Precision mass measurements for fundamental studies

39
Precision mass measurements for fundamental studies Tommi Eronen Max-Planck-Institut für Kernphysik Heidelberg, Germany

description

Precision mass measurements for fundamental studies. Tommi Eronen Max-Planck-Institut für Kernphysik Heidelberg, Germany. Outline. Penning trap mass spectrometry Q = m parent – m daughter Masses for CKM unitarity tests... Superallowed beta decay Mirror beta decay - PowerPoint PPT Presentation

Transcript of Precision mass measurements for fundamental studies

Page 1: Precision mass measurements for fundamental studies

Precision mass measurements for fundamental studies

Tommi EronenMax-Planck-Institut für Kernphysik

Heidelberg, Germany

Page 2: Precision mass measurements for fundamental studies

Outline

• Penning trap mass spectrometry– Q = mparent – mdaughter

• Masses for CKM unitarity tests...– Superallowed beta decay– Mirror beta decay

• Masses for neutrino studies..– Double beta decay– Double electron capture– Tritium Q-value

Page 3: Precision mass measurements for fundamental studies

Penning Trap Mass Spectrometry

Cyclotron frequency Penning trap eigenfrequencies

INVARIANCE THEOREM

SIDEBANDFREQUENCY

Page 4: Precision mass measurements for fundamental studies

TOF-ICR methodFor nuclei having T1/2 > 10 ms

Page 5: Precision mass measurements for fundamental studies

A/q doublets!

• Q-value measurements– Special – mass doublets, e.g. 76Ge vs 76Se– cancellation of systematic errors– 10x better accuracy achieved– Typical:

• q=1e, B=7T, m=100u with 10-9 precision -> Dm = 100 eV

• Absolute mass measurements – 10-7..8

Page 6: Precision mass measurements for fundamental studies

QEC values of superallowedbeta emitters

Page 7: Precision mass measurements for fundamental studies

Superallowed beta emitters

NEED Q-values at 100-eV level

• Decays of nuclear 0 + → 0+ states, T=1

• Pure Fermi decays• Simple decay matrix element• Characterized with an ft value

– f stat. rate function; (f QEC5)

– t partial half-life t1/2/b

Page 8: Precision mass measurements for fundamental studies

Testing the Standard Model

• Corrected value:

• Corrections about 1% [Towner and Hardy, Phys. Rev. C 77, 025501 (2008)]

• Cabibbo-Kobayashi-Maskawa quark mixing matrix

• Quark-mass eigenstates to weak eigenstates

Currently 13 transitionscontribute

Page 9: Precision mass measurements for fundamental studies

Superallowed beta emitters - QEC

Bold: Contributes to worldaverage value (13)

Why so many JYFL points?- Simultaneous production- No chemical selection

Page 10: Precision mass measurements for fundamental studies

Most recent QEC from JYFLTRAP

• 10C, 34Ar, 38Ca, (revisited 46V)T. Eronen et al., Phys. Rev. C 83, 055501 (2011)

Page 11: Precision mass measurements for fundamental studies

Ft valuesThe influence of JYFLTRAP QEC value measurements.

Page 12: Precision mass measurements for fundamental studies

Ft-value error budget

Most precise

From J.C. Hardy, I.S. Towner, Phys. Rev. C 79, 055502 (2009)

Page 13: Precision mass measurements for fundamental studies

Different dC

Towner & Hardy,PRC 77, 025501 (2008).Satula et al.,PRL 106, 132502 (2011).Liang et al.,PRC 79, 064316 (2009).

Page 14: Precision mass measurements for fundamental studies

Standard Model is still ok?Top-row unitarity requirement:

Courtesy of J.C. Hardy

With H&T corrections

Page 15: Precision mass measurements for fundamental studies

Superallowed outlook

• QEC values: 14O, heavier A > 62• Branching ratios of T=-1 nuclei• Half-lives• Theoretical corrections (DC) A > 62

Page 16: Precision mass measurements for fundamental studies

QEC values of mirrordecays

Page 17: Precision mass measurements for fundamental studies

• T=1/2 decays• Fermi + Gamow-

Teller– Need mixing ratio

• Currently 5 well known decays

O. Naviliat-Cuncic and N. Severijns, PRL 102, 142302 (2009)

Mirror decays

Page 18: Precision mass measurements for fundamental studies

Error contributions

Page 19: Precision mass measurements for fundamental studies

Vud from different sources

Page 20: Precision mass measurements for fundamental studies

Mirror decays – TODO

• F/GT ratios; LPC-trap, MOTs, WITCH-trap...• DR

V theoretical calculations• dNS - dC measurements of heavy

isotopes + theory• Measurements of t1/2, BR and QEC

Page 21: Precision mass measurements for fundamental studies

Precision mass measurements for neutrino physics

• Double b- decay• Double electron capture• Tritium Q-value for KATRIN spectrometer

Page 22: Precision mass measurements for fundamental studies

Double beta decays• Double b- decay (bb) and double-electron capture (2EC)

– two-neutrino mode (2nbb) and (2n2EC)– neutrinoless mode (0nbb) and (0n2EC)

• Observation would prove thatn is a Majorana particle• Conservation of total lepton number breaks• Effective Majorana neutrino mass from half-life

Page 23: Precision mass measurements for fundamental studies

double-electron-capture nuclides

double-beta-decay nuclides

Page 24: Precision mass measurements for fundamental studies

Penning trap Q-value harvest...

SMILETRAPJYFLTRAPSHIPTRAPLEBITTRIGATRAPCanadian PTISOLTRAPFSU

Page 25: Precision mass measurements for fundamental studies

Detection of 0nbb

• 2nbb is (huge) background• 76Ge

– Heidelberg-Moscow claim– GERDA, MAJORANA experiments

T1/2≈1019y T1/2>1025y

Penning trap mass spectrometry:

• Energy of the endpoint!

Page 26: Precision mass measurements for fundamental studies

Heidelberg-Moscow

76Ge

GERDA has some news soon...

Page 27: Precision mass measurements for fundamental studies

Neutrinoless double-electron capture

• Predicted half-lives very long, > 1026 y, not seen yet• Resonant enhancement!

From Penning trap

mass spectrometry!

KK, KL, LL, ..

Page 28: Precision mass measurements for fundamental studies

0+ to 0 + transitions between nuclear ground states

Page 29: Precision mass measurements for fundamental studies

• |M| =3 for 0+ → 0+

T1/2 (0+→0+) ~ 31024 y for |m2EC|=1 eV

multiple-resonance phenomena in 156Dy

S. Eliseev et al., PRC 84, 012501R (2011)

Page 30: Precision mass measurements for fundamental studies

• Tritium beta decay:

• Neutrino with mass:– Endpoint shifted– Spectrum shape changed

• Current knowledge:

Tritium (3H) Q-value

Page 31: Precision mass measurements for fundamental studies

KATRIN experiment

Page 32: Precision mass measurements for fundamental studies

Endpoint of tritium beta spectrum

Electron neutrino mass with KATRIN:• 10x better - sensitivity 0.2 eV

Goal with Penning traps:• Improve 1.2 eV → 0.03 eV

Page 33: Precision mass measurements for fundamental studies

T-3H Q-value measurements

THe-trap2014 (?)

Page 34: Precision mass measurements for fundamental studies

New technique for Penning trap mass spectrometry

• Phase-Imaging motion detection• Measure motion revolutions in the trap

– For n+ and n-

– Recipe:• Excite the motion (dipolar RF E-field)• Project to magnetron motion• Count revolutions + phase of the last round

– Some x10 faster or more precise than TOF-ICR

Developed at SHIPTRAP by S. Eliseev et al. (2012->)

Page 35: Precision mass measurements for fundamental studies

position-sensitive detector

Penning trap Phase imaging

B

2D delay-line MCP

Page 36: Precision mass measurements for fundamental studies

PI-ICR method

36Eliseev et al., PRL 110, 082501 (2013)

Page 37: Precision mass measurements for fundamental studies

37

On the Way to Mass Measurements

Page 38: Precision mass measurements for fundamental studies

Summary

• Q-values from mass spectrometry for– Testing the Standard Model

• Superallowed beta decays (some cases left to measure)• Mirror decays (plenty of cases still to measure)

– Neutrino studies• Neutrinoless double beta- decay• Neutrinoless double electron capture

• New mass measurement techniques

Page 39: Precision mass measurements for fundamental studies

Thank you for your attention!