pp riemann

21
RIEMANN  Azreen Syazwani Mohd Azmi Nuramalina bte Fauzi Hani Azaitie binti Saad Wan Raihanah binti Meor Idris

Transcript of pp riemann

Page 1: pp riemann

8/3/2019 pp riemann

http://slidepdf.com/reader/full/pp-riemann 1/21

RIEMANN 

 Azreen Syazwani Mohd Azmi Nuramalina bte Fauzi 

Hani Azaitie binti Saad

Wan Raihanah binti Meor Idris

Page 2: pp riemann

8/3/2019 pp riemann

http://slidepdf.com/reader/full/pp-riemann 2/21

Bernhard Riemann• Georg Friedrich Bernhard Riemann.

• Born:17 September 1826 • Died: 20 July 1866 (age 39)

German mathematician • His father Friedrich Riemann was Lutheran minister.

• His mother is Charlotte Ebell 

Page 3: pp riemann

8/3/2019 pp riemann

http://slidepdf.com/reader/full/pp-riemann 3/21

Early years…. 

• Riemann was the second of six children(2

boys and 4 girls), shy, and suffered fromnumerous nervous breakdown.

• His father acted as teacher to his children 

and taught Bernhard until he was 10 years old.

• He was exhibited exceptional mathematical skills, such as fantastic calculation abilities,

from an early age but suffered from timidity and fear of speaking in public.

Page 4: pp riemann

8/3/2019 pp riemann

http://slidepdf.com/reader/full/pp-riemann 4/21

• 1840-Middle school – lyceum.

• High school – Johanneum Luneberg 

• Study the Bible intensively but often distracted by mathematics.

• 1846, at age 19-started to study philology and theology in order to become a priest and help family’s finances. 

• 1846 – University of Gottingen planning to study towards degree in Theology. However turn to study mathematics under Carl Friedrich Gauss(his lectures is method of least square)

• 1847- transfer to University of Berlin. His lecturers on that time is Dirichlet, Steiner and Einstein.

• He takes two years and returned to Gottingen in 1849.

Education

Page 5: pp riemann

8/3/2019 pp riemann

http://slidepdf.com/reader/full/pp-riemann 5/21

 

• 1854- held his first lecture which found Riemannian Geometry and set stage for Einstein’s general theory of relativity.

• 1857- attempt to promote Riemann to professor status at University of Gottingen-however fail.

• 1859- after death of Drichlet he was promoted to head mathematics department at Gottingen.

1862- married Elise Koch and had a daughter 

 Academia… 

Page 6: pp riemann

8/3/2019 pp riemann

http://slidepdf.com/reader/full/pp-riemann 6/21

REIMANN’S

CONTRIBUTION

Page 7: pp riemann

8/3/2019 pp riemann

http://slidepdf.com/reader/full/pp-riemann 7/21

LIST OF REIMANN’S CONTRIBUTIONs INSEVERAL AREAS… 

Combining

analysiswith geometry

Riemannian geometry 

Algebraic geometry 

Complex manifold geometry 

Riemann surface 

Page 8: pp riemann

8/3/2019 pp riemann

http://slidepdf.com/reader/full/pp-riemann 8/21

Real

analysis

Trigonometric series

Riemann integral = Riemann Sum

Page 9: pp riemann

8/3/2019 pp riemann

http://slidepdf.com/reader/full/pp-riemann 9/21

 Analyticnumber theory

Riemann zeta function 

Riemann hypothesis 

Page 10: pp riemann

8/3/2019 pp riemann

http://slidepdf.com/reader/full/pp-riemann 10/21

Complexanalysis

Cauchy – Riemann 

equations 

Page 11: pp riemann

8/3/2019 pp riemann

http://slidepdf.com/reader/full/pp-riemann 11/21

Sumbangan Riemann

Riemann Sum

-satu proses atau kaedah untuk mencari nilai hampir jumlah luas kawasan di

bawah lengkung pada graf menggunakan subselang.

Terdapat empat jenis Riemann Sum iaitu:

1. Kiri

2. Kanan

3. Titik tengah4. Trapezoidal rule

Page 12: pp riemann

8/3/2019 pp riemann

http://slidepdf.com/reader/full/pp-riemann 12/21

Sumbangan Riemann

Riemann Sum Kiri

Left (n) = ( f ( x 0) +  f ( x 1) +  f ( x 2) + ... +  f ( xn − 1))Δ x  

Page 13: pp riemann

8/3/2019 pp riemann

http://slidepdf.com/reader/full/pp-riemann 13/21

Sumbangan Riemann

Riemann Sum Kanan.

Right (n) = ( f ( x 1) +  f ( x 2) +  f ( x 3) + ... +  f ( xn))Δ x  

Page 14: pp riemann

8/3/2019 pp riemann

http://slidepdf.com/reader/full/pp-riemann 14/21

Sumbangan Riemann

Riemann Sum Titik Tengah

 x x x

 f  x x

 f  x x

 f  x x

 f n Mid  nn

))

2

(...)

2

()

2

()

2

(()( 1322110

Page 15: pp riemann

8/3/2019 pp riemann

http://slidepdf.com/reader/full/pp-riemann 15/21

Sumbangan RiemannRiemann Sum Trapezoidal Rule

))()(2...)(2)(2)((

2

)(1210 nn x f  x f  x f  x f  x f 

n

abnTrap

Page 16: pp riemann

8/3/2019 pp riemann

http://slidepdf.com/reader/full/pp-riemann 16/21

 Cauchy–Riemann differential equations 

C onsist of a system of two partial 

differential equations which must be satisfied if we know that a complex function is complex differentiable 

Page 17: pp riemann

8/3/2019 pp riemann

http://slidepdf.com/reader/full/pp-riemann 17/21

the equations are necessary and sufficient conditions for complex 

differentiation once we assume that its real and imaginary parts are 

differentiable real functions of two 

variables 

Cauchy–Riemann differential equations 

Page 18: pp riemann

8/3/2019 pp riemann

http://slidepdf.com/reader/full/pp-riemann 18/21

• The Cauchy –Riemann equations on a pair of real-valued functions of two real variables 

u ( x , y  ) and v ( x , y  ) are the two equations:

Cauchy–Riemann differential equations 

Page 19: pp riemann

8/3/2019 pp riemann

http://slidepdf.com/reader/full/pp-riemann 19/21

• Typically u and v are taken to be the real and imaginary parts respectively of a complex -valued function of a single complex variable z=x+iy , f ( x + i  y  ) = u ( x , y  ) + i v ( x,y  )

Cauchy–Riemann differential equations 

Page 20: pp riemann

8/3/2019 pp riemann

http://slidepdf.com/reader/full/pp-riemann 20/21

Then f = u + i v is complex-differentiable at that point if and only if the partial derivatives of u and v satisfy the Cauchy –Riemann equations 

(1a) and (1b) at that point 

Cauchy–Riemann differential equations 

Page 21: pp riemann

8/3/2019 pp riemann

http://slidepdf.com/reader/full/pp-riemann 21/21