PracticeProblems_QueuingManagement_Solution.pdf

download PracticeProblems_QueuingManagement_Solution.pdf

of 6

Transcript of PracticeProblems_QueuingManagement_Solution.pdf

  • 8/18/2019 PracticeProblems_QueuingManagement_Solution.pdf

    1/6

    Solutions to Practice Questions on Queuing Management

    1.  Use M/M/1.

    =λ    4/hour = µ    6/hour

    a. 

    3333.6

    4

    111   =−=−=−  µ 

    λ 

     ρ    or 33.33%

     b. 

    )46(6

    4

    )(

    22

    −=

    −=

    λ  µ  µ 

    λ q L =1.33,

    4

    33.1==

    λ 

    q

    q

     LW    = 1/3 hour or 20 minutes

    c. 

    )46(6

    4

    )(

    22

    −=

    −=

    λ  µ  µ 

    λ q L   = 1.33 students

    d.  At least one other student waiting in line is the same as at least two in the

    system. This probability is 1-(P0+P1).

    n

    n P    

      

      

       −=

     µ λ 

     µ λ 1 ,

    0

    064

    641  

      

      

      

       −= P    = .3333,

    1

    164

    641  

      

      

      

       −= P    = .2222

    Probability of at least one in line is 1-(.3333 + .2222) = .4444

    2. 

    Use M/M/1.

    a. =λ    4/hour = µ  10/hour

    )410(10

    4

    )(

    22

    −=

    −=

    λ  µ  µ 

    λ q L   = .267 students

    Waiting cost per day = number in line times goodwill loss per hour times

    number of hours per day. (This is a formula you need to remember!)

    =.267(10)8 = $21.33 per day

    Total cost = waiting cost + additional service cost

    =$21.33 + $99.50 = $120.83 per day

     b. 

    Use M/M/S.

    S=2,6

    4==

     µ 

    λ  ρ  =.667

    Interpolating from q L Table, q L = .0837

    Therefore, waiting cost per day = number in line times goodwill loss per hour

    times of hour per day

    = .0837(10)8 = $6.70 per day

    Total cost = waiting cost + additional service cost

    = $6.70 + $75.00 = $81.70 per day

  • 8/18/2019 PracticeProblems_QueuingManagement_Solution.pdf

    2/6

  • 8/18/2019 PracticeProblems_QueuingManagement_Solution.pdf

    3/6

     b. )56(6

    5

    )(

    22

    −=

    −=

    λ  µ  µ 

    λ q L   = 4.17 people on average

    c.  It would be busy6

    5==

     µ 

    λ  ρ    =.833 or 83.3% of the time, for a 12 hour

    day .833(12) = 10 hours

    d. 

    00

    065

    6511  

      

      

      

       −=

      

      

      

       −=

     µ λ 

     µ λ  P  = .167 or 16.7%

    e. 

    =W    .75 and λ = 5 per hour,

    75.35

    75.   ===   L L L

    W λ 

     

    33.65

    575.3   =

    −=

    −=   µ 

     µ λ  µ 

    λ  L , therefore, the service rate must be at least

    6.33 customers per hour

    11. Use M/M/1.

    =λ    2 per hour = µ  3 per hour

    a. )23(3

    2

    )(

    22

    −=

    −=

    λ  µ  µ 

    λ q L = 1.333 customers waiting

     b. 2

    333.1==

    λ 

    q

    q

     LW    = .667 hours or 40 minutes

    c. 2

    2,2

    23

    2===

    −=

    −=

    λ λ  µ 

    λ    LW  L   = 1 hour

    d. 

    3

    2==  µ 

    λ 

     ρ  = .67 or 67% of the time

    12. 

    Use M/M/S, S=2

    =λ    2 per hour = µ  3 per hour

    a. 

    3

    2==

     µ 

    λ  ρ  , From q L Table, q L   is around .0837

     b.  λ qq   LW   =   = .0837/2 = .0418 hours or 2.51 minutes

    c.  2/7504./,7504.3/20837.   ===+=+=   λ  µ λ    LW  L L q   = .3751 hours or

    22.51 minutes

    13. Use M/M/1.

    =λ    6 per hour = µ  10 per hour

    a. 610

    6

    −=

    −=

    λ  µ 

    λ  L   = 1.5 people

    6

    5.1==

    λ 

     LW    = .25 hours or 15 minutes

  • 8/18/2019 PracticeProblems_QueuingManagement_Solution.pdf

    4/6

     b. 10

    6==

     µ 

    λ  ρ    = .60 or 60%

    c. Probability of more then 3 people is equal to 1 – probability of 0, 1, 2

    n

    n P   

      

      

      

     −=

     µ 

    λ 

     µ 

    λ 1 ,

    0

    010

    6

    10

    61  

     

      

      

      

     −= P  = .4000,

    1

    110

    6

    10

    61  

     

      

      

      

     −= P    = .2400,

    2

    210

    6

    10

    61  

     

      

      

      

     −= P    = .1440

    Total of P0 + P1 + P2 = (.4000 + .2400 + .1440) = .7840

    Therefore, the probability of three or more is 1 - .7840 = .2160

    d. 

    Use M/M/S, S=2

    10

    6==  µ 

    λ 

     ρ    = .60, from Table, q L   = .0593

    6593.10/60593.   =+=+=   µ λ q L L  

    λ  LW   = = .6593/6 = .1099 hours or 6.6 minutes

    15. Use M/M/1.

    =λ    25 per hour = µ  30 per hour

    a. 

    30

    25==

     µ 

    λ  ρ    = .833 or 83.3%

     b. 

    2530

    25

    −=−= λ  µ 

    λ  L   = 5.00 document in the system

    c. 

    25

    00.5==

    λ 

     LW    = .20 hours or 12 minutes

    d. Probability of 4 or more is equal to 1 – probability of 0, 1, 2, 3

    n

    n P   

      

      

      

     −=

     µ 

    λ 

     µ 

    λ 1 ,

    0

    030

    25

    30

    251  

     

      

      

      

     −= P  = .1667

    1

    1

    30

    25

    30

    251  

     

     

     

     

     

     

     

     −= P    = .1389,

    2

    2

    30

    25

    30

    251  

     

     

     

     

     

     

     

     −= P    = .1157

    3

    330

    25

    30

    251  

     

      

      

      

     −= P    = .0965

    Total of P0 + P1 + P2 + P3 = (.1667 + .1389 + .1157 + .0965) = .5178

    Therefore, the probability of three or more is 1 - .5178 = .4822 or 48.22%

  • 8/18/2019 PracticeProblems_QueuingManagement_Solution.pdf

    5/6

    e. ∞→−

    =−

    =)3030(30

    30

    )(

    22

    λ  µ  µ 

    λ q

     L  

    16. Use M/M/1.

    =λ    4 per hour = µ  6 per hour

    a. 

    6

    4==  µ 

    λ 

     ρ    = .667 or 66.7%

     b. 

    24

    4

    −=

    −=

    λ  µ 

    λ  L   = 2.00 students in the system

    c. 

    4

    00.2==

    λ 

     LW    = .50 hours or 30 minutes

    d. Probability of 4 or more is equal to 1 – probability of 0, 1, 2, 3

    n

    n P   

      

      

      

     −=

     µ 

    λ 

     µ 

    λ 1 ,

    0

    06

    4

    6

    41  

     

      

      

      

     −= P  = .3333

    1

    16

    4

    6

    41  

     

      

      

      

     −= P    = .2222,

    2

    26

    4

    6

    41  

     

      

      

      

     −= P  = .1481

    3

    36

    4

    6

    41  

     

      

      

      

     −= P  = .0988

    Total of P0 + P1 + P2 + P3 = (.3333 + .2222 + .1481 + .0988) = .8024

    Therefore, the probability of three or more is 1 - .8024 = .1976 or 19.76%

    e. ∞→−=−= )66(6

    6

    )(

    22

    λ  µ  µ 

    λ q L  

    17. Use M/M/1.

    =λ    10 per minute = µ  12 per minute

    a. )1012(12

    10

    )(

    22

    −=

    −=

    λ  µ  µ 

    λ q L   = 4.17 vehicles

     b. 

    1012

    10

    −=

    −=

    λ  µ 

    λ  L = 5,

    10

    5==

    λ 

     LW  = .5 minute or 30 seconds

    c. 

    12

    10==  µ 

    λ 

     ρ    = .833 or 83.3%

    d. Probability of 3 or more is equal to 1 – probability of 0, 1, 2

    n

    n P   

      

      

      

     −=

     µ 

    λ 

     µ 

    λ 1 ,

    0

    012

    10

    12

    101  

     

      

      

      

     −= P  = .1667

    1

    112

    10

    12

    101  

     

      

      

      

     −= P    = .1389,

    2

    212

    10

    12

    101  

     

      

      

      

     −= P    = .1157

  • 8/18/2019 PracticeProblems_QueuingManagement_Solution.pdf

    6/6

    Total of P0 + P1 + P2 = (.1667 + .1389 + .1157) = .4213

    Therefore, the probability of three or more is 1 - .4213 = .5787 or 57.87%

    18. Use M/M/2.

    =λ    10 per minute = µ    12 per minute

    a. 

    12

    10==  µ 

    λ 

     ρ  = .8333, from q L   Table, q L   is around .175 cars

     b.   µ λ += q L L = .175 + .8333 = 1.008

    10

    008.1==

    λ 

     LW    = .101 minutes or 6.06 seconds

    When there are two dedicated lines for the two servers, the system becomes two

    independent M/M/1 with half of the arrivals. When applying the fomular, cut

    λ  by half.

    c. 

    )512(12

    5

    )(

    22

    −=

    −= λ  µ  µ 

    λ q L   = .298.

    d. 

    512

    5

    −=

    −=

    λ  µ 

    λ  L   = .7143,

    5

    7143.==

    λ 

     LW    = .143 minutes or 8.58 seconds

    19. M/M/1. Note that since repair persons need to work in a group, there is only one

    server even though there can be multiple repair people.

    =λ    2 per hour

    With one repair person: = µ  2,   ∞→−

    =−

    =22

    2

    λ  µ 

    λ  L  

    With two repair people: = µ  3, 223

    2=

    −=

    −=

    λ  µ 

    λ  L cars

    With three repair people: = µ  4, 124

    2=

    −=

    −=

    λ  µ 

    λ  L car

     Number of

    repair

     personnel

    Service rate

     per hour

    (µ)

     snCost of

    waiting per

    hour 1

    Cost of

    service per

    hour 2 

    Total

    cost per

    hour 

    1 2   ∞ $ ∞ $ 20 $ ∞

    2 3 2 80 40 120

    3 4 1 40 60 100

     Note: 1 = cost of waiting is number in system times downtime cost of $40 per hour.

    2 = cost of service is number of repair personnel times wage rate ($20 per hour).

    From the table, Should use three repair persons.