powersys

download powersys

of 35

Transcript of powersys

  • 8/6/2019 powersys

    1/35

    9/2/06 EE532 Lecture 3(Ranade) 1

    EXPERT SYSTEMS AND SOLUTIONS

    Email: [email protected]

    [email protected]

    Cell: 9952749533www.researchprojects.infoPAIYANOOR, OMR, CHENNAI

    Call For Research Projects Finalyear students of B.E in EEE, ECE, EI,

    M.E (Power Systems), M.E (AppliedElectronics), M.E (Power Electronics)

    Ph.D Electrical and Electronics.Students can assemble their hardware in our

    Research labs. Experts will be guiding theprojects.

  • 8/6/2019 powersys

    2/35

    EE532

    Power System Dynamics and

    Transients

    Satish J Ranade

    Classical AnalysisNumerical Solution & Multi-machine

    Systems

    Lecture 5

    EUMP Distance Education Services

  • 8/6/2019 powersys

    3/35

    9/2/06 EE532 Lecture 3(Ranade) 3

    First swing stability-Numerical Solution

    A generator connected to an infinite bus through a line.

    Initially Pm=PePm Pe

    jXL

    +

    E/

    Pe

    jXd

    V/0

    Fixed (Infinite Bus)

    Pm

    Stability is governed by the Swing Equation

    d2/dt2 = (f/H) (Pm-Pe)

    d /dt = -syn

    Pe = E V sin () /(X+XL)

    Swing Equation

    Power Angle

    Equation

  • 8/6/2019 powersys

    4/35

    9/2/06 EE532 Lecture 3(Ranade) 4

    First swing stability-Numerical Solution

    Nonlinear ODE in state variable formd /dt = (f/H) (Pm-Pmax sin )

    d /dt = -syn

    Pmax=EV/(Xd+XL)

    Usually cannot get a closed form solution

  • 8/6/2019 powersys

    5/35

    9/2/06 EE532 Lecture 3(Ranade) 5

    First swing stability-Numerical Solution

    Numerical solution find (t) and (t)d /dt = (f/H) (Pm-Pmax sin )

    d /dt = -syn

    tn-2 tn-1 tn t

    nn-1

    n-2

    Step sizeDivide time into intervals

    tn-2,tn-1,tn,

    Predict n from n-1,

    n-2,

  • 8/6/2019 powersys

    6/35

    9/2/06 EE532 Lecture 3(Ranade) 6

    First swing stability-Numerical Solution

    Numerical solution find (t) and (t)d /dt = (f/H) (Pm-Pmax sin )

    d /dt = -syn

    tn-1 tn-2 tn+1 t

    n-1

    Euler Method

    Uniform time step h

    n = n-1+ h d/dt|t=tn-1h

    d/dt|t=tn-1

  • 8/6/2019 powersys

    7/35

    9/2/06 EE532 Lecture 3(Ranade) 7

    First swing stability-Equal Area Criterion

    Application

    1. Establish initial conditions

    2. Define sequence of events and network

    for each event

    3. Develop Power angle curves

    4. Apply EAC

  • 8/6/2019 powersys

    8/35

    9/2/06 EE532 Lecture 3(Ranade) 8

    First swing stability-Equal Area Criterion

    Example 1

    Stability under small change in mechanical power

    A 10 MVA, 0.8 pf lagging, 4160 V, 60Hz, three-phase

    generator supplies 50% rated power at .8 pf lagging

    to a 4160 V infinite bus.Determine if the generator is first-swing stable if the

    prime mover power is increased by 10%

    jXL

    +

    E/Pe

    jXd

    V/0

    Pm

    S

  • 8/6/2019 powersys

    9/35

    9/2/06 EE532 Lecture 3(Ranade) 9

    First swing stability-Numerical Solution-Small change in Pmf 60:= syn 2 f:= H 2:= sec D 0:=

    Pe delta( ) 2.828 sin delta( ):=

    0 377:=rad

    s

    0 8.133 deg:= h .001:=

    Pm n( ) .4 n h .1

  • 8/6/2019 powersys

    10/35

    9/2/06 EE532 Lecture 3(Ranade) 10

    First swing stability-Numerical Solution-Small change in Pm

    0 200 400 600 800 10008

    9

    10

    n

    deg

    n

    0 200 400 600 800 1000376.6

    376.8

    377

    377.2

    377.4

    n

    n

  • 8/6/2019 powersys

    11/35

    9/2/06 EE532 Lecture 3(Ranade) 11

    Pm

    Pe

    P

    o

    APm1

    C E

    2x 0 1 2 3 40

    0.5

    1

    1.5

    2Pe

    Pm

    Pm1

    Guess 2 10deg:=Given

    0

    2

    Pm1 Pe ( )( )

    d

    0

    Find 2( ) 9.77 deg=

    x asinPm1

    Pmax

    :=

    x 8.949 deg=

    Remember 0 8.13 deg:=

    EAC

    Equal Area Criterion-Small change in mechanical power

    Fi i bili N i l S l i S ll h i P

  • 8/6/2019 powersys

    12/35

    9/2/06 EE532 Lecture 3(Ranade) 12

    First swing stability-Numerical Solution-Small change in Pm

    0 200 400 600 800 10008

    9

    10

    n

    deg

    The EAC in the previous slide says angle swings to 9.77 deg

    and then swings back

    Oscillates around the new equilibrium of 8.949 deg

    ( Step size of 0.001 is a little big oscillation is growing

    Due to numerical instability)

  • 8/6/2019 powersys

    13/35

    9/2/06 EE532 Lecture 3(Ranade) 13

    First swing stability-Numerical Solution-Small change in Pm

    Effect of Damping Damper windings provide relative speed

    damping. Other effects provide absolute damping.

    This will make swing settle

    0 200 400 600 800 10008

    8.5

    9

    9.5

    n

    deg

    n

    0 200 400 600 800 1000376.9

    377

    377.1

    n

    n

    Swing equation with relative speed damping

    d /dt = (f/H) (Pm-Pmax sin -D (- syn)

  • 8/6/2019 powersys

    14/35

    9/2/06 EE532 Lecture 3(Ranade) 14

    First swing stability-Numerical Solution-Fault

    Example 2-Fault

    1 2

    3

    The infinite bus receives 1 pu real power at 0.95 power

    factor lagging

    A fault at bus 3 is cleared by opening lines from 1-3 and 2-3

    when the generator power angle Reaches 40 deg.

    Is the system first swing stable?

  • 8/6/2019 powersys

    15/35

    9/2/06 EE532 Lecture 3(Ranade) 15

    Example 2-Fault

    Pm

    Pe

    P

    o mcl

    0]d)sin(14.2[Pm]d)sin(915.0[Pmm

    cl

    cl

    0

    =+

    Apply EAC

  • 8/6/2019 powersys

    16/35

    9/2/06 EE532 Lecture 3(Ranade) 16

    First swing stability-Numerical Solution-Faultf 60:= syn 2 f:= H 3:= sec D 0.:=

    Pe delta( ) 2.828 sin delta( ):=

    0 377:= rads 0 23.946deg:= h .001:=

    Pm n( ) 1:=

    Pe delta n,( ) 2.4638sin delta( )( ) n h .1

  • 8/6/2019 powersys

    17/35

    9/2/06 EE532 Lecture 3(Ranade) 17

    First swing stability-Numerical Solution-Fault

    0 200 400 600 800 10000

    20

    40

    60

    ndeg

    n

    0 200 400 600 800 1000370

    375

    380

    385

    n

    n

    E l A C i i

  • 8/6/2019 powersys

    18/35

    9/2/06 EE532 Lecture 3(Ranade) 18

    Equal Area Criterion

    Example 2-Fault

    Pm

    Pe

    P

    o mcl

    23.95 40 55 554024

    Rotor swings to 55 degrees then swings back- STABLE

    Fi t i t bilit N i l S l ti F lt t>t i t 35

  • 8/6/2019 powersys

    19/35

    9/2/06 EE532 Lecture 3(Ranade) 19

    First swing stability-Numerical Solution-Fault t>trict=.35

    0 200 400 600 800 10000

    200

    400

    600

    ndeg

    n

    0 200 400 600 800 1000360

    380

    400

    420

    n

    n

    E l A C it i

  • 8/6/2019 powersys

    20/35

    9/2/06 EE532 Lecture 3(Ranade) 20

    Equal Area Criterion

    Example 2-Fault

    Pm

    Pe

    P

    o mcl

    23.95 40 55 15612024

    Rotor swings past 156 degrees UN STABLE

    E l A C it i

  • 8/6/2019 powersys

    21/35

    9/2/06 EE532 Lecture 3(Ranade) 21

    Equal Area Criterion

    Example 2-Fault- Critical Clearing

    Pm

    Pe

    P

    0 1 m=- 1cl=112.9

    23.95 15611224

    Rotor swings past 156 degrees UN STABLE

  • 8/6/2019 powersys

    22/35

    9/2/06 EE532 Lecture 3(Ranade) 22

    Stability of Numerical Solutions Can become unstable due to

    Roundoff

    Approximation

    tn-1 tn-2 tn+1 t

    n-1

    h

    d/dt|t=tn-1Approximation Error

  • 8/6/2019 powersys

    23/35

    9/2/06 EE532 Lecture 3(Ranade) 23

    Stability of Numerical SolutionsCan control

    Roundoff ( Reduce airthmetic operations)

    Approximation(Use more advanced method, but will increase arithmetic operations)

    Need to chose a reasonable step size ( or adaptively vary step size)

    Numerical stability Means the the global error remains bounded

    (See Crows Text for EE531/ Also see Kundur)

  • 8/6/2019 powersys

    24/35

    9/2/06 EE532 Lecture 3(Ranade) 24

    Stability of Numerical Solutions

    For the small change in Pm(Example 1) Euleris unstable even with h=.001

    0 2 4 6 8 10

    6

    8

    10

    1211.846

    6.136

    ndeg

    101 103 n h

    n

    Note x- axis units: n h = time in seconds

  • 8/6/2019 powersys

    25/35

    9/2/06 EE532 Lecture 3(Ranade) 25

    Additional Methods

    Taylor Series-based

    See Crow Text

    ...)tt(2

    1)tt()t(x)t(x

    )t),t(x(f:ODE

    2

    n2

    n

    n

    dt

    )t(xd

    n1ndt

    )t(dx

    n1nn1n

    nndt)t(dx

    +++==

    +++

    First order approximation gives the Euler method

  • 8/6/2019 powersys

    26/35

    9/2/06 EE532 Lecture 3(Ranade) 26

    Additional Methods

    Taylor Series-based Second Order

    ...)tt(2

    1)tt()t(x)t(x

    )t),t(x(f:ODE

    2

    n2

    n

    n

    dt

    )t(xd2

    n1ndt

    )t(dx

    n1nn1n

    nndt

    )t(dx

    +++=

    =

    +++

    ))t),t(x(f)t),t(x(f(2

    1)tt()t(x)t(x

    )tt/()]t),t(x(f)t),t(x(f[

    nn1n1nn1nn1n

    n1nnn1n1ndt

    )t(xd2

    n2

    ++=

    =

    ++++

    +++

    Approximate the second derivative to get a second order

    method

  • 8/6/2019 powersys

    27/35

    9/2/06 EE532 Lecture 3(Ranade) 27

    Additional Methods

    Taylor Series-based Second order method

    ))t),t(x(f)t),t(x(f(2

    1)tt()t(x)t(x

    nn1n1nn1nn1n ++= ++++

    We do not know f(x(tn+1 ),tn+1 ) so approximate it by theEuler formula

    ))t),t(x(f))}tt).(t),t(x(f)t(x(f({

    2

    1)tt()t(x)t(x

    nnn1nnnnn1nn1n+++= +++

    Euler formula for x(tn+1 )

  • 8/6/2019 powersys

    28/35

    9/2/06 EE532 Lecture 3(Ranade) 28

    Additional Methods Taylor Series-based Second order method

    ))t),t(x(f))}tt).(t),t(x(f)t(x(f({2

    1

    )tt()t(x)t(x nnn1nnnnn1nn1n+++=

    +++

    Kundur and GS call this modified Euler. It is also a second order

    Runge Kutta. Our texts write the formula as follows:

    At time tn we know x(tn)

    Calculate derivative dx/dt=f(x(tn), tn)Now estimate x(tn+1 ), cal the estimate x

    ~

    x~(tn+1 ) = x(tn)+h f(x(tn), tn), h= tn+1 tnNext estimate a new value for the derivative, call it dx~/dt

    dx~/dt=f(x~ (tn+1 ), tn+1 )

    Average the derivatives dx/dt and dx~/dt

    Finally, the next value x(tn+1 ) = x(tn)+h (dx/dt + dx~/dt)/2

  • 8/6/2019 powersys

    29/35

    9/2/06 EE532 Lecture 3(Ranade) 29

    Additional Methods Taylor Series-based Second order method

    ))t),t(x(f))}tt).(t),t(x(f)t(x(f({2

    1

    )tt()t(x)t(x nnn1nnnnn1nn1n+++=

    +++

    h

    Actual

    Estimated

    Slope 1 Slope 2

    Average

    First Estimate

    Final Estimate

  • 8/6/2019 powersys

    30/35

    9/2/06 EE532 Lecture 3(Ranade) 30

    Additional Methods Taylor Series-Fourth Order Runge Kutta

    )ht,3hK)t(x(f2K)2/ht,2/2hK)t(x(f3K)2/ht,2/1hK)t(x(f2K )t),t(x(f1K

    tth6/)4K3K22K21K(h)t(x)t(x

    nn

    nn

    nn

    nn

    n1n

    n1n

    ++=++=++=

    =

    =++++=

    +

    +

  • 8/6/2019 powersys

    31/35

    9/2/06 EE532 Lecture 3(Ranade) 31

    Additional Methods Taylor Series-Fourth Order Runge Kutta

    )ht,3hK)t(x(f2K)2/ht,2/2hK)t(x(f3K)2/ht,2/1hK)t(x(f2K )t),t(x(f1K

    tth6/)4K3K22K21K(h)t(x)t(x

    nn

    nn

    nn

    nn

    n1n

    n1n

    ++=++=++=

    =

    =++++=

    +

    +

  • 8/6/2019 powersys

    32/35

    9/2/06 EE532 Lecture 3(Ranade) 32

    Additional Methods Multistep

    2

    n1n0n )tt(a)tt(a)t(x)t(x ++=)t),t(x(f)tt(a2adt/dx

    n10 =+=

    Assume a polynomial fit, e.g.,

    Then

    Next for t=tn )t),t(x(fa nn0 =

    And for t=tn+1 = tn+h )t),t(x(fhaa 1n1n10 ++=+So h2/))t),t(x(f)t),t(x(f(a 1n1n1n1n1 ++++ =

    h2/))t),t(x(f)t),t(x(fh)t),t(x(f(h)t(x)t(x 1n1n1n1n2

    nnn1n +++++ ++=

    2/))t),t(x(f)t),t(x(f(h)t(x)t(x 1n1nnnn1n +++ ++=

  • 8/6/2019 powersys

    33/35

    9/2/06 EE532 Lecture 3(Ranade) 33

    Additional Methods Multistep Assume a polynomial fit, e.g.,

    2/))t),t(x(f)t),t(x(f(h)t(x)t(x 1n1nnnn1n +++ ++=

    If we approximate f(x(tn+1 ),tn+1 ) as before we get the

    modified Euler or RK2

    Alternatively, if we solve for x(tn+1 ) we call the method

    The Trapezoidal rule.

    Nonlinear case, must solve iteratively

    Also called an Implicit Method

  • 8/6/2019 powersys

    34/35

    9/2/06 EE532 Lecture 3(Ranade) 34

    Additional Methods Trapezoidal Rule

    2/))t),t(x(f)t),t(x(f(h)t(x)t(x 1n1nnnn1n +++ ++=

    h

    Trapezoid approximates

    Area under the curve

  • 8/6/2019 powersys

    35/35

    9/2/06 EE532 Lecture 3(Ranade) 35

    Next

    More on Numerical Solution

    Multimachine System