Primer Design 2013.pdf

download Primer Design 2013.pdf

of 58

Transcript of Primer Design 2013.pdf

  • 7/27/2019 Primer Design 2013.pdf

    1/58

    Primer DesignDESIGN OF OLIGONUCLEOTIDE PRIMERS FORBASIC PCRJ E R E M Y G . V I C E N C I O

    D E PA R T M E N T O F B I O L O G Y

    C O L L E G E O F A R T S A N D S C I E N C E S

    U N I V E R S I T Y O F T H E P H I L I P P I N E S M A N I L A

  • 7/27/2019 Primer Design 2013.pdf

    2/58

    Before you start designing primers

    find and use the right resources!o What are the primers for?

    o General purposeamplification?

    o SNPs detection/validation

    o Methylation study?

    o Real-time PCR?

    o Microarray probes?

    o Degenerate PCR?

    o Multiplex PCR?

    o What do you have to begin

    with?

    o Single DNA/protein

    sequence?

    o Multiple DNA/protein

    sequence files?

    o

    GenBank ID/Gene ID/GeneSymbol/rsSNP ID?

  • 7/27/2019 Primer Design 2013.pdf

    3/58

    After you have designed your primers

    Consider a second opinion!o Several different software are available for designing

    primers

    o Various software may differ significantly in:

    o Concrete and overall approaches

    o Designing criteria and default settings

    o Comprehensiveness

    o Usability, accessibility, and speed

    o Consider a second opinion when

    o You are new to such a design task/application

    o You dont have a lot of confidence in the initial result

  • 7/27/2019 Primer Design 2013.pdf

    4/58

    Question 1What is the chief goal of primer design?

    A. Specificity

    B. Sensitivity

  • 7/27/2019 Primer Design 2013.pdf

    5/58

    Selecting PCR Primerso Analysis of the target gene for potential primingsites

    o free of homopolymeric tracts

    o have no obvious tendency to form secondarystructures

    o not self-complementary

    o have no significant homology with other sequences

    on either strand of the target genome

    o Creation of lists of possible forward and reverseprimers

  • 7/27/2019 Primer Design 2013.pdf

    6/58

    Selecting PCR Primerso Selection of well-matched pairs of forward and

    reverse primerso similar in G+C content

    o must generate an amplified product of the

    appropriate size and base composition

    o Refining the length and/or placement of theoligonucleotides

  • 7/27/2019 Primer Design 2013.pdf

    7/58

    Properties of OligonucleotidesThat Influence the Efficiency ofAmplification

  • 7/27/2019 Primer Design 2013.pdf

    8/58

    Base Compositiono G+C content should be somewhere between 40%

    and 60%, with an even distribution of all fourbases along the length of the primero avoid polypurine tracts or polypyrimidine tracts

    o avoid long runs of a single base (max 4 bases)

    o avoid dinucleotide repeats (max 4 repeats)

  • 7/27/2019 Primer Design 2013.pdf

    9/58

    Lengtho Primer length determines the specificity and significantly

    affects its annealing to the template

    o Too short low specificity, resulting in non-specific

    amplificationo Too long decrease the template-binding efficiency at normal

    annealing temperature due to the higher probability offorming secondary structures such as hairpins

    o

    Optimal primer lengtho 18-25 nucleotides long for general applications

    o 30-35 nucleotides for multiplex PCR

    o Members of a primer pair should not differ in length by >3 bp.

  • 7/27/2019 Primer Design 2013.pdf

    10/58

    Lengtho Optimal amplicon size

    o 300-1000 bp for general applications, avoid >3 kb

    o

    50-150 bp for real-time PCR, avoid >400 bp

  • 7/27/2019 Primer Design 2013.pdf

    11/58

    Repeated and Self-

    Complementary Sequenceso No inverted repeat sequences or self-

    complementary sequences >3 bp in length

    should be present.

    o If primers can anneal to themselves, or anneal to

    each other than anneal to the template, the PCR

    efficiency will be decreased dramatically. They

    shall be avoided.

  • 7/27/2019 Primer Design 2013.pdf

    12/58

    Secondary structures

    Hairpino Formed via intra-molecular

    interactions

    o

    Negatively affect primer-template binding, lead to pooror no amplification

    o Acceptable G (free energyrequired to break the structure):>-2 kcal/mol for 3end hairpin;>-3 kcal/mol for internal hairpin

  • 7/27/2019 Primer Design 2013.pdf

    13/58

    Secondary structures

    Self-dimer (homodimer)o Formed by inter-

    molecular interactions

    between the two same

    primers

    o Acceptable G: >-5kcal/mol for 3 end self-

    dimer; >-6 kcal/mol forinternal self-dimer

  • 7/27/2019 Primer Design 2013.pdf

    14/58

    Complementarity between

    members of a primer pairo The 3 terminal sequences of one primer should

    not be able to bind to any other site on the other

    primer.

    o Formation of primer dimers can be reduced by

    o careful primer design

    o use of hot start or touchdown PCR

    o use of specially formulated DNA polymerases

  • 7/27/2019 Primer Design 2013.pdf

    15/58

    Secondary structures

    Cross-dimer (heterodimer)o Formed by inter-

    molecular interactionsbetween the sense and

    antisense primers

    o Acceptable G: >-5kcal/mol for 3 end

    cross-dimer; >-6kcal/mol for internalcross-dimer

  • 7/27/2019 Primer Design 2013.pdf

    16/58

    What is a primer dimer?o An unwanted extension

    product

    o Results from primers

    annealing tothemselves, or eachother, at 3 ends

    o Extended primers areno longer available toprime target for PCR

    atcggactatcga

    gctatacttatggcca

    atcggactatcgatatgaataccgga

    tagcctgatagctatacttatggcca

  • 7/27/2019 Primer Design 2013.pdf

    17/58

    Melting Temperatures (T

    m)o Tm is the temperature at which 50% of the DNA

    duplex dissociates to become single-stranded

    o Determined by primer length, base composition, and

    concentration

    o Also affected by the salt concentration of the PCR reaction

    mix

  • 7/27/2019 Primer Design 2013.pdf

    18/58

    Melting Temperatures (T

    m)o Wallace rule: Tm (in C) = 2(A+T)+4(G+C)

    o can be used to calculate the melting temperature for perfect

    duplexes 15-20 nucleotides in length in solvents of high ionic

    strength (e.g., 1 M NaCl):

    o Baldino algorithmTm (in C) = 81.5C + 16.6 (log10[K+]) + 0.41(%[G+C]) (675/n)where n is the number of bases in the oligonucleotideo predicts reasonably well the melting temperature of

    oligonucleotides, 14-70 nucleotides in length, in cation

    concentrations of 0.4 M or less:

  • 7/27/2019 Primer Design 2013.pdf

    19/58

    Melting Temperatures (T

    m)o Should not differ by >5C between members of a

    primer pair

    o The Tm of the amplified product should not differfrom the Tm values of the primer pairs by >10C

  • 7/27/2019 Primer Design 2013.pdf

    20/58

    Melting Temperatures (T

    m)o Optimal Tm

    o 52C to 60C

    o Tm

    above 65C should be avoided because of the

    potential for secondary annealing

    o Higher Tm is recommended for amplifying high GC

    content targets

  • 7/27/2019 Primer Design 2013.pdf

    21/58

    3 Terminio If possible, the 3 base of each primer should be

    G or C.

    o However, primers with a .NNCG or .NNGC

    sequence at their 3 termini are not recommended

    since this promotes the formation of hairpin

    structures and may generate primer dimers.

    o GC Clamp refers to the presence of G or Cwithin the last 5 bases from the 3 end of primers

    o Essential for preventing mis-priming and enhancing

    specific primer-template binding

  • 7/27/2019 Primer Design 2013.pdf

    22/58

    Adding restriction sites, bacteriophagepromoters, and other sequences to the

    5 termini of primerso In general, the presence of additional sequences

    does not significantly affect annealing of the

    oligonucleotide to its target DNA.

    o Restriction sites: the primer should be extendedby at least three additional nucleotides beyond

    the recognition sequence of the restriction

    enzyme.

  • 7/27/2019 Primer Design 2013.pdf

    23/58

    Placement of priming siteso Various constraints on the placement of priming

    sites:

    o mutations

    o restriction sites

    o coding sequences

    o microsatellites

    o cis-acting elements

    o Use forward and reverse primers that bind todifferent exons when designing primers for useon cDNA templates.

  • 7/27/2019 Primer Design 2013.pdf

    24/58

    Cross-homologyo Cross homology may become a problem when PCR template

    is genomic DNA or consists of mixed gene fragments.

    o BLASTing PCR primers against the NCBI non-redundant

    sequence database is a common way to avoid designingprimers that may amplify non-targeted homologous regions.

    o Use primers spanning intron-exon boundaries to avoid non-specific amplification of gDNA due to cDNA contamination.

    o Use primers spanning exon-exon boundaries to avoid non-specific amplification cDNA due to gDNA contamination.

  • 7/27/2019 Primer Design 2013.pdf

    25/58

    Annealing temperature (Ta)

    o Ta vs. Tmo Ta is determined by the Tm of both primers and amplicons:

    optimal Ta = 0.3 x Tm (primer) + 0.7 x Tm (amplicon) 25o General rule: Ta is 5C lower than Tmo Higher Ta enhances specific amplification but may reduce

    yield

  • 7/27/2019 Primer Design 2013.pdf

    26/58

    Test yourunderstandingEVALUATE WHETHER TH E FOLLOWING P RIMERSMEET THE GUIDELINES FOR EACH SPECIFIEDCRITERION

  • 7/27/2019 Primer Design 2013.pdf

    27/58

    Question 2

    o Length

    5 ACT GCC TCG ACT ACT TAC GC 3

  • 7/27/2019 Primer Design 2013.pdf

    28/58

    Question 3

    o Length

    Forward: 5 GCT TCA ACG GAC CAT TGC 3Reverse: 5 CTT ACG ACT TCC ACT TCC GCA C 3

  • 7/27/2019 Primer Design 2013.pdf

    29/58

    Question 4

    o Base composition

    5 GCCACGTCGCGCATGCGC 3

  • 7/27/2019 Primer Design 2013.pdf

    30/58

    Question 5

    o Base Composition

    5 ACACACACTTTTGCC 3

  • 7/27/2019 Primer Design 2013.pdf

    31/58

    Question 6

    o Self-complementary sequences

    5 GCTTCACGGATCTGAAGC 3

  • 7/27/2019 Primer Design 2013.pdf

    32/58

    Question 7

    o Hairpins

    5 ACGCTCTCCACGAGTCACGC 3

  • 7/27/2019 Primer Design 2013.pdf

    33/58

    Question 8

    o Homodimers

    5 GCGTTAGGCACGAATCACGC 3

  • 7/27/2019 Primer Design 2013.pdf

    34/58

    Question 9

    o Heterodimers

    Forward:5 GCGTTAGGCACGAATCACGC 3

    Reverse:

    5 GCGTCAGAACCGTACGAGCG 3

  • 7/27/2019 Primer Design 2013.pdf

    35/58

    Question 10

    o Melting Temperature

    5 ATTGAATCTACTACTTACGC 3Tm: 50.7C

  • 7/27/2019 Primer Design 2013.pdf

    36/58

    Question 11

    o Melting Temperature

    Forward: 5 GATTTAAGCACGAATCACGC 3Tm: 54.7C

    Reverse: 5 TAGTCAGCATCGTATGAGCG 3Tm: 58.0C

    Amplified Product: 851 bp, Tm: 64.0C

  • 7/27/2019 Primer Design 2013.pdf

    37/58

    Question 12

    o 3 Terminus

    5 GATTTAAGCACGAATCACGC 3

  • 7/27/2019 Primer Design 2013.pdf

    38/58

    Computer-Assisted Designof Oligonucleotide Primers

  • 7/27/2019 Primer Design 2013.pdf

    39/58

    Primer3

    o Web-based tool for primer design

    http://frodo.wi.mit.edu/o Example gene: GFP5 Green Fluorescent Protein

    o GenBank: U87973.1

    http://frodo.wi.mit.edu/http://frodo.wi.mit.edu/
  • 7/27/2019 Primer Design 2013.pdf

    40/58

    Primer3

    Enter sequence

    Pick Primers

  • 7/27/2019 Primer Design 2013.pdf

    41/58

    Primer Size

    Primer Tm

    Complementarity

    Primer3 Advanced Controls

  • 7/27/2019 Primer Design 2013.pdf

    42/58

    Primer3 Output

    Details:-Start

    -Length-Tm-% GC-Sequence

    Where they bind:

  • 7/27/2019 Primer Design 2013.pdf

    43/58

    Primer3 Output

  • 7/27/2019 Primer Design 2013.pdf

    44/58

    Primer Evaluation

    o OligoAnalyzer 3.1 (web-based)

    http://sg.idtdna.com/analyzer/Applications/OligoAnalyzer/

    http://sg.idtdna.com/analyzer/Applications/OligoAnalyzer/http://sg.idtdna.com/analyzer/Applications/OligoAnalyzer/
  • 7/27/2019 Primer Design 2013.pdf

    45/58

  • 7/27/2019 Primer Design 2013.pdf

    46/58

    OligoAnalyzer 3.1: Analyze

  • 7/27/2019 Primer Design 2013.pdf

    47/58

    OligoAnalyzer 3.1: Hairpin

  • 7/27/2019 Primer Design 2013.pdf

    48/58

    OligoAnalyzer 3.1: Homodimer

  • 7/27/2019 Primer Design 2013.pdf

    49/58

    OligoAnalyzer 3.1: Heterodimer

  • 7/27/2019 Primer Design 2013.pdf

    50/58

    AmplifX

    o Standalone desktop software

  • 7/27/2019 Primer Design 2013.pdf

    51/58

    AmplifX

  • 7/27/2019 Primer Design 2013.pdf

    52/58

    AmplifX

  • 7/27/2019 Primer Design 2013.pdf

    53/58

    OligoAnalyzer 1.5

    o Standalone desktop software

  • 7/27/2019 Primer Design 2013.pdf

    54/58

    OligoAnalyzer 1.5

  • 7/27/2019 Primer Design 2013.pdf

    55/58

    OligoExplorer 1.5

    o Standalone desktop software

  • 7/27/2019 Primer Design 2013.pdf

    56/58

    OligoExplorer 1.5

  • 7/27/2019 Primer Design 2013.pdf

    57/58

    Primer-BLAST

    o Web-based tool

    o Provides primers specific to the PCR template

    sequence.

    o Includes primer pair specificity checking against a

    selected database.

  • 7/27/2019 Primer Design 2013.pdf

    58/58

    Primer-BLAST