[PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web...

62
Standards Certification Education & Training Publishing Conferences & Exhibits Flow Measurement Mark Murphy, PE Technical Director, Fluor Corp.

Transcript of [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web...

Page 1: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

Standards

Certification

Education & Training

Publishing

Conferences & Exhibits

Flow Measurement

Mark Murphy, PETechnical Director, Fluor Corp.

Page 2: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

2#

COMMONLY USED FLOW DEVICES

Differential Pressure (Head) Type– Orifice Plate - Concentric, Eccentric, Segmental, Quadrant Edge, Integral, Conditioning– Venturi Tube– Flow Nozzles– Elbow– Pitot Tube, Averaging Pitot Tube (Annubar)– Variable Area (Rotameter)– Wedge Meter– V-Cone

Mass Type – measures the mass flow rate directly.– Coriolis– Thermal

Velocity Type– Magnetic– Ultrasonic - Transit Time, Doppler– Turbine– Vortex

Open Channel Type– Weir– Parshall Flume

Other Types– Positive Displacement– Target

Page 3: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

3#

FLOW MEASUREMENT - TERMS

• DENSITY (r) – A Measure Of Mass Per Unit Of Volume (lb/ft3 or kg/M3).

• SPECIFIC GRAVITY – The Ratio Of The Density Of A Material To The Density Of Water Or

Air Depending On Whether It Is A Liquid Or A Gas.

• COMPRESSIBLE FLUID – Fluids (Such As Gasses) Where The Volume Changes With Respect

To Changes In The Pressure. These Fluids Experience Large Changes In Density Due To Changes In Pressure.

• NON-COMPRESSIBLE FLUID – Fluids (Generally Liquids) Which Resist Changes In Volume As The

Pressure Changes. These Fluids Experience Little Change In Density Due To Pressure Changes.

Page 4: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

4#

FLOW MEASUREMENT - TERMS

• Linear– Transmitter output is directly proportional to the flow input.

• Square Root– Flow is proportional to the square root of the measured value.

• Beta Ratio (d/D)– Ratio of a differential pressure flow device bore (d) divided by internal

diameter of pipe (D).– A higher Beta ratio means a larger orifice size. A larger orifice plate bore

size means greater flow capacity and a lower permanent pressure loss.

• Pressure Head– The Pressure At A Given Point In A Liquid Measured In Terms Of The

Vertical Height Of A Column Of The Liquid Needed To Produce The Same Pressure.

Page 5: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

5#

FLOW MEASUREMENT - UNITS

• Flow is measured as a quantity (either volume or mass) per unit time

• Volumetric units– Liquid

– gpm, bbl/day, m3/hr, liters/min, etc.– Gas or Vapor

– ft3/hr, m3/hr, etc.• Mass units (either liquid, gas or vapor)

– lb/hr, kg/hr, etc.

• Flow can be measured in accumulated (totalized) total amounts for a time period– gallons, liters, meters passed in a day, etc.

Page 6: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

6#

LAMINAR FLOW

• Laminar Flow - Is Characterized By Concentric Layers Of Fluid Moving In Parallel Down The Length Of A Pipe. The Highest Velocity (Vmax) Is Found In The Center Of The Pipe. The Lowest Velocity (V=0) Is Found Along The Pipe Wall.

SIDE VIEW END VIEW

VMAX

CONCENTRIC FLUID LAYERSPARABOLIC FLOW PROFILE

Page 7: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

7#

TURBULENT FLOW

• Turbulent Flow - Is Characterized By A Fluid Motion That Has Local Velocities And Pressures That Fluctuate Randomly. This Causes The Velocity Of The Fluid In The Pipe To Be More Uniform Across A Cross Section.

SIDE VIEW

VMAX ~ VAVG

Page 8: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

8#

REYNOLDS NUMBER

• The Reynolds number is the ratio of inertial forces (velocity and density that keep the fluid in motion) to viscous forces (frictional forces that slow the fluid down) and is used for determining the dynamic properties of the fluid to allow an equal comparison between different fluids and flows.

• Laminar Flow occurs at low Reynolds numbers, where viscous forces are dominant, and is characterized by smooth, constant fluid motion

• Turbulent Flow occurs at high Reynolds numbers and is dominated by inertial forces, producing random eddies, vortices and other flow fluctuations.

• The Reynolds number is the most important value used in fluid dymanics as it provides a criterion for determining similarity between different fluids, flowrates and piping configurations.

Page 9: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

9#

REYNOLDS NUMBER

Re=Dv rm

Dvrm

DIAMETER (FT)VELOCITY (FT/SEC)DENSITY (LB/FT3)VISCOSITY (cp)

=

===

C

C CONSTANT (6.72X10-4 LB/FT SEC cp)=

0 2000 4000

LAMINAR TRANSITION TURBULENT

Page 10: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

10#

IDEAL GAS LAW

An Ideal Gas or perfect gas is a hypothetical gas consisting of identical particles with no intermolecular forces. Additionally, the constituent atoms or molecules undergo perfectly elastic collisions with the walls of the container. Real gases act like ideal gases at low pressures and high temperatures. Real Gases do not exhibit these exact properties, although the approximation is often good enough to describe real gases. The properties of real gases are influenced by compressibility and other thermodynamic effects.

Page 11: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

11#

IDEAL GAS LAW

PV = nRT

Where: P = Pressure (psia)

V = Volume (FT3)n = Number of Moles of Gas

(1 mole = 6.02 x 1023 molecules)

R = Gas Constant (10.73 FT3 PSIA / lb-mole oR)

T = Temperature (oR)

Page 12: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

12#

REAL GASES

• Compressibility Factor (Z) - The term "compressibility" is used to describe the deviance in the thermodynamic properties of a real gas from those expected from an ideal gas.

• Real Gas Behavior can be calculated as:

PV = nZRT

Page 13: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

13#

STANDARD CONDITIONS

• P = 14.7 PSIA• T = 520 deg R (60 deg F)• Behavior of gases in a process can be equally compared

by using standard conditions – This is due to the nature of gases.

Page 14: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

14#

ACTUAL CONDITIONS

• Standard conditions can be converted to Actual Conditions using the Ideal Gas Law.

PSVS = nRTS PAVA = nRTA

=PSVS

TS

PAVA

TA

=PSTAVS PATS

VA

Page 15: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

15#

BERNOULLI’S LAW

• Bernoulli's Law Describes The Behavior Of An Ideal Fluid Under Varying Conditions In A Closed System. It States That The Overall Energy Of The Fluid As It Enters The System Is Equal To The Overall Energy As It Leaves.

PE1 + KE1 = PE2 + KE2

PE = Potential EnergyKE = Kinetic Energy

Page 16: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

16#

BERNOULLI’S EQUATION

• Bernoulli’s Law Is Described By The Following Equation For An Ideal Fluid.

V2 > V1

P2 < P1

Increased Fluid Speed Decrease Fluid Pressure

V1, P1

V2, P2

P1 + r gh1 r V12 +2

1= P2 + r gh2 r V2

2 +21

Pressure Energy

Kinetic Energy Per Unit Volume

Potential Energy Per unit Volume

Energy Per Unit Volume Before = Energy Per Unit Volume After

Page 17: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

17#

HEAD METER THEORY OF OPERATION

Beta Ratio = d/D Should Be 0.3 – 0.75Meter Run – Dependent On PipingNormally 20 Diameters Upstream & 5 Diameters Downstream

Page 18: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

18#

dP METER – FLOW PRINCIPLES

Flow is measured by creating a pressure drop and applying the flow equation below.

Basic Flow Equation for single phase compressible and non-compressible fluids:

qm = FlowC = Constant = Expansion Factor a = Orifice Areap = P1 - P2

1 = Density

= d / Dd = Diameter of OrificeD = Diameter of Pipe

Page 19: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

19#

0102030405060708090

100

0 10 20 30 40 50 60 70 80 90 100

METER RANGEABILITY

METER RANGEABILITY

NORMAL RANGE

% MAXIMUM FLOW RATE

% M

AX

IMU

M M

ETE

R H

EA

D

The square root function’s impact on a differential pressure device limits the measurement turndown (rangeability) to between 4:1 and 6:1.

Page 20: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

20#

ORIFICE PLATE

A simple device, considered a precision instrument. It is simply a piece of flat metal with a flow-restricting bore that is inserted into the pipe between flanges. The orifice meter is well understood, rugged and inexpensive. It’s accuracy under ideal conditions is in the range of 0.75-1.5%. It can be sensitive to a variety of error-inducing conditions, such as if the plate is eroded or damaged.

Orifice PlateOrifice Flanges

Page 21: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

21#

CONCENTRIC ORIFICE PLATE

The most common orifice plate is the square-edged concentric bored orifice plate. The concentric bored orifice plate is the dominant design because of its proven reliability in a variety of applications and the extensive amount of research conducted on this design. It is easily reproduced at a relatively low cost. It is used to measure a wide variety of single phase, liquid and gas products, typically in conjunction with flange taps.

Page 22: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

22#

ECCENTRIC ORIFICE PLATE

Eccentrically bored plates are plates with the orifice off center, or eccentric, as opposed to concentric. This type of plate is most commonly used to measure fluids which carry a small amount of non-abrasive solids, or gases with small amounts of liquid, since with the opening at the bottom of the pipe, the solids and liquids will carry through, rather than collect at the orifice plate. A higher degree of uncertainty as compared to the concentric orifice. Eccentric orifice plates are used in many industries including heavy and light chemicals and petrochemicals.

Page 23: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

23#

QUADRANT EDGE ORIFICE PLATE

The quadrant, quadrant edge or quarter-circle orifice is recommended for measurement of fluids with high viscosity which have pipe Reynolds Numbers below 10,000. The orifice incorporates a rounded edge of definite radius which is a particular function of the orifice diameter.

Quadrant in U.S.Conical in Europe

Page 24: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

24#

INTEGRAL ORIFICE PLATE

Integral Orifice Plate identical to a square-edged orifice plate installation except that the plate,

flanges and DP transmitter are supplied as one unit. used for small lines (typically under 2”) and is relatively inexpensive to

install since it is part of the transmitter

Page 25: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

25#

CONDITIONING ORIFICE PLATE

• The Conditioning Orifice Plate is designed to be installed downstream of a variety of disturbances with minimal straight pipe run, providing superior performance.

• Requires only two diameters of straight pipe run after an upstream flow disturbance

• Reduced installation costs• Easy to use, prove, and troubleshoot• Good for most gas, liquid, and steam as well as high temperature and high

pressure applications

Page 26: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

26#

VENT AND WEEP HOLES

There are times when a gas may be have a small amount of liquid or a liquid may have a small amount of gas but not enough in either case to warrant the use of an eccentric orifice. In these cases it is best to simply add a small hole near the edge of the plate, flush with the inside diameter of the pipe, allowing undesired substances to pass through the plate rather than collect on the upstream side. If such a hole is oriented upward to pass vapor bubbles, it is called a vent hole. If the hole is oriented downward to pass liquid droplets, it is called a drain hole.

VENT

DRAIN

Page 27: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

27#

ORIFICE PLATE SELECTION CONSIDERATIONS

• Quadrant Edge Orifice Plate can be considered if Reynolds number is too low.

• Orifice plate must be specified with proper flange rating to account for proper bolt circle.

• Typical acceptable beta ratio is .25 to .7 for non commerce meter, .3 to .6 for accounting meter but also check specifications.

• Assure that calculation accounts for vent or drain hole, if required.

• For dual transmitter installation on a common set of orifice flanges, custom tap locations must be specified.

Page 28: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

28#

Gas

• Differential pressure is measured through pressure taps located on each side of the orifice plate. Pressure taps can be positioned at a variety of different locations.

• Flange Taps• Corner Taps• Radius Taps• Vena-Contracta Taps• Pipe Taps

ORIFICE PLATE TAP LOCATIONS

Liquid or Steam

Orifice taps in horizontal lines should be as follows:

Page 29: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

29#

In a Venturi tube, the fluid is accelerated through a converging cone, inducing a local pressure drop. An expanding section of the meter then returns the flow to near its original pressure. These instruments are often selected where it is important not to create a significant pressure drop and where good accuracy is required.

• Used when higher velocity and pressure recovery is required.

• May be used when a small, constant percentage of solids is present.

VENTURI TUBE

Page 30: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

30#

FLOW NOZZLE

DP Type Flowmeter Used when higher velocity & pressure recovery are required Better suited for gas service than for liquid

Page 31: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

31#

Wedge flow meters can be used on just about any liquid or gas, just like orifice plates. However they are generally chosen for dirty service applications, or high viscosity applications such as slurry or heavy oil, or where solids are present. For regular service applications consider other types of meters first unless wedge meters are specified by customer as preferred.

Since they are a differential pressure device their sizing calculation is similar to that of other dP flowmeters.

WEDGE METER

P1

Q

H

D

LPHPSeal fluid

Transmitter

Seal pots

P2

Page 32: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

32#

V-CONE

The V-Cone is similar to other differential pressure (Dp) meters in the equations of flow that it uses. V-Cone geometry, however, is quite different from traditional Dp meters. The V-Cone constricts the flow by positioning a cone in the center of the pipe. This forces the flow in the center of the pipe to flow around the cone. V-cones can be used with viscous fluids and require little straight run.

Page 33: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

33#

Multivariable Pressure Transmitter

• A Multivariable pressure transmitter provides gauge pressure, differential pressure, and temperature measurement in a single instrument.

• Uses Smart digital HART communications for multiple measurements.

• Minimizes the number of transmitters and process connections

Page 34: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

34#

In a pitot tube (insertion DP meter), a probe consisting of two parts senses two pressures: impact (dynamic) and static. The impact pressure is sensed by one impact tube bent toward the flow (dynamic head). The averaging-type pitot tube has four or more pressure taps located at mathematically defined locations, averaging the velocity profile across the pipe or flow area, to measure the dynamic pressure. The static pressure is sensed through a small hole on the side (static head). They develop low differential pressure and like all head meters they use a differential pressure transmitter to convert the flow to an electrical transmission signal.

PITOT TUBE

Page 35: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

35#

PITOT TUBE FLOW PRINCIPLES

Pitot tubes make use of dynamic pressure difference. Orifices in the leading face register total head pressure, dynamic + static, while the hole in the trailing face only conveys static pressure. Pressure difference between the two gives dynamic pressure in pipe, from which flow can be calculated.Basic Mass rate of flow equation for single phase compressible and non-compressible fluids:

Page 36: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

36#

PIP PCCFL001STRAIGHT RUN REQUIREMENTS

PIP PCCFL001 includes tables for minimum straight run lengths with various upstream disturbances, providing upstream requirements for different beta ratios and downstream requirements per beta ratios regardless of upstream disturbance type.

Page 37: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

37#

DP METER CHARACTERISTICS

Recommended Service: Clean & Dirty Liquids, Gases, Some Slurries

Rangeability: 3:1 to 6:1 Maximum Flow: 95% of Range Pressure Loss: 20 to 60% of Measured Head Accuracy: 0.5 to 4% Straight Run Req’d: 5 - 40D Upstream, 2-5D Downstream Viscosity Effect: High Size: 2” to 24” Connection: Dependent on meter type Type of Output: Square Root

Page 38: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

38#

VARIABLE AREA FLOWMETER (ROTAMETER)FLOW PRINCIPLES

Rotameters are a variable area device. The float moves up and down in proportion to the fluid flow rate and the annular area between the float and the tube wall. As the float rises, the size of the annular opening increases. As this area increases, the differential pressure across the float decreases. The float reaches a stable position when the upward force exerted by the flowing fluid equals the weight of the float. Every float position corresponds to a particular flow rate for a particular fluid's density and viscosity. For this reason, it is necessary to size the rotameter for each application. When sized correctly, the flow rate can be determined by matching the float position to a calibrated scale on the outside of the rotameter. Many rotameters come with a built-in valve for adjusting flow manually.

Page 39: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

39#

VARIABLE AREA (ROTAMETER)CHARACTERISTICS

Recommended Service: Clean, Dirty & Viscous Liquids

Rangeability: 10 to 1 Pressure Loss: Medium Accuracy: 1 to 10% Straight Run Required: None Viscosity Effect: Medium Relative Cost: Low Sizes: <= 4” Connections: Threaded or Flanged Type of Output: Linear

Page 40: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

40#

Direct mass flow measurement is generally chosen for more critical control applications such as the blending of feedstocks or the custody transfer of valuable fluids. Generally chosen for high rangeability and mass flow applications, Coriolis technology is unaffected by changes in temperature, density, viscosity and conductivity. In most flow meters changes in these conditions require monitoring and correction.

CORIOLIS

Page 41: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

41#

CORIOLISFLOW PRINCIPLES

Flow is measured by using velocity sensors to detect the twist in the tube and transmit electrical signals having a relative phase shift that is proportional to mass flow.

Coriolis meters also measure density, whereby the resonant frequency of the forced rotation is a function of fluid density.

When the fluid is flowing, it is led through two parallel tubes. An actuator (not shown) induces a vibration of the tubes. The two parallel tubes are counter-vibrating, to make the measuring device less sensitive to outside vibrations. The actual frequency of the vibration depends on the size of the mass flow meter, and ranges from 80 to 1000 vibrations per second.

When no fluid is flowing, the vibration of the two tubes is symmetrical.

Page 42: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

42#

CORIOLIS CHARACTERISTICS

Recommended Service: Clean, Dirty & Viscous Liquids, Gases, Some Slurries Rangeability: 10 to 1 Pressure Loss: Medium to High Accuracy: to 0.1% in liquids & to 0.35% in gas Straight Run Required: None Viscosity Effect: None Relative Cost: High Sizes: > ½” Connections: Flanged & Clamp-on Design Type of Output: Linear

Page 43: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

43#

THERMAL MASS FLOWMETERFLOW PRINCIPLES

Thermal mass flow meters introduce heat into the flow stream and measure how much heat dissipates using one or more temperature sensors. This method works best with gas mass flow measurement.

The constant temperature differential method have a heated sensor and another sensor that measures the temperature of the gas. Mass flow rate is computed based on the amount of electrical power required to maintain a constant difference in temperature between the two temperature sensors.

In the constant current method the power to the heated sensor is kept constant. Mass flow is measured as a function of the difference between the temperature of the heated sensor and the temperature of the flow stream.

Both methods are based on the principle that higher velocity flows result in a greater cooling effect. Both measure mass flow based on the measured effects of cooling in the flow stream.

Page 44: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

44#

THERMAL MASS FLOWMETERCHARACTERISTICS

Recommended Service: Clean, Dirty & Viscous Liquids, Some Slurries, Gases Rangeability: 10 to 1 Pressure Loss: Low Accuracy: 1% Straight Run Required: None Viscosity Effect: None Relative Cost: High Sizes: 2” to 24” Connections: Threaded, Flanged Type of Output: Exponential

Page 45: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

45#

MAGNETIC FLOWMETERFLOW PRINCIPLES

A magnetic flow meter (mag flowmeter) is a volumetric flow meter which does not have any moving parts and is ideal for wastewater applications or any dirty liquid which is conductive or water based. Magnetic flowmeters will generally not work with hydrocarbons, distilled water and many non-aqueous solutions). Magnetic flowmeters are also ideal for applications where low pressure drop and low maintenance are required.

The operation of a magnetic flowmeter or mag meter is based upon Faraday's Law, which states that the voltage induced across any conductor as it moves at right angles through a magnetic field is proportional to the velocity of that conductor.

Page 46: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

46#

MAGNETIC FLOWMETERCHARACTERISTICS

Recommended Service: Clean, Dirty & Viscous Conductive Liquids & Slurries

Rangeability: 40 to 1 Pressure Loss: None Accuracy: 0.5% Straight Run Required: 5D Upstream, 2D Downstream Viscosity Effect: None Relative Cost: High Sizes: 1” to 120” Connections: Flanged Type of Output: Linear

Page 47: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

47#

Transit time ultrasonic meters employ two transducers located upstream and downstream of each other. Each transmits a sound wave to the other, and the time difference between the receipt of the two signals indicates the fluid velocity. Transit time meters usually require clean fluids and are used where high rangeability is required. Accuracy is within 1% for ideal applications.

ULTRASONIC METER

Page 48: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

48#

ULTRASONIC METER FLOW PRINCIPLES

FLOW Flow is measured by measuring the difference in transit time for two ultrasonic beams transmitted in a fluid both upstream and downstream.

Ultrasonic Meters are mainly used on large size lines where high rangeability is required.

t upTransmitter/ Receiver (T/R)t dn

Frequency pulse

Vm = (L / 2 * cos ) * [(TAB – TBA) / (TAB . TBA)]

Basic Flow Equation: Q = A * V

Transit time difference is proportional to mean velocity Vm, therefore Vm can be calculated as follows:

A

B

Transit length L

Page 49: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

49#

ULTRASONIC (DOPPLER)FLOW PRINCIPLES

Ultrasonic flowmeters are ideal for wastewater applications or any dirty liquid which is conductive or water based. The basic principle of operation employs the frequency shift (Doppler Effect) of an ultrasonic signal when it is reflected by suspended particles or gas bubbles (discontinuities) in motion. Current technology requires that the liquid contain at least 100 parts per million (PPM) of 100 micron or larger suspended particles or bubbles.

Page 50: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

50#

ULTRASONIC CHARACTERISTICS

Recommended Service: Clean & Viscous Liquids, Natural/Flare Gas Rangeability: 20 to 1 Pressure Loss: None Accuracy: 0.25% to 5% Straight Run Required: 5 to 30D Upstream Viscosity Effect: None Relative Cost: High Sizes: > ½” Connections: Flanged & Clamp-on Design Type of Output: Linear

Page 51: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

51#

TURBINE METER

Turbine meter is kept in rotation by the linear velocity of the stream in which it is immersed. The number of revolutions the device makes is proportional to the rate of flow.

Page 52: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

52#

TURBINE METERCHARACTERISTICS

Recommended Service: Clean & Viscous Liquids, Clean Gases Rangeability: 20 to 1 Pressure Loss: High Accuracy: 0.25% Straight Run Required: 5 to 10D Upstream Viscosity Effect: High Relative Cost: High Sizes: > ¼” Connections: Flanged Type of Output: Linear

Page 53: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

53#

Vortex meters can be used on most clean liquid, vapor or gas. However, they are generally chosen for applications where high flow rangeability is required. Due to break down of vortices at low flow rates, vortex meters will cut off at a low flow limit. Reverse flow measurement is not an option. For regular service applications this meter is the meter of choice by many end users.

VORTEX METER

Page 54: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

54#

VORTEX METERFLOW PRINCIPLES

RecoveryRecovery

Basic Flow Equation: Q = A * VFlowing Velocity of Fluid: V = (f * d) / St

f = Shedding Frequencyd = Diameter of Bluff BodySt = Stouhal Number (Ratio between Bluff Body Diameter and Vortex Interval)A = Area of Pipe

Page 55: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

55#

VORTEX CHARACTERISTICS

Recommended Service: Clean & Dirty Liquids, Gases Rangeability: 10 to 1 Pressure Loss: Medium Accuracy: 1% Straight Run Required: 10 to 20D Upstream, 5D Downstream Viscosity Effect: Medium Relative Cost: Medium Size: ½” to 12” Connection: Flanged Type of Output: Linear

Page 56: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

56#

PD meters measure flow rate directly by dividing a stream into distinct segments of known volume, counting segments, and multiplying by the volume of each segment. Measured over a specific period, the result is a value expressed in units of volume per unit of time. PD meters frequently report total flow directly on a counter, but they can also generate output pulses with each pulse representing a discrete volume of fluid.

POSITIVE DISPLACEMENT (PD) FLOWMETER

Page 57: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

57#

POSITIVE DISPLACEMENT (PD) FLOWMETERFLOW PRINCIPLES

PD meters have 3 parts:• Body• Measuring Unit• Counter Drive Train

Liquids inlet pressure exerts a pressure differential against the lower face of oval gear A, causing the two interlocked oval gears to rotate to position 2.

Liquid enters the cavity between oval gear B and meter body wall, while an equal volume of liquid passes out of the cavity between oval gear A and meter body wall. Meanwhile, inlet pressure continues to force the two oval gears to rotate to position 3

Quantity of liquid has again filled the cavity between oval gear B and meter body. This pattern is repeated moving four times the liquid capacity of each cavity with each revolution of the rotating gears. Therefore, the flow rate is proportional to the rotational speed of the gears.

Page 58: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

58#

POSITIVE DISPLACEMENT (PD)CHARACTERISTICS

Recommended Service: Clean & Viscous Liquids, Clean Gases Rangeability: 10 to 1 Pressure Loss: High Accuracy: 0.5% Straight Run Required: None Viscosity Effect: High Relative Cost: Medium Sizes: >12” Connections: Flanged Type of Output: Linear

Page 59: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

59#

PRACTICES, INDUSTRY STANDARDS & OTHER REFERENCESProcess Industry Practices (PIP)• PIP PCCGN002 – General Instrument Installation Criteria• PIP PCEFL001 – Flow Measurement GuidelinesIndustry Codes and Standards• American Gas Association (AGA)

– AGA 9 – Measurement of Gas by Multipath Ultrasonic Meters• American National Standards Institute (ANSI)

– ANSI-2530/API-14.3/AGA-3/GPA-8185 – Natural Gas Fluids Measurement – Concentric, Square-Edged Orifice Meters

– Part 1 General Equations and Uncertainty Guidelines– Part 2 Specification and Installation Requirements– Part 3 Natural Gas Applications– Part 4 Background, Development, Implementation Procedures and Subroutine Documentation

• American Petroleum Institute (API)– API RP 551 – Process Measurement Instrumentation– API RP 554 – Process Instrument and Control– API Manual of Petroleum Measurement Standards (MPMS):

– Chapter 4 – Proving Systems– Chapter 5 – Metering– Chapter 14 – Natural Gas Fluids Measurement

Page 60: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

60#

PRACTICES, INDUSTRY STANDARDS & OTHER REFERENCES

• American Society of Mechanical Engineers (ASME)– ASME B16.36 – Orifice Flanges– ASME MFC-1M – Glossary of Terms Used in the Measurement of Fluid Flow in Pipes– ASME MFC-2M – Measurement Uncertainty for Fluid Flow in the Closed Conduits– ASME MFC-3M – Measurement of Fluid Flow in Pipes Using Orifice, Nozzle and

Venturi– ASME MFC-5M – Measurement of Liquid Flow in Closed Conduits Using Transit-Time

Ultrasonic Flowmeters– ASME MFC-6M – Measurement of Fluid Flow in Pipes Using Vortex Flow Meters– ASME MFC-7M – Measurement of Gas Flow by Means of Critical Flow Venturi

Nozzles– ASME MFC-11M – Measurement of Fluid Flow by Means of Coriolis Mass Flowmeters– ASME MFC-14M – Measurement of Fluid Flows Using Small Bore Precision Orifice

Meters– ASME MFC-16M – Measurement of Fluid Flow in Closed Conduit by Means of

Electromagnetic Flowmeter

Page 61: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

61#

PRACTICES, INDUSTRY STANDARDS & OTHER REFERENCES

• The International Society for Measurement and Control (ISA)

– ISA S20 – Specification Forms for Process Measurement and Control Instruments, Primary Elements and Control Valves

• International Organization for Standardization (ISO)– ISO 5167 - Measurement of Fluid Flow by Means of Pressure Differential Devices

Inserted in Circular Cross-Section Conduits Running Full– Part 1: General principles and requirement– Part 2: Orifice Plates– Part 3: Nozzle and Venturi Tubes– Part 4: Venturi Tubes

Other References• Miller, R.W., Flow Measurement Engineering Handbook• ISA – Flow Measurement – Practical Guides for Measurement and Control,

Spitzer, D.W., Editor• ASME – Fluid Meters, Their Theory and Application

Page 62: [PPT]No Slide Title - Wikispacesptec107.wikispaces.com/file/view/Flow_Measurement.ppt · Web viewFlange Taps Corner Taps Radius Taps Vena-Contracta Taps Pipe Taps Multivariable Pressure

62#

QUESTIONS

Any Questions???