Pressure drop model presentation april 19th

28
Pressure Drop Model and Experimental Variability Plate and Frame Filter Press Erin Durkee Yen Nguyen Dalton Russell CHE 4002-401 Chemical Engineering Laboratory I: Project III Oklahoma State University Coach Clint Aichele Coach Mike Resetarits Coach Russ Rhinehart

Transcript of Pressure drop model presentation april 19th

Page 1: Pressure drop model presentation april 19th

 Pressure Drop Model and Experimental Variability

Plate and Frame Filter Press

Erin DurkeeYen Nguyen

Dalton Russell

CHE 4002-401 Chemical Engineering Laboratory I: Project III

Oklahoma State UniversityCoach Clint Aichele

Coach Mike ResetaritsCoach Russ Rhinehart

Page 2: Pressure drop model presentation april 19th

Flow behaves like a transitional flow.  Pressure drop model for the combined set of both laminar and 

turbulent portions

Where: 

a = 0.0484 

b = 10.01 

c = 0.0009 

d = 5.47  

p = 3.41 

CONCLUSION

∆ 𝑃𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑=(𝑎+𝑏𝑁 )∗𝑄+(𝑐+

𝑑𝑁 𝑝 )∗𝑄𝑝

Apparatus Overall Diagram

Page 3: Pressure drop model presentation april 19th

EXPERIMENTAL EQUIPMENT

      

Suspension Tank

Hand Wheel with Spindle

Overall System

Pumpoutlet Thermometer Pumpoutlet Pressure Gauge

Page 4: Pressure drop model presentation april 19th

EXPERIMENTAL EQUIPMENT

      

Bypass Stop Valve Pipe Diaphragm Valve Filterinlet Pressure Gauge

Filteroutlet Flow MeterFilter Plate Arrangement

Page 5: Pressure drop model presentation april 19th

EHS & LP Environmental – water is the only component used

Health – no health hazards

Safety – wear standard lab clothing and safety glasses       – slipping hazard due to water

Loss Prevention – use minimal amount of resources necessary

      

Page 6: Pressure drop model presentation april 19th

THEORY Pressure drops through two different zones in the filter press:• the in-pipe zone :  

• laminar• turbulent • transitional 

• porous medium of the filter paper: • laminar • turbulent• transitional ∆ 𝑃=∆ 𝑃𝑝𝑖𝑝𝑒+∆ 𝑃𝑝𝑜𝑟𝑜𝑢𝑠

(A sketch to illustrate the two different zones.)

 

Page 7: Pressure drop model presentation april 19th

THEORY Darcy-Weisbach equation:

Where: • f: Darcy friction factor• L and D: length and inside diameter of the pipeline• ρ: density of water• Q: flow rate of water through the unit

Page 8: Pressure drop model presentation april 19th

THEORY: In-pipe zone: 

Porous medium zone:

Where:• c, d are turbulent flow unknown constants• N: the number of filter papers used, or the number of 

split flows during the filtering process 

 

Page 9: Pressure drop model presentation april 19th

Theory : Laminar Flow Data from the Moody diagram (Munson):

Plug back into the Darcy-Weisbach equation:

Poiseuille’s law:

Page 10: Pressure drop model presentation april 19th

THEORY: In-pipe zone:

Porous medium zone:

Where: • a, b are laminar flow unknown constants

Page 11: Pressure drop model presentation april 19th

THEORY Laminar only:

Turbulent only:

Combined Flow:

∆ 𝑃 𝑙𝑎𝑚𝑖𝑛𝑎𝑟=(𝑎+ 𝑏𝑁 )∗𝑄

∆ 𝑃𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑=(𝑎+𝑏𝑁 )∗𝑄+(𝑐+

𝑑𝑁 𝑝 )∗𝑄𝑝

∆ 𝑃 𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡=(𝑐+𝑑𝑁2 )∗𝑄2

Page 12: Pressure drop model presentation april 19th

DATA PROCESSING Flow rate: 

Where:• V1, V2 : initial and final readings of volume in gallons

• t1, t2 : initial and final readings of time in minutes

• 6.309*10-5 : unit conversion for the flow rate (Q) from gal/min to m3/s

𝑄=( 6.309∗10−5 )∗𝑉 2−𝑉 1

𝑡2−𝑡 1

Page 13: Pressure drop model presentation april 19th

DATA PROCESSING Data model: 

Where:• : specific weight of water • (z3-z2) : change in elevation

• KL=7: minor loss coefficient for the water meter equipment 

• Re ≤ 2100:   ;  Re ≥ 4000:  

𝑃2=𝛾 (𝑧 3− 𝑧2+[ 𝑓 𝐿𝐷 +𝐾 𝐿 ] 8𝑄2

𝑔𝜋 2𝐷4 )Sketch to illustrate the points (2) and (3)

Page 14: Pressure drop model presentation april 19th

EXPERIMENTAL PLANDAY 1 – PRELIMINARY TRIALS

N plates

6 psig

Record Flow Rate in 1 min

Calculate P2

Repeat with new filter papers 

*N = 8, 12, and 16

Number of Plates:

Inlet Pressure (P1): 9 psig 12 psig

Page 15: Pressure drop model presentation april 19th

EXPERIMENTAL PLANDAY 2 – VARIABILITY AND MODEL TESTING

14 plates

Proper Orientation

Record Flow Rate in 1 min

Calculate P2

Number of Plates:

Inlet Pressure Range (P1): 3 – 12 psig

Random Orientation

Page 16: Pressure drop model presentation april 19th

EXPECTATION The value of the outlet pressure P2 should be less than 0 psig. 

• a, b, c, d, and p are not negative • Laminar flow coefficients: if a ≠ 0, then c = 0 • Turbulent flow coefficients: if b ≠ 0, then d = 0

The graph of pressure drop ∆P vs. flow rate Q should be:• increasing linear line if laminar flow only• positive increasing quadratic curve if turbulent only

Page 17: Pressure drop model presentation april 19th

POLYMATH - NONLINEAR REGRESSION

Page 18: Pressure drop model presentation april 19th

POLYMATH REPORT

Laminar  Turbulent Combined 

Page 19: Pressure drop model presentation april 19th

RESULTS The combined 

flow model best described the data:

Where: 

a = 0.0484 c = 

0.0009 

b  =  10.01d 

= 5.47  

p = 3.41 ∆ 𝑃𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑=(𝑎+

𝑏𝑁 )∗𝑄+(𝑐+

𝑑𝑁 𝑝 )∗𝑄𝑝

3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.64.505.005.506.006.507.007.508.008.509.009.50

10.0010.5011.0011.5012.0012.5013.00

Pressure drop vs. Flow rate when N=8

Data Model

Laminar Model

Turbulent Model

Combined Model

Flow Rate Q (gal/min)

P1-P2 (psig)

Page 20: Pressure drop model presentation april 19th

VARIABILITY OF MEDIUM

Proper Orientation  Random Orientation

4.5 5 5.5 6 6.5 7 7.5 8 8.5 93.003.504.004.505.005.506.006.507.007.508.008.509.009.50

10.0010.5011.00

Pressure drop vs. Flow rate when N=14

Process Model

Data Model

Flow rate Q (gal/min)

P1-P

2 (p

sig)

4.2 4.7 5.2 5.7 6.2 6.7 7.2 7.7 8.2 8.73.003.504.004.505.005.506.006.507.007.508.008.509.009.50

10.0010.5011.00

Pressure drop vs. Flow rate when N=14

Data Model

Process Model

Flow rate Q (gal/min)

P1-P

2 (p

sig)

Page 21: Pressure drop model presentation april 19th

STATISTICAL TEST

Preliminary Trials

Two-tailed t-test:  Passed 

R-lag-1 test: Did not pass

large negative

Proper Orientation

Two-tailed t-test:  Passed 

R-lag-1 test: Did not pass

large positive

Random Orientation

Two-tailed t-test:  Did not pass 

R-lag-1 test: Did not pass

large positive

Page 22: Pressure drop model presentation april 19th

RESIDUAL PLOTS

Preliminary Trials Proper Orientation

1 2 3 4 5 6 7 8 9 10

-0.50

-0.30

-0.10

0.10

0.30

0.50

0.70

0.90

Plot of Residuals when N=14

Trials

Res

idua

ls

Page 23: Pressure drop model presentation april 19th

PROPAGATION OF UNCERTAINTY Data model:   

ε(p1) (psig) ε(z3) (m) ε(z2) (m) ε(L) (m) ε(D) (m) ε(V2) (m3) ε(V1) (m3) ε(t2) (min) ε(t1) (min)

4.00 0.0010 0.0010 0.0010 0.0010 0.0004 0.0004 0.0083 0.0083

1 -1.42E+00 1.42E+00 -5.63E-02 7.65E+01 -1.79E+05 1.79E+05 2.72E+03 -2.72E+03

1 -1.42E+00 1.42E+00 -5.88E-02 8.03E+01 -1.84E+05 1.84E+05 2.85E+03 -2.85E+03

1 -1.42E+00 1.42E+00 -6.13E-02 8.41E+01 -1.88E+05 1.88E+05 2.99E+03 -2.99E+03

1 -1.42E+00 1.42E+00 -8.61E-02 1.23E+02 -2.26E+05 2.26E+05 4.36E+03 -4.36E+03

1 -1.42E+00 1.42E+00 -9.21E-02 1.32E+02 -2.34E+05 2.34E+05 4.70E+03 -4.70E+03

εΔP, 0.95

81.02

83.14

85.27

105.09

109.65

Page 24: Pressure drop model presentation april 19th

PROPAGATION OF UNCERTAINTY

Result • Average 95% probable errors:  ε∆P , 0.95  = 136.89• Two sigma limit : 2σ = 0.88

Page 25: Pressure drop model presentation april 19th
Page 26: Pressure drop model presentation april 19th

DISCUSSION

Model works well in the range of:• N=8 up to 14 plates• Low to medium-high flow rate

 At a very high flow rate (when control valve shows PI1 ≈ 2 bar):• Accurate inlet pressure readings P1 were hard to obtain

• Residuals between data model and processing model increase• Data started showing outliers, model does not fit data well

Page 27: Pressure drop model presentation april 19th

REFERENCES1. Munson, Bruce R., Ted H. Okiishi, Wade W. Huebsch, and Alric P. 

Rothmayer. Fundamentals of Fluid Mechanics, 7th edition. Jefferson City: John Wiley & Sons, Inc, 2013. 400-410, 416-431. Print.

2. Rhinehart, R. R. (2016). Lessons on Data Analysis and Model and Procedure Validation.    Oklahoma State University. 

3. Venugopal, Vidhya. Standard Operating Procedures: Experiments in Plate and Frame Filter Press. Oklahoma State University. 

Page 28: Pressure drop model presentation april 19th

 Pressure Drop Model and Experimental

VariabilityPlate and Frame Filter Press

Erin Durkee

Yen Nguyen

Dalton Russell

Conclusion:  

QUESTIONS?

∆ 𝑃𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑=(0.0484  +10.01𝑁 )∗𝑄+(0.0009+

5.47𝑁3.41 )∗𝑄3.41

Units:• ∆Pcombined (psig)• Q (gal/min)