Probing Materials’ Behavior using Fast Electrons · 2013. 12. 16. · (x 2 0 2 e o Zf h sin 2 m e...

25
Probing Materials’ Behavior using Fast Electrons Yimei Zhu Dept. of Condensed Matter Physics Brookhaven National Laboratory Long Island, NY 11973 Workshop on Ultrafast Dec 9-12, 2013, Key West, FL

Transcript of Probing Materials’ Behavior using Fast Electrons · 2013. 12. 16. · (x 2 0 2 e o Zf h sin 2 m e...

Page 1: Probing Materials’ Behavior using Fast Electrons · 2013. 12. 16. · (x 2 0 2 e o Zf h sin 2 m e q l total electrons valence electrons Bi 2 Sr 2 CaCu 2 O 8 384 e /cell -rays interact

Probing Materials’ Behavior using Fast Electrons

Yimei Zhu

Dept. of Condensed Matter Physics Brookhaven National Laboratory

Long Island, NY 11973

Workshop on Ultrafast Dec 9-12, 2013, Key West, FL

Page 2: Probing Materials’ Behavior using Fast Electrons · 2013. 12. 16. · (x 2 0 2 e o Zf h sin 2 m e q l total electrons valence electrons Bi 2 Sr 2 CaCu 2 O 8 384 e /cell -rays interact

Ps Ps

1 nm

180o ferroelectric domain wall in multiferroic ErMnO3

Mn Er O

MG. Han /BNL

Page 3: Probing Materials’ Behavior using Fast Electrons · 2013. 12. 16. · (x 2 0 2 e o Zf h sin 2 m e q l total electrons valence electrons Bi 2 Sr 2 CaCu 2 O 8 384 e /cell -rays interact

Single BN layer

Single Si atom on graphene

red: B; yellow: C; green: N; blue: O

EELS mapping: La0.7Sr0.3MnO3/SrTiO3

Muller et al Science 319, 1073 (2008) Krivanek et al, Nature (2010)

Imaging atoms

Page 4: Probing Materials’ Behavior using Fast Electrons · 2013. 12. 16. · (x 2 0 2 e o Zf h sin 2 m e q l total electrons valence electrons Bi 2 Sr 2 CaCu 2 O 8 384 e /cell -rays interact

Single BN layer

Single Si atom on graphene

red: B; yellow: C; green: N; blue: O

EELS mapping: La0.7Sr0.3MnO3/SrTiO3

Muller et al Science 319, 1073 (2008) Krivanek et al, Nature (2010)

Imaging atoms

Page 5: Probing Materials’ Behavior using Fast Electrons · 2013. 12. 16. · (x 2 0 2 e o Zf h sin 2 m e q l total electrons valence electrons Bi 2 Sr 2 CaCu 2 O 8 384 e /cell -rays interact

CaO on MgO

X25000020 nm20 nm

X25000020 nm20 nm

SE

ADF

SrTiO3

5

Atomic surface imaging with secondary electrons

Page 6: Probing Materials’ Behavior using Fast Electrons · 2013. 12. 16. · (x 2 0 2 e o Zf h sin 2 m e q l total electrons valence electrons Bi 2 Sr 2 CaCu 2 O 8 384 e /cell -rays interact

STEM/ADF

SE

Imaging surface U atoms

e _

Zhu, et al, Nature Materials, 8, 808 (2009)

Atomic surface imaging with secondary electrons

SE ADF

Au

SrTiO3 (111)

SE

ADF

SrO terminated

TiO2 terminated

SrTiO3 (001)

clean sample is a prerequisition

Page 7: Probing Materials’ Behavior using Fast Electrons · 2013. 12. 16. · (x 2 0 2 e o Zf h sin 2 m e q l total electrons valence electrons Bi 2 Sr 2 CaCu 2 O 8 384 e /cell -rays interact

0 1 2 3 4 5 6

form

fac

tor f x

Cu

core

3d 4s

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6

form

fac

tor f x

Cu

core

3d 4s

0.0

0.2

0.4

0.6

0.8

1.0

scattering angle s ( Å - 1 ) scattering angle s ( Å - 1 )

0.00 0.05 0.10 0.15 0.20

10

20

30

40

50

Sinq / l (Å-1)

Cu

Cu+ Cu2+

Electron

X-ray

Ele

ctro

n s

catt

erin

g

Am

pli

tud

e f

e (Å

)

10

20

30

40

50

X-r

ay s

catt

erin

g

Am

pli

tud

e f

x (e

lect

rons)

Electrons interact with electrostatic

potential

( x

2

02

2oe fZ

sinh

em2f

q

l

total

electrons valence

electrons

Bi2Sr2CaCu2O8

384 e /cell

X-rays interact with

electron cloud

Mott formula

Uniqueness of electron scattering

Sensitive to valence electrons at small scattering angles

difficulties for x-ray

suitability criterion 5~1.02

n

V

P. Coppens, (1997), “X-ray charge densities & chemical bonding”

Page 8: Probing Materials’ Behavior using Fast Electrons · 2013. 12. 16. · (x 2 0 2 e o Zf h sin 2 m e q l total electrons valence electrons Bi 2 Sr 2 CaCu 2 O 8 384 e /cell -rays interact

Ba2Sr2CaCu2O8

Page 9: Probing Materials’ Behavior using Fast Electrons · 2013. 12. 16. · (x 2 0 2 e o Zf h sin 2 m e q l total electrons valence electrons Bi 2 Sr 2 CaCu 2 O 8 384 e /cell -rays interact

coherent source

n,m

22

gg grHr

i2expF

l

g R = n

004 005 003 002

Accuracy : 0.01 Å

)rr(gi2expf~Feg

eg

Ba2Sr2CaCu2O8

Page 10: Probing Materials’ Behavior using Fast Electrons · 2013. 12. 16. · (x 2 0 2 e o Zf h sin 2 m e q l total electrons valence electrons Bi 2 Sr 2 CaCu 2 O 8 384 e /cell -rays interact

)rgi2(expF1

)r(g

xg

Valence electron distribution

charge density :

structure factor

rdzrAe

dzzrVCr E

),(),()(

Aharonov-Bohm phase shift of the wave function

Electrostatic and magnetic potential distribution

electrostatic potential V magnetic potential B :

02 V

Imaging electrons, spins, electromagnetic potentials

Page 11: Probing Materials’ Behavior using Fast Electrons · 2013. 12. 16. · (x 2 0 2 e o Zf h sin 2 m e q l total electrons valence electrons Bi 2 Sr 2 CaCu 2 O 8 384 e /cell -rays interact

Mapping valence electron distribution with quantitative diffraction

CaCu3Ti4O12: PRL 99 037602 (2007)

Experiment : ED + X-ray, 90K DFT, w/o disorder

MgB2: PRL 88 247002 (2002) PRB 69 064501 (2004)

Mg Mg

Mg Mg

B B

-1.59

0.26

0.0

-1.59

0.26

0.0

e/Å3

(a)

(b) -400 -200 000 200 400

inte

nsity

200 -200 400 -400 000

(c)

exp

cal

F - FIAM FFT

)rgi2(expF1

)r(g

xg

Page 12: Probing Materials’ Behavior using Fast Electrons · 2013. 12. 16. · (x 2 0 2 e o Zf h sin 2 m e q l total electrons valence electrons Bi 2 Sr 2 CaCu 2 O 8 384 e /cell -rays interact

Jang et al Science, 311, 886 (2011)

2-D Electron Gas: SrTiO3/RO/SrTiO3 (R=La, Pr, Nd, Sm, Y)

In collaboration with Prof. C.B Eom

Probing bonding states and charge transfer with EELS

Page 13: Probing Materials’ Behavior using Fast Electrons · 2013. 12. 16. · (x 2 0 2 e o Zf h sin 2 m e q l total electrons valence electrons Bi 2 Sr 2 CaCu 2 O 8 384 e /cell -rays interact

2-D Electron Gas: SrTiO3/RO/SrTiO3 (R=La, Pr, Nd, Sm, Y)

Probing bonding states and charge transfer with EELS

Ondrej Krivanek

individual Si substitutional atoms on SiC

Page 14: Probing Materials’ Behavior using Fast Electrons · 2013. 12. 16. · (x 2 0 2 e o Zf h sin 2 m e q l total electrons valence electrons Bi 2 Sr 2 CaCu 2 O 8 384 e /cell -rays interact

BaTiO3 Curie temperature 130C

10nm

10nm

300C

W tip

Vacuum Carbon

BaTiO3

Polking, Han, et al, Nat. Mat., 11 700 (2012)

- RT ferroelectric order can be down to 10-15nm, below 10nm superparaelectric.

Direct imaging of ferroelectric order using holography

Page 15: Probing Materials’ Behavior using Fast Electrons · 2013. 12. 16. · (x 2 0 2 e o Zf h sin 2 m e q l total electrons valence electrons Bi 2 Sr 2 CaCu 2 O 8 384 e /cell -rays interact

Direct observation of the Lithiation process in Li-ion-batteries

Li anode

FeF2/C cathode

electrolyte

Li

Wang et al Nature Comm. 3, 1201 (2012)

55 60 65 70

50 mV

300 mV

600 mV

740 mV

Li4Ti

5O

12

Inte

nsity (

arb

. units)

Energy (eV)

FeF2 + 2Li+ + 2e- 2LiF + Fe

Page 16: Probing Materials’ Behavior using Fast Electrons · 2013. 12. 16. · (x 2 0 2 e o Zf h sin 2 m e q l total electrons valence electrons Bi 2 Sr 2 CaCu 2 O 8 384 e /cell -rays interact

For BCC Fe NP, the max phase shift is ~50urad, 10-3 of 2/100 Can we image individual spins ?

Page 17: Probing Materials’ Behavior using Fast Electrons · 2013. 12. 16. · (x 2 0 2 e o Zf h sin 2 m e q l total electrons valence electrons Bi 2 Sr 2 CaCu 2 O 8 384 e /cell -rays interact

www.Jeolusa.com

Zernike phase plate: convert phase contrast to

amplitude contrast

Phase plate for magnetic imaging

May 13, 2013

Pollard, Malac, Belleggia, Kawasaki, Zhu APL 102, 192401 (2013)

Hole free Phase Plate

Page 18: Probing Materials’ Behavior using Fast Electrons · 2013. 12. 16. · (x 2 0 2 e o Zf h sin 2 m e q l total electrons valence electrons Bi 2 Sr 2 CaCu 2 O 8 384 e /cell -rays interact

2000 nm2000 nm

image

t B map

+ 2 0 +14

Lorentz contrast

500 nm

phase image

in-situ

magnetization vector map

structure V.Volkov and Y. Zhu

PRL. 91 043904(2003)

vortex & antivortex

Imaging magnetic moments

Page 19: Probing Materials’ Behavior using Fast Electrons · 2013. 12. 16. · (x 2 0 2 e o Zf h sin 2 m e q l total electrons valence electrons Bi 2 Sr 2 CaCu 2 O 8 384 e /cell -rays interact

2um Py square

Pollard et al Nature Comm. 3 1028 (2012)

Direct observations of vortex precession orbit

Vortex dynamics in nanomagnet

Imaging vortex-precession orbit via resonance excitation

175 MHz 170 MHz 165 MHz 160 MHz

J0=7.7x1010A/m2

190 MHz 185 MHz 195 MHz 180 MHz

Page 20: Probing Materials’ Behavior using Fast Electrons · 2013. 12. 16. · (x 2 0 2 e o Zf h sin 2 m e q l total electrons valence electrons Bi 2 Sr 2 CaCu 2 O 8 384 e /cell -rays interact

Pollard et al Nature Comm. 3 1028 (2012)

Direct observations of vortex precession orbit

190 MHz 185 MHz 195 MHz 180 MHz

200 MHz, CW 180 MHz, CCW 200 MHz, CCW

c

No excitation, CCW

7 8 9 10

70

80

90

100

110

120

130 CW

CCW

CCW (Theory)

CW (Theory)

Ra

diu

s (

nm

)

Current Density (1010

A/m2)

160 180 200 220

0102030405060708090

CCW

CW

CCW (Theory)

CW (Theory)

Tilt

(deg

rees)

Frequency (MHz)

Imaging vortex-precession orbit via resonance excitation

Page 21: Probing Materials’ Behavior using Fast Electrons · 2013. 12. 16. · (x 2 0 2 e o Zf h sin 2 m e q l total electrons valence electrons Bi 2 Sr 2 CaCu 2 O 8 384 e /cell -rays interact

Challenges:

Coupling electronic-lattice system

→charge, orbital and spin order

One solution: Decouple the subsystems in the time domain and then observe the dynamics of subsystems separately.

Ultrafast ED: better time resolution & simultaneously observe diverse degrees of freedom.

Strong interplay between charge, spins, orbital and lattice → complex phase diagrams, exotic material properties

e(~100 fs)

lattice(ps-ns)

spin(ps)

~1 ps

Our goals: understanding strongly correlated materials

Page 22: Probing Materials’ Behavior using Fast Electrons · 2013. 12. 16. · (x 2 0 2 e o Zf h sin 2 m e q l total electrons valence electrons Bi 2 Sr 2 CaCu 2 O 8 384 e /cell -rays interact

XJ Wang’s talk Monday morning

- 2-4 MeV electron energy - 100 fs pulse, Hz repetition rate - 106 electrons in a single pulse - energy spread <0.01% - 30urad divergence - beam size on detector 200um - Synchronization of RF & laser <50fs - cryogenic capability - longitudinal coherence length 1-2nm - transverse coherence length ~10nm

Currently optimized at 2.8MeV with 120fs resolution

Ultrafast electron diffraction at BNL

Page 23: Probing Materials’ Behavior using Fast Electrons · 2013. 12. 16. · (x 2 0 2 e o Zf h sin 2 m e q l total electrons valence electrons Bi 2 Sr 2 CaCu 2 O 8 384 e /cell -rays interact

pump fluence: 1.4 mJ/cm2

0.2ps

1.5ps

SP intensity reduced to ~ 0, without obvious recovery in the following 50 ps

CDW Peak

(3X)

0.4ps quasi-steady state

2H-TaSe2

Coherent phonon: 2.5THz (~ 400fs) P. Zhu et al, APL 2013

Page 24: Probing Materials’ Behavior using Fast Electrons · 2013. 12. 16. · (x 2 0 2 e o Zf h sin 2 m e q l total electrons valence electrons Bi 2 Sr 2 CaCu 2 O 8 384 e /cell -rays interact

3 2

4 1

2’ 3’

4’

1’

Split of transmitted and diffraction spots due to magnetic domains in permalloy

diffraction

Ultrafast electron diffraction for spin dynamics ?

CO

FM

CO

Bx (x,y)DF T=11K

CO

FM

(a) T=160K (b) (c) (d)

CO

FM

CO

Bx (x,y)DF T=11K

CO

FM

(a) T=160K (b) (c) (d)

2 1

3 4 A

B

1

4

3

2

(000) beam splitting

CO

FM

CO

Bx (x,y)DF T=11K

CO

FM

(a) T=160K (b) (c) (d)

CO

FM

CO

Bx (x,y)DF T=11K

CO

FM

(a) T=160K (b) (c) (d)

orbital-spin ordering La1/4Pr3/8Ca3/8MnO3

Page 25: Probing Materials’ Behavior using Fast Electrons · 2013. 12. 16. · (x 2 0 2 e o Zf h sin 2 m e q l total electrons valence electrons Bi 2 Sr 2 CaCu 2 O 8 384 e /cell -rays interact

Atomic imaging: D. Su, H. Xin, H. Inada, J. Wall, L. Wu

Electron diffraction: L. Wu, C. Ma, J. Tafto

Holography: MG Han

Magnetic imaging: S. Pollard, V. Volkov, M. Malac

Ultrafast: XJ. Wang, P. Zhu, J. Hill, J. Cao

Supported by US DOE/BES

Acknowledgement

Thank you !