PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8....

50
A. Tasic © 2009 1 On the Phase Noise and Noise Factor in Circuits and Systems - New Thoughts on an Old Subject Aleksandar Tasic QCT - Analog/RF Group Qualcomm Incorporated, San Diego

Transcript of PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8....

Page 1: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 20091

On the Phase Noise

and Noise Factor in

Circuits and Systems -New Thoughts on an Old

SubjectAleksandar Tasic

QCT - Analog/RF Group

Qualcomm Incorporated, San Diego

Page 2: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 2009 2

Outline

• Spectral Analysis of Noise in LC-Oscillators

• LC-tank, gm-cell, bias current source noise

• (Phase-) Noise factor

• Bipolar vs. CMOS LC-Oscillators

• LC-Oscillators Noise Reduction Methods

• Mixer Noise Factor from VCO Noise Factor

• Oscillator Phase Noise in Receiver’s SNR

• LNA and Mixer Noise Factors in a Receiver

• BBFilter Noise Transfer vs. LO/Mix Duty

Page 3: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 20093

Phase Noise Model

of Bipolar and

CMOS

LC-Oscillators

Page 4: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 20094

Outline

• Oscillation Condition

• LC-Tank Noise Folding

• gm-Cell Noise Folding

• Bias-Current Source Noise Folding

• Phase-Noise Model of Bipolar LC-Oscillators

• Phase-Noise Model of CMOS LC-Oscillators

• Bipolar vs. CMOS LC-Oscillators

Page 5: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 20095

LC-Oscillator Noise Sources

LC-tank noise

transconductor noise

bias current source noise

L/2

Q1 Q

2

QCS

~ ~

vB1

vB2

iC1 iC2

iB2iB1

iGTK

iBCS

2C

ITAIL

RTK/2 RTK/2

L/2

2C

2 ( ) 2 / 2N C C mi I qI KTg

2 ( ) 2N TK TKi G KTG

2 ( ) 2N B Bv r KTr

2

, , ,( ) (1 2 )N BCS m CS B CS m CSi I KTg r g

Page 6: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 20096

Oscillator and Phase-Noise Model

• phase-modulating noise component (double-sided)

*0 , 0 , 0

1( ) ( ) ( )

2PM N O N Oi f i f i f

*0 , 0 , 0

1( ) ( ) ( )

2PM N O N Oi f i f i f

• phase-related noise power (single-sided)2

2 2 ,2, 0 0 0 2

1( ) ( ) ( )

2 4

PM TOTPM TOT PM PM

TOT

iv i f i f Z f

C

iAM

iS

iPM

*, 0( )N Oi f

, 0( )N Oi f‘

LC-tank

gm-cell

+Nv

,NOv

,NOi

Page 7: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 20097

gm-Cell Transfer Function

• Fourier domain – (magnitude) complex harmonic components

2f0f0-f0f0-2

g0 g2g-2

f0-4

g-4 g4

4f03f0-3f0

2

2

sin( )i

i dg gd

i d

00

0

/ 42

2/4

0

2( )

Tj i t

iT

g g t e dtT

1

2d

k

• small-signal gain in the presence of a large signal

1 / f 0

1 / 2 f 0

- g = g m / 2 d / 2 f 0

t

i OUT

v S

= d i d v S g IN OUT

Page 8: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 20098

Oscillation Condition• harmonics: gm-cell and oscillation signal

• convolution:

• oscillation signal:

• oscillation condition:

g0

2f0f0-f0f0-2

g2g-2

vS/2 vS/2

g0

2f0f0-f0f0-2

g-2

g0

g2vS/2 vS/2vS/2 vS/2

0 0 0 00 0 2 2 0 2

( ) ( ) ( ) ( )( )

2 2 2 2

S S S SS TK S TK

v f v f v f v fv g g g g R g g v R

0 2 TKg g Gsmall-signal loop gain:

k=RTKgm/2

duty cycle:

d=1/(2k)

Page 9: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 20099

0( )Nv f

2f0f0-f0f0-2

g0

0( )Nv f0( )Nv f

0( )Nv f

g2g-2

0( )Nv f

2f0f0-f0f0-2

g0 0( )Nv f0( )Nv f

0( )Nv f g0g0g0

LC-Tank Noise Folding• convolution: g0 and g 2 harmonics and LC-tank noise

0( )Nv f

2f0f0-f0f0-2

g0

0( )Nv f0( )Nv f

0( )Nv f

g2g-2

0( )Nv f

2f0f0-f0f0-2

0( )Nv f 0( )Nv f0( )Nv fg-2 g2g2g-2

Page 10: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 200910

• LC-tank noise contribution:

LC-Tank Noise Folding

, 0 0 0 2 0( ) ( ) ( )N O N Ni f g v f g v f

, 0 0 0 2 0( ) ( ) ( )N O N Ni f g v f g v f

, 0 0 0 2 0( ) ( ) ( )N O N Ni f g v f g v f

, 0 0 0 2 0( ) ( ) ( )N O N Ni f g v f g v f

0( )

Nv f

2f0f0-f0f0-2

g0 0( )

Nv f

0( )

Nv f

0( )

Nv f g0g0g0

0( )

Nv f

2f0f0-f0f0-2

0( )

Nv f 0

( )N

v f0

( )N

v fg-2 g2g2g-2

Page 11: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 200911

LC-Tank Noise Contribution• phase-modulating noise component:

• LC-tank noise transfer function:

2 2 2 220 22( ) ( ) 2 ( )2 ( ) 4

( ) 14 4 4 4

N NPM TK TK TKTK TKTK

TK TK TK TK

g g v R G v Ri R KTGF R

KTG KTG KTG KTG

• LC-tank noise factor:

, 0 , 0 , 0 , 0

1( ) ( ) ( ) ( )

2PM N O N O N O N Oi i f i f i f i f

0 2 0 0 2 0( ) ( ) ( ) ( )PM N Ni g g v f g g v f

• phase-related noise power (k>>1, g=g0=g 2):

2 2 20 2( ) ( )TK TKg R g g G

2 2 20 2( ) ( ) ( )

PM NTK TKi R g g v R

Page 12: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 200912

0( )

Nv f

2f0f0-f0f0-2

g0

0( )

Nv f

0( 3 )

Nv f

0( 3 )

Nv f

g2g-2

0( )

Nv f

2f0f0-f0f0-2

g0 0( )

Nv f

0( )

Nv f

0( )

Nv f g0g0g0

0( )

Nv f

2f0f0-f0f0-2

0( )

Nv f 0

( )N

v f0

( )N

v fg-2 g2g2g-2

f0-4

g-4

0(3 )

Nv f

0(3 )

Nv f

g4

0( )

Nv f

0( )

Nv f

4f03f0-3f0

gm-Cell Noise Folding• convolution: g0 and g 2 harmonics and f0 gm-cell noise

• gm-cell noise around odd multiples of the oscillation frequency is

folded to the LC-tank noise around the oscillation frequency

Page 13: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 2007 13

gm-Cell Noise Contribution

• phase-modulating noise component:

• number of (g2i-2+g2i) folding pairs:

• phase-related noise power (k>>1, g=g0=g 2=…):

0 2 0 0 2 0

2 4 0 2 4 0

2 2 2 0 2 2 2 0

( ) ( ) ( ) ( )

+( ) (3 ) ( ) (3 ) ...

+( ) ((2 1) ) ( ) ((2 1) )

PM N N

N N

i i N i i N

i g g v f g g v f

g g v f g g v f

g g v i f g g v i f

2 2 2 2 20 2 2 4 2 2 2( ) ( ) ( ) ... ( ) ( )

PM Nm IN i i m INi g g g g g g g v g

• number of g2i harmonic components:

0

0

2 1 1

2

f

d f d

1 2

2 2

kk

d

-g=gm/2d/2f0

t

fd/2f0

Page 14: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 200914

gm-Cell Noise Contributions

2 22 (2 ) 2 4(2 ) 2

4 4

PM B TK BB B TK

TK TK

i r kG KTrF r kr G kc

KTG KTG

• gm-cell noise factors:

• phase-related noise power:2

2 2 2 2 2 222 2 2

1 2( ) ( ) ( ) ( ) 2 ( )

2PM N N N

im IN i i m IN m IN m IN

gi g g g v g v g dg v g

d d

• gm-cell noise transfer function:

2 2 2 2 21( ) 2 2 ( ) 2 ( )

2 2

mm IN TK TK

gg g dg d kG kG

k

2 22 (2 ) 2 2 / 1(2 ) /

24 4

PM C TK mC TK m

TK TK

i I kG KT gF I kG g

KTG KTG

Page 15: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 2007 15

2 2 2 2 2 20 2 4 2 2( ) 2 4 4 ... 4 ( )

PM NB i Bi r g g g g v r

2

0

2

/ 2

22 2 2 2 2 22

2 21 / 2 0

2 4 4( ) 2 2 ( ) (1 )

3

T

B i

i T

tg r g g g t dt g dt g d

T T

22 ( ) 2(2 ) 2

34

PM B

B

TK

i rF r kc

KTG

rB Noise Contribution – Be Precise

• phase-related noise power (k>>1):

• Paseval’s Theorem:

• rB noise factor:

Page 16: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 200916

Bias Current-Source Noise

Transfer Function• gm-cell large-signal V-to-I transfer function

I

VIN

1/f0

OUT

1 / f

1

-1

IOUT

0

• Fourier domain – (magnitude) complex harmonic components

2f0f0-f0f0-2

c1c-1

f0-4

c-3 c3

4f03f0-3f0

2 1

sin((2 1) / 2)

(2 1) / 2i

ic

i

Page 17: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 200917

• BCS noise factor:

• phase-related noise power:

• BCS noise transfer function:

22 ( ) (1 2 ) 2 (1 2 )( )

4 4 4

1 1 (1 2 ) ( ) (2 ) (2 )

2 2

PM BCS m B m TKBCS

TK TK TK

C B

i I KTg r g KT kG kcF I

KTG KTG KTG

k kc k kc k F I F r

BCS Noise Contribution

2,2 2( ) 1

( ) ( )4 4

PM DIFF BCSPM BCS N BCS

i Ii I i I

2 1( )

4BCSg I

BCS noise around even multiples of the oscillation frequency is

folded to the LC-tank noise around the oscillation frequency

Page 18: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 200918

Phase-Noise Model of

Bipolar Switching LC-Oscillators

• Noise factor:

( ) (2 ) (2 ) ( )

1 2 1 1 21 ( ) 1 (1 ) ( )

2 3 2 2 3

TK C B BCSF F R F I F r F I

F kc k kc k kc k

2 2 2

( ) (2 ) (2 ) ( ) 4

(4 ) (4 )S

TK C B BCS TK

TOT TOT

R I r I KTG F

C v C

L L L LL

• Phase noise:

2

2 2

1 21 (1 ) ( )

4 2 3( )8(4 )

TK

TTOT

k kc kKTG

VC kL

8S Tv kV

Page 19: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 200919

• Constant phase-noise contributions

• LC-tank noise contribution ~ 1

• gm-cell current shot noise contribution ~ ½

• Small-signal loop-gain related contributions

• gm-cell base-resistance noise contribution ~ 0.66ck

• phase-noise contribution of the bias current source is

k-times larger then the noise contribution of the gm-cell ~

k(½+ck)!

Phase Noise Model of

Bipolar Switching LC-Oscillators

1 2 11 ( )

2 3 2F kc k kc

Page 20: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 200920

• high ss loop-gain, high quality LC-tank, BCS noise present:

2

1 1( )

3 1 12 2~ ~5 10

k kc kc

kk kL

e.g., k>>1(=10), c<<1(~0.01)

2

7 3(1 )

56 2~ ~ 14

k

kL

e.g., k~1(=2), c~1(~0.5)

Low/High-Performance VCO Designs

• low ss loop-gain, low quality LC-tank, BCS noise present:

• high ss loop-gain, high quality LC-tank, BCS noise eliminated:

e.g., k>>1(=10), c<<1(~0.01)

2 2

1 21

7.8 1 1 12 3~ ~5 10 10

kc

k kL

Page 21: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 200921

Single/Double-Switch CMOS LC-VCOs

2

,( ) 2N BCS m CSi I KT g

2 ( ) 2N D mi I KT g

2 ( ) 2N TK TKi G KTG

TKN

m

Gd

g

Q1 Q

2

Q3 Q

4

Q2

QCS

iD1 iD2

iBCS

Q1

iD1 iD2

iBCSQCS

iD3 iD4

L/2

iGTK

2C

RTK/2 RTK/2

L/2

2C

VDD

L/2

iGTK

2C

RTK/2 RTK/2

L/2

2C

2

TKC

m

Gd

g

2

, ,( ) 2N D P P m Pi I KT g

2

, ,( ) 2N D N N m Ni I KT g

Page 22: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 200922

Phase Noise Model of

CMOS LC-Oscillators

,

( ) (2 ) ( )

1 /(4 )

SS TK D BCS

SS m CS TK

F F R F I F I

F g G

2 2 2

( ) (2 ) ( ) 4

(4 ) (4 )S

TK D BCS TK

TOT TOT

R I I KTG F

C v C

L L LL

• Phase noise:

,

22

1 /(4 )4

2(4 ) ( )

m CS TKTKSS

TAIL TK

g GKTG

C I R

L

• Noise factor ( N= P, gm,N=gm,P):

,

( ) (4 ) ( )

1 /

DS TK D BCS

DS m CS TK

F F R F I F I

F g G

,

22

1 /4

4(4 ) ( )

m CS TKTKDS

TAIL TK

g GKTG

C I R

L

Page 23: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 200923

Phase Noise Model of

CMOS LC-Oscillators

• Constant phase-noise contributions

• LC-tank noise contribution ~ 1

• gm-cell drain-current thermal noise contribution ~

• Small-signal loop-gain related contributions (?)

• bias current source noise contribution ~ gm,CS/GTK (k )

,1 /m CS TKF g G

Page 24: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 200924

CMOS vs. Bipolar LC-Oscillators

1 21

2 3BIPF kc

1CMOSF

• noise factors (for removed BCS noise):

• bipolar VCO better for the same power consumption (vs,BIP=vs,CMOS)

3 2 5

2 3 3kc

8

TKB

Rkr

• e.g., k=10, RTK=800

80010

80Br

• e.g., k=10, RTK=80

801

80Br

Page 25: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 200925

CMOS vs. Bipolar LC-Oscillators

• power consumption figure of merit:

• VCC=1.8V, vs,BIP=0.4V, vs,SS-CMOS=1.2V, (3ICC,BIP=ICC,SS-CMOS)

2

0

10log ( ) CC CCFOM V IL

4.8BIP SS CMOSFOM FOM dB

• VCC=1.8V, vs,BIP=0.4V, vs,DS-CMOS=1.2V, (1.5ICC,BIP=ICC,DS-CMOS)

7.8BIP DS CMOSFOM FOM dB

Page 26: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 200926

Phase-Noise Model Conclusions

Parametric Phase-Noise Model

electrical circuit parameters (ss loop gain)

worst-case phase noise (bandwidth unlimited)

Bipolar vs. CMOS LC-Oscillators

bipolar ss loop-gain related contributions

vS,BIP~k (<<VCC), vS,CMOS~VCC

bipolar capacitive tapping for larger vS,BIP, but

also larger k-related noise contributions and

power consumption

Page 27: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 2007 27

Verification of the Phase-Noise Model

Page 28: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 2007 28

VCO Noise Contributions

LC-tank

noise ~ 1

transconductor

noise ~

n(0.5+0.66c•k)

bias current-source

noise ~ n(0.5+c•k)•k

Q1 Q

2

QCS

vB1

vB2

iC1 iC2

iB2iB1

iBCS

CA

CB

CA

CB

ITAIL

C C

L

V V

iGTK

VCC

VTUNE

~ ~

• f0~5.74GHz, RTK~340 , n~1.65, c~0.25, VCC=2.2V

Page 29: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 2007 29

gm-Cell Noise Contributions

0,7

0,75

0,8

0,85

0,9

0,95

1

4 6 8 9,6

calculations

simulations

F (2IC)

k

0

0,5

1

1,5

2

2,5

4 6 8 9,6

calculations

simulations

F (2r B)

k

( ) 0.872

C

nF I

2 2(2 ) 1.65 0.25 0.27

3 3BF r nkc k k

• k=0.5gmRTK<0.5gm,actualRTK=0.5gmRTK/(1+gmrE)=kactual

Page 30: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 2007 30

Bias Noise Contributions

,

1( ) 0.82

2C CSF I nk k

0

1

2

3

4

5

6

7

4 6 8 9,6

calculation

s

simulations

F (I C,CS)

k

0

2

4

6

8

10

12

14

16

18

20

4 6 8 9.6

calculation

simulation

s

F (r B,CS )

k

2 2,( ) 1.65 0.25 0.41B CSF r knkc k k

Page 31: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 200931

Suppression of Bias Current-Source Noise

in

LC-Oscillators

Page 32: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 2009

Outline

• Contribution of Bias Current-Source Noise to Phase Noise of LC-Oscillators

• Techniques for Reduction of Bias Current-Source Noise

• Noise Analysis of Degenerated Bias Current Source

• Bias Noise Suppression - Design Example

32

Page 33: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 200933

VCO Noise Contributions

LC-tank

noise ~ 1

transconductor

noise ~ 0.5+c•k

bias current-source

noise ~ (0.5+c•k)•k

Q1 Q

2

QCS

vB1

vB2

iC1 iC2

iB2iB1

iBCS

CA

CB

CA

CB

ITAIL

C C

L

V V

iGTK

VCC

VTUNE

~~

Page 34: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 200934

VCO Noise Contributions

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4 6 8 9.6

r B,CS

I C,CS

r B

I C

R TK

BCS:

~85%

g m :

~15%

k

• f0~5.74GHz, RTK~340 , n~1.65, c~0.25, VCC=2.2V

Page 35: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 2007 35

Phase-Noise Ratio

0

1

2

3

4

5

6

7

8

9

10

4 6 8 9.6

PNR [dB]

k

( )( ) (2 ) (2 ) ( ) 21

2( ) (2 ) (2 ) 12 3

TK C B BCS

TK C B

nk nkc

R I r IPNR

nR I r nkc

L L L L

L L L

PNR=8.2dB

Page 36: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 200936

Bias Noise Reduction Techniques

resonant inductive degeneration (RID) resistive degeneration (RD) common emitter (CE)

high supply

required large area if

integrated

noise injection if

discrete

transconductor

noise always ON

reduced output

impedance

resistive

degenerationinductive

degenerationfiltering?

VIN

ITAIL

VIN

ITAIL

RD

LD

VIN

ITAIL

+-

CD

Page 37: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 200937

Capacitive Filtering

AC short

AC open

2

0

1

d/ 0f2

1/ f0

1/ f0

0

d’/ 0f2

1

1' (1 )

2d d

'(2 ) ~2

C

nF I k

1

2d

k

(2 ) ~2

C

nF I

• for k=10, d=5%, d’=52.5%, and F’>F

Page 38: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 200938

Bias Current Source with

Resonant-Inductive Degeneration

LRID matched to C at 2f0

rB,CS noise contribution reduced

transconductance gain small at resonance

series resonance

IB,CS noise contribution small

common-base like configuration (gain of 1)

IC,CS noise contribution removed

parallel resonance

emitter open at resonance (IC,CS floats)

LRID

VIN

ITAIL

C

Page 39: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 2007 39

Circuit Diagram for Noise

Transfer Functions

• iC,CS to iOUT: vB,CS short, iB,CS open

• iB,CS to iOUT: vB,CS short, iC,CS open

• vB, CS to iOUT: iC,CS open, iB,CS open

~(vB

- vE)g

C

E

B

LRID

rB C

iOUT,CS

~vB

iB i

C

m,CS

,CS

,CS

,CS

,CS,CS

Page 40: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 2007 40

Bias Current-Source Noise

Contributions

,

2,,,

1( ) 1

1( )1 ( )

m CSOUT

B CSN B CSB mm CS

TRID RID

gif

C r fi Ir gg j C

fL j L

,

2,,,

,

1( ) 1 1 0

1( )1 ( )

m CSOUT

B CSN C CSB mm CS

T CSRID RID

gif

C r fi Ir gg j C

fL j L

,

, ,

1( ) ( )

1( )

T CSOUTm

N B CS T CST RID RID

i ff g

v r fL j L

j C

series resonance

parallel resonance

parallel resonance

Page 41: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 2007 41

BCS w/ RID vs. BCS w/o RID

• more than a factor (fT,CS/2f0)2 noise reduction after RID

2

, ,2 2 0, , ,

0 ,

1 24 0 ( ) 2

2 2

m CS T CS

CS RID B CS m CS

T CS

g f fi kT r g

f f

, ,2 2

, ,

0

14 1 0 ( ) 2

2 2

m CS T CS

CS B CS m CS

g fi kT r g

f

• BCS noise without degeneration

• BCS noise with degeneration

• for (fT,CS/2f0)=5, a factor of 25 reduction

2

2 2 0,

,

2CS RID CS

T CS

fi i

f

Page 42: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 200942

VCO Noise Contributions

after RID applied to BCS• f0~5.74GHz, LRID~1.3nH, RTK~340 , n~1.65, c~0.25, VCC=2.2V

0%

20%

40%

60%

80%

100%

4 6 8 9.6

r B,CSI C,CS

r B

I C

R TK

BCS:

~6%

g m:

~94%

k

Page 43: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 2007 43

LC-tankRID

buffer-g-cell

m

buffer

5.7GHz–band VCO

5 metals

active area 0.1mm2

LRID=2.6nH, 7-turns, 0.01mm2

Page 44: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 200944

to ground to ground

to TCS transistors to ground

VCO w/ RID vs. VCO w/o RID

Page 45: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 200945

with RID

without RID

Phase Noise (w/ RID vs. w/o RID)

• 6dB phase-noise improvement with RID

• -112dBc/Hz @1MHz from 5.7GHz @ 4.8mA&2.2V

Page 46: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 200946

RID Conclusions

BCS noise >> gm-cell and LC-tank noise

Resonant inductive degeneration good suppression of high frequency BCS noise

low voltage operation

small chip area (vs. discrete solutions)

BCS DC noise upconversion

large area (vs. resistive degeneration)

poorer noise suppression at high supplies (vs.

resistive degeneration)

Page 47: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 200947

Oscillator Conclusions

• Spectral Analysis of Noise in LC-Oscillators

• Phase-Noise Model

• LC-tank, gm-cell, bias current source

contributions

• Bipolar vs. CMOS LC-Oscillators

• Oscillator Noise Reduction Methods

• Resonant-Inductive Degeneration

Page 48: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 200948

Future Worries

• Low-(Supply and Swing)-Voltage Operation

• Linear and Quasi-Linear Phase-Noise Model

• Low-Performance Oscillators

• Noise-Reduction Methods

Page 49: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 200949

Conclusions

Page 50: PowerPoint Presentationrfic.eecs.berkeley.edu/.../pdf/eecs242_lect23_phasenoise.pdf · 2009. 8. 10. · Title: PowerPoint Presentation Author: speedy Created Date: 4/30/2009 10:58:23

A. Tasic © 200950

Conclusions

• Spectral Analysis of Noise in LC-Oscillators

• LC-tank, gm-cell, bias current source noise

contributions

• Bipolar and CMOS VCO Noise Factors

• LC-Oscillators Noise Reduction Methods

• Mixer Noise Factor from VCO Noise Factor

• Oscillator Phase Noise in Receiver’s SNR

• Mixer Noise Factor in a Receiver

• LNA Noise Factor in a Receiver

• BBFilter Noise Transfer vs. LO/Mix Duty