol. Differentiating each equation implicitly gives 1 = (2x)xu(2y)yu and 0 =

    (2x)xuyu or (2x)xu (2y)yu = 1(2x)xu yu = 0

    xu =1 2y0 1

    2x 2y2x 1

    = 12x+4xy =

    12x4xy and yu =

    2x 12x 02x+4xy =

    2x2x+4xy =

    2x4x4xy =

    112y ; next s = x

    2 + y2

    su

    = 2xxu

    + 2y yu

    = 2x( 12x4xy ) + 2y(

    112y ) =

    112y +

    2y12y =

    1+2y12y

    11.4 The Chain Rule

    29. Use these equations z/x = Fx/Fz and z/y = Fy/Fz to findthe values of z/x and z/y at the point in Exercise 29.z3 xy + yz + y3 2 = 0, (1, 1, 1)

    Sol. Let F(x,y,z) = z3xy +yz +y32 = 0 Fx(x,y,z) = y, Fy(x,y,z) =x + z + 3y2, Fz(x,y,z) = 3z2 + y = FxFy =

    y3x2+y

    = y3z2+y

    zx

    (1, 1, 1) = 14 ;zy

    = FyFz

    = x+z+3y23z2+y = xz3y2

    3z2+y zy (1, 1, 1) = 3442. Suppose that we substitute polar coordinates x = r cos and y = r sin in

    a differentiable function w = f(x, y).

    (a) Show thatw/r = fx cos + fy sin

    and1

    r w/ = fx sin + fy cos .(b) Solve the equaitons in part (a) to express fx and fy in terms ofw/r

    and w/.

    (c) Show that

    (fx)2 + (fy)

    2 = (w

    r)2 +

    1

    r2(

    w

    )2.

    2

  • 7/30/2019 Problemas de Funciones de Varias Variables y Sus Derivadas

    3/5

    Sol.

    (a) wr = fx xr + fy yr = fx cos + fy sin and w = fx(r sin ) +fy(r cos ) 1r w = fx sin + fy cos

    (b) wr

    sin = fx sin cos + fy sin2 and ( cos

    r)w

    = fx sin cos +fy cos

    2 fy = (sin )wr +( cosr )w ; then wr = fx cos +[(sin )wr +( cos

    r)w

    ](sin ) fx cos = wr (sin2 )wr ( sin cosr )w =(1 sin2 )w

    r ( sin cos

    r)w

    fx = (cos )wr ( sin r )w(c) (fx)2 = (cos2 )(

    wr

    )2(2 sin cosr

    )(wr

    w

    )+( sin2

    r2)(w

    )2 and (fy)2 =

    (sin2 )(wr

    )2 + ( 2sin cosr

    )(wr

    w

    ) + ( cos2

    r2)(w

    )2 (fx)2 + (fy)2 =

    (wr

    )2 + 1r2

    (w

    )2

    47. Let T = f(x, y) be the temperature at the point (x, y) on the circle

    x = cos t, y = sin t, 0 t 2 and suppose thatT/x = 8x 4y, T /y = 8y 4x.

    (a) Locate the maximum and minimum temparatures on the ellipse byexamining dT/dt and d2T/dt2.

    (b) Suppose that T = xy 2. Find the maximum and minimum valuesof T on the ellipse.

    Sol.

    (a) Tx

    = 8x 4y and Ty

    = 8y 4x dTdt

    = Tx

    dxdt

    + Ty

    dydt

    = (8x 4y)(

    sin t) + (8y

    4x)(cos t) = (8cos t

    4sin t)(

    sin t) + (8 sin t

    4cos t)(cos t) = 4sin2 t 4cos2 t d2

    Tdt2 = 16sin t cos t; dTdt = 0

    4sin2 t4cos2 t = 0 sin2 t = cos2 t sin t = cos t or sin t = cos t t = 4 , 54 , 34 , 74 on the interval 0 t 2;d2Tdt2

    |t=4

    = 16sin 4

    cos 4

    > 0 T has a minimum at (x, y) =(22

    ,22

    );d2Tdt2

    |t= 34

    = 16sin 34

    cos 34

    < 0 T has a maximum at (x, y) =(

    22 ,

    22 );

    d2Tdt2

    |t= 54

    = 16sin 54

    cos 54

    > 0 T has a minimum at (x, y) =(

    22

    , 22

    );d2Tdt2

    |t= 74

    = 16sin 74 cos74 < 0 T has a maximum at (x, y) =

    (22 , 22 );

    (b) T = 4x2 4xy + 4y2 Tx

    = 8x 4y, and Ty

    = 8y 4x so the ex-treme values occur at the four points found in part(a): T(

    22

    ,22

    ) =

    T(22

    , 22

    ) = 4( 12

    )4(12

    )+4(12

    ) = 6, the maximum and T(22

    ,22

    ) =

    T(22

    , 22

    ) = 4( 12

    ) 4(12

    ) + 4( 12

    ) = 2, the minimum

    3

  • 7/30/2019 Problemas de Funciones de Varias Variables y Sus Derivadas

    4/5

    49. Find the derivatives of the function

    F(x) =

    x20

    t4 + x3dt

    Sol. G(u, x) =ua

    g(t, x)dt where u = f(x) dGdx

    = Gu

    dudx

    + Gx

    dxdx

    =

    g(u, x)g(x)+ua

    gx(t, x)dt; thus F(x) =x20

    t4 + x3dt F(x) =

    (x2)4 + x3(2x)+x2

    0x

    t4 + x3dt = 2x

    x8 + x3 +

    x20

    3x2

    2t4+x3

    dt

    11.5 Directional Derivatives, Gradient Vectors, and Tan-

    gent Planes

    23. By about how much will

    f(x,y,z) = ln

    x2 + y2 + z2

    change if the point P(x,y,z) moves from P0(3, 4, 12) a distance ofds = 0.1units in the direction of 3i + 6j 2k?

    Sol. f = ( xx2+y2+z2

    )i + ( yx2+y2+z2

    )j + ( zx2+y2+z2

    )k f(3, 4, 12) = 3169

    i +4169

    j + 12169

    k; u = v|v| =3i+6j2k32+62+(2)2 =

    37

    i + 67j 2

    7k f u = 9

    1183and

    df = (f u)ds = ( 91183

    )(0.1) 0.000830. Find equations for the

    (a) Tangent plane and(b) Normal line at the point P0 on the given surface.

    Sol.

    (a) f = (2x + 2y)i + (2x 2y)j + 2zk f(1, 1, 3) = 4j + 6k Tangent plane: 4(y + 1) + 6(z 3) = 0 2y + 3z = 7;

    (b) Normal line: x = 1, y = 1 + 4t, z = 3 + 6t47. Find parametric equation for the line tangent to the curve of intersection

    of the surfaces at the given point.Surfaces: x3 + 3x2y2 + y3 + 4xy z2 = 0, x2 + y2 + z2 = 11Point: (1, 1, 3)

    Sol. f = (3x2 + 6xy2 + 4y)i + (6x2y + 3y2 + 4x)j 2zk f(1, 1, 3) = 13i +13j 6k; g = 2xi + 2yj + 2zk g(1, 1, 3) = 2i + 2j + 6k; v = fg v =

    i j k13 13 62 2 6

    = 90i 90j Tangent line: x = 2 22t,

    y =

    2 + 2

    2t, z = 4

    4

  • 7/30/2019 Problemas de Funciones de Varias Variables y Sus Derivadas

    5/5

    57. Find the derivative of f(x,y,z) = x2 + y2 + z2 in the direction of the unit

    tangent vector of the helix

    r(t) = (cos t)i + (sin t)j + tk

    at the points where t = /4, 0, and /4. The function f gives thesquare of the distance from a point P(x,y,z) on the helix to the origin.The derivatives calculated here give the rates at which the square of thedistance is changing with respect to t as P moves through the points wheret = /4, 0, and /4.

    Sol. f = 2xi + 2yj + 2zk = (2cos t)i + (2 sin t)j + 2tk and v = ( sin t)i +(cos t)j + k u = v|v| = ( sin t)i+(cos t)j+k(sin t)2+(cos t)2+12 = (

    sin t2

    )i + ( cos t2

    )j + ( 12

    )k

    (Duf)P0 =

    f

    u = (2cos t)( sin t

    2) + (2 sin t)(cos t

    2) + (2t)( 1

    2) = 2t

    2

    (Duf)(4 ) = 22 , (Duf)(0) = 0 and (Duf)(4 ) = 22

    5