Powerpoint Templates Page 1 Powerpoint Templates Quantum Chemistry Revisited.

16
Powerpoint Templates Page 1 Powerpoint Templates Quantum Chemistry Revisited

Transcript of Powerpoint Templates Page 1 Powerpoint Templates Quantum Chemistry Revisited.

Powerpoint TemplatesPage 1

Powerpoint Templates

Quantum Chemistry

Revisited

Powerpoint TemplatesPage 2

Wave Equation

Non Relativistic Limit

βˆ‡2πœ“ = ΰ΅¬π‘˜πœ”ΰ΅°2 πœ•2πœ“πœ•π‘‘2

πœ“αˆΊπ‘₯,𝑦,𝑧,π‘‘αˆ»= πœ“αˆΊπ‘₯,𝑦,π‘§αˆ».πœ“αˆΊπ‘‘αˆ» Possible solution: Plane wavesπœ“αˆΊπ‘‘αˆ»= πœ“π‘œπ‘’βˆ’π‘–πœ”π‘‘

Powerpoint TemplatesPage 3

βˆ‡2πœ“ = βˆ’ΰ΅¬2πœ‹πœ†ΰ΅°

2 πœ“

Ξ»= β„Žπ‘

βˆ‡2πœ“ = βˆ’ΰ΅¬2πœ‹π‘β„Ž ΰ΅°

2 πœ“

𝐸= 𝑇+ 𝑉= 𝑝22π‘š+ 𝑉

Powerpoint TemplatesPage 4

𝑝= ΰΆ₯2π‘š(πΈβˆ’ 𝑉)

βˆ‡2πœ“ = βˆ’ΰ΅¬2πœ‹β„Žΰ΅°

2 2π‘š(πΈβˆ’ 𝑉)πœ“

(βˆ’ β„Ž28πœ‹2π‘šβˆ‡2 + 𝑉)πœ“ = πΈπœ“

Time Independent SchrΓΆdinger Equation

Powerpoint TemplatesPage 5

𝐸= β„ŽΞ½= β„Ž πœ”2πœ‹

πœ“αˆΊπ‘‘αˆ»= πœ“π‘œπ‘’βˆ’π‘–πœ”π‘‘

π‘‘πœ“αˆΊπ‘‘αˆ»π‘‘π‘‘ = βˆ’π‘–2πœ‹πΈβ„Ž πœ“π‘œπ‘’βˆ’π‘–πœ”π‘‘

𝑖 β„Ž2πœ‹π‘‘π‘‘π‘‘πœ“αˆΊπ‘‘αˆ»= πΈπœ“αˆΊπ‘‘αˆ» Time dependent SchrΓΆdinger Equation

Powerpoint TemplatesPage 6

α‰†βˆ’ β„Ž28πœ‹2π‘šβˆ‡2 + π‘‰α‰‡πœ“(π‘₯,𝑦,𝑧)πœ“(𝑑) = 𝑖 β„Ž2πœ‹π‘‘π‘‘π‘‘πœ“(π‘₯,𝑦,𝑧)πœ“(𝑑)

Lousy relativistic equation

2nd derivative in space

1st derivative in time

Many fathers equation

(Klein, Fock, SchrΓΆdinger, de Broglie, ...)

Klein-Gordon Equation (1926)

Powerpoint TemplatesPage 7

(E – V)2 = p2c2 + m2c4

β„Ž2𝑐24πœ‹2 𝛿2πœ‘(π‘ž)π›Ώπ‘ž2 +αˆΎαˆΊπΈβˆ’ π‘‰αˆ»2 βˆ’ π‘šπ‘œ2𝑐4αˆΏπœ‘αˆΊπ‘žαˆ»= 0

β„Ž2𝑐24πœ‹2 𝛿2πœ“αˆΊπ‘ž,π‘‘αˆ»π›Ώπ‘ž2 βˆ’ β„Ž24πœ‹2 𝛿2πœ“αˆΊπ‘ž,π‘‘αˆ»π›Ώπ‘‘2 – π‘–β„Žπ‘‰πœ‹ π›Ώπœ“(π‘ž,𝑑)𝛿𝑑 + αˆΊπ‘‰2 βˆ’ π‘šπ‘œ2𝑐4αˆ»πœ“(π‘ž,𝑑) = 0

Free Electron (V = 0)

β„Ž2𝑐24πœ‹2 𝛿2πœ“αˆΊπ‘ž,π‘‘αˆ»π›Ώπ‘ž2 βˆ’ β„Ž24πœ‹2 𝛿2πœ“αˆΊπ‘ž,π‘‘αˆ»π›Ώπ‘‘2 βˆ’ π‘šπ‘œ2𝑐4 πœ“(π‘ž,𝑑) = 0

Powerpoint TemplatesPage 8

Klein-Gordon Equations

Eigen values for E2

Β± E solutions

Matter

Antimatter

Carl Anderson discovers the positron in 1932

KG works well for bosons (integer spin particles)

Powerpoint TemplatesPage 9

(π‘Žπ›»+ 𝑏𝑖𝑐 𝑑𝑑𝑑)2 = π‘Ž2𝛻2 βˆ’ 𝑏2 1𝑐2 𝑑𝑑𝑑2

a = b = 1

ab + ba = 0

π‘Ž = ቂ1 00 βˆ’1ቃ 𝑏 = ቂ0 11 0ቃ π‘œπ‘Ÿ 𝑐 = ቂ0 βˆ’π‘–π‘– 0ቃ

Powerpoint TemplatesPage 10

𝛼1 = 0 00 0 0 11 00 11 0 0 00 0 𝛼2 = 0 00 0 0 βˆ’π‘–π‘– 00 βˆ’π‘–π‘– 0 0 00 0

𝛼3 = 0 00 0 1 00 βˆ’11 00 βˆ’1 0 00 0 𝛽 = 1 00 1 0 00 00 00 0 βˆ’1 00 βˆ’1

3 dimensions and time

Powerpoint TemplatesPage 11

ΰ΅­βˆ’ 𝛼𝑖 π‘–β„Žπ‘2πœ‹ π›Ώπ›Ώπ‘ž3

𝑖=1 + π›½π‘šπ‘œ2𝑐4ΰ΅±πœ“(π‘ž,𝑑) = π‘–β„Ž2πœ‹π›Ώπœ“αˆΊπ‘ž,π‘‘αˆ»π›Ώπ‘‘

Dirac Equation

2 positive solutions

2 negative solutions

Matter / Antimatter

Spin Β± Β½

Powerpoint TemplatesPage 12

𝜎1 = ቂ1 00 βˆ’1ቃ 𝜎2 = ቂ0 11 0ቃ 𝜎3 = ቂ0 βˆ’π‘–π‘– 0ቃ Pauli Matrices

𝑝= βˆ’π‘– β„Ž2πœ‹βˆ‡βˆ’ 𝑒𝑐𝐴

𝜎.𝑝= 𝜎.(βˆ’π‘– β„Ž2πœ‹βˆ‡βˆ’ 𝑒𝑐𝐴)

Powerpoint TemplatesPage 13

𝐻= 12π‘š(𝜎.𝑝)2 + 𝑉

𝜎.𝑝 𝜎.𝑝= 𝑝2𝐼+ π‘–πœŽ.(𝑝π‘₯𝑝)

β„Ž2π‘š(βˆ’π‘– β„Ž2πœ‹βˆ‡βˆ’ 𝑒𝑐𝐴)2 + π‘‰βˆ’ π‘’β„Ž4πœ‹π‘šπ‘πœŽ1.𝐡ࡨ𝛹= π‘–πœŽ1 β„Ž2πœ‹π‘‘π‘‘π‘‘π›Ή

𝛹= ቀ10α‰πœ“ 𝛹= ቀ01α‰πœ“

Powerpoint TemplatesPage 14

α‰†βˆ’ β„Ž28πœ‹2π‘š 𝛿2π›Ώπ‘ž2 + π‘‰α‰‡πœ“αˆΊπ‘ž,π‘‘αˆ»= 𝑖 β„Ž2πœ‹ π›Ώπœ“(π‘ž,𝑑)𝛿𝑑

α‰†βˆ’ β„Ž28πœ‹2π‘š 𝛿2π›Ώπ‘ž2 + π‘‰α‰‡πœ“βˆ—αˆΊπ‘ž,π‘‘αˆ»= βˆ’ 𝑖 β„Ž2πœ‹ π›Ώπœ“βˆ—(π‘ž,𝑑)𝛿𝑑

πœ“βˆ—α‰†βˆ’ β„Ž28πœ‹2π‘š 𝛿2π›Ώπ‘ž2 + π‘‰α‰‡πœ“ = πœ“βˆ—π‘– β„Ž2πœ‹ π›Ώπœ“π›Ώπ‘‘

πœ“α‰†βˆ’ β„Ž28πœ‹2π‘š 𝛿2π›Ώπ‘ž2 + π‘‰α‰‡πœ“βˆ—= βˆ’ πœ“π‘– β„Ž2πœ‹ π›Ώπœ“βˆ—π›Ώπ‘‘

Powerpoint TemplatesPage 15

𝑖 β„Ž2πœ‹ π›ΏαˆΎπœ“πœ“βˆ—αˆΏπ›Ώπ‘‘ = βˆ’ β„Ž28πœ‹2π‘šπœ“βˆ— 𝛿2π›Ώπ‘ž2 πœ“+ β„Ž28πœ‹2π‘šπœ“ 𝛿2π›Ώπ‘ž2 πœ“βˆ—

π›ΏπœŒπ›Ώπ‘‘ = βˆ’ β„Ž4πœ‹π‘šπ‘– π›Ώπ›Ώπ‘žπœ“βˆ— π›Ώπ›Ώπ‘ž πœ“βˆ’ πœ“ π›Ώπ›Ώπ‘ž πœ“βˆ—ΰ΅¨

𝐽= β„Ž4πœ‹π‘šπ‘– α‰‚πœ“βˆ— π›Ώπ›Ώπ‘ž πœ“βˆ’ πœ“ π›Ώπ›Ώπ‘ž πœ“βˆ—α‰ƒ π›ΏπœŒπ›Ώπ‘‘ + βˆ‡π½= 0

πœŒπ‘‰αˆΊπ‘‘αˆ»+ ΰΆ± 𝐽𝑆 .π‘›αˆ¬Τ¦π‘‘π‘†= 0

Powerpoint TemplatesPage 16

There cant be flow in pure real and pure imaginary wave

functions.

In stationary states the flow is either zero or constant.

div D = ρ implies that stationary states create static

electric fields.

rot H = J + D/t implies that stationary states with J≠0

create static magnetic fields.

Static magnetic fields induce currents J which create

induced magnetic fields.

Time dependent magnetic fields induce time dependent

electric fields (rot E = - B/t), which means time

dependent charge densities to which correspond non

stationary states.