Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd Edition

31
Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd Edition Mark Z. Jacobson partment of Civil & Environmental Engineerin Stanford University Stanford, CA 94305-4020 [email protected] March 10, 2005

description

Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd Edition. Mark Z. Jacobson Department of Civil & Environmental Engineering Stanford University Stanford, CA 94305-4020 [email protected] March 10, 2005. Vertical Model Grid. Fig. 7.1. - PowerPoint PPT Presentation

Transcript of Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd Edition

Page 1: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Presentation Slides for

Chapter 7of

Fundamentals of Atmospheric Modeling 2nd Edition

Mark Z. JacobsonDepartment of Civil & Environmental Engineering

Stanford UniversityStanford, CA [email protected]

March 10, 2005

Page 2: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Vertical Model Grid___Model top boundary__ ˙

σ 1 2

= 0 , σ1 2

= 0 , pa , top

_ _ _ _ _ _ _ _ _ _ _ _ _ q1

, qv , 1

, u1

, v1

, pa , 1

_____________________ ˙ σ

1 + 1 2, σ

1 + 1 2, p

a , 1 + 1 2

_ _ _ _ _ _ _ _ _ _ _ _ _ q2

, qv , 2

, u2

, v2

, pa , 2

_____________________ ˙ σ

k − 1 2, σ

k − 1 2, p

a , k − 1 2

_ _ _ _ _ _ _ _ _ _ _ _ _ qk

, qv , k

, uk

, vk

, pa , k

_____________________ ˙ σ

k + 1 2, σ

k + 1 2, p

a , k + 1 2

_ _ _ _ _ _ _ _ _ _ _ _ _ qk + 1

, qv , k + 1

, uk + 1

, vk + 1

, pa , k + 1

_____________________ ˙ σ

NL

− 1 2, σ

NL

− 1 2, p

a , NL

− 1 2

_ _ _ _ _ _ _ _ _ _ _ _ _ qN

L

, qv , N

L

, uN

L

, vN

L

, pa , N

L

_Model bottom boundary_ ˙ σ

NL

+ 1 2= 0 , σ

NL

+ 1 2= 1 , p

a , σurf

Fig. 7.1

Page 3: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Estimate top altitude in test column (7.2)zbelow is altitude from App. Table B.1 just below pa,top

Estimating Sigma Levels

Estimate altitude at bottom of each layer in test column (7.3)

Find pressure from (2.41) --> sigma values (7.4)

ztop,test=zbelow+pa,below−pa,topρa,belowgbelow

zk+12,test=zsurf,test+ ztop,test−zsurf,test( ) 1− kNL

⎛ ⎝ ⎜

⎞ ⎠ ⎟

σk+12 =pa,k+12,test−pa,toppa,NL +12,test−pa,top

Estimate pressure at each layer edge (2.41)

pa,k+12,test≈pa,k−12,test+ρa,k−12gk−12 zk−12,test−zk+12,test( )

Page 4: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Estimating Sigma LevelsSigma values (7.4)

Model pressure at bottom boundary of layer (7.6)

Model column pressure (7.5)

σk+12 =pa,k+12,test−pa,toppa,NL +12,test−pa,top

pa,k+12 =pa,top+σk+12πa

πa =pa,surf−pa,topSigma thickness of layer (7.1)

Δσk =σk+12 −σk−12

Page 5: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Layer Midpoint Pressure

Example layers____________________________ p

a , k − 1 2 = 700 hPa

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ qv , k

= 308 K

____________________________ pa , k + 1 2

= 750 hPa

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ qv , k + 1

= 303 K____________________________ p

a , k + 3 2 = 800 hPa

Pressure at the mass-center of a layer (7.7)

pa,k =pa,k−12 +0.5 pa,k+12 −pa,k−12( )

Page 6: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Pressure where mass-weighted mean of P is located (7.10)When qv increases monotonically with height

Layer Midpoint Pressure

Mass-weighed mean of P (7.8)

Value of P at boundaries (7.9)

Consistent formula for qv at boundaries (7.11)

pa,k = 1000 hPa( )Pk1κ

Pk = 1pa,k+12 −pa,k−12

Pdpa,k−12

pa,k+12∫ pa = 11+κ

Pk+12pa,k+12 −Pk−12pa,k−12pa,k+12 −pa,k−12

⎛ ⎝ ⎜ ⎜

⎞ ⎠ ⎟ ⎟

Pk+12 =pa,k+121000 hPa

⎛ ⎝ ⎜

⎞ ⎠ ⎟

κ

θv,k+12 =Pk+12−Pk( )θv,k+ Pk+1−Pk+12( )θv,k+1

Pk+1−Pk

Page 7: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Arakawa C Grid

j+1

j+1/2

j

j-1/2

j-1

j-3/2i-3/2

i-1 i-1/2 i i+1/2 i+1

papa

pa

papa

pa

pa papa

v

u

uu

u

uu u

u

u

v v

vv

v

v

v

v

G

G

F F

j-1

j-1/2

j

j+1/2

j+1

u

u

u

vvv

i-3/2j+3/2 j+3/2i+1

i+3/2

i+3/2ii-1/2i-1 i+1/2 Fig. 7.2

Page 8: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Prognostic equation for column pressure (7.12)

Continuity Equation For Air

First-order in time, second-order in space approx. (7.13)

Re2cosϕ ∂πa∂t

⎛ ⎝ ⎜ ⎞

⎠ ⎟ σ

=− ∂∂λe

uπaRe( )+ ∂∂ϕ vπaRecosϕ( )⎡

⎣ ⎢ ⎤ ⎦ ⎥ σdσ

01∫

Re2cosϕΔλeΔϕ( )i, jπa,t −πa,t−h

h⎛ ⎝ ⎜ ⎞

⎠ ⎟ i, j

=−uπaReΔϕΔλeΔσ( )i+12, j −uπaReΔϕΔλeΔσ( )i−12, j

Δλe

⎣ ⎢ ⎢

⎦ ⎥ ⎥

k=1

NL∑k,t−h

−vπaRecosϕΔϕΔλeΔσ( )i,j+12− vπaRecosϕΔϕΔλeΔσ( )i, j−12

Δϕ⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥

k=1

NL∑k,t−h

j+1

j+1/2

j

j-1/2

j-1

j-3/2i-3/2

i-1 i-1/2 i i+1/2 i+1

papa

pa

papa

pa

pa papa

v

u

uu

u

uu u

u

u

v v

vv

v

v

v

v

G

G

F F

j-1

j-1/2

j

j+1/2

j+1

u

u

u

vvv

i-3/2j+3/2 j+3/2i+1

i+3/2

i+3/2ii-1/2i-1 i+1/2

Page 9: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Horizontal fluxes in domain interior (7.15)

Prognostic Column Pressure

Fi+12, j,k,t−h =πa,i, j +πa,i+1, j

2 uReΔϕ( )i+12, j,k⎡ ⎣ ⎢

⎤ ⎦ ⎥ t−h

Gi,j+12,k,t−h =πa,i, j +πa,i, j+1

2 vRecosϕΔλe( )i, j+12,k⎡ ⎣ ⎢

⎤ ⎦ ⎥ t−h

j+1

j+1/2

j

j-1/2

j-1

j-3/2i-3/2

i-1 i-1/2 i i+1/2 i+1

papapa

papa

pa

pa papa

v

u

uu

u

uu u

u

u

v v

vv

v

v

v

v

G

G

F F

j-1

j-1/2

j

j+1/2

j+1

u

u

u

vvv

i-3/2j+3/2 j+3/2i+1

i+3/2

i+3/2ii-1/2i-1 i+1/2

Page 10: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Prognostic Column PressureHorizontal fluxes at eastern and northern boundaries (7.17)

FI+12, j,k,t−h = πa,I, j uReΔϕ( )I+12, j,k⎡ ⎣

⎤ ⎦ t−h

Gi,J +12,k,t−h = πa,i,J vRecosϕΔλe( )i,J +12,k⎡ ⎣

⎤ ⎦ t−h

πa,i, j,t =πa,i, j,t−h− hRe2cosϕΔλeΔϕ( )i, j

× Fi+12, j −Fi−12, j +Gi,j+12−Gi, j−12( )k,t−hΔσk⎡ ⎣ ⎢

⎤ ⎦ ⎥

k=1

NL∑Equation for column pressure (7.14)

j+1

j+1/2

j

j-1/2

j-1

j-3/2i-3/2

i-1 i-1/2 i i+1/2 i+1

papa

pa

papa

pa

pa papa

v

u

uu

u

uu u

u

u

v v

vv

v

v

v

v

G

G

F F

j-1

j-1/2

j

j+1/2

j+1

u

u

u

vvv

i-3/2j+3/2 j+3/2i+1

i+3/2

i+3/2ii-1/2i-1 i+1/2

Page 11: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Diagnostic equation for vertical velocity (7.19)

Diagnostic Vertical Velocity

Finite difference equation (7.20)

˙ σ πaRe2cosϕ =− ∂∂λe

uπaRe( )+ ∂∂ϕ vπaRecosϕ( )⎡

⎣ ⎢ ⎤ ⎦ ⎥ σ

dσ0σ∫ −σRe2cosϕ ∂πa

∂t⎛ ⎝ ⎜ ⎞

⎠ ⎟ σ

˙ σ πaRe2cosϕΔλeΔϕ( )i,j,k+12,t

=−uπaReΔλeΔϕΔσ( )i−12, j −uπaReΔλeΔϕΔσ( )i+12, j

Δλe

⎣ ⎢ ⎢

⎦ ⎥ ⎥

l=1

k

∑l,t−h

−vπaRecosϕΔλeΔϕΔσ( )i,j−12 − vπaRecosϕΔλeΔϕΔσ( )i, j+12

Δϕ⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥ l,t−hl=1

k

∑−σk+12 Re2cosϕΔλeΔϕ( )i, j

πa,t −πa,t−hh

⎛ ⎝ ⎜ ⎞

⎠ ⎟ i, j

j+1

j+1/2

j

j-1/2

j-1

j-3/2i-3/2

i-1 i-1/2 i i+1/2 i+1

papa

pa

papa

pa

pa papa

v

u

uu

u

uu u

u

u

v v

vv

v

v

v

v

G

G

F F

j-1

j-1/2

j

j+1/2

j+1

u

u

u

vvv

i-3/2j+3/2 j+3/2i+1

i+3/2

i+3/2ii-1/2i-1 i+1/2

Page 12: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Diagnostic Vertical VelocitySubstitute fluxes and rearrange --> vertical velocity (7.21)

˙ σ i, j,k+12,t =− 1πaRe2cosϕΔλeΔϕ( )i, j,t

× Fi+12, j −Fi−12, j +Gi,j+12−Gi, j−12( )l,t−hΔσl⎡ ⎣ ⎢

⎤ ⎦ ⎥

l=1

k

∑−σk+12

πa,t −πa,t−hhπa,t

⎛ ⎝ ⎜

⎞ ⎠ ⎟ i, j j+1

j+1/2

j

j-1/2

j-1

j-3/2i-3/2

i-1 i-1/2 i i+1/2 i+1

papa

pa

papa

pa

pa papa

v

u

uu

u

uu u

u

u

v v

vv

v

v

v

v

G

G

F F

j-1

j-1/2

j

j+1/2

j+1

u

u

u

vvv

i-3/2j+3/2 j+3/2i+1

i+3/2

i+3/2ii-1/2i-1 i+1/2

Page 13: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Species continuity equation (7.22)Species Continuity Equation

Finite-difference form (7.23)

Re2cosϕ ∂∂t πaq( )⎡

⎣ ⎢ ⎤ ⎦ ⎥ σ

+ ∂∂λe

uπaqRe( )+ ∂∂ϕ vπaqRecosϕ( )⎡

⎣ ⎢ ⎤ ⎦ ⎥ σ

+πaRe2cosϕ ∂∂σ

˙ σ q( ) =πaRe2cosϕ ∇ •ρaKh∇( )qρa

+ Rnn=1

Ne,t

∑⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥

Re2cosϕΔλeΔϕ( )i, jπa,tqt −πa,t−hqt−h

h⎛ ⎝ ⎜ ⎞

⎠ ⎟ i, j,k

+uπaqReΔλeΔϕ( )i+12, j,k,t−h− uπaqReΔλeΔϕ( )i−12, j,k,t−h

Δλe

+vπaqRecosϕΔλeΔϕ( )i, j+12,k,t−h− vπaqRecosϕΔλeΔϕ( )i,j−12,k,t−h

Δϕ

+ πa,tRe2cosϕΔλeΔϕ˙ σ tqt−h( )k+12 − ˙ σ tqt−h( )k−12

Δσk

⎣ ⎢ ⎢

⎦ ⎥ ⎥ i, j

= πaRe2cosϕΔλeΔϕ ∇z•ρaKh∇z( )qρa

+ Rnn=1

Ne,t

∑⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥

⎧ ⎨ ⎪

⎩ ⎪

⎫ ⎬ ⎪

⎭ ⎪ i,j,k,t−h

j+1

j+1/2

j

j-1/2

j-1

j-3/2i-3/2

i-1 i-1/2 i i+1/2 i+1

papa

pa

papapa

pa papa

v

u

uu

u

uu u

u

u

v v

vv

v

v

v

v

G

G

F F

j-1

j-1/2

j

j+1/2

j+1

u

u

u

vvv

i-3/2j+3/2 j+3/2i+1

i+3/2

i+3/2ii-1/2i-1 i+1/2

Page 14: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Substitute fluxes --> final continuity equation (7.24)

Species Continuity Equation

Mixing ratios at vertical top and bottom of layer (7.25)

qi, j,k,t =πaq( )i, j,k,t−h

πa,i, j,t+ h

πa,tRe2cosϕΔλeΔϕ( )i, j×

Fi−12, jqi−1, j +qi,j

2 −Fi+12, jqi,j +qi+1,j

2+Gi, j−12

qi, j−1+qi, j2 −Gi, j+12

qi, j +qi, j+12

⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟ k,t−h

⎨ ⎪ ⎪

⎩ ⎪ ⎪

+ πa,tRe2cosϕΔλeΔϕ˙ σ tqt−h( )k−12 − ˙ σ tqt−h( )k+12

Δσk

⎣ ⎢ ⎢

⎦ ⎥ ⎥ i, j

+ πaRe2cosϕΔλeΔϕ ∇z •ρaKh∇z( )qρa

+ Rnn=1

Ne,t

∑⎛

⎝ ⎜ ⎜

⎠ ⎟ ⎟

⎣ ⎢ ⎢ ⎢

⎦ ⎥ ⎥ ⎥ i, j,k,t−h

⎫ ⎬ ⎪

⎭ ⎪

qi, j,k−12 =lnqi, j,k−1−lnqi,j,k1 qi, j,k( )− 1 qi, j,k−1( )

qi, j,k+12 =lnqi, j,k−lnqi, j,k+11 qi, j,k+1( )− 1 qi, j,k( )

j+1

j+1/2

j

j-1/2

j-1

j-3/2i-3/2

i-1 i-1/2 i i+1/2 i+1

papa

pa

papapa

pa papa

v

u

uu

u

uu u

u

u

v v

vv

v

v

v

v

G

G

F F

j-1

j-1/2

j

j+1/2

j+1

u

u

u

vvv

i-3/2j+3/2 j+3/2i+1

i+3/2

i+3/2ii-1/2i-1 i+1/2

Page 15: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Thermodynamic Energy EquationContinuous form (7.26)

Final finite difference form (7.27)

Re2cosϕ ∂∂t πaθv( )⎡

⎣ ⎢ ⎤ ⎦ ⎥ σ

+ ∂∂λe

uπaθvRe( )+ ∂∂ϕ vπaθvRecosϕ( )⎡

⎣ ⎢ ⎤ ⎦ ⎥

+πaRe2cosϕ ∂∂σ

˙ σ θv( )=πaRe2cosϕ ∇ •ρaKh∇( )θvρa

+ θvcp,dTv

dQndt

n=1

Ne,h

∑⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥

θv,i, j,k,t =πaθv( )i, j,k,t−h

πa,i, j,t+ h

πa,tRe2cosϕΔλeΔϕ( )i, j

×Fi−12, j

θv,i−1, j +θv,i, j2 −Fi+12, j

θv,i,j +θv,i+1, j2

+Gi, j−12θv,i, j−1+θv,i, j

2 −Gi,j+12θv,i, j +θv,i, j+1

2

⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟ k,t−h

⎨ ⎪ ⎪

⎩ ⎪ ⎪

+ πa,tRe2cosϕΔλeΔϕ˙ σ tθv,t−h( )k−12− ˙ σ tθv,t−h( )k+12

Δσk

⎣ ⎢ ⎢

⎦ ⎥ ⎥ i, j

+ πaRe2cosϕΔλeΔϕ ∇z •ρaKh∇z( )θvρa

+ θvcp,dTv

dQndt

n=1

Ne,h

∑⎡

⎣ ⎢ ⎢

⎦ ⎥ ⎥

⎝ ⎜ ⎜ ⎜

⎠ ⎟ ⎟ ⎟ i, j,k,t−h

⎫ ⎬ ⎪

⎭ ⎪

j+1

j+1/2

j

j-1/2

j-1

j-3/2i-3/2

i-1 i-1/2 i i+1/2 i+1

papa

pa

papa

pa

pa papa

v

u

uu

u

uu u

u

u

v v

vv

v

v

v

v

G

G

F F

j-1

j-1/2

j

j+1/2

j+1

u

u

u

vvv

i-3/2j+3/2 j+3/2i+1

i+3/2

i+3/2ii-1/2i-1 i+1/2

Page 16: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd  Edition

ConservationKinetic energy (7.28)

Absolute vorticity (7.29)

Enstrophy (7.30)

KE=12 ρaV u2+v2( )

ζa,z =ζr + f =∂v∂x−∂u

∂y+f

ENST=12 ζa,z2

Fig. 7.3-2 10

-9

-1 10

-9

0 10

0

1 10

-9

2 10

-9

0 1200 2400 3600

Δζ /initial ζ

Δ ENST/initial ENST

Δ KE/initial KE

Relative error

Time from σtart (σ)

Rel

ativ

e er

ror

Page 17: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd  Edition

West-East Momentum Equation

Fig. 7.4j+1

j+1/2

j

j-1/2

j-1

j-3/2i-3/2

i-1 i-1/2 i i+1/2 i+1

papa

pa

papa

pa

pa papa

v

u

uu

u

uu u

u

u

vv

vv

v

v

v

v

j-1

j-1/2

j

j+1/2

j+1

u

u

u

vvv

i-3/2j+3/2 j+3/2i+1

i+3/2

i+3/2ii-1/2i-1 i+1/2

C

B

C

B

E

ED

D

Page 18: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd  Edition

West-East Momentum EquationContinuous form (7.31)

Re2cosϕ ∂∂t πau( )⎡

⎣ ⎢ ⎤ ⎦ ⎥ σ

+ ∂∂λe

πau2Re( ) + ∂∂ϕ πauvRecosϕ( )⎡

⎣ ⎢ ⎤ ⎦ ⎥ σ

+πaRe2cosϕ ∂∂σ

˙ σ u( )

=πauvResinϕ+πa fvRe2cosϕ−Re πa∂Φ∂λe

+σcp,dθv∂P∂σ

∂πa∂λe

⎛ ⎝ ⎜

⎞ ⎠ ⎟ σ

+Re2cosϕ πaρa

∇ •ρaKm∇( )u

Page 19: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd  Edition

West-East Momentum EquationTime-difference term (7.32)

ui+12,j,k,t =πa,t−hΔA( )i+12, jπa,tΔA( )i+12, j

ui+12, j,k,t−h + hπa,tΔA( )i+12,j

×⎧ ⎨ ⎪

⎩ ⎪

j+1

j+1/2

j

j-1/2

j-1

j-3/2i-3/2

i-1 i-1/2 i i+1/2 i+1

papapa

papa

pa

pa papa

v

u

uu

u

uu u

u

u

vv

vv

v

v

v

v

j-1

j-1/2

j

j+1/2

j+1

u

u

u

vvv

i-3/2j+3/2 j+3/2i+1

i+3/2

i+3/2ii-1/2i-1 i+1/2

C

B

C

B

E

ED

D

Page 20: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd  Edition

West-East Momentum EquationColumn pressure multiplied by grid-cell area at u-point (7.38)

Grid-cell area (7.39)

πaΔA( )i+12, j =18

πaΔA( )i, j+1+ πaΔA( )i+1, j+1

+2 πaΔA( )i,j + πaΔA( )i+1,j⎡ ⎣

⎤ ⎦

+ πaΔA( )i,j−1+ πaΔA( )i+1, j−1

⎨ ⎪ ⎪

⎩ ⎪ ⎪

⎬ ⎪ ⎪

⎭ ⎪ ⎪

ΔA =Re2cosϕΔλeΔϕj+1

j+1/2

j

j-1/2

j-1

j-3/2i-3/2

i-1 i-1/2 i i+1/2 i+1

papapa

papa

pa

pa papa

v

u

uu

u

uu u

u

u

vv

vv

v

v

v

v

j-1

j-1/2

j

j+1/2

j+1

u

u

u

vvv

i-3/2j+3/2 j+3/2i+1

i+3/2

i+3/2ii-1/2i-1 i+1/2

C

B

C

B

E

ED

D

Page 21: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd  Edition

West-East Momentum EquationHorizontal advection terms (7.33)

Bi, jui−12,j +ui+12, j

2 −Bi+1, jui+12,j +ui+3 2, j

2+Ci+12,j−12

ui+12, j−1+ui+12, j2 −Ci+12, j+12

ui+12, j +ui+12, j+12

+Di,j−12ui−12, j−1+ui+12, j

2 −Di+1, j+12ui+12, j +ui+32, j+1

2

+Ei+1, j−12ui+32, j−1+ui+12, j

2 −Ei,j+12ui+12, j +ui−12,j+1

2

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ k,t−h

j+1

j+1/2

j

j-1/2

j-1

j-3/2i-3/2

i-1 i-1/2 i i+1/2 i+1

papa

pa

papa

pa

pa papa

v

u

uu

u

uu u

u

u

vv

vv

v

v

v

v

j-1

j-1/2

j

j+1/2

j+1

u

u

u

vvv

i-3/2j+3/2 j+3/2i+1

i+3/2

i+3/2ii-1/2i-1 i+1/2

C

B

C

B

E

ED

D

Page 22: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd  Edition

West-East Momentum EquationInterpolations for fluxes (7.41-7.44)

Bi, j = 112 Fi−12, j−1+Fi+12, j−1+2 Fi−12, j +Fi+12, j( )+Fi−12, j+1+Fi+12, j+1[ ]

Di, j+12 = 124Gi,j−12+2Gi, j+12 +Gi, j+32 +Fi−12, j +Fi−12, j+1+Fi+12, j +Fi+12, j+1( )

j+1

j+1/2

j

j-1/2

j-1

j-3/2i-3/2

i-1 i-1/2 i i+1/2 i+1

papa

pa

papa

pa

pa papa

v

u

uu

u

uu u

u

u

vv

vv

v

v

v

v

j-1

j-1/2

j

j+1/2

j+1

u

u

u

vvv

i-3/2j+3/2 j+3/2i+1

i+3/2

i+3/2ii-1/2i-1 i+1/2

C

B

C

B

E

ED

D

Page 23: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd  Edition

West-East Momentum EquationVertical transport of horizontal momentum (7.34)

+ 1Δσk

πa,tΔA˙ σ k−12,tuk−12,t−h−πa,tΔA˙ σ k+12,tuk+12,t−h( )i+12,j

j+1

j+1/2

j

j-1/2

j-1

j-3/2i-3/2

i-1 i-1/2 i i+1/2 i+1

papa

pa

papa

pa

pa papa

v

u

uu

u

uu u

u

u

vv

vv

v

v

v

v

j-1

j-1/2

j

j+1/2

j+1

u

u

u

vvv

i-3/2j+3/2 j+3/2i+1

i+3/2

i+3/2ii-1/2i-1 i+1/2

C

B

C

B

E

ED

D

ui+12,j,k+12,t−h =Δσk+1ui+12,j,k,t−h+Δσkui+12, j,k+1,t−h

Δσk +Δσk+1

U-values at bottom of layer (7.45)

Page 24: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd  Edition

West-East Momentum EquationInterpolation for vertical velocity term (7.40)

πa,tΔA ˙ σ k−12,t( )i+12,j =18

πa,tΔA ˙ σ k−12,t( )i, j+1+ πa,tΔA ˙ σ k−12,t( )i+1, j+1

+2 πa,tΔA ˙ σ k−12,t( )i, j + πa,tΔA˙ σ k−12,t( )i+1, j⎧ ⎨ ⎩

⎫ ⎬ ⎭ +πa,tΔA ˙ σ k−12,t( )i, j−1+ πa,tΔA ˙ σ k−12,t( )i+1, j−1

⎢ ⎢ ⎢ ⎢ ⎢ ⎢

⎥ ⎥ ⎥ ⎥ ⎥ ⎥

j+1

j+1/2

j

j-1/2

j-1

j-3/2i-3/2

i-1 i-1/2 i i+1/2 i+1

papapa

papa

pa

pa papa

v

u

uu

u

uu u

u

u

vv

vv

v

v

v

v

j-1

j-1/2

j

j+1/2

j+1

u

u

u

vvv

i-3/2j+3/2 j+3/2i+1

i+3/2

i+3/2ii-1/2i-1 i+1/2

C

B

C

B

E

ED

D

Page 25: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd  Edition

West-East Momentum EquationCoriolis and spherical grid conversion terms (7.35)

πa,i, jvi, j−12 +vi, j+12

2 fjRecosϕ j +ui−12, j +ui+12,j2 sinϕj

⎛ ⎝ ⎜

⎞ ⎠ ⎟

+πa,i+1,jvi+1, j−12 +vi+1, j+12

2 fjRecosϕ j +ui+12, j +ui+32,j2 sinϕ j

⎛ ⎝ ⎜

⎞ ⎠ ⎟

⎢ ⎢ ⎢ ⎢ ⎢

⎥ ⎥ ⎥ ⎥ ⎥ k,t−h

+Re ΔλeΔϕ( )i+12,j

2 ×

j+1

j+1/2

j

j-1/2

j-1

j-3/2i-3/2

i-1 i-1/2 i i+1/2 i+1

papa

pa

papapa

pa papa

v

u

uu

u

uu u

u

u

vv

vv

v

v

v

v

j-1

j-1/2

j

j+1/2

j+1

u

u

u

vvv

i-3/2j+3/2 j+3/2i+1

i+3/2

i+3/2ii-1/2i-1 i+1/2

C

B

C

B

E

ED

D

Page 26: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd  Edition

West-East Momentum EquationPressure gradient terms (7.36)

−ReΔϕi+12, j

Φi+1,j,k−Φi,j,k( )πa,i,j +πa,i+1, j

2 + πa,i+1, j −πa,i, j( )

×cp,d2

θv,kσk+12 Pk+12−Pk( ) +σk−12 Pk−Pk−12( )

Δσk

⎣ ⎢ ⎢

⎦ ⎥ ⎥ i, j

+ θv,kσk+12 Pk+12−Pk( )+σk−12 Pk−Pk−12( )

Δσk

⎣ ⎢ ⎢

⎦ ⎥ ⎥ i+1, j

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ t−h

j+1

j+1/2

j

j-1/2

j-1

j-3/2i-3/2

i-1 i-1/2 i i+1/2 i+1

papa

pa

papa

pa

pa papa

v

u

uu

u

uu u

u

u

vv

vv

v

v

v

v

j-1

j-1/2

j

j+1/2

j+1

u

u

u

vvv

i-3/2j+3/2 j+3/2i+1

i+3/2

i+3/2ii-1/2i-1 i+1/2

C

B

C

B

E

ED

D

Page 27: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd  Edition

West-East Momentum Equation

−ReΔϕI+12, j

Φ I, j,k,t−2h −Φ I, j,k,t−h( )πa,I , j,t−h+ πa,I , j,t−2h−πa,I, j,t−h( )

×cp,d θv,kσk+12 Pk+12 −Pk( )+σk−12 Pk −Pk−12( )

Δσk

⎣ ⎢ ⎢

⎦ ⎥ ⎥ I, j,t−h

⎢ ⎢ ⎢ ⎢ ⎢

⎥ ⎥ ⎥ ⎥ ⎥

Boundary conditions for pressure-gradient term (7.46)

j+1

j+1/2

j

j-1/2

j-1

j-3/2i-3/2

i-1 i-1/2 i i+1/2 i+1

papa

pa

papa

pa

pa papa

v

u

uu

u

uu u

u

u

vv

vv

v

v

v

v

j-1

j-1/2

j

j+1/2

j+1

u

u

u

vvv

i-3/2j+3/2 j+3/2i+1

i+3/2

i+3/2ii-1/2i-1 i+1/2

C

B

C

B

E

ED

D

Page 28: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd  Edition

West-East Momentum EquationEddy diffusion terms (7.37)

+ πa,t−hΔA( )i+12, j∇z •ρaKm∇z( )u

ρa⎡ ⎣ ⎢

⎤ ⎦ ⎥ i+12, j,k,t−h

⎣ ⎢ ⎢

⎦ ⎥ ⎥ ⎫ ⎬ ⎪

⎭ ⎪

j+1

j+1/2

j

j-1/2

j-1

j-3/2i-3/2

i-1 i-1/2 i i+1/2 i+1

papapa

papa

pa

pa papa

v

u

uu

u

uu u

u

u

vv

vv

v

v

v

v

j-1

j-1/2

j

j+1/2

j+1

u

u

u

vvv

i-3/2j+3/2 j+3/2i+1

i+3/2

i+3/2ii-1/2i-1 i+1/2

C

B

C

B

E

ED

D

Page 29: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd  Edition

South-North Momentum Equation

j+1

j+1/2

j

j-1/2

j-1

j-3/2i-3/2

i-1 i-1/2 i i+1/2 i+1

papa

pa

papa

pa

pa papa

v

u

uu

u

uu u

u

u

v

v

vv

v

v

v

v

j-1

j-1/2

j

j+1/2

j+1

u

u

u

vvv

i-3/2j+3/2 j+3/2i+1

i+3/2

i+3/2ii-1/2i-1 i+1/2

Q

R

Q

T

T

S

SR

Fig. 7.5

Page 30: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Vertical Momentum EquationHydrostatic equation

Geopotential at vertical center of bottom layer (7.61)

Geopotential at bottom of subsequent layers (7.62)

dΦ =−cp,dθvdP

Φi, j,NL ,t−h =Φi,j,NL +12 −cp,d θv,NL PNL −PNL +12( )[ ]i, j,t−h

Φi, j,k+12,t−h =Φi, j,k+1,t−h −cp,d θv,k+1 Pk+12 −Pk+1( )[ ]i, j,t−h

Φi, j,k,t−h =Φi, j,k+12,t−h −cp,d θv,k Pk−Pk+12( )[ ]i, j,t−h

Geopotential at vertical midpoint of subsequent layers (7.63)

Page 31: Presentation Slides for Chapter 7 of Fundamentals of Atmospheric Modeling 2 nd  Edition

Time-Stepping Schemes

Matsuno scheme (7.65-6)Explicit forward difference to estimate final value followed by second forward difference to obtain final value

Time derivative of an advected species (7.64)

Leapfrog scheme (7.67)

∂q∂t = f q( )

qest=qt−h+hf qt−h( ) qt =qt−h +hf qest( )

qt+h =qt−h +2hf qt( )L2 L4 L6

L3 L5M1

L2 L4 L6

L3 L5M1

Fig. 7.6