Power Series (2/3) Series Solution Near and Ordinary...

56
Class Notes 10: Power Series (2/3) Series Solution Near and Ordinary Point 182A Engineering Mathematics

Transcript of Power Series (2/3) Series Solution Near and Ordinary...

Class Notes 10:

Power Series (2/3)

Series Solution Near and Ordinary Point

182A – Engineering Mathematics

Series Solution –

Ordinary Point and Singular Point – Introduction

0)()()(2

2

yxRdx

dyxQ

dx

ydxP

• Assume P, Q, R are polynomials with no common factors, and that we want to solve

the equation in a neighborhood of a point of interest x0

• If there is a common factor we divided it out before proceeding

Series Solution –Ordinary Point – Definition

• Ordinary Point (Definition) - The point x0 is called an ordinary point if P(x0) 0.

• Since P is continuous, P(x) 0 for all x in some interval about x0. For x in this

interval, divide the differential equation by P to get

• Since P(x0) is continues, there is an interval about x0 in which P(x0) is never zero

• Solve the equation in some neighborhood of a point of interest x0

• Since p and q are continuous, Theorem 3.2.1 indicates that there is a unique

solution, given initial conditions y(x0) = y0, y'(x0) = y0'

0)()()(2

2

yxRdx

dyxQ

dx

ydxP

)(

)()( ,

)(

)()( where

,0)()(2

2

xP

xRxq

xP

xQxp

yxqdx

dyxp

dx

yd

Ordinary Point – Examples

0))(sin(

023

0

yxyey

yyy

yy

x

][ • Every point in is an ordinary point

Series Solution –Singular Point – Definition

0)()()(2

2

yxRdx

dyxQ

dx

ydxP

)(

)()( ,

)(

)()( where

,0)()(2

2

xP

xRxq

xP

xQxp

yxqdx

dyxp

dx

yd

• Singular Point (Definition) - The point x0 is called an singular point if P(x0) = 0.

• Since P, Q, R are polynomials with no common factors, it follows that Q(x0) 0 or

R(x0) 0, or both.

• Then at least one of p or q becomes unbounded as x x0, and therefore Theorem

3.2.1 does not apply in this situation.

• Sections 5.4 through 5.8 deal with finding solutions in the neighborhood of a

singular point.

Singular Point – Example 1

0)ln(

)(

)()(

)(

yxyxy

xP

xRxP

xQ

0xatesdiscontinu

numberrealpositiveeveryatanalytic

numberrealeveryatanalytic

(x)P

R

xP

Q

ln

eqdiff.theofpointsingularaisat

inseriespowerabydrepresentebetcan'

00

ln

0

xx

x(x)P

R

Singular Point – Example 1

eqdiff.theofpointsingularaisat

inseriespowerabydrepresentebetcan'

00

ln

0

xx

x(x)P

R

Singular Point – Example 2

01

0

yyx

y

xyyyx

01

)(

)( x

xxP

xQatanalyticbetoFail

equationtheofpointsingularais0x

Singular Point – Example 3

01

6

1

2

062)1(

22

2

yx

yx

xy

yyxyx

pointsordinaryareresttheall;pointsingular1012 xx

Series Solution – Ordinary Point

• In order to solve our equation near an ordinary point x0,

we will assume a series representation of the unknown solution function y:

• As long as we are within the interval of convergence, this representation of y is

continuous and has derivatives of all orders.

0)()()(2

2

yxRdx

dyxQ

dx

ydxP

0

0 )()(n

n

n xxaxy

Theorem 5.3.1 Existence of Power Series Solution

• If x0 is an ordinary point of the differential equation

• Then the general solution for this equation is

where a0 and a1 are arbitrary, and y1, y2 are linearly independent series solutions

that are analytic at x0.

• The solutions y1, y2 form a fundamental set of solutions

• The power series solution converges at least on some interval defined by

• The radius of convergence for each of the series solutions y1 and y2 is at

least as large as the minimum of the radii of convergence of the series for p

and q.

0)()()(2

2

yxRdx

dyxQ

dx

ydxP

)()()()( 2110

0

0 xyaxyaxxaxyn

n

n

0xx

Minimum of the radii of convergence – Example

minFind

0)52( 2 yyxyxxFor

0)52(

1

)52( 22

y

xxy

xx

xy

1

0pointsordinaryanabout

0

0

x

xi

x

xxx 21052

2

12

• Because are two ordinary points of the diff. eq. the theorem

guarantees that we can find two power series centered around the two

1

0

0

0

x

x

0x

0

0 )()(n

n

n xxaxy

Minimum of the radii of convergence – Example

The radius of convergence

00 x 10 x

• Each power series for each will converge around at least with a

minimal radius of 0x

0

)(n

n

nxaxy

0

)1()(n

n

n xaxy

Power Solution Around 00 00 xx and

• For the sake of simplicity, find only power series solution about the

ordinary point

• If is also an ordinary point substitute the solution for

00 x

00 x 0xxx

0

)(n

n

nxaxy

0

0 )()(n

n

n xxaxy

Series Solution –

Ordinary Point – Example 1

xyy 0

1)(0)(;1)( xRxQxP

→ Every point is an ordinary point

Look for a solution in the form of a power series about 00 x

2

22

2

1

11

21

0

2

210

)1()1(2

2

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

xannxannay

xnaxnaxaay

xaxaxaxaay

substituting is the diff. eq.0)1(

02

2

y

n

n

n

y

n

n

n xaxann

Series Solution –

Ordinary Point – Example 1

2* nn

y

n

n

nxann

0

22

2

**

*

*

*)12)(2(

0)1)(2(00

2

y

n

n

n

y

n

n

n xaxann

0

2 0)1)(2(n

n

nn xaann

for this equation to be satisfactory for all x the coefficient of each power

of x must be zero

3,2,1,00)1)(2( 2 naann nn

2* nn

y

n

n

nxann

2

2)1(

Series Solution –

Ordinary Point – Example 1

3,2,1,00)1)(2( 2 naann nn

5

4

3

2

1

0

n

n

n

n

n

n

067

056

045

034

023

012

57

46

35

24

13

02

aa

aa

aa

aa

aa

aa

)67(

)56(

)45(

)34(

)23(

)12(

57

46

35

24

13

02

aa

aa

aa

aa

aa

aa

Series Solution –

Ordinary Point – Example 1

12345656

123434

12

046

024

02

aaa

aaa

aa

Even

123456767

1234545

23

157

135

13

aaa

aaa

aa

Odd

kn 2

12 kn

,4,3,2,1

)!2(

)1(02

k

ak

aak

kn

,4,3,2,1

)!12(

)1(112

k

ak

aak

kn

Series Solution –

Ordinary Point – Example 1

x

n

nn

x

n

nn

nn

nn

n

odd

nn

even

n

xn

axn

a

xn

xxxa

xn

xxa

xn

ax

n

a

xa

xa

xa

xa

xaay

sin

0

12

1

cos

0

2

0

1253

1

242

0

12120

5140312010

)!12(

)1(

)!2(

)1(

)!12(

)1(

!5!3

)!2(

)1(

!4!21

)!12(

)1(

)!2(

)1(

!5!4!3!2

Series Solution –

Ordinary Point – Example 1

0 yy

0)0(

1)0(For

y

y

1)0(

0)0(For

y

y

)cos()sin(

)sin()cos(

10

10

xaxay

xaxay

110)0(

001)0(

10

10

aay

aayxy sin

xy cos010)0(

101)0(

10

10

aay

aay

Series Solution –

Ordinary Point – Example 1

0

2

)!2(

)1()cos(

n

nn

xn

x

0

12

)!12(

)1()sin(

n

nn

xn

x

Series Solution –

Ordinary Point – Example 2 – Airy’s Equation

0 xyy

xxRxQxP )(0)(;1)(

Assume a solution

substituting the series in the diff eq.

0

1

00

2)1)(2(n

n

n

n

n

n

n

n

n xaxaxxann

)()1)(2(0

2

0

examplepreviousseen

n

n

n

n

n

xanny

xay

xyy

1~1~

nn

nn

Series Solution –

Ordinary Point – Example 2 – Airy’s Equation

start the sum from n=1

0 1~

~

1~2)1)(2(n n

n

n

n

n xaxann

1 1

12

0

2 )1)(2(12n n

n

n

n

n

n

xaxanna

For the equation to be satisfied for all x is some interval, the coefficients

of the same powers of x must be equal

12

12

2

00

2

)1)(2(

0012

nn

nn

aa

aann

axxa

oftermsingivenis

:1

:0

nxn

x

Series Solution –

Ordinary Point – Example 2 – Airy’s Equation

:1

:0

nxn

x

12

12

2

00

2

)1)(2(

0012

nn

nn

aa

aann

axxa

oftermsingivenis

3ofsteps

0

011852852

741

630

aaaaaaa

aaa

aaa

)1)(2(

12

nn

aa n

n

10,7,4,1n

11,8,5,2n

12,9,6,3n

Series Solution –

Ordinary Point – Example 2 – Airy’s Equation

The general formula

)3()13(9865324 0

3nn

aan n

10,7,4,1,,,For 9630 naaaa

9853298;

653265;

32

069

036

03

aaa

aaa

aa

Series Solution –

Ordinary Point – Example 2 – Airy’s Equation

11,8,5,2,,,For 10741 naaaa

1097643109;

764376;

43

1710

147

14

aaa

aaa

aa

The general formula

)13(310976434 1

13

nn

aan n

Series Solution –

Ordinary Point – Example 2 – Airy’s Equation

)13()3(1097643764343

)3()13(9865326532321

1374

1

363

0

nn

xxxxa

nn

xxxay

n

n

The General solution

Notes

- Both series converge for all x

- The general solution is xxyaxyay )()( 2110

Series Solution –

Ordinary Point – Example 2 – Airy’s Equation

oscillatory for x < 0

Decay in Amp; Increase in Freq

monotone for x > 0

xxyaxyay )()( 2110

)13()3(1097643764343

)3()13(9865326532321

1374

1

363

0

nn

xxxxa

nn

xxxay

n

n

Example – Airy’s Equation

01

00

)0(

)0(

yaxy

yaxy

0

0

)0(

)0(I.C.givenaFor

yxy

yxy

)13()3(1097643764343

)3()13(9865326532321

1374

1

363

0

nn

xxxxa

nn

xxxay

n

n

see also example 3, p 202 – Airy’s Equation for Xo=1

(ordinary point)

Series Solution –

Ordinary Point – Example 3

01

1

1

0)1(

22

2

yx

yx

xy

yyxyx

ixx 012

00 xFor

1

1xleastatconverge

2

2

1

1

0

)1(n

n

n

n

n

n

n

n

n

xcnny

xncy

xcy

Series Solution –

Ordinary Point – Example 3

01

1

1

0)1(

22

2

yx

yx

xy

yyxyx

ixx 012

00 xFor

1

1xleastatconverge

00 xFor

y

n

n

n

y

n

n

n

y

n

n

n xcxncxxcnnx

01

1

2

22 )1(1

Series Solution –

Ordinary Point – Example 3

0)1( 2 yyxyx 00 xFor

2

2

1

1

0

)1(;;n

n

n

n

n

n

n

n

n xannyxnayxay

012

2

2

)1)(2()1(k

k

k

k

k

k

k

k

k

n

k

k xcxkcxckkxckk

012

2

2

01

1

2

22

)1()1(

)1(1

n

n

n

n

n

n

n

n

n

n

n

n

y

n

n

n

y

n

n

n

y

n

n

n

xcxncxcnnxcnn

xcxncxxcnnx

Series Solution –

Ordinary Point – Example 3

2

1

1

0

0

21

1

1

21

1

3

0

0

2

2

0

1)1)(2()2)(3()1)(2()1(

k

k

k

k

k

k

kk

k

k

kkk

k

k

xcxcxc

xkcxcxckkxcxcxckk

nk

2

2

kn

nk nk nk

Start at 2k

Series Solution –

Ordinary Point – Example 3

0)1)(2()1()6()2(2

2302

k

k

kkkk xckcckkckkxccc

2

1

1

0

0

21

1

1

21

1

3

0

0

2

2

0

1)1)(2()2)(3()1)(2()1(

k

k

k

k

k

k

kk

k

k

kkk

k

k

xcxcxc

xkcxcxckkxcxcxckk

0)1)(2()1)(1()6()2(2

2302

k

k

kk xckkckkxccc

Series Solution –

Ordinary Point – Example 3

0)1)(2()1)(1(

06

02

2

3

02

kk ckkckk

c

cc

4,3,2 ,2

1

0

2

1

2

3

02

kck

kc

c

cc

kk

For the equation to be satisfied for all x is some interval, the coefficients

of the same powers of x must be equal

kx

x

x

1

0

0)1)(2()1)(1()6()2(

20

2

0

3

0

02

k

k

kk xckkckkxccc

Series Solution –

Ordinary Point – Example 3

4,3,2 ,2

12

kc

k

kc kk

07

4 5

!32

31

642

3

6

3 4

05

2 3

!22

1

42

1

4

1 2

57

03046

35

02024

cck

cccck

cck

cccck

050810

79

04068

!52

7531

108642

753

10

7 8

09

6 7

!42

531

8642

53

8

5 6

cccck

cck

cccck

Series Solution –

Ordinary Point – Example 3

xy

x

xx

n

nxy

n

n

n

n

2

2

212

11

11

!2

)32(531)1(

2

11

2110

1

10

5

8

4

6

3

4

2

2

0

5

5

4

4

3

3

2

210

2

1

!52

7531

!42

531

!32

31

!22

1

2

11

ycyc

xcxxxxxc

xcxcxcxcxccy

y

y

Series Solution –

Ordinary Point – Example 4 (Three Recurrence Relation)

0

0)1(

yxyy

yxy

2

2

0

)1(n

n

n

n

n

n

xcnny

xcy

0)1(002

2

y

n

n

n

xy

n

n

n

y

n

n

n xcxcxxcnn

0)1(00

1

2

2

n

n

n

n

n

n

n

n

n xcxcxcnn

00 xFor

Series Solution –

Ordinary Point – Example 4 (Three Recurrence Relation)

0

)1)(2()2)(3()1)(2(

21

1

1

0

0

0

2

1

1

1

0

2

2

1

1

3

0

0

2

k

k

k

kk

k

k

k

k

k

k

k

kk

xcxcxc

xcxc

xcnkxcxc

0)1(00

1

2

2

n

n

n

n

n

n

n

n

n xcxcxcnn

0:

2:

2

2

k

n

kn

nk

1:

0:

1

1

k

n

kn

nk nk

0)1)(2(01

1

0

2

k

k

k

k

k

k

k

k

k xcxcxckk

Start at 2k

Series Solution –

Ordinary Point – Example 4 (Three Recurrence Relation)

0)1)(2(622

0

12

0

013

0

20

k

k

kk

k

k xccxckkxccccc

0)1)(2( 12 kkk ccckk

02202

1 02 cccc

1030136

1 06 cccccc

)2)(1( 3, 2, 1

2

kk

ccck kk

k

Series Solution –

Ordinary Point – Example 4 (Three Recurrence Relation)

022

1cc

65 4

54 3

43 2

346

235

124

ccck

ccck

ccck

1036

1ccc

Series Solution –

Ordinary Point – Example 4 (Three Recurrence Relation)

0 ;0 10 cc 0 ;0 10 cc

022

1cc 0

2

102 cc

632

0013

cccc

632

1013

cccc

2443243

00124

ccccc

124343

11124

ccccc

302

1

6

1

5454

00235

ccccc

12065454

11235

ccccc

0

2110 n

n

nxcyycycy

5432

01030

1

24

1

6

1

2

11 xxxxcyc

543

121120

1

12

1

6

1xxxxcyc

Series Solution –

Ordinary Point – Example 5 (Non-polynomial Coefficients)

Ordinary Point 0cos yxy

00x

0n

n

nxcy

02

120

2

11262

!4!21201262

!6!4!21)1(cos

3

135

2

0241320

3

3

2

210

423

5

2

432

0

cos

642

2

2

xcccxcccxcccc

xcxcxccxx

xcxcxcc

xcxxx

xcnnyxy

y

n

n

n

xy

n

n

n

02

120

02

112

06

02

135

024

13

20

ccc

ccc

cc

cc

Series Solution –

Ordinary Point – Example 5 (Non-polynomial Coefficients)

Because the differential equation has no finite singular points, both

power series converge for

53

121

42

010

30

1

6

1 7 ,5 ,3 ,1

12

1

2

11 8 ,6 ,4 ,2 ,0

xxxcycn

xxcycn

2110 ycycy

15

04

13

02

30

1

12

1

6

1

2

1

cc

cc

cc

cc

xx

Series Solution –Ordinary Point – Example 6 (Legendre’s Equation)

Series Solution –

Ordinary Point – Example 6 (Legendre’s Equation)

2

2

1

1

0

)1(;;n

n

n

n

n

n

n

n

n xcnnyxncyxcy

1 min

1101

0)1~(~1

0)1~(~21

22

2

2

xxx

ynndx

dyx

dx

d

ynnyxyx

point Regular 00 x

Series Solution –

Ordinary Point – Example 6 (Legendre’s Equation)

2

)1~)(~(

~~~~

~~)1~(~2

2

1

1

0

0

1

1

1

3

0

2

0120

2

012

22

2

2

)1(

0

2

1

1

2

22

2

2

2

22

22

2

2

)1~(~2)1()1)(2(

)1~(~2232

)1~(~2)1()1)(2(

)1~(~2)1()1(

)1~(~2)1()1(

)1~(~2

k

kk

k

knknkkknnknn

kknn

nnkkk

k

kkkkk

k

k

k

k

k

k

k

k

k

k

k

k

nk

n

n

n

nk

n

n

n

nk

n

n

n

knnk

n

n

n

ynn

n

n

n

yx

n

n

n

yx

n

n

n

y

n

n

n

xxcnnkkkckk

xccnnxcxcc

xcnnxkcxckkxckk

xcnnxncxcnnxcnn

xcnnxncxxcnnxxcnn

ynnyxyxy

2 withStart2 withStart2 withStart

Series Solution –

Ordinary Point – Example 6 (Legendre’s Equation)

0)1~(~)1)(2(

)1~(~26)1~(~2

2

2

)2~)(1~()2~~(

11302

1

12

k

k

kk

cnncnn

xcknknckk

xcnncccnnc

0)1~(~)1)(2(

0)2~)(1~(6

0)1~(~2

2

13

02

kk cknknckk

cnnc

cnnc

For the equation to be satisfied for all x is some interval, the coefficients

of the same powers of x must be equal

Series Solution –

Ordinary Point – Example 6 (Legendre’s Equation)

,5 ,4 ,3 ,2

)1)(2(

1~~

2

kc

kk

knknc kk

157

046

135

024

!7

6~4~2~1~3~5~

67

6~5~ 5

!6

5~3~1~~2~4~

56

5~4~ 4

!5

4~2~1~3~

45

4~3~ 3

!4

3~1~~2~

34

3~2~ 2

cnnnnnn

cnn

ck

cnnnnnn

cnn

ck

cnnnn

cnn

ck

cnnnn

cnn

ck

1

!3

3

0

!2

2

6

)2~)(1~(

2

)1~(~

cnn

c

cnn

c

0)1~(~)1)(2(

0)2~)(1~(6

0)1~(~2

2

13

02

kk cknknckk

cnnc

cnnc

• Note for as even integer,

– y1 terminates with xn,

– y2 becomes infinite series

• Note for as odd integer (vice versa)

– y1 becomes infinite series

– Y2 terminates with xn,

• For example

Series Solution –

Ordinary Point – Example 6 (Legendre’s Equation)

753

12

642

01

!7

6~4~2~1~3~5~

!5

4~2~1~3~

!3

)2~)(1~()(

!6

5~3~1~~2~4~

!4

3~1~~2~

!2

1~~1)(

xnnnnnn

xnnnn

xnn

xcxy

xnnnnnn

xnnnn

xnn

cxy

n~

4~ n

42

0

42

013

35101

!4

7542

!2

541)( xxcxxcxy

753

12!7

1086311

!5

8631

!3

63)( xxxxcxy

n~

• Note For (positive), one of the two solutions will be n-th degree

polynomial solution to the Legendre’s equation

Series Solution –

Ordinary Point – Example 6 (Legendre’s Equation)

0~ n

753

12

642

01

!7

6~4~2~1~3~5~

!5

4~2~1~3~

!3

)2~)(1~()(

!6

5~3~1~~2~4~

!4

3~1~~2~

!2

1~~1)(

xnnnnnn

xnnnn

xnn

xcxy

xnnnnnn

xnnnn

xnn

cxy

• Because a constant multiple of a solution of the Legendre’s equation is also a

solution

• Then it is traditional to choose specific values for c0, c1 depending on whether n is an

even or odd positive integer respectively

• For

• For

• For example

Series Solution –

Ordinary Point – Example 6 (Legendre’s Equation)

10~0 cn

n

ncn

n

~42

1~3116,4,2~

2

~

0

01~1 cn

1~42

~3117,5,3~

2

1~

1

n

ncn

n

4~ n

330358

1

3

35101

42

311)( 2442

2

4

1

xxxxxy

• These specific n-th degree polynomial solutions are called Legendre

polynomials and are denoted by Pn(x)

• Note that for

Series Solution –

Ordinary Point – Example 6 (Legendre’s Equation)

n Legendre’s EquationLegendre Polynomial

(Particular Solution)

0

1

2

3

1)(0 xP 021 2 yxyx

0221 2 yyxyx

0621 2 yyxyx

01221 2 yyxyx

xxP )(1

132

1)( 2

2 xxP

xxxP 352

1)( 3

3

Series Solution –

Ordinary Point – Example 6 (Legendre’s Equation)

Series Solution –

Ordinary Point – Example 6 (Legendre’s Equation)

Legendre Polynomials